山东省淄博市2019-2020学年中考第四次模拟数学试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

山东省淄博市2019-2020学年中考第四次模拟数学试题
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.某大型企业员工总数为28600人,数据“28600”用科学记数法可表示为()
A.0.286×105B.2.86×105C.28.6×103D.2.86×104
2.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF 的面积与△ABC的面积之比等于()
A.1∶3 B.2∶3 C.3∶2 D.3∶3
3.将5570000用科学记数法表示正确的是()
A.5.57×105B.5.57×106C.5.57×107D.5.57×108
4.2018年,我国将加大精准扶贫力度,今年再减少农村贫困人口1000万以上,完成异地扶贫搬迁280万人.其中数据280万用科学计数法表示为( )
A.2.8×105B.2.8×106C.28×105D.0.28×107
5.下列计算正确的是()
A.(a2)3=a6B.a2+a2=a4
C.(3a)•(2a)2=6a D.3a﹣a=3
6.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x名学生,根据题意,列出方程为
A.
(1)
1980
2
x x-
=B.x(x+1)=1980
C.2x(x+1)=1980 D.x(x-1)=1980
7.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()
A.20°B.30°C.40°D.50°
8.如图,在△ABC中,AB=5,AC=4,∠A=60°,若边AC的垂直平分线DE交AB于点D,连接CD,则△BDC的周长为()
A .8
B .9
C .5+21
D .5+17
9.已知:如图,点P 是正方形ABCD 的对角线AC 上的一个动点(A 、C 除外),作PE ⊥AB 于点E ,作PF ⊥BC 于点F ,设正方形ABCD 的边长为x ,矩形PEBF 的周长为y ,在下列图象中,大致表示y 与x 之间的函数关系的是( )
A .
B .
C .
D .
10.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( ) A .10%x =330
B .(1﹣10%)x =330
C .(1﹣10%)2x =330
D .(1+10%)x =330
11.下列计算正确的是( )
A .a 2•a 3=a 5
B .2a+a 2=3a 3
C .(﹣a 3)3=a 6
D .a 2÷
a=2 12.计算﹣1﹣(﹣4)的结果为( )
A .﹣3
B .3
C .﹣5
D .5 二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.长、宽分别为a 、b 的矩形,它的周长为14,面积为10,则a 2b+ab 2的值为_____.
14.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是_____.
15.一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是_____.
16.计算1x x +﹣11
x +的结果为_____. 17.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限,若反比例函数k y x
=的图
象经过点B,则k的值是_____.
18.一组数据7,9,8,7,9,9,8的中位数是__________
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.
(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;
(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?
20.(6分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)
(1)转动转盘一次,求转出的数字是-2的概率;
(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.
21.(6分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(I)如图①,若BC为⊙O的直径,求BD、CD的长;
(II)如图②,若∠CAB=60°,求BD、BC的长.
22.(8分)进入冬季,某商家根据市民健康需要,代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场
价不得低于30元/包.试确定周销售量y (包)与售价x (元/包)之间的函数关系式;试确定商场每周销售这种防尘口罩所获得的利润w (元)与售价x (元/包)之间的函数关系式,并直接写出售价x 的范围;当售价x (元/包)定为多少元时,商场每周销售这种防尘口罩所获得的利润w (元)最大?最大利润是多少?
23.(8分)某汽车制造公司计划生产A 、B 两种新型汽车共40辆投放到市场销售.已知A 型汽车每辆成本34万元,售价39万元;B 型汽车每辆成本42万元,售价50万元.若该公司对此项计划的投资不低于1536万元,不高于1552万元.请解答下列问题:
(1)该公司有哪几种生产方案?
(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少? (3)在(2)的情况下,公司决定拿出利润的2.5%全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案)
24.(10分)如图,在平面直角坐标系中,抛物线C 1经过点A(﹣4,0)、B(﹣1,0),其顶点为532D ⎛⎫-- ⎪⎝⎭

. (1)求抛物线C 1的表达式;
(2)将抛物线C 1绕点B 旋转180°,得到抛物线C 2,求抛物线C 2的表达式;
(3)再将抛物线C 2沿x 轴向右平移得到抛物线C 3,设抛物线C 3与x 轴分别交于点E 、F(E 在F 左侧),顶点为G ,连接AG 、DF 、AD 、GF ,若四边形ADFG 为矩形,求点E 的坐标.
25.(10分)如图,已知ABC V ,请用尺规过点C 作一条直线,使其将ABC V 分成面积比为1:3两部分.(保留作图痕迹,不写作法)
26.(12分)如图,一次函数y 1=kx +b(k≠0)和反比例函数y 2=m x
(m≠0)的图象交于点A(-1,6),B(a ,-2).求一次函数与反比例函数的解析式;根据图象直接写出y 1>y 2 时,x 的取值范围.
27.(12分)九(1)班同学分成甲、乙两组,开展“四个城市建设”知识竞赛,满分得5分,得分均为整数.小马虎根据竞赛成绩,绘制了如图所示的统计图.经确认,扇形统计图是正确的,条形统计图也只有乙组成绩统计有一处错误.
(1)指出条形统计图中存在的错误,并求出正确值;
(2)若成绩达到3分及以上为合格,该校九年级有800名学生,请估计成绩未达到合格的有多少名?(3)九(1)班张明、李刚两位成绩优秀的同学被选中参加市里组织的“四个城市建设”知识竞赛.预赛分为A、B、C、D四组进行,选手由抽签确定.张明、李刚两名同学恰好分在同一组的概率是多少?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.D
【解析】
【分析】
用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可
【详解】
28600=2.86×1.故选D.
【点睛】
此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解
题的关键
2.A
【解析】
∵DE ⊥AC ,EF ⊥AB ,FD ⊥BC ,
∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,
∴∠C=∠FDE ,
同理可得:∠B=∠DFE ,∠A=DEF ,
∴△DEF ∽△CAB ,
∴△DEF 与△ABC 的面积之比=2DE AC ⎛⎫ ⎪⎝⎭
, 又∵△ABC 为正三角形,
∴∠B=∠C=∠A=60°
∴△EFD 是等边三角形,
∴EF=DE=DF ,
又∵DE ⊥AC ,EF ⊥AB ,FD ⊥BC ,
∴△AEF ≌△CDE ≌△BFD ,
∴BF=AE=CD ,AF=BD=EC ,
在Rt △DEC 中,
DE=DC×sin ∠
C=2
DC ,EC=cos ∠C×DC=12DC , 又∵DC+BD=BC=AC=
32DC ,
∴232
DC DE AC DC ==, ∴△DEF 与△ABC
的面积之比等于:221:33DE AC ⎛⎛⎫== ⎪ ⎝⎭⎝⎭
故选A .
点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边
DE AC
之比,进而得到面积比. 3.B
【解析】
【分析】
科学记数法的表示形式为a×
10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于5570000有7位,所以可以确定n=7﹣1=1.
【详解】
5570000=5.57×101所以B 正确
4.B
【解析】
分析:科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,
n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.
详解:280万这个数用科学记数法可以表示为62.810,
⨯ 故选B.
点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.
5.A
【解析】
【分析】
根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.
【详解】
A .(a 2)3=a 2×3=a 6,故本选项正确;
B .a 2+a 2=2a 2,故本选项错误;
C .(3a )•(2a )2=(3a )•(4a 2)=12a 1+2=12a 3,故本选项错误;
D .3a ﹣a=2a ,故本选项错误.
故选A .
【点睛】
本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键.
6.D
【解析】
【分析】
根据题意得:每人要赠送(x ﹣1)张相片,有x 个人,然后根据题意可列出方程.
【详解】
根据题意得:每人要赠送(x ﹣1)张相片,有x 个人,
∴全班共送:(x ﹣1)x=1980,
故选D.
【点睛】
此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x﹣1)张相片,有x个人是解决问题的关键.
7.C
【解析】
【分析】
由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.
【详解】
∵∠1=50°,
∴∠3=∠1=50°,
∴∠2=90°−50°=40°.
故选C.
【点睛】
本题主要考查平行线的性质,熟悉掌握性质是关键.
8.C
【解析】
【分析】
过点C作CM⊥AB,垂足为M,根据勾股定理求出BC的长,再根据DE是线段AC的垂直平分线可得△ADC等边三角形,则CD=AD=AC=4,代入数值计算即可.
【详解】
过点C作CM⊥AB,垂足为M,
在Rt△AMC中,
∵∠A=60°,AC=4,
∴AM=2,
∴BM=AB-AM=3,
在Rt△BMC中,
∵DE是线段AC的垂直平分线,
∴AD=DC,
∵∠A=60°,
∴△ADC等边三角形,
∴CD=AD=AC=4,
∴△BDC的周长
故答案选C.
【点睛】
本题考查了勾股定理,解题的关键是熟练的掌握勾股定理的运算.
9.A
【解析】
由题意可得:△APE和△PCF都是等腰直角三角形.
∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.
则y=2x,为正比例函数.
故选A.
10.D
【解析】
解:设上个月卖出x双,根据题意得:(1+10%)x=1.故选D.
11.A
【解析】
【分析】
直接利用合并同类项法则以及积的乘方运算法则、整式的除法运算法则分别计算得出答案.【详解】
A、a2•a3=a5,故此选项正确;
B、2a+a2,无法计算,故此选项错误;
C、(-a3)3=-a9,故此选项错误;
D、a2÷a=a,故此选项错误;
故选A.
【点睛】
此题主要考查了合并同类项以及积的乘方运算、整式的除法运算,正确掌握相关运算法则是解题关键.12.B
【解析】
【分析】
原式利用减法法则变形,计算即可求出值.
【详解】
1(4)143
---=-+=,
故选:B.
【点睛】
本题主要考查了有理数的加减,熟练掌握有理数加减的运算法则是解决本题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.1.
【解析】
【分析】
由周长和面积可分别求得a+b和ab的值,再利用因式分解把所求代数式可化为ab(a+b),代入可求得答案
【详解】
∵长、宽分别为a、b的矩形,它的周长为14,面积为10,
∴a+b=14
2
=7,ab=10,
∴a2b+ab2=ab(a+b)=10×7=1,
故答案为:1.
【点睛】
本题主要考查因式分解的应用,把所求代数式化为ab(a+b)是解题的关键.
14.40°
【解析】
【分析】根据外角的概念求出∠ADC的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.
【详解】∵∠ADE=60°,
∴∠ADC=120°,
∵AD⊥AB,。

相关文档
最新文档