开化县实验中学2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
开化县实验中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 在如图5×5的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x+y+z 的值为( )
120.51
x
y
z
A .1
B .2
C .3
D .4
2. 若多项式 x 2+x 10=a 0+a 1(x+1)+…+a 8(x+1)8+a 9(x+1)9+a 10(x+1)10,则 a 8=( )
A .45
B .9
C .﹣45
D .﹣
9
3. 已知双曲线 C 的一个焦点与抛物线y 2=8x 的焦点相同,且双曲线C 过点P (﹣2,0),则双曲线C 的
渐近线方程是( )
A .y=±x
B .y=±
C .xy=±2
x
D .y=±
x
4. 在函数y=
中,若f (x )=1,则x 的值是(
)
A .1
B .1或
C .±1
D .
5. 已知直线y=ax+1经过抛物线y 2=4x 的焦点,则该直线的倾斜角为( )
A .0
B .
C .
D .
6. 设集合A={x|x 2+x ﹣6≤0},集合B 为函数的定义域,则A ∩B=( )
A .(1,2)
B .[1,2]
C .[1,2)
D .(1,2]
7. 已知α是△ABC 的一个内角,tan α=,则cos (α+)等于( )
A .
B .
C .
D .
8. 已知双曲线﹣
=1的右焦点与抛物线y 2=12x 的焦点重合,则该双曲线的焦点到其渐近线的距离等于(
)A .
B .
C .3
D .5
9. 高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )
A .34种
B .35种
C .120种
D .140种
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
10.以椭圆+=1的顶点为焦点,焦点为顶点的双曲线C,其左、右焦点分别是F1,F2,已知点M坐标为(2,1),双曲线C上点P(x0,y0)(x0>0,y0>0)满足=,则﹣S(
)
A.2B.4C.1D.﹣1
11.定义在[1,+∞)上的函数f(x)满足:①当2≤x≤4时,f(x)=1﹣|x﹣3|;②f(2x)=cf(x)(c为正常数),
若函数的所有极大值点都落在同一直线上,则常数c的值是()
A.1B.±2C.或3D.1或2
12.集合A={1,2,3},集合B={﹣1,1,3},集合S=A∩B,则集合S的子集有()
A.2个B.3 个C.4 个D.8个
二、填空题
13.若x,y满足线性约束条件,则z=2x+4y的最大值为 .
14.若正方形P1P2P3P4的边长为1,集合M={x|x=且i,j∈{1,2,3,4}},则对于下列命题:
①当i=1,j=3时,x=2;
②当i=3,j=1时,x=0;
③当x=1时,(i,j)有4种不同取值;
④当x=﹣1时,(i,j)有2种不同取值;
⑤M中的元素之和为0.
其中正确的结论序号为 .(填上所有正确结论的序号)
所示的框图,输入,则输出的数等于
16.已知数列的前项和是, 则数列的通项__________
17.已知△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,asinA=bsinB+(c ﹣b )sinC ,且bc=4,则△ABC 的面积为 .18.利用计算机产生1到6之间取整数值的随机数a 和b ,在a+b 为偶数的条件下,|a ﹣b|>2发生的概率是
.
三、解答题
19.设函数f (x )=lg (a x ﹣b x ),且f (1)=lg2,f (2)=lg12(1)求a ,b 的值.
(2)当x ∈[1,2]时,求f (x )的最大值.
(3)m 为何值时,函数g (x )=a x 的图象与h (x )=b x ﹣m 的图象恒有两个交点.
20.本小题满分12分 设函数()ln x
f x e a x =-Ⅰ讨论的导函数零点个数;()f x '()f x Ⅱ证明:当时,0a >()2ln f x a a a ≥-
21.求下列函数的定义域,并用区间表示其结果.
(1)y=+;
(2)y=.
22.已知f(α)=,
(1)化简f(α);
(2)若f(α)=﹣2,求sinαcosα+cos2α的值.
23.如图,在长方体ABCD﹣A1B1C1D1中,AB=2,AD=1,A1A=1,(1)求证:直线BC1∥平面D1AC;
(2)求直线BC1到平面D1AC的距离.
24.在平面直角坐标系中,矩阵M对应的变换将平面上任意一点P(x,y)变换为点P(2x+y,3x).(Ⅰ)求矩阵M的逆矩阵M﹣1;
(Ⅱ)求曲线4x+y﹣1=0在矩阵M的变换作用后得到的曲线C′的方程.
开化县实验中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】A
【解析】解:因为每一纵列成等比数列,
所以第一列的第3,4,5个数分别是,,.
第三列的第3,4,5个数分别是,,.
又因为每一横行成等差数列,第四行的第1、3个数分别为,,
所以y=,
第5行的第1、3个数分别为,.
所以z=.
所以x+y+z=++=1.
故选:A.
【点评】本题主要考查等差数列、等比数列的通项公式等基础知识,考查运算求解能力.
2.【答案】A
【解析】解:a8 是x10=[﹣1+(x+1)]10的展开式中第九项(x+1)8的系数,
∴a8==45,
故选:A.
【点评】本题主要考查二项展开式的通项公式,二项展开式系数的性质以及多项恒等式系数相等的性质,属于基础题.
3.【答案】A
【解析】解:抛物线y2=8x的焦点(2,0),
双曲线C 的一个焦点与抛物线y2=8x的焦点相同,c=2,
双曲线C过点P(﹣2,0),可得a=2,所以b=2.
双曲线C的渐近线方程是y=±x.
故选:A.
【点评】本题考查双曲线方程的应用,抛物线的简单性质的应用,基本知识的考查.
4.【答案】C
【解析】解:∵函数y=中,f(x)=1,
∴当x≤﹣1时,x+2=1,解得x=﹣1;
当﹣1<x<2时,x2=1,解得x=1或x=﹣1(舍);
当x≥2时,2x=1,解得x=(舍).
综上得x=±1
故选:C.
5.【答案】D
【解析】解:抛物线y2=4x的焦点(1,0),直线y=ax+1经过抛物线y2=4x的焦点,可得0=a+1,解得a=﹣1,直线的斜率为﹣1,
该直线的倾斜角为:.
故选:D.
【点评】本题考查直线的倾斜角以及直线的斜率的关系,抛物线的简单性质的应用,考查计算能力.
6.【答案】D
【解析】解:A={x|x2+x﹣6≤0}={x|﹣3≤x≤2}=[﹣3,2],
要使函数y=有意义,则x﹣1>0,即x>1,
∴函数的定义域B=(1,+∞),
则A∩B=(1,2],
故选:D.
【点评】本题主要考查集合的基本运算,利用函数成立的条件求出函数的定义域y以及利用不等式的解法求出集合A是解决本题的关键,比较基础
7.【答案】B
【解析】解:由于α是△ABC的一个内角,tanα=,
则=,又sin2α+cos2α=1,
解得sinα=,cosα=(负值舍去).
则cos(α+)=cos cosα﹣sin sinα=×(﹣)=.
故选B.
【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题.
8.【答案】A
【解析】解:抛物线y2=12x的焦点坐标为(3,0)
∵双曲线的右焦点与抛物线y2=12x的焦点重合
∴4+b2=9
∴b2=5
∴双曲线的一条渐近线方程为,即
∴双曲线的焦点到其渐近线的距离等于
故选A.
【点评】本题考查抛物线的性质,考查时却显得性质,确定双曲线的渐近线方程是关键.
9.【答案】A
【解析】解:从7个人中选4人共种选法,只有男生的选法有种,所以既有男生又有女生的选法有﹣=34种.
故选:A.
【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题
10.【答案】A
【解析】解:∵椭圆方程为+=1,
∴其顶点坐标为(3,0)、(﹣3,0),焦点坐标为(2,0)、(﹣2,0),
∴双曲线方程为,
设点P(x,y),记F1(﹣3,0),F2(3,0),
∵=,
∴=
,
整理得:=5,
化简得:5x=12y﹣15,
又∵,
∴5﹣4y2=20,
解得:y=或y=(舍),
∴P(3,),
∴直线PF1方程为:5x﹣12y+15=0,
∴点M到直线PF1的距离d==1,
易知点M到x轴、直线PF2的距离都为1,
结合平面几何知识可知点M(2,1)就是△F1PF2的内心.
故﹣===2,
故选:A.
【点评】本题考查椭圆方程,双曲线方程,三角形面积计算公式,注意解题方法的积累,属于中档题.
11.【答案】D
【解析】解:∵当2≤x≤4时,f(x)=1﹣|x﹣3|.
当1≤x<2时,2≤2x<4,
则f(x)=f(2x)=(1﹣|2x﹣3|),
此时当x=时,函数取极大值;
当2≤x≤4时,
f(x)=1﹣|x﹣3|;
此时当x=3时,函数取极大值1;
当4<x≤8时,2<≤4,
则f(x)=cf()=c(1﹣|﹣3|),
此时当x=6时,函数取极大值c.
∵函数的所有极大值点均落在同一条直线上,
即点(,),(3,1),(6,c)共线,
∴=,
解得c=1或2.
故选D.
【点评】本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f(x)的解析式,进而求出三个函数的极值点坐标,是解答本题的关键.
12.【答案】C
【解析】解:∵集合A={1,2,3},集合B={﹣1,1,3},
∴集合S=A∩B={1,3},
则集合S的子集有22=4个,
故选:C.
【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础.
二、填空题
13.【答案】 38 .
【解析】解:作出不等式组对应的平面区域如图:
由z=2x+4y得y=﹣x+,
平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A时,
直线y=﹣x+的截距最大,此时z最大,
由,解得,
即A(3,8),
此时z=2×3+4×8=6+32=32,
故答案为:38
14.【答案】 ①③⑤
【解析】解:建立直角坐标系如图:
则P1(0,1),P2(0,0),P3(1,0),P4(1,1).
∵集合M={x|x=且i,j∈{1,2,3,4}},
对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;
对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;
对于③,∵集合M={x|x=且i,j∈{1,2,3,4}},
∴=(1,﹣1),==(0,﹣1),==(1,0),
∴•=1;•=1;•=1;•=1;
∴当x=1时,(i,j)有4种不同取值,故③正确;
④同理可得,当x=﹣1时,(i,j)有4种不同取值,故④错误;
⑤由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=﹣1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;
当i=2,j=4,或i=4,j=2时,x=0,
∴M中的元素之和为0,故⑤正确.
综上所述,正确的序号为:①③⑤,
故答案为:①③⑤.
【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1
,﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题.
15.【答案】
【解析】由框图的算法功能可知,输出的数为三个数的方差,
则。
16.【答案】
【解析】
当时,
当时,,
两式相减得:
令得,所以
答案:
17.【答案】 .
【解析】解:∵asinA=bsinB+(c﹣b)sinC,
∴由正弦定理得a2=b2+c2﹣bc,即:b2+c2﹣a2=bc,
∴由余弦定理可得b2=a2+c2﹣2accosB,
∴cosA===,A=60°.可得:sinA=,
∵bc=4,
∴S△ABC=bcsinA==.
故答案为:
【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用,考查了三角形面积公式的应用,属于中档题.
18.【答案】 .
【解析】解:由题意得,利用计算机产生1到6之间取整数值的随机数a和b,基本事件的总个数是6×6=36,即(a,b)的情况有36种,
事件“a+b为偶数”包含基本事件:
(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),
(3,1),(3,3),(3,5),(4,2),(4,4),(4,6)
(5,1),(5,3),(5,5),(6,2),(6,4),(6,6)共18个,
“在a+b为偶数的条件下,|a﹣b|>2”包含基本事件:
(1,5),(2,6),(5,1),(6,2)共4个,
故在a+b为偶数的条件下,|a﹣b|>2发生的概率是P==
故答案为:
【点评】本题主要考查概率的计算,以条件概率为载体,考查条件概率的计算,解题的关键是判断概率的类型,从而利用相应公式,分别求出对应的测度是解决本题的关键.
三、解答题
19.【答案】
【解析】解:(1)∵f(x)=lg(a x﹣b x),且f(1)=lg2,f(2)=lg12,
∴a﹣b=2,a2﹣b2=12,
解得:a=4,b=2;
(2)由(1)得:函数f(x)=lg(4x﹣2x),
当x∈[1,2]时,4x﹣2x∈[2,12],
故当x=2时,函数f (x )取最大值lg12,
(3)若函数g (x )=a x 的图象与h (x )=b x ﹣m 的图象恒有两个交点.
则4x ﹣2x =m 有两个解,令t=2x ,则t >0,
则t 2﹣t=m 有两个正解;则,
解得:m ∈(﹣,0)
【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.
20.【答案】
【解析】:Ⅰ,因为定义域为, '()x a f x e x
=-(0,)+∞有解 即有解. 令,,'()0x a f x e x
=⇒=
x xe a =()x h x xe ='()(1)x h x e x =+当0,'()0,(0)0()0x h x h h x >>=∴>所以,当时,无零点; 当时,有唯一零点.
0a ≤'()0,f x >0a >Ⅱ由Ⅰ可知,当时,设在上唯一零点为,
0a >'()f x (0,)+∞0x 当,在为增函数;
0(,),'()0x x f x ∈+∞>()f x 0(,)x +∞当,在为减函数.0(0,)x x ∈'()0,f x <()f x 0(0,)x 0000
x x a e e x a x =
∴=Q 000000000()ln ln (ln )ln 2ln x x a a a a f x e a x a a a x ax a a a a a x e x x ∴=-=-=--=+-≥-21.【答案】
【解析】解:(1)∵y=
+,
∴,解得x ≥﹣2且x ≠﹣2且x ≠3,
∴函数y 的定义域是(﹣2,3)∪(3,+∞);
(2)∵y=
,
∴,解得x ≤4且x ≠1且x ≠3,
∴函数y 的定义域是(﹣∞,1)∪(1,3)∪(3,4].
22.【答案】
【解析】解:(1)f(α)=
=
=﹣tanα;…5(分)
(2)∵f(α)=﹣2,
∴tanα=2,…6(分)
∴sinαcosα+cos2α=
=
=
=.…10(分)
23.【答案】
【解析】解:(1)因为ABCD﹣A1B1C1D1为长方体,故AB∥C1D1,AB=C1D1,
故ABC1D1为平行四边形,故BC1∥AD1,显然B不在平面D1AC上,
故直线BC1平行于平面DA1C;
(2)直线BC1到平面D1AC的距离即为点B到平面D1AC的距离(设为h)
以△ABC为底面的三棱锥D1﹣ABC的体积V,可得
而△AD1C中,,故
所以以△AD1C为底面的三棱锥B﹣﹣AD1C的体积,
即直线BC1到平面D1AC的距离为.
【点评】本题考查了线面平行的判定定理,考查线面的距离以及数形结合思想,是一道中档题.
24.【答案】
【解析】解:(Ⅰ)设点P(x,y)在矩阵M对应的变换作用下所得的点为P′(x′,y′),
则即=,
∴M=.
又det(M)=﹣3,
∴M﹣1=;
(Ⅱ)设点A(x,y)在矩阵M对应的变换作用下所得的点为A′(x′,y′),
则=M﹣1=,
即,
∴代入4x+y﹣1=0,得,
即变换后的曲线方程为x+2y+1=0.
【点评】本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题. 。