复数的几何意义4.1
复数的基本概念和几何意义

复数的基本概念和几何意义复数是数学中的一个重要概念,它包含实数和虚数部分,可以用a+bi的形式表示,其中a是实数部分,bi是虚数部分,i是虚数单位,它满足i^2 = -复数的几何意义可以通过复平面来理解。
复平面是一个二维平面,横轴表示实数轴,纵轴表示虚数轴。
复数可以在复平面上表示为一个点。
实数部分决定了复数的横坐标,虚数部分决定了复数的纵坐标。
复数的模长表示复数到原点的距离,即复数的绝对值,用,z,表示。
复数的几何意义可以表现在以下几个方面:1.向量:复数可以看作是向量,实部表示向量在横轴上的投影,虚部表示向量在纵轴上的投影。
复数的加减法对应了向量的加减法,复数的乘法对应了向量的缩放和旋转。
2. 极坐标:复数可以用极坐标表示,在复平面上,复数z可以表示为z = r(cosθ + isinθ),其中r表示模长,θ表示与正实数轴的夹角。
复数的极坐标形式可以简化复数的运算。
3.旋转:复数的乘法可以表示复平面中的旋转。
如果复数z1表示一个向量,复数z2代表一个旋转角度,那么z1×z2的结果就表示了z1绕原点旋转z2对应的角度后的位置。
4.平移:将一个向量加上一个复数的结果就是将这个向量沿着复平面的一些方向平移。
平移是复数的加法对应的几何意义。
5. 共轭复数:共轭复数是将复数的虚数部分取负得到的,即z的共轭复数为z* = a - bi。
在复平面中,共轭复数对应于复数关于实数轴的对称点。
复数的几何意义在多个学科中都得到了广泛的应用。
在工程和物理学中,复数用于描述交流电路的电压和电流,光学中的波长和波矢也可以用复数表示。
在信号处理和通信领域,复数被用于分析和处理信号的频谱特性。
在数学中,复数进一步推广了实数域,使得更多的方程和函数都能够得到解析解。
而在几何学中,复数以及复数的扩展形式,如四元数和八元数等,被用于描述高维空间中的旋转和变换。
总之,复数不仅是数学中的重要概念,也具有丰富的几何意义。
它不仅可以用于解决实数域无法处理的问题,还能够用于表示各种向量、旋转和变换等几何概念。
复数运算的几何意义解读

复数运算的几何意义解读复数是由实数和虚数构成的数学概念,具有实部和虚部两个部分。
在复平面中,复数可以表示为一个有序数对(a,b),其中a为实部,b为虚部。
复数运算的几何意义可以通过复平面的几何解释来理解。
首先,复数可以用来表示平面上的点。
复平面以实轴为x轴,以虚轴为y轴,每个复数可以对应平面上的一个点。
实部表示该点在x轴上的位置,虚部表示该点在y轴上的位置。
例如,复数z=3+4i表示平面上的一个点,该点在x轴上的位置是3,在y轴上的位置是4加法运算是复数运算中的一种基本操作。
两个复数相加得到的结果是一个新的复数,其实部等于两个复数的实部之和,虚部等于两个复数的虚部之和。
在几何上,两个复数的加法可以理解为将两个平面上的点进行向量相加,得到一个新的点。
减法运算也是复数运算中的一种基本操作。
两个复数相减得到的结果是一个新的复数,其实部等于第一个复数的实部减去第二个复数的实部,虚部等于第一个复数的虚部减去第二个复数的虚部。
在几何上,两个复数的减法可以理解为将第二个复数对应的点作为向量,进行与第一个复数对应的点的相反方向的向量相加。
乘法运算是复数运算中的另一种基本操作。
两个复数相乘得到的结果是一个新的复数,其实部等于两个复数的实部的乘积减去两个复数的虚部的乘积,虚部等于第一个复数的实部与第二个复数的虚部之积加上第一个复数的虚部与第二个复数的实部之积。
在几何上,两个复数的乘法可以理解为将两个平面上的点进行相乘得到一个新的点。
除法运算是复数运算中的一种特殊操作。
两个复数相除得到的结果是一个新的复数,其实部等于两个复数相乘的实部之和除以两个复数相乘的模的平方,虚部等于两个复数相乘的虚部之差除以两个复数相乘的模的平方。
在几何上,两个复数的除法可以理解为将第二个复数对应的点作为向量,进行与第一个复数对应的点的相反方向的向量相加。
复数的模是复数到原点的距离,可以用勾股定理计算。
复数的模平方等于复数实部的平方加上虚部的平方。
复数的概念及几何意义

在数自身的发展中,求 解方程式数系扩充的重 要动力,
如:2x 1
得x 1 , 引入了有理数 2
x2 2 得x 2, 引入了无理数
? x2 1
引进一个新数 i,叫做虚数单位,并规定 : (1)它的平方等于 1,即i2 1
(2)实数与它进行四则运 算时,原有的加法、 乘法运算律仍然成立
复数a bi(a,b R)
实数(b
0)
虚数(b 0)(. 当a 0时为纯虚数)
全体复数构成的集合称为复数集, 记作C,显然R C
NZ Q R C
解:由复数相等的定义,得
x 2 3y, 2x y 1.
解得:xy
1, 1.
实数与数轴上的点意义对应,我们可以用数轴上的点来表示实数。
430 1 2
x
复数z a bi(a,b R)由实部a和虚部b两个实数确定,复数用 什么图形来表示呢?
y
b
Z
.
O1
a
x
y
b
Z
.
O1aΒιβλιοθήκη x向量OZ的模称为复数z a bi(a,b R)的模,记作z 或 a bi .由模的定义可 知,z a bi a2 b2 .如果b 0,那么z a bi是一个实数a,它的模等于z
(1)z1 3 2i;
y
(2)z2 1 3i.
解:在复平面内作图如 左图.
z2 1 3i ●
● ●
●
● ●● ● ● ● ●
O1
x
●
●
● z1 3 2i
●
●
(1) z1 3 2i 32 22 13 ,
z1 3 2i
(2) z2 1 3i
复数的几何意义

Z(a,b)
课堂探讨
问题5:复数z=a+bi(a,b∈R)的模与向量
→ OZ
的模有怎样的对应关系?
问题6:两个虚数是不能比较大小的,两个虚数的模能比较大小吗?
新知生成
2.复数的模
复数z=a+bi(a,b∈R),对应的向量为
O→Z,则向量
→ OZ
的模
|z|
叫作复数z=a+bi的模(或绝对值),记作 或 |a+bi| .由模
复数的几何意义
授课人:曹
课题背景
19世纪末20世纪初,著名的德国数学家高斯在证明代数基 本定理时,首次引进“复数”这个名词,他把复数与平面 内的点一一对应起来,创立了复平面,依赖平面内的点或 有向线段(向量)建立了复数的几何基础. 复数的几何意义,从形的角度表明了复数的“存在性”, 为进一步研究复数奠定了基础.
解 因为A→O=-O→A,所以A→O表示的复数为-3-2i.
新知运用
(2)C→A表示的复数; 解 因为C→A=O→A-O→C,
所以C→A表示的复数为(3+2i)-(-2+4i)=5-2i.
→ (3)OB表示的复数. 解 因为O→B=O→A+O→C,
所以O→B表示的复数为(3+2i)+(-2+4i)=1+6i.
新知生成
复平面
建立了直角坐标系来表示复数的平面叫作 复平面 ,x 轴 叫作 实轴 ,y 轴叫作 虚轴 .实轴上的点都表示实数;除
原点外,虚轴上的点都表示纯虚数.
课堂探讨
问题4:复平面内的点Z (a, b)与以原点为起点,以Z (a, b)
为终点的向量
→ OZ
有怎样的对应关系?
新知生成
复数的几何意义 1.复数与点、向量间的对应关系
课堂探讨
复数的概念及复数的几何意义

复数的概念及复数的几何意义复数是数学中一种特殊的数形式,由实数和虚数组成。
在复数形式中,虚数单位i满足i²=-1、一个典型的复数可以表示为a+bi,其中a是实部,b是虚部。
复数的几何意义可以通过使用复平面来解释。
复平面是由实数轴和虚数轴组成的平面,将复数表示为平面上的点。
实部对应于横坐标,虚部对应于纵坐标。
根据这个表示法可以将复数表示为平面上的点。
实部和虚部可以是任意实数,因此复数在平面上可以表示为平面上的任意点。
平面上的坐标点(a,b)对应于复数a+bi。
平面上的原点(0,0)对应于复数0,纵坐标为0的点(0,b)对应于纯虚数bi,而横坐标为0的点(a,0)对应于纯实数a。
复数的运算可以通过在复平面上进行向量运算来实现。
两个复数的加法就是将两个向量叠加在一起,而减法就是将一个向量从另一个向量中减去。
乘法可以通过将复数旋转和缩放来实现。
复数的模可以用勾股定理推导得出:对于复数a+bi,它的模等于√(a²+b²),表示为,a+bi。
模是复数的长度或距离原点的距离。
两个复数的模的乘积等于它们的乘积的模,即,a+bi, * ,c+di, = ,(a+bi)(c+di)。
复数的共轭是将虚部取负得到的,即a-bi是复数a+bi的共轭。
共轭复数在复平面上呈镜像关系,共轭对称于实轴。
复数的实部是自身的共轭,虚部取负是自身的共轭。
通过使用复数,可以解决许多实数范围内无法解决的问题。
例如,求根公式中的虚数单位i是由复数域推导而来。
复数也广泛应用于工程学、物理学和信号处理等领域。
实际上,电路和信号可以使用复数进行建模和分析。
总之,复数是数学中重要的概念之一,它由实数和虚数组成,并可以通过复平面表示。
复数的几何意义在于将复数表示为平面上的点,实部对应于横坐标,虚部对应于纵坐标。
复数可以进行向量运算,包括加法、减法、乘法和取共轭。
复数的模是其到原点的距离,模的乘积等于乘积的模。
复数的共轭是虚部取负得到的。
复数的几何意义与应用问题

复数的几何意义与应用问题复数是由实部和虚部组成的数,它在几何上有着重要的意义和广泛的应用。
本文将从几何意义和应用问题两个方面进行论述,深入探讨复数在几何学中的作用和应用。
一、几何意义1. 复数表示坐标复数可以表示平面上的点,其中实部表示点在x轴上的坐标,虚部表示点在y轴上的坐标。
例如,复数z=a+bi可以表示平面上的一个点P(a, b),其中a和b分别为点P的横坐标和纵坐标。
2. 复数表示向量复数也可以表示平面上的向量,向量的起点位于原点(0, 0),终点位于对应的复数所表示的点。
向量的模长等于复数的模长,向量的方向等于复数的辐角。
通过复数运算,我们可以进行向量的加法、减法和乘法等操作。
3. 复数表示旋转复数的辐角表示向量相对x轴的旋转角度。
当复数z=a+bi,其中a 和b都不为零时,可以表示平面上的一个向量。
向量的辐角等于复数的辐角。
通过改变复数的辐角,可以实现向量的旋转。
二、应用问题1. 复数在电路中的应用复数在电路分析中有着重要的应用。
例如,对于交流电路中的电压和电流,可以使用复数来表示其幅度和相位差。
通过复数的运算,可以进行电路中电压、电流的计算和分析,并得到正确的结果。
2. 复数在信号处理中的应用信号处理中经常用到傅里叶变换,而傅里叶变换中的频谱分析是通过复数进行的。
通过对信号进行傅里叶变换,可以得到信号的频谱图,进而对信号进行滤波、压缩等处理。
3. 复数在力学中的应用在力学中,复数可以表示振动和波动等现象。
例如,简谐振动可以用复数表示,通过复数的运算可以计算振动的幅度、相位和周期等性质。
4. 复数在几何图形中的应用复数在几何图形的平移、旋转和缩放等操作中有广泛的应用。
通过复数的运算,可以方便地进行几何图形的变换和计算,实现图形的平移、旋转和缩放等操作。
结语复数在几何学中有着重要的几何意义和广泛的应用。
它可以表示坐标、向量和旋转等内容,并且在电路、信号处理、力学和几何图形等领域都有广泛的应用。
(完整版)复数的基本概念和几何意义

一、考点、热点回顾1. 复数的有关概念 (1)复数① 定义:形如 a + bi ( a , b ∈ R )的数叫做复数,其中 i 叫做虚数单位,满足 i 2=- 1. ② 表示方法:复数通常用字母 z 表示,即 z = a +bi ( a ,b ∈ R ),这一表示形式叫做复数的代数形式 .a 叫做复 数 z 的实部, b 叫做复数 z 的虚部 .注意:复数 m +ni 的实部、虚部不一定是 m 、 n ,只有当 m ∈R ,n ∈R 时,m 、n 才是该复数的实部、虚部 . ( 2)复数集①定义:全体复数所成的集合叫做复数集 . ②表示:通常用大写字母 C 表示 .2. 复数的分类实数( b =0)2)复数集、实数集、虚数集、纯虚数集之间的关系3. 复数相等的充要条件设 a 、 b 、 c 、 d 都是实数,则 a +bi =c +di? a =c 且 b =d ,a +bi =0?a =b =0. 注意:(1)应用复数相等的充要条件时注意要先将复数化为 z =a +bi (a , b ∈R )的形式,即分离实部和虚 部.2)只有当 a =c 且 b =d 的时候才有 a +bi =c +di ,a = c 和 b =d 有一个不成立时,就有 a +bi ≠c + di.3)由 a + bi = 0,a ,b ∈R ,可得 a =0 且 b = 0. 4.复平面的概念 建立直角坐标系来表示复数的平面叫做复平面, x 轴叫做实轴, y 轴叫做虚轴 .实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数 .6.复数的模复数 z =a +bi (a ,b ∈R )对应的向量为 O →Z ,则O →Z 的模叫做复数 z 的模,记作 |z|,且 |z|= a 2+b 2. 注意:复数 a +bi (a , b ∈R )的模 |a + bi|= a 2+b 2,两个虚数不能比较大小,但它们的模表示实数,可以 比较大小 .考点一、复数的概念 例 1、下列命题:①若 a ∈ R ,则( a +1)i 是纯虚数; ②若 a ,b ∈R ,且 a>b ,则 a +i>b + i ;复数1)复数 z =a +bi (a , b ∈R )虚数( b ≠0)纯虚数 a = 0 非纯虚数5.复数的两种几何意义 ( 1)复数 z =a +bi (a , b ∈R )一一对应←一―一对―应→复平面内的点Z (a ,b ) 一一对应←―平面向量 O →Z.典型例题③若( x2- 4)+( x2+3x+ 2)i 是纯虚数,则实数 x=±2;④实数集是复数集的真子集 .其中正确的是( ) A. ① B.② C.③ D.④【解析】 对于复数 a +bi (a ,b ∈R ),当 a =0且 b ≠0 时,为纯虚数 .对于① ,若 a =- 1,则( a +1)i 不 是纯虚数,即 ①错误.两个虚数不能比较大小,则 ②错误.对于 ③,若 x =-2,则 x 2-4=0,x 2+3x +2=0,此时 (x 2-4)+( x 2+3x +2)i =0,不是纯虚数,则 ③错误 .显然,④正确 .故选 D.【 答案】 D 变式训练 1、 1.对于复数 a + bi ( a ,b ∈R ),下列说法正确的是( A. 若 a =0,则 a +bi 为纯虚数B. 若 a +( b -1)i =3-2i ,则 a = 3,b =- 2C. 若 b =0,则 a +bi 为实数D. i 的平方等于 1 解析: 选 C.对于 A ,当 a =0 时, a +bi 也可能为实数; 对于 B ,若 a +( b - 1) i = 3- 2i , 对于 D ,i 的平方为- 1.故选 C.2. 若 4-3a -a 2i =a 2+4ai ,则实数 A.1 C.-4 4 - 3a = a 2,解析: 选 C.易知 2 解得-a 2=4a , 考点二、复数的分类例 2、已知 m ∈R ,复数 z =m (m +2)m -1(1)z 为实数?( 2)z 为虚数?( 3) z 为纯虚数?则 a =3,b =- 1;a 的值为( ) B.1 或- 4D.0 或- 4 a =- 4. (m 2+2m -3)i ,当 m 为何值时,解】 2) 要使1)要使 z 为实数, m 需满足 m 2+2m -3=0,且 m ( m + 2)有意义,即 m -1≠0,解得 m =-3. m -1 z 为虚数, m 需满足 m 2+ 2m - 3≠ 0,且m ( m + 2)有意义,即 m -1≠ 0,解得 m ≠1 且m ≠-3. m -13) 要使z 为纯虚数, m 需满足m ( m + 2)变式训练 2、 当实数 m 为何值时,复数 纯虚数;( 2)实数 . =0,且 m 2+2m -3≠0,解得 m =0 或- 2. m -1lg ( m 2- 2m - 7)+( m 2+ 5m + 6) i 是解:(1)复数 lg ( m 2- 2m - 7)+ m 2+5m +6)i 是纯虚数,则lg 2(m2-2m -7)=0,m 2+ 5m +6≠0,解得 m = 4.m2-2m -7>0 ,2)复数 lg ( m 2- 2m - 7)+( m 2+ 5m + 6) i 是实数,则 m 2+5m +6=0,解得 m =- 2 或 m =- 3.考点三、复数相等 例 3、( 1) 3) 若( x +y )+ yi =( x +1)i ,求实数 x ,y 的值;已知 a 2+(m +2i )a +2+mi =0(m ∈R )成立,求实数 a 的值; 若关于 x 的方程 3x 2- a 2x - 1=( 10- x - 2x 2)求实数 a 的值 . x +y =0, 解】 ( 1)由复数相等的充要条件,得解得 y =x +1, 1 x =- 2, 2)因为 a ,m ∈ R ,所以由 a 2+ am +2+( 2a +m )i = 0,可得 1y =12. a 2+ am +2=0, 2a + m =0,解得a m ==-22,2或 a =- 2, m = 2 2, 所以 a = ± 2.( 3)设方程的实根为 x = m ,则原方程可变为 3m 2-a 2m -1=( 10-m -2m 2) i ,2a3m 2-m - 1=0, 712 解得 a = 11 或- 71. 25 10- m - 2m 2= 0,考点五、复数与复平面内的向量例 5、(1)已知 M (1,3),N (4,-1),P (0,2),Q (-4,0),O 为复平面的原点,试写出 O →M ,O →N ,O →P , O →Q 所表示的复数;( 2)已知复数 1,- 1+2i ,- 3i ,6-7i ,在复平面内画出这些复数对应的向量;( 3)在复平面内的长方形 ABCD 的四个顶点中,点 A ,B ,C 对应的复数分别是 2+3i ,3+2i ,- 2-3i ,求 点 D 对应的复数 .【 解】 ( 1)O →M 表示的复数为 1+ 3i ; O →N 表示的复数为 4-i ; O →P 表示的复数为 2i ; O →Q 表示的复数为- 4.(2)复数 1 对应的向量为 O →A ,其中 A (1,0);复数- 1+2i 对应的向量为 O →B ,其中 B (- 1,2); 复数- 3i 对应的向量为 O →C ,其中 C (0,- 3);复数 6-7i 对应的向量为 O →D ,其中 D (6,-7). 如图所示 .所以 变式训练所以所以3、已知 A ={1,2,a 2-3a -1+(a 2-5a -6)i },B ={-1,3},A ∩B ={3} ,求实数 a 的值. 由题意知, a 2- 3a - 1+ a 2- 3a - 1= 3 , a 2- 5a - 6= 0 , a =- 1.a 2-5a -6)i =3(a ∈R ), a = 4或 a =- 1, 即 考点四、复数与复平面内的点例 4、已知复数 z =( a 2- 1)+ 的值(或取值范围) .( 1)在实轴上; ( 2)在第三象限 .【 解】 ( 1 )若对应的点在实轴上,则有12a -1= 0,解得 a = 2.( 2)若 z 对应的点在第三象限,则有 a 2 -1<0 , 1解得- 1<a<1.故 a 的取值范围是 - 1, 2a - 1<0. 2变式训练 4、求实数 a 取什么值时,复平面内表示复数( 1)位于第二象限;( 2)位于直线 y = x 上 .解: 根据复数的几何意义可知,复平面内表示复数 a 2- 3a + 2) .( 1)由点 Z 位于第二象限,得 a 2+a -2<0,2 解得- 2<a<1. a 2-3a +2>0,故满足条件的实数 a 的取值范围为(- 2,1).2a -1)i ,其中 a ∈R.当复数 z 在复平面内对应的点 Z 满足下列条件时,求 a 1 2.z =a 2+a -2+( a 2-3a +2)i z =a 2+a -2+( a 2-3a + 2)i 的点就是点 Z ( a 2+a -2,解析: 3- 3i 对应向量为( 3,- 3),与 x 轴正半轴夹角为 30°,顺时针旋转 60°后所得向量终点在 y 轴 负半轴上,且模为 2 3.故所得向量对应的复数是- 2 3i.答案: - 2 3i 考点六、复数的模例 6、( 1)设( 1+i )x =1+yi ,其中 x ,y 是实数,则 |x + yi|=( )A.1B. 2C. 3D.2( 2)已知复数 z 满足 z +|z|=2+8i ,求复数 z.【 解】 (1)选 B.因为 x + xi = 1+ yi ,所以 x = y =1, 所以 |x +yi|=|1+i|= 12+12= 2.( 2)法一: 设 z =a +bi ( a ,b ∈R ),则 |z|= a 2+ b 2 , 代入原方程得 a + bi + a 2+b 2=2+ 8i , a + a 2+ b 2= 2, 根据复数相等的充要条件,得 + 解得b =8, 所以 z =- 15+ 8i. 法二: 由原方程得 z =2-|z|+8i (* ). 因为|z|∈R ,所以 2-|z|为 z 的实部, 故 |z|= ( 2-|z|)2+82, 即|z|2=4-4|z|+|z|2+64,得 |z|=17. 将|z|=17代入( *)式得 z =- 15+8i. 变式训练 6、已知复数 z = 3+ ai ( a ∈ R ),且 |z|<4,求实数 解:法一: 因为 z =3+ ai (a ∈ R ),所以 | 由已知得 32+ a 2<4 2,所以 a 2<7,所以 a ∈ 法二:由|z|<4知z在复平面内对应的点在以原点为圆心,以 4为半径的圆内(不包括边界) ,由 z =3+ ai 知z 对应的点在直线 x = 3 上,所以线段 AB (除去端点)为动点 Z (3,由图可知- 7<a< 7.三、课后练习1.若(x+y)i=x-1(x,y ∈R),则 2x+y 的值为 ( )A. B.2 C.0 D.1 解析 :由复数相等的充要条件知 ,x+y =0,x-1=0 故 x+y=0. 故 2x+y =2 0=1. 答案 :D则A →D =(x -2,y -3),B →C =(- 5,-5). → → x - 2=- 5, 由题知, A →D =B →C ,所以 即 x =- 3,故点 D 对应的复数为- 3- 2i.变式训练 5 、在复平面内,把复数 3- 3i 对应的向量按顺时针方向旋转π3 ,所得向量对应的复a =-15, b = a 的取值范围 . = 32 +a 2,- 7,2.已知集合 M={1,2,(m 2-3m-1)+(m 2-5m-6)i},N={-1,3}, 且 M∩ N={3}, 则实数 m的值为 ( )A.4B.-1C.-1 或 4D.-1 或 6 解析 :由于 M∩N={3} ,故 3∈M, 必有 m2-3m-1+(m 2-5m-6)i=3, 所以得 m=-1.答案 :B3. _______________________________________________________________ 给出下列复数 :①-2i,②3+,③8i2,④isin π⑤,4+i;其中表示实数的有 (填上序号 ) __________ .解析 :②为实数 ;③8i2=-8 为实数 ;④i · sin π =0为·实i=数0 ,其余为虚数 .答案 :②③④4.下列复数模大于 3,且对应的点位于第三象限的为 ( )A.z=-2-iB.z=2-3iC.z=3+2iD.z=-3-2i 解析 :A 中 |z|=<3;B 中对应点 (2,-3) 在第四象限 ;C 中对应点 (3,2)在第一象限 ;D 中对应点 (-3,-2) 在第三象限,|z|=>3.答案 :D5.已知复数 z满足 |z|2-2|z|-3=0,则复数 z对应点的轨迹为 ( ) A.一个圆 B.线段 C.两点 D.两个圆解析 :∵|z|2-2|z|-3=0,∴(|z|-3)(|z|+1)=0, ∴|z|=3,表示一个圆 ,故选 A.答案 :A6. _______________________________________________________ 已知在△ABC 中 ,对应的复数分别为 -1+2i,-2-3i, 则对应的复数为______________________________ .解析 : 因为对应的复数分别为 -1+2i,-2-3i,所以 =(-1,2),=(-2,-3). 又=(-2,-3)-(-1,2)=(-1,-5), 所以对应的复数为 -1-5i.答案 :-1-5i7.在复平面内 ,若复数 z=(m2-m-2)+(m 2-3m+2)i 的对应点 ,(1) 在虚轴上 ,求复数 z;(2)在实轴负半轴上 ,求复数 z. 答案 :(1) 若复数 z 的对应点在虚轴上 ,则 m2-m-2=0, 所以 m=-1或 m=2. 此时 z=6i 或 z=0.(2)若复数 z 的对应点在实轴负半轴上 ,则 m2-3m+2=0,m2-m-2<0,∴m=1能力提升8. _____________________________________________________ 若复数 z=cos θ +(-msin -θcosθ )i为虚数 ,则实数 m 的取值范围是________________________ .解析 :∵z 为虚数 ,∴ m-sin θ-cosθ≠ 0,即 m ≠ sin θ+cos θ.∵ sin θ +cos ∈θ[ - 2 , 2 ], ∴ m ∈ (-∞,- 2 )∪( 2 ,+ ∞). 答案 :(-∞,- 2 )∪( 2 ,+ ∞)9. _____________________________________________________ 若复数 (a 2-a-2)+(|a-1|-1)i(a ∈ R)不是纯虚数 ,则 a 的取值范围是 ________________________解析 :若复数为纯虚数 ,则有 a 2-a-2=0,|a-1|-1≠0 即 a=-1. 故复数不是纯虚数时 a ≠-1. 答案 :{a|a ≠-1} 10. _______________________________________________________ 已知向量与实轴正向夹角为 135°,向量对应复数 z 的模为 1,则 z= _________________________________ .解析 :依题意知 Z 点在第二象限且在直线 y=-x 上 , 设 z=-a+ai(a>0).1∵ |z|=1,∴ a 2= .而 a>0,2∴ a=22 答案 :z= i2211. ___________________________________ 已知复数 z 满足 z+|z|=2+8i, 则复数 z= . 解析 :设 z=a+bi(a,b ∈R), 则 |z|= a 2b2 ,代入方程得 ,a+bi+ a 2b 2= 2+8i,∴解得 a=-15∴ z=-15+8i. 答案 :-15+8i12. 已知 M= {1,(m 2-2m)+(m 2+m-2)i}, P={ -1,1,4i}, 若 M ∪ P=P ,求实数 m 的值. 解析 :M ∪P=P,∴M?P,即 (m 2-2m)+(m 2+m-2)i=-1 或 (m 2-2m)+(m 2+m-2)i=4i. 由 (m 2-2m)+(m 2+m-2)i=-1, 得解得 m=1;由 (m 2-2m)+(m 2+m-2)i=4i,解得 m=2. 综上可知 m=1 或 m=2. 答案 :m=1 或 m=213. 已知复数 z=2+cos θ +(1+sin θ∈)iR( ), θ试确定复数 z 在复平面内对应的点的轨迹是什么曲线 解析 : 设复数 z=2+cos θ +(1+sin θ对)i 应的点为 Z(x,y), 则 x=2+cos θ ,y=1+sin θ 即 cos θ =-x2,sin θ =-1y 所以 (x-2)2+(y-1) 2=1.∴z22所以复数 z 在复平面内对应点的轨迹是以 (2,1)为圆心 ,1 为半径的圆答案 :复数 z在复平面内对应点的轨迹是以 (2,1)为圆心 ,1为半径的圆14.已知复数 z= m(m- 1)+ (m2+ 2m-3)i( m∈ R ).(1)若 z 是实数,求 m 的值;(2)若 z是纯虚数,求 m 的值;(3)若在复平面 C 内, z所对应的点在第四象限,求答案 : (1)∵z 为实数,∴m2+2m-3=0,解得 m=-(2)∵z 为纯虚数,m m- 1 =0 , m2+ 2m- 3≠0.m 的取值范围.解得 m= 0.(3)∵z 所对应的点在第四象限,m m- 1 >0 ,∴ 2解得- 3<m<0. m2+ 2m- 3<0.。
复数的几何意义及应用

复数的几何意义问题1:复数z 的几何意义设复平面内点Z 表示复数z= a+bi (a ,b ∈R ),连结OZ ,则点Z ,OZ ,复数z= a+bi (a ,b ∈R )之间具有一一对应关系。
直角坐标系中的点Z(a,b)一一对应 一一对应 复数z=a+bi 问题2:∣z ∣的几何意义若复数z= a+bi (a ,b ∈R )对应的向量是OZ ,则向量是的模叫做复数z= a+bi (a ,b ∈R )的模,=| a+bi |=22b a +(a ,b ∈R )。
问题3:∣z 1-z 2∣的几何意义两个复数的差z z z =-21所对应的向量就是连结21Z Z 并且方向指向(被减数向量)的向量,22122121)()(y y x x z z d -+-==-=(二)探索研究根据复数的几何意义及向量表示,求复平面内下列曲线的方程:1.圆的定义:平面内到定点的距离等于定长的点的集合(轨迹)设),(y x Z 以),(000y x Z 为圆心, )0(>r r 为半径的圆上任意一点,则r ZZ =0 )0(>r(1)该圆向量形式的方程是什么 )0(>=r r(2)该圆复数形式的方程是什么 r z z =-0 )0(>r(3)该圆代数形式的方程是什么 )0()()(22020>=-+-r r y y x x2.椭圆的定义:平面内与两定点Z 1,Z 2的距离的和等于常数(大于21Z Z )的点的集合(轨迹)一一对应 向量 O Z设),(y x Z 是以),(211y x Z ),(222y x Z 为焦点,2a 为长轴长的椭圆的上任意一点, 则a ZZ ZZ 221=+ )2(21Z Z a >(1)该椭圆向量形式的方程是什么 a 2=+ )2(21Z Z a >(2)该椭圆复数形式的方程是什么 a z z z z 221=-+- )2(21Z Z a > 变式:以),(211y x Z ),(222y x Z 为端点的线段(1)向量形式的方程是什么 a 2= )2(21Z Z a =(2)复数形式的方程是什么 a z z z z 221=-+- )2(21Z Z a =(三)应用举例例1.复数 z 满足条件∣z+2∣-∣z-2∣=4,则复数z 所对应的点 Z 的轨迹是( )(A ) 双曲线 (B )双曲线的右支(C )线段 (D )射线答案:(D )一条射线例2.若复数z 满足条件1=z ,求i z 2-的最值。
复数的几何意义

例2:用复数表示下图中的阴影部分.
解.(1)|z|<3,且Im(z)<-1, (2)|z|≥3,且Re(z)≤-1. (3) |z|≤3,且-2≤Re(z)≤2.
例3:在复平面内,满足下列复数 形式方程的动点Z的轨迹是什么. (1)|z-1-i|=|z+2+i|; (2)|z+i|+|z-i|=4; (3)|z+2|-|z-2|=2.
一.复数的几何意义:复数z=a+bi对应 于直角坐标平面上的点Z(a,b),复 数也可以看成向量。 有了这种一一对应关系后,我们常把 复数z=a+bi说成点Z(a,b),或说 成向量 oz . 二.复数模的几何意义:复平面上复 数表示的点到原点的距离。 |z|=|OZ|=| oz |
复数的加、减法几 何意义即为向量的 加、减法。 |Z1-Z2|表示平面上两 点的距离
3
4
(3)这个方程可以写成 |z-(-2)|-|z-2|=2,所以表示到 两个定点F1(-2,0),F2(2,0)距离 差2a等于2的点的轨迹,这个轨 迹是双曲线右半支.
x y 即双曲线: 1(x>0) 1 3
2
2
例4:△ABC的三个顶点对应的 复数分别是z1,z2,z3,若复数z满 足 |z-z1|=|z-z2|=|z-z3| , 则 z 对应的点为△ABC的( D ) A. 内心; B.垂心; C.重心; D.外心;
解:(1)方程可以看成 |z-(1+i)|=|z-(-2-i)|, 表示的是到两个定点A(1,1)和 B(-2,-1)距离相等的动点轨迹.所 以是线段AB的的垂直平分线。 即:直线6x+4y+3=0。
复数的几何意义知识点总结

复数的几何意义知识点总结一、复数的几何表示。
1. 复平面。
- 建立直角坐标系来表示复数的平面叫做复平面。
在复平面内,x轴叫做实轴,y轴叫做虚轴。
实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数。
- 例如,复数z = 3 + 2i,在复平面内对应的点为(3,2),其中3是实部,对应实轴上的坐标;2是虚部,对应虚轴上的坐标。
2. 复数的向量表示。
- 复数z = a+bi(a,b∈ R)与复平面内的向量→OZ=(a,b)一一对应,其中O为坐标原点,Z(a,b)为复数z对应的点。
- 向量的模|→OZ|=√(a^2)+b^{2},这个模就等于复数z = a + bi的模|z|=√(a^2)+b^{2}。
例如,对于复数z = 1 + i,其模| z|=√(1^2)+1^{2}=√(2),在复平面内对应的向量→OZ=(1,1),向量的模也是√(2)。
3. 复数的加减法的几何意义。
- 设复数z_1=a + bi,z_2=c+di(a,b,c,d∈ R),它们在复平面内对应的向量分别为→OZ_1=(a,b),→OZ_2=(c,d)。
- 复数的加法:z_1+z_2=(a + c)+(b + d)i,其几何意义是对应的向量相加,即→OZ_1+→OZ_2=(a + c,b + d)。
- 例如,z_1=1+2i,z_2=3 - i,z_1+z_2=(1 + 3)+(2-1)i = 4 + i,在复平面内→OZ_1=(1,2),→OZ_2=(3,-1),→OZ_1+→OZ_2=(1 + 3,2-1)=(4,1)。
- 复数的减法:z_1-z_2=(a - c)+(b - d)i,其几何意义是对应的向量相减,即→OZ_1-→OZ_2=(a - c,b - d)。
例如,z_1=3+2i,z_2=1 + i,z_1-z_2=(3 - 1)+(2 - 1)i=2 + i,在复平面内→OZ_1=(3,2),→OZ_2=(1,1),→OZ_1-→OZ_2=(3 - 1,2 - 1)=(2,1)。
复数的几何意义是什么

复数的几何意义是什么高中数学会学到复数,有关复数的几何意义大家知道吗?下面是由小编小编为大家整理的“复数的几何意义是什么”,仅供参考,欢迎大家阅读。
1、复数z=a+bi 与复平面内的点(a,b)一一对应2、复数z=a+bi 与向量OZ一一对应,其中Z点坐标为(a,b)1、复数的运算:复数的加法法则:设z1=a+bi,z2=c+di是任意两个复数。
两者和的实部是原来两个复数实部的和,它的虚部是原来两个虚部的和。
两个复数的和依然是复数。
复数的乘法法则:把两个复数相乘,类似两个多项式相乘,结果中i2=-1,把实部与虚部分别合并。
两个复数的积仍然是一个复数。
复数除法定义:满足的复数叫复数a+bi除以复数c+di的商。
运算方法:将分子和分母同时乘以分母的共轭复数,再用乘法法则运算。
2、我们把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。
当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。
复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。
复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。
1、数学上的复数(1)复数的定义数集拓展到实数范围内,仍有些运算无法进行.比如判别式小于0的一元二次方程仍无解,因此将数集再次扩充,达到复数范围.定义:形如z=a+bi的数称为复数(complex number),其中规定i为虚数单位,且i^2=i*i=-1(a,b 是任意实数)我们将复数z=a+bi中的实数a称为虚数z的实部(real part)记作Rez=a实数b称为虚数z的虚部(imaginary part)记作 Imz=b.易知:当b=0时,z=a,这时复数成为实数;当a=0且b≠0时 ,z=bi,我们就将其称为纯虚数.复数的集合用C表示,显然,R是C的真子集复数集是无序集,不能建立大小顺序.(2)复数的四则运算法则:若复数z1=a+bi,z2=c+di,其中a,b,c,d∈R,则z1±z2=(a+bi)±(c+di)=(a±c)+(b±d)i,(a+bi)•(c+di)=(ac-bd)+(bc+ad)i,(a+bi)÷(c+di)=(ac+bd)/(c^2+d^2) +((bc-ad)/(c^2+d^2))i。
复数的几何意义

复数的几何意义复数不仅有意义,而且可以用图示来优雅地解释。
1、实函数与数轴变换大家都认识,对于这样的初等函数,我们从小就学会使用直角坐标系来刻画它们:它们的特点都大同小异:把实数轴对应到实数轴。
然而,既然是一维函数,用二维图像来描述未免太过奢侈。
如果我们把数轴涂上不同颜色,再把一条新数轴上对应的函数值涂上相应颜色,就可以清晰地用数轴-数轴对应来展示函数这一关系:可以发现每个函数的作用无非是在有些地方把数轴往中间压了压,在有些地方又把数轴往两边扯了扯(观察图中小棒棒之间的间距是变窄还是变宽):越往左越挤压数轴,越往右越拉伸数轴离0越远,对数轴的拉伸越厉害(在图上左半边图像和右半边图像重叠在了一起)。
如果有一个小球在实数轴上向右滑行,那么它的像则先向左滑行到0,然后再向右滑行。
离0越远,对数轴的拉伸比楼上更厉害,但是不同的是,向右滑行的小球的像也一直向右滑行。
是挤压还是拉伸,就看函数在那一点的导数的绝对值是小于1还是大于1。
因此导数大小的意义就是局部小区间在变换下的伸缩倍数。
导数正负符号的意义是小区间是否反向,比如第二个函数在x小于0时导数也小于零,那么指向右方的数轴负数部分经过变换指向了左方。
2. 复数与平面变换既然可以用上面的数轴-数轴对应来描述一维函数,那么类似地,就可以用平面-平面对应来描述二维函数。
我们用一个复数表示平面上的点,用字母i区分纵坐标,就可以来研究复数函数的性质,其中。
假设我们已经默认了复数的运算:加法:乘法:极坐标分解:,其中是复数代表的平面向量到原点的距离,是和横轴正方向的夹角。
拿出一个涂色的平面网格(从左上开始逆时针依次涂成红黄蓝绿色),把每个网点的像算出来,按顺序连起来,就可以来研究复函数了。
2.1. 复数的加法:从图中可知,加法就是平面的平移,平移量恰好是那个复数对应的平面向量。
2.2 复数的乘法:根据上面的运算法则很容易得到函数的二维对应关系是,画在图上就是:仔细看可以发现,各点乘以的效果是平面逆时针旋转了90度,也就是弧度。
复数的几何意义

复数的几何意义一、复数的几何意义1、复数的几何表示:bi a z +=与复平面内的点)(b ,a Z 之间是一一对应的,即任何复数bi a z +=都可以用复平面内的点)(b ,a Z 来表示。
2、复数的向量表示:直角坐标系内的点)(b ,a Z 与始点在原点的向量)(b ,a OZ =是一一对应的,因此,复数bi a z +=也与向量)(b ,a OZ =一一对应,其中复数0对应零向量,任何复数bi a z +=可以表示为复平面内以原点O 为起点的向量OZ ,我们把这种表示像是叫做复数的向量表示法。
复数z=a+bi ↔复平面内的点Z (a ,b )↔平面向量OZ 3、复数的模的几何意义复数z=a+bi 在复平面上对应的点Z(a,b)到原点的距离. 即 |Z |=|a+bi |=22b a +4、复数的加法与减法的几何意义加法的几何意义 减法的几何意义)ZZ 2Z1yz 1z 2≠0时, z 1+z 2对应的向量是以OZ 1、OZ 2、为邻边的平行四边形OZ 1ZZ 2的对角线OZ , z 2-z 1对应的向量是Z 1Z 2 5、 复数乘法与除法的几何意义z 1=r 1(cos θ1+i sin θ1) z 2=r 2(cos θ2+i sin θ2)①乘法:z=z 1· z 2=r 1·r 2 [cos(θ1+θ2)+i sin(θ1+θ2)]如图:其对应的向量分别为oz oz oz 12→→→显然积对应的辐角是θ1+θ2 < 1 > 若θ2 > 0 则由oz 1→逆时针旋转θ2角模变为oz 1→的r 2倍所得向量便是积z 1·z 2=z 的向量oz →。
< 2 >若θ2< 0 则由向量oz 1→顺时针旋转θ2角模变为r 1·r 2所得向量便是积z 1·z 2=z 的向量oz →。
为此,若已知复数z 1的辐角为α,z 2的辐角为β求α+β时便可求出z 1·z 2=z a z 对应的辐角就是α+β这样便可将求“角”的问题转化为求“复数的积”的运算。
复数的几何意义用

复数的几何意义用复数是由实部和虚部组成的数学对象,在几何上可以用来表示和描述平面上的点和向量。
在以下内容中,我将详细介绍复数的几何意义以及其在几何应用中的重要性。
首先,让我们回顾一下复数的表示形式。
一个复数可以用以下形式表示:z = a + bi,其中a是实部,b是虚部,i是虚数单位,满足i^2 = -1、实部和虚部分别是复数在实轴和虚轴上的投影。
实际上,复数可以理解为平面上的一个点,其中实部表示点在x轴上的坐标,虚部表示点在y轴上的坐标。
将复数z = a + bi绘制在笛卡尔坐标系中,可以将其视为一个有序对(a, b)在平面上的位置。
复数的几何意义之一是表征平面上的向量。
对于一个复数z = a + bi,可以将其看作从原点(0,0)到点(a,b)的一个向量。
向量的长度可以通过计算复数的模来获得,模定义为 z 的绝对值模(,z,)如下所示:,z,= √(a^2 + b^2)。
因此,从几何意义上来说,复数的模表示该向量的长度。
此外,复数还可以通过角度表示。
复数z = a + bi可以与极坐标形式r*(cosθ + sinθ) 相互转换,其中 r 是模长,θ 是与x轴正向的夹角。
根据三角函数的性质,a = r*cosθ,b = r*sinθ。
这样,复数就可以用长度和角度来表示,而不仅仅是实部和虚部。
利用复数的角度表示,可以进行复数的乘法和除法运算。
复数的乘法相当于向量的旋转变换,而复数的除法则相当于向量的缩放和旋转变换。
这种特性在几何应用中非常有用,例如在图形的旋转、缩放和平移中。
此外,几何上的旋转可以使用复数乘法非常方便地表示出来。
给定一个复数z = a + bi,可以通过乘以一个单位复数e^iθ(其中θ是旋转角度)来将点(a, b)绕原点旋转。
这种使用复数进行旋转的方法,简化了复杂的旋转变换为简单的乘法操作,极大地提高了计算的效率。
在复数的几何应用中,除了表示点和向量的位置和变换,复数还可以用来描述直线和曲线。
复数的几何意义与点的复平面表示

复数的几何意义与点的复平面表示复数是数学中一个重要的概念,它由实数部分和虚数部分组成。
虽然复数在数学中有着广泛的应用,但是它的几何意义和点的复平面表示是我们理解复数的关键。
一、复数的几何意义复数可以看作是在实数轴上的一个点,这个点的位置由实数部分和虚数部分共同决定。
实数部分决定了点在实数轴上的位置,而虚数部分则决定了点在虚数轴上的位置。
因此,复数可以用一个有序对 (a, b) 来表示,其中 a 是实数部分,b 是虚数部分。
在复数的几何意义中,实数部分可以看作是点在实数轴上的横坐标,虚数部分可以看作是点在虚数轴上的纵坐标。
这样,我们可以将复数表示为一个点在平面上的位置。
二、点的复平面表示为了更好地理解复数的几何意义,我们引入了复平面的概念。
复平面是一个由实数轴和虚数轴组成的平面。
在复平面上,实数轴对应着横坐标轴,虚数轴对应着纵坐标轴。
在复平面上,每个复数都可以用一个点来表示。
点的位置由复数的实部和虚部决定。
例如,复数 z = a + bi 可以表示为平面上的一个点 P,其中 P 的横坐标是 a,纵坐标是 b。
通过将复数表示为点在复平面上的位置,我们可以更加直观地理解复数的性质和运算。
例如,两个复数的加法可以看作是将它们对应的点在复平面上进行平移,而复数的乘法可以看作是将一个点绕原点旋转或缩放。
三、复数的几何运算在复数的几何运算中,加法和减法可以通过将两个复数对应的点在复平面上进行平移来实现。
例如,将一个复数 z1 平移到另一个复数 z2 的位置,可以将 z1 对应的点 P1 沿着向量 z2-z1 进行平移,得到新的点 P2。
而复数的乘法可以通过将一个复数对应的点绕原点进行旋转和缩放来实现。
例如,将一个复数 z1 绕原点旋转一个角度θ,可以得到新的复数 z2,其中 z2 的模长是 z1 的模长乘以一个缩放因子,而 z2 的辐角是 z1 的辐角加上θ。
通过复数的几何运算,我们可以更加直观地理解复数的性质和运算规律。
复数的几何意义

三、复数加减法的几何意义的运用
练习1: 练习1:
设z1,z2∈C, |z1|= |z2|=1
|z2+z1|=
2,
求|z2-z1|
2
练习2:复数z 练习2:复数z1,z2分别对应复 2:复数 平面内的点M1,M2,,且| z2+ z1|= 平面内的点M |,线段 线段M 的中点M | z2- z1|,线段M1M2,的中点M对应 的复数为4+3i,求|z1|2+ |z2|2 的复数为4+3i,求 4+3i,
|z-z1|+|z-z2|=2a - - |z1-z2|<2a |z2-z1|=2a |z2-z1|>2a 椭圆 线段 无轨迹
y
-4-1o2 Nhomakorabeax
x=x=-1 zz复数z 当| z- z1|= | z- z2|时, 复数z对应的点的轨迹是 线段Z 的中垂线. 线段Z1Z2的中垂线.
练习: 练习: P69,4,5 P70,4,5
= 2|
1.| z1.| z-
1
z2. | z- i|+ | z+ i|=4 z3. | z- 2|= | z+ 4|
y Z Z o
2
x
Z Z
z- |=r时 复数z 当| z- z1|=r时, 复数z对应的点的轨迹是以 对应的点为圆心,半径为r的圆. Z1对应的点为圆心,半径为r的圆.
y Z 1 o -1 Z Z x
练习: m=2- 若复数z 练习:已知复数m=2-3i,若复数z |=1,则 满足不等式| 满足不等式|z-m|=1,则z所对应 的点的集合是什么图形? 的点的集合是什么图形?
以点(2, 3)为圆心 为圆心, 以点(2, -3)为圆心, 1为半径的圆上
复数几何意义及运算知识点讲解+例题讲解(含解析)

复数几何意义及运算一、知识梳理1.复数的有关概念2.复数的几何意义复数集C和复平面内所有的点组成的集合是一一对应的,复数集C与复平面内所有以原点O为起点的向量组成的集合也是一一对应的,即(1)复数z=a+b i复平面内的点Z(a,b)(a,b∈R).(2)复数z=a+b i(a,b∈R)平面向量OZ→.3.复数的运算设z1=a+b i,z2=c+d i(a,b,c,d∈R),则(1)加法:z1+z2=(a+b i)+(c+d i)=(a+c)+(b+d)i;(2)减法:z1-z2=(a+b i)-(c+d i)=(a-c)+(b-d)i;(3)乘法:z1·z2=(a+b i)·(c+d i)=(ac-bd)+(ad+bc)i;(4)除法:z1z2=a+b ic+d i=(a+b i)(c-d i)(c+d i)(c-d i)=ac +bd +(bc -ad )i c 2+d 2(c +d i ≠0).小结:1.i 的乘方具有周期性i n=⎩⎨⎧1,n =4k ,i ,n =4k +1,-1,n =4k +2,-i ,n =4k +3(k ∈Z ).2.复数的模与共轭复数的关系 z ·z -=|z |2=|z -|2. 3.两个注意点(1)两个虚数不能比较大小;(2)利用复数相等a +b i =c +d i 列方程时,注意a ,b ,c ,d ∈R 的前提条件.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)复数z =a +b i(a ,b ∈R )中,虚部为b i.( )(2)复数中有相等复数的概念,因此复数可以比较大小.( ) (3)原点是实轴与虚轴的交点.( )(4)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.( )解析 (1)虚部为b ;(2)虚数不可以比较大小. 答案 (1)× (2)× (3)√ (4)√2.若复数(a 2-3a +2)+(a -1)i 是纯虚数,则实数a 的值为( ) A.1B.2C.1或2D.-1解析 依题意,有⎩⎨⎧a 2-3a +2=0,a -1≠0,解得a =2,故选B.答案 B3.复数⎝ ⎛⎭⎪⎫52-i 2的共轭复数是( )A.2-iB.2+iC.3-4iD.3+4i解析 ⎝ ⎛⎭⎪⎫52-i 2=⎣⎢⎡⎦⎥⎤5(2+i )(2-i )(2+i )2=(2+i)2=3+4i ,所以其共轭复数是3-4i. 答案 C4.(2017·全国Ⅱ卷)3+i 1+i =( )A.1+2iB.1-2iC.2+iD.2-i解析3+i 1+i =(3+i )(1-i )(1+i )(1-i )=2-i. 答案 D5.(2018·北京卷)在复平面内,复数11-i的共轭复数对应的点位于( ) A.第一象限 B.第二象限 C.第三象限D.第四象限解析11-i =1+i 2=12+12i ,其共轭复数为12-12i ,∴复数11-i的共轭复数对应的点的坐标为⎝ ⎛⎭⎪⎫12,-12,位于第四象限,故选D.答案 D6.(2019·青岛一模)已知复数z =-1+i(i 是虚数单位),则z +2z 2+z=________. 解析 ∵z =-1+i ,则z 2=-2i ,∴z +2z 2+z =1+i -1-i =(1+i )(-1+i )(-1-i )(-1+i )=-22=-1. 答案 -1考点一 复数的相关概念【例1】 (1)(2019·上海崇明区质检)已知z =2-ii ,则复数z 的虚部为( ) A.-iB.2C.-2iD.-2(2)已知在复平面内,复数z 对应的点是Z (1,-2),则复数z 的共轭复数z -=( ) A.2-i B.2+i C.1-2iD.1+2i(3)(2019·大连一模)若复数z =1+i1+a i为纯虚数,则实数a 的值为( ) A.1B.0C.-12D.-1解析 (1)∵z =2-i i =(2-i )(-i )i·(-i )=-1-2i ,则复数z 的虚部为-2.故选D.(2)∵复数z 对应的点是Z (1,-2),∴z =1-2i ,∴复数z 的共轭复数z -=1+2i ,故选D. (3)设z =b i ,b ∈R 且b ≠0, 则1+i 1+a i=b i ,得到1+i =-ab +b i , ∴1=-ab ,且1=b , 解得a =-1,故选D. 答案 (1)D (2)D (3)D【训练1】 (1)已知复数z 满足:(2+i)z =1-i ,其中i 是虚数单位,则z 的共轭复数为( ) A.15-35i B.15+35i C.13-iD.13+i(2)(2019·株洲二模)设i 为虚数单位,1-i =2+a i1+i ,则实数a =( )A.2B.1C.0D.-1解析 (1)由(2+i)z =1-i ,得z =1-i 2+i =(1-i )(2-i )(2+i )(2-i )=15-35i ,∴z -=15+35i.故选B. (2)∵1-i =2+a i1+i,∴2+a i =(1-i)(1+i)=2, 解得a =0.故选C. 答案 (1)B (2)C考点二 复数的几何意义【例2】 (1)已知i 是虚数单位,设复数z 1=1+i ,z 2=1+2i ,则z 1z 2在复平面内对应的点在( ) A.第一象限 B.第二象限 C.第三象限D.第四象限(2)(2019·北京新高考调研考试)在复平面内,复数z 对应的点与21-i对应的点关于实轴对称,则z =( ) A.1+i B.-1-i C.-1+iD.1-i解析 (1)由题可得,z 1z 2=1+i 1+2i =(1+i )(1-2i )(1+2i )(1-2i )=35-15i ,对应在复平面上的点的坐标为⎝ ⎛⎭⎪⎫35,-15,在第四象限.(2)∵复数z 对应的点与21-i =2(1+i )(1-i )(1+i )=1+i 对应的点关于实轴对称,∴z =1-i.故选D. 答案 (1)D (2)D【训练2】 (1)设i 是虚数单位,则复数11+i 在复平面内对应的点位于( )A.第一象限B.第二象限C.第三象限D.第四象限(2)如图,若向量OZ→对应的复数为z ,则z +4z表示的复数为( )A.1+3iB.-3-iC.3-iD.3+i解析 (1)11+i =1-i (1+i )(1-i )=12-12i ,则复数z 对应的点为⎝ ⎛⎭⎪⎫12,-12,在第四象限,故选D.(2)由题图可得Z (1,-1),即z =1-i ,所以z +4z =1-i +41-i =1-i +4(1+i )(1-i )(1+i )=1-i +4+4i2=1-i +2+2i =3+i.故选D.答案 (1)D (2)D考点三 复数的运算【例3】 (1)(2018·全国Ⅲ卷)(1+i)(2-i)=( ) A.-3-i B.-3+i C.3-iD.3+i(2)(2018·全国Ⅰ卷)设z =1-i1+i+2i ,则|z |=( ) A.0B.12C.1D.2(3)设复数z =1+2i ,则z 2+3z -1=( )A.2iB.-2iC.2D.-2(4)⎝ ⎛⎭⎪⎫1+i 1-i 6+2+3i 3-2i=________. 解析 (1)(1+i)(2-i)=2-i +2i -i 2=3+i.故选D.(2)∵z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i =1-2i -12+2i =i ,∴|z |=|i|=1.故选C.(3)z 2+3z -1=(1+2i )2+31+2i -1=12+4i +4i 2+32i =4i 2i =2.故选C.(4)原式=⎣⎢⎡⎦⎥⎤(1+i )226+(2+3i )(3+2i )(3)2+(2)2 =i 6+6+2i +3i -65=-1+i.答案 (1)D (2)C (3)C (4)-1+i【训练3】 (1)(2018·全国Ⅱ卷)i(2+3i)=( ) A.3-2i B.3+2i C.-3-2iD.-3+2i(2)已知i 为虚数单位,则1+i3-i =( )A.2-i 5B.2+i 5C.1-2i 5D.1+2i 5(3)设z =1+i(i 是虚数单位),则z 2-2z =( ) A.1+3i B.1-3i C.-1+3iD.-1-3i解析 (1)i(2+3i)=2i +3i 2=-3+2i ,故选D. (2)1+i 3-i =(1+i )(3+i )(3-i )(3+i )=1+2i5. (3)因为z =1+i ,所以z 2=(1+i)2=1+2i +i 2=2i ,2z =21+i =2(1-i )(1+i )(1-i )=2(1-i )1-i 2=2(1-i )2=1-i ,则z 2-2z =2i -(1-i)=-1+3i.故选C.答案 (1)D (2)D (3)C三、课后练习1.(2019·烟台检测)设a ,b ∈R ,a =3+b i3-2i(i 是虚数单位),则b =( )A.-2B.-1C.1D.2解析 因为a =3+b i 3-2i =(3+b i )(3+2i )(3-2i )(3+2i )=9-2b 13+(6+3b )i13,a ∈R ,所以6+3b13=0⇒b =-2,故选A. 答案 A2.设x ∈R ,i 是虚数单位,则“x =2”是“复数z =(x 2-4)+(x +2)i 为纯虚数”的( )A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件解析 由复数z =(x 2-4)+(x +2)i 为纯虚数, 得⎩⎨⎧x 2-4=0,x +2≠0,解得x =2, 所以“x =2”是“复数z =(x 2-4)+(x +2)i 为纯虚数”的充要条件,故选B. 答案 B3.计算⎝⎛⎭⎪⎫1+i 1-i 2 019+⎝⎛⎭⎪⎫1-i 1+i 2 019=( )A.-2iB.0C.2iD.2解析 ∵1+i 1-i =(1+i )2(1+i )(1-i )=2i2=i ,1-i 1+i =-i ,∴⎝⎛⎭⎪⎫1+i 1-i 2 019+⎝⎛⎭⎪⎫1-i 1+i 2 019=(i 4)504·i 3+[(-i)4]504·(-i)3=-i +i =0.答案 B4.(2019·湖南三湘名校联考)已知i 为虚数单位,复数z =3+2i2-i,则以下为真命题的是( )A.z 的共轭复数为75-4i5B.z 的虚部为85 C.|z |=3D.z 在复平面内对应的点在第一象限 解析 ∵z =3+2i 2-i =(3+2i )(2+i )(2-i )(2+i )=45+7i5, ∴z 的共轭复数为45-7i 5,z 的虚部为75, |z |=⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫752=655,z 在复平面内对应的点为⎝ ⎛⎭⎪⎫45,75,在第一象限,故选D. 答案 D。
复数的几何意义

4.已知复数 z=a+ 3i(a∈R)在复平面内对应的点位于第二象限,且|z|=2,
则复数 z 等于
√A.-1+ 3i
B.1+ 3i
C.-1+ 3i 或 1+ 3i
D.-2+ 3i
解析 因为 z=a+ 3i(a∈R)在复平面内对应的点位于第二象限, 所以 a<0,由|z|=2 知, a2+ 32=2,解得 a=±1, 故 a=-1,所以 z=-1+ 3i.
4 课时对点练
PART FOUR
基础巩固
1.在复平面内,复数z=cos 3+isin 3的对应点所在象限为
√ A.第一象限 B.第二象限 C.第三象限 D.第四象限
解析 ∵π2<3<π,∴sin 3>0,cos 3<0, 故复数z=cos 3+isin 3的对应点位于第二象限.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2.复数的模实质上就是复平面内复数对应的点到原点的距离,也
就是复数对应的向量的模.( √ ) 3.复数z=1+i与向量 O→A=(1,1)在复平面内表示同一个点.( × ) 4.复数减法的几何意义类同于向量减法的几何意义.( √ )
2 题型探究
PART TWO
一、复数的几何意义
例1 实数x分别取什么值时,复数z=(x2+x-6)+(x2-2x-15)i对应的 点Z在: (1)第三象限;
√ A.第一象限 B.第二象限 C.第三象限 D.第四象限
解析 ∵23<m<1,∴0<3m-2<1,m-1<0, ∴复数z=(3m-2)+(m-1)i在复平面内对应的点位于第四象限.
12345
3.若复数z=(m-2)+(m+1)i为纯虚数(i为虚数单位),其中m∈R,则|z| =__3___. 解析 因为复数z=(m-2)+(m+1)i为纯虚数(i为虚数单位), 所以m-2=0且m+1≠0,解得m=2, 所以z=3i,所以|z|=3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i 称为虚数单位。
复数相等
如果两个复数的实部和虚部分别相
等,那么我们就说这两个复数相等.
若a, b, c, d R,
a c a bi c di b d
实数可以用数轴上的点来表示。
实数 (数 )
一一对应
数轴上的点 (形 )
类比实数的表示, 可以用直角坐标 系中的点的点来 表示复数
z 3
3实部大于 4 实部和虚部相等
4:已知复数z=(m2+m-1)+(4m2-8m+2)i 在复平面内所对应的点位于第一象限, 求实数m的取值范围。
m 解:由 2 4m
2
3 1 5 m 或m 2 2
1 5 1 5 m 或m m 1 0 2 2 得 3 1 8m 2 0 m 或m 2 2
复数的几何意义
2014年4月9日
复习
复数的定义是什么?
2
i 1 设a,b都是实数 形如a+bi(a,b∈R)的数叫做复数.
复数通常用字母 z表示,即
z a bi (a R, b R)
实部 虚部
其中
实数b 0 纯虚数a 0,b 0 复数a+bi 虚数 b 0 非纯虚数a 0,b 0
直角坐标系中的点Z(a,b)
一一对应
平面向量 OZ a, b
y
z=a+bi Z(a,b)
a
b
o
x
例1、在复平面内表示下列复数 z1=3-2i 2)z2=-3+3i 3)z =i 3 y
Z2 Z3 1 Z4 0
4)z4=2
x
Z1
写出复平面内点所对应的复数
y A
1
0
B
x
C
解:zA=1+2i
z=a+bi
Z (a,b)
y x
z a bi
O
| z | = a bi a 2 b2
二 共轭复数
如果两个复数实部相等,而虚部互为相反数, 这两个复数叫共轭复数
复数z的共轭复数用z表示 z a bi z a bi
2z z 2a 3z z 2bi
1.满足|z|=5(z∈C)的复数z 对应的点Z在复平面上将构 成怎样的图形?
y
5
OZ 5
–5 O
5 x
设z=x+yi(x,y∈R)
| z | x y 5
2 2
–5
x y 25
2 2
图形: 以原点为圆心,5为半径的圆
2.满足3<|z|<5(z∈C)的 复数z对应的点Z在复平面 上将构成怎样的图形?
1若z R z z
例题2 求下列复数的模和共轭复数
1z1 3 4i
z1 3 4 5
2 2
1 3 2 z2 i 2 2
1 3 z2 1 2 2
2
2
z1 3 4i
1 3 z2 i 2 2
zB=3-i
zC=-4-3i
已知z=(x+1)+(y-1)i 在复平面所对应的点在第 二象限,求x与y的取值范围
x+1<0 解: y -1>0 x 1 y 1
一 复数的模(绝对值) 复数z=a+bi对应平面向量 OZ 的模| OZ |, 叫做复数z=a+bi的模。 即复数z=a+bi对应的点Z(a,b)到原点距离。
学案检查 学案课时检测1 2 3 1 已知复数Z= 3x-1 x ( x 2 4 x 3)i 0, 求实数x
2.不等式m (m 3m)i (m 4m 3)i 10成立,
2 2 2
m 1
求实数m的取值范围.
m3
3.已知关于x的方程x 2 k 2i x 2 ki 0有实根 求这个实根以及实数k的值。
复数的几何意义(一)
复数z=a+bi (数) z=a+bi Z(a,b)
a b
一一对应
直角坐标系中的点Z(a,b) (形)
y
建立了平面直角 坐标系来表示复数的 平面 ------复数平面 (简称复平面)
x x轴------实轴 y轴------虚轴
o
复数的几何意义(二)
复数z=a+bi
一一对应 一一对应
x 2 kx 2 2 x k i 0
x 2 kx 2 0 2 x k 0
x 2 x - 2 或 k 2 2 k 2 2
y 5
3
O
5
3 OZ 5
2 2
–5 –3
3
5 x
设z=x+yi(x,y∈R)
3 x y 5
–3
–5
9 x y 25
2 2
图形: 以原点为圆心, 半径3至5的圆环内
基础题型三 例题3
设z C, 求满足下列条件的点Z的集合是什么图形?
1 z
2
2 2