七年级数学上册 压轴解答题测试卷(含答案解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学上册 压轴解答题测试卷(含答案解析)
一、压轴题
1.[ 问题提出 ]
一个边长为 ncm(n ⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm 的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?
[ 问题探究 ]
我们先从特殊的情况入手 (1)当n=3时,如图(1)
没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体; 一面涂色的:在面上,每个面上有1个,共有6个; 两面涂色的:在棱上,每个棱上有1个,共有12个; 三面涂色的:在顶点处,每个顶点处有1个,共有8个. (2)当n=4时,如图(2)
没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体: 一面涂色的:在面上,每个面上有4个,正方体共有 个面,因此一面涂色的共有 个; 两面涂色的:在棱上,每个棱上有2个,正方体共有 条棱,因此两面涂色的共有 个; 三面涂色的:在顶点处,每个顶点处有1个,正方体共有 个顶点,因此三面涂色的共有 个… [ 问题解决 ]
一个边长为ncm(n ⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个; 两面涂色的:在棱上,共有______个; 三面涂色的:在顶点处,共______个。

[ 问题应用 ]
一个大的正方体,在它的表面涂上颜色,然后把它切成棱长1cm 的小正方体,发现有两面涂色的小正方体有96个,请你求出这个大正方体的体积.
2.如图,OC 是AOB ∠的角平分线,OD OB ⊥,OE 是BOD ∠的角平分线,
85AOE ∠=
(1)求COE ∠;
(2)COE ∠绕O 点以每秒5的速度逆时针方向旋转t 秒(013t <<),t 为何值时
AOC DOE ∠=∠;
(3)射线OC 绕O 点以每秒10的速度逆时针方向旋转,射线OE 绕O 点以每秒5的速度顺时针方向旋转,若射线OC OE 、同时开始旋转m 秒(024.5m <<)后得到
4
5
AOC EOB ∠=
∠,求m 的值. 3.综合与实践 问题情境 在数学活动课上,老师和同学们以“线段与角的共性”为主题开展数学活动.发现线段的中点的概念与角的平分线的概念类似,甚至它们在计算的方法上也有类似之处,它们之间的题目可以转换,解法可以互相借鉴.如图1,点C 是线段AB 上的一点,M 是AC 的中点,N 是BC 的中点.
图1 图2 图3 (1)问题探究
①若6AB =,2AC =,求MN 的长度;(写出计算过程) ②若AB a ,AC b =,则MN =___________;(直接写出结果) (2)继续探究
“创新”小组的同学类比想到:如图2,已知80AOB ∠=︒,在角的内部作射线OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON . ③若30AOC ∠=︒,求MON ∠的度数;(写出计算过程)
④若AOC m ∠=︒,则MON ∠=_____________︒;(直接写出结果) (3)深入探究
“慎密”小组在“创新”小组的基础上提出:如图3,若AOB n ∠=︒,在角的外部作射线
OC ,再分别作AOC ∠和BOC ∠的角平分线OM ,ON ,若AOC m ∠=︒,则
MON ∠=__________︒.(直接写出结果)
4.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.
(1)如图①所示,若25α=︒,则BOD ∠= .
(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;
(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即
BOD ∠= .
(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .
5.如图∠AOB =120°,把三角板60°的角的顶点放在O 处.转动三角板(其中OC 边始终在∠AOB 内部),OE 始终平分∠AOD .
(1)(特殊发现)如图1,若OC 边与OA 边重合时,求出∠COE 与∠BOD 的度数. (2)(类比探究)如图2,当三角板绕O 点旋转的过程中(其中OC 边始终在∠AOB 内部),∠COE 与∠BOD 的度数比是否为定值?若为定值,请求出这个定值;若不为定值,
请说明理由.
(3)(拓展延伸)如图3,在转动三角板的过程中(其中OC边始终在∠AOB内部),若OP平分∠COB,请画出图形,直接写出∠EOP的度数(无须证明).
6.如图1,点A,B,C,D为直线l上从左到右顺次的4个点.
(1) ①直线l上以A,B,C,D为端点的线段共有条;
②若AC=5cm,BD=6cm,BC=1cm,点P为直线l上一点,则PA+PD的最小值为 cm;(2)若点A在直线l上向左运动,线段BD在直线l上向右运动,M,N分别为AC,BD的中点(如图2),请指出在此过程中线段AD,BC,MN有何数量关系并说明理由;
(3)若C是AD的一个三等分点,DC>AC,且AD=9cm,E,F两点同时从C,D出发,分别以2cm/s,1cm/s的速度沿直线l向左运动,Q为EF的中点,设运动时间为t,当
AQ+AE+AF=3
2
AD时,请直接写出t的值.
7.如图1,在数轴上A、B两点对应的数分别是6,-6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)
(1)如图1,若CF 平分∠ACE ,则∠AOF=_______;
(2)如图2,将∠DCE 沿数轴的正半轴向右平移t (0<t<3)个单位后,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α. ①当t=1时,α=_________;
②猜想∠BCE 和α的数量关系,并证明;
(3)如图3,开始∠D 1C 1E 1与∠DCE 重合,将∠DCE 沿数轴正半轴向右平移t (0<t<3)个单位,再绕顶点C 逆时针旋转30t 度,作CF 平分∠ACE ,此时记∠DCF=α,与此同时,将∠D 1C 1E 1沿数轴的负半轴向左平移t (0<t<3)个单位,再绕顶点C 1顺时针旋转30t 度,作C 1F 1平分∠AC 1E 1,记∠D 1C 1F 1=β,若α,β满足|α-β|=45°,请用t 的式子表示α、β并直接写出t 的值.
8.对于数轴上的,,A B C 三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足2倍的数量关系,则称该点是其他两点的“倍联点”. 例如数轴上点,,A B C 所表示的数分别为1,3,4,满足2AB BC =,此时点B 是点,A C 的“倍联点”.
若数轴上点M 表示3-,点N 表示6,回答下列问题:
(1)数轴上点123,,D D D 分別对应0,3. 5和11,则点_________是点,M N 的“倍联点”,点N 是________这两点的“倍联点”;
(2)已知动点P 在点N 的右侧,若点N 是点,P M 的倍联点,求此时点P 表示的数. 9.分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:已知点A ,B ,C 在一条直线上,若AB =8,BC =3则AC 长为多少?
通过分析我们发现,满足题意的情况有两种:情况 当点C 在点B 的右侧时,如图1,此时,AC =11;
情况②当点C 在点B 的左侧时, 如图2此时,AC =5.
仿照上面的解题思路,完成下列问题:
问题(1): 如图,数轴上点A 和点B 表示的数分别是-1和2,点C 是数轴上一点,且BC =2AB ,则点C 表示的数是.
问题(2): 若2x =,3y =求x y +的值.
问题(3): 点O 是直线AB 上一点,以O 为端点作射线OC 、OD ,使060AOC ∠=,
OC OD ⊥,求BOD ∠的度数(画出图形,直接写出结果).
10.已知点O 为直线AB 上的一点,∠EOF 为直角,OC 平分∠BOE , (1)如图1,若∠AOE=45°,写出∠COF 等于多少度;
(2)如图1,若∠AOE=()090n n ︒<<,求∠COF 的度效(用含n 的代数式表示);
(3)如图2,若∠AOE=()90180n n ︒<<,OD 平分∠AOC,且∠AOD-∠BOF=45°,求n 的值.
11.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)
(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:
(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求
PQ
AB
的值.
(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1
CD AB 2
=
,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MN
AB
的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.
12.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

已知:点C 在直线AB 上,AC a =,BC b =,且a b ,点M 是AB 的中点,请按照
下面步骤探究线段MC 的长度。

(1)特值尝试
若10a =,6b =,且点C 在线段AB 上,求线段MC 的长度. (2)周密思考:
若10a =,6b =,则线段MC 的长度只能是(1)中的结果吗?请说明理由. (3)问题解决
类比(1)、(2)的解答思路,试探究线段MC 的长度(用含a 、b 的代数式表示).
【参考答案】***试卷处理标记,请不要删除
一、压轴题
1.[ 问题探究 ] (2)6,24;12,24;8,8;[ 问题解决](n-2)3,(n-2)2,12(n-2),8; [ 问题解决 ] 1000cm 3. 【解析】 【分析】
[ 问题探究 ] (2)根据(1)即可填写; [ 问题解决 ] 可根据(1)、(2)的规律填写;
[ 问题应用 ] 根据[ 问题解决 ]知两面涂色的为n-12(2),由此得到方程n-12(2)=96, 解得n 的值即可得到边长及面积. 【详解】 [ 问题探究 ]
(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×
2×2=8个小正方体: 一面涂色的:在面上,每个面上有4个,正方体共有 6个面,因此一面涂色的共有24个;
两面涂色的:在棱上,每个棱上有2个,正方体共有12 条棱,因此两面涂色的共有24个;
三面涂色的:在顶点处,每个顶点处有1个,正方体共有8 个顶点,因此三面涂色的共有8 个… [ 问题解决 ]
一个边长为ncm(n ⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方
体,有_32n -() _____个小正方体;一面涂色的:在面上,共有__2
2n -()
____个; 两面涂色的:在棱上,共有__122n -()____个; 三面涂色的:在顶点处,共_8____个。

[ 问题应用 ]
由题意得,n-12(2)
=96,得n=10, ∴这个大正方体的边长为10cm ,
∴这个大正方体的体积为101010=1000⨯⨯(3cm ). 【点睛】
此题考查数字类规律探究,正确理解(1)是解题的关键,由(1)即可得到涂色的规律,由此解决其它问题.
2.(1)∠COE =20°;(2)当t =11时,AOC DOE ∠=∠;(3)m=296或101
14
【解析】 【分析】
(1)根据角平分线的定义和垂直定义即可求出∠BOD=90°,∠BOE=∠DOE =45°,即
可求出∠AOB ,再根据角平分线的定义即可求出∠BOC ,从而求出∠COE ;
(2)先分别求出OC 与OD 重合时、OE 与OD 重合时和OC 与OA 重合时运动时间,再根据t 的取值范围分类讨论,分别画出对应的图形,根据等量关系列出方程求出t 即可; (3)先分别求出OE 与OB 重合时、OC 与OA 重合时、OC 为OA 的反向延长线时运动时、OE 为OB 的反向延长线时运动时间,再根据m 的取值范围分类讨论,分别画出对应的图形,根据等量关系列出方程求出m 即可; 【详解】
解:(1)∵OD OB ⊥,OE 是BOD ∠的角平分线, ∴∠BOD=90°,∠BOE=∠DOE=1
2
∠BOD =45° ∵85AOE ∠=
∴∠AOB=∠AOE +∠BOE=130° ∵OC 是AOB ∠的角平分线, ∴∠AOC=∠BOC=
1
2
AOB ∠=65° ∴∠COE=∠BOC -∠BOE=20°
(2)由原图可知:∠COD=∠DOE -∠COE=25°,
故OC 与OD 重合时运动时间为25°÷5°=5s ;OE 与OD 重合时运动时间为45°÷5°=9s ;OC 与OA 重合时运动时间为65°÷5°=13s ; ①当05t <<时,如下图所示
∵∠AOD=∠AOB -∠BOD=40°,∠COE=20° ∴∠AOD ≠∠COE
∴∠AOD +∠COD ≠∠COE +∠COD ∴此时AOC DOE ∠≠∠; ②当59t <<时,如下图所示
∵∠AOD=∠AOB -∠BOD=40°,∠COE=20° ∴∠AOD ≠∠COE
∴∠AOD -∠COD ≠∠COE -∠COD ∴此时AOC DOE ∠≠∠; ③当913t <<时,如下图所示:
OC 和OE 旋转的角度均为5t
此时∠AOC=65°-5t ,∠DOE=5t -45° ∵AOC DOE ∠=∠ ∴65-5t=5t -45 解得:t=11
综上所述:当t =11时,AOC DOE ∠=∠.
(3)OE 与OB 重合时运动时间为45°÷5°=9s ;OC 与OA 重合时运动时间为65°÷10°=6.5s ; OC 为OA 的反向延长线时运动时间为(180°+65°)÷10=24.5s ;OE 为OB 的反向延长线时运动时间为(180°+45°)÷5=45s ; ①当0 6.5m <<,如下图所示
OC 旋转的角度均为10m , OE 旋转的角度均为5m ∴此时∠AOC=65°-10m ,∠BOE=45°-5m ∵4
5
AOC EOB ∠=∠ ∴65-10m =4
5
(45-5m ) 解得:m =
296
; ②当6.59m <<,如下图所示
OC 旋转的角度均为10m , OE 旋转的角度均为5m ∴此时∠AOC=10m -65°,∠BOE=45°-5m ∵4
5
AOC EOB ∠=∠ ∴10m -65=4
5
(45-5m ) 解得:m =
101
14
; ③当924.5m <<,如下图所示
OC 旋转的角度均为10m , OE 旋转的角度均为5m ∴此时∠AOC=10m -65°,∠BOE=5m -45° ∵4
5
AOC EOB ∠=∠ ∴10m -65=4
5
(5m -45) 解得:m =
29
6
,不符合前提条件,故舍去; 综上所述:m=296或10114
. 【点睛】
此题考查的是角的和与差和一元一次方程的应用,掌握各角之间的关系、用一元一次方程解动角问题和分类讨论的数学思想是解决此题的关键. 3.(1)①3;②12
a ;(2)③40︒;④40;(3)1
2n
【解析】 【分析】
(1)①先求出BC ,再根据中点求出AM 、BN ,即可求出MN 的长; ②利用①的方法求MN 即可;
(2)③先求出∠BOC ,再利用角平分线的性质求出∠AOM ,∠BON ,即可求出∠MON ; ④利用③的方法求出∠MON 的度数;
(3)先求出∠BOC ,利用角平分线的性质分别求出∠AOM ,∠BON ,再根据角度的关系求出答案即可. 【详解】
(1)①∵6AB =,2AC =,
∴BC=AB-AC=4,
∵M 是AC 的中点,N 是BC 的中点. ∴112AM AC =
=, 122
BN BC ==, ∴MN=AB-AM-BN=6-1-2=3; ②∵AB a ,AC b =,
∴BC=AB-AC=a-b ,
∵M 是AC 的中点,N 是BC 的中点. ∴12AM b =,1()2
BN a b =-, ∴MN=AB-AM-BN=11()22a b a b -
--=12a , 故答案为:12
a ; (2)③∵80AOB ∠=︒,30AOC ∠=︒,
∴∠BOC=∠AOB-∠AOC=50︒,
∵OM ,ON 分别平分AOC ∠和BOC ∠,
∴∠AOM=15︒,∠BON=25︒,
∴∠MON=∠AOB-∠AOM-∠BON=40︒;
④∵80AOB ∠=︒,AOC m ∠=︒,
∴∠BOC=(80-m)︒,
∵OM ,ON 分别平分AOC ∠和BOC ∠,
∴∠AOM=
12m ,∠BON=(40-12
m )︒, ∴∠MON=∠AOB-∠AOM-∠BON=40︒, 故答案为:40;
(3)∵AOB n ∠=︒,AOC m ∠=︒,
∴∠BOC=∠AOC-∠AOB=(m-n)︒,
∵AOC ∠和BOC ∠的角平分线分别是OM ,ON ,
∴∠AOM=12m ,∠CON=1()2
m n -, ∴∠MON=∠AOC-∠AOM-∠CON=111()222m m m n n -
--=, 故答案为:12
n . 【点睛】
此题考查线段的和差计算,角度的和差计算,线段中点的性质,角平分线的性质,解题中注意规律性解题思想的总结和运用.
4.(1)50;(2)2BOD α∠=;(3)2α;(4)3602α︒-
【解析】
【分析】
(1)根据“∠COD=90°,∠COE=25°”求出∠DOE 的度数,再结合角平分线求出∠AOD 的度数,即可得出答案;
(2)重复(1)中步骤,将∠COE 的度数代替成α计算即可得出答案;
(3)根据图得出∠DOE=∠COD-∠COE=90°-
α,结合角平分线的性质以及平角的性质计算即可得出答案;
(4)根据图得出∠DOE=∠COE-∠COD=
α-90°,结合角平分线的性质以及平角的性质计算即可得出答案.
【详解】
解:(1)∵∠COD=90°,∠COE=25°
∴∠DOE=∠COD-∠COE=65°
又OE 平分∠AOD
∴∠AOD=2∠DOE=130°
∴∠BOD=180°-∠AOD=50°
(2)∵∠COD=90°,∠COE=α
∴∠DOE=∠COD-∠COE=90°-
α 又OE 平分∠AOD
∴∠AOD=2∠DOE=180°-2?α
∴∠BOD=180°-∠AOD=2
α (3)∵∠COD=90°,∠COE=α
∴∠DOE=∠COD-∠COE=90°-
α 又OE 平分∠AOD
∴∠AOD=2∠DOE=180°-2?α
∴∠BOD=180°-∠AOD=2
α (4)∵∠COD=90°,∠COE=α
∴∠DOE=∠COE-∠COD=
α-90° 又OE 平分∠AOD
∴∠AOD=2∠DOE=2?α-180°
∴∠BOD=180°-∠AOD=360°-2
α 【点睛】
本题考查的是求角度,难度适中,涉及到了角平分线以及平角的性质需要熟练掌握.
5.(1)∠BOD =60°,∠COE =30°;(2)∠COE :∠BOD =
12;(3)画图见解析;∠POE =30°.
【解析】
【分析】
(1)∵OC 边与OA 边重合,如图1,根据角的和差和角平分线的定义即可得到结论;
(2)①0°≤∠AOC<60°时,如图2,②当60°≤∠AOC≤120°时,如图3,根据角的和差和角平分线的定义即可得到结论;
(3)①0°≤∠AOC<60°时,设∠AOC=α,∠BOD=β,②当60°≤∠AOC≤120°时,设∠AOC=α,∠BOD=β,根据角的和差和角平分线的定义即可得到结论.
【详解】
(1)∵OC边与OA边重合,如图1,
∴∠AOD=60°,∠BOD=∠AOB﹣∠AOD=120°﹣60°=60°,
∵OE平分∠AOD,
∴∠COE=1
2
∠AOD=30°;
(2)①0°≤∠AOC<60°时,如图2,
∵OE平分∠AOD,
∴∠DOE=1
2
∠AOD,
∴∠COE=∠COD﹣∠EOD=60°﹣1
2
∠AOD,
∵∠DOB=∠AOB﹣∠AOD=120°﹣∠AOD,
∴∠COE:∠BOD=1
2

②当60°≤∠AOC≤120°时,如图3,
∵OE平分∠AOD,
∴∠DOE=1
2
∠AOD,
∴∠COE=∠EOD﹣∠COD=1
2
∠AOD﹣60°,
∵∠DOB=∠AOD﹣∠AOB=∠AOD﹣120°,
∴∠COE:∠BOD=1
2

(3)①0°≤∠AOC<60°时,
设∠AOC=α,∠BOD=β,
∵∠AOB=120°,∠COD=60°,
∴α+β=60°,
∴∠AOD=60°+α,∠BOC=60°+β,∵OE始终平分∠AOD,OP平分∠COB,
∴∠AOE=1
2
∠AOD=30°+
1
2
∂,∠BOP=
1
2
∠BOC=30°+
1
2
β,
∴∠POE=∠AOB﹣∠AOE﹣∠BOP=120°﹣(30°+1
2
∂)﹣(30°+
1
2
β)=30°;
②当60°≤∠AOC≤120°时,
设∠AOC=α,∠BOD=β,
∵∠AOB=120°,∠COD=60°,
∴∠BOC=120°﹣∠AOC=60°﹣∠BOD,∴120°﹣α=60°﹣β,
∴α﹣β=60°,
∴∠AOD=120°+β,∠BOC=60°﹣β,
∵OE始终平分∠AOD,OP平分∠COB,
∴∠DOE=1
2
∠AOD=60°+
1
2
β,∠BOP=
1
2
∠BOC=30°﹣
1
2
β,
∴∠POE =∠DOE ﹣∠BOD ﹣∠BOP =(60°+12∂)﹣β﹣(30°﹣12
β)=30°; 综上所述,∠POE =30°.
【点睛】 本题考查了角的计算,涉及了角平分线的定义,角平分线的性质以及等角替换等知识点,综合性较强,要求学生对各知识点熟练掌握,学会分类讨论是解题的关键.
6.(1) ①6条;②10;(2)1122MN AD BC =
-,证明见解析;(3) 1t =. 【解析】
【分析】
(1)①根据线段的定义结合图形即可得出答案;②PA +PD 最小,即P 为AD 的中点,求出AD 的长即可;
(2) 根据M ,N 分别为AC ,BD 的中点,得到12MC AC =,12
BN BD =,利用MN MC BN BC =+-代入化简即可;
(3) 根据C 是AD 的一个三等分点,DC >AC ,且AD=9cm ,得到3AC =,6CD =,并可得到2EC t =,FD t =,62t EQ +=
,代入AQ+AE+AF=32
AD ,化简则可求出t . 【详解】
解:(1) ①线段有:AB ,AC ,AD ,BC ,BD ,CD ,共6条;
②∵BD =6,BC =1,
∴CD=BD-BC=6-1=5,
当PA +PD 的值最小时,P 为AD 的中点,
∴5510PA PD AD AC CD +==+=+=;
(2)1122MN AD BC =-. 如图2示:
∵M ,N 分别为AC ,BD 的中点,
∴12MC AC =,12
BN BD = ∴MN MC BN BC =+-
1122AC BD BC =
+- ()12
AC BD BC =+-
()12AB BC BD BC =
++- 1122
AD BC =-; (3)如图示:
∵C 是AD 的一个三等分点,DC >AC ,且AD=9cm ,
∴3AC =,6CD =, 根据E ,F 两点同时从C ,D 出发,速度是2cm/s ,1cm/s ,Q 为EF 的中点,运动时间为t , 则有:2EC t =,FD t =,6222EF AD AE FD t EQ --+=== 当AQ+AE+AF=32
AD 时, 则有:32AE EQ AE AD FD AD +++-=
即是:()()6932329922
t t t t +-+
+-+-=⨯ 解之得:1t =.
【点睛】 本题主要考查了两点间的距离,解决问题的关键是依据线段的和差关系列方程.
7.(1)45°;(2)①30°;②∠BCE=2α,证明见解析;(3)α=45-15t ,β=45+15t ,3t 2
= 【解析】
【分析】
(1)根据角平分线的定义即可得出答案;
(2)①首先由旋转得到∠ACE=120°,再由角平分线的定义求出∠ACF ,再减去旋转角度即可得到∠DCF ;
②先由补角的定义表示出∠BCE ,再根据旋转和角平分线的定义表示出∠DCF ,即可得出两者的数量关系;
(3)根据α=∠FCA-∠DCA ,β=∠AC 1D 1+∠AC 1F 1,可得到表达式,再根据|α-β|=45°建立方程求解.
【详解】
(1)∵∠ACE=90°,CF 平分∠ACE
∴∠AOF=12
∠ACE=45° 故答案为:45°;
(2)①当t=1时,旋转角度为30°
∴∠ACE=90°+30°=120°
∵CF 平分∠ACE
∴∠ACF=60°,α=∠DCF=∠ACF-30°=30°
故答案为:30°;
②∠BCE=2α,证明如下:
旋转30t 度后,∠ACE=(90+30t)度
∴∠BCE=180-(90+30t)=(90-30t)度
∵CF 平分∠ACE
∴∠ACF=
12
∠ACE=(45+15t)度 ∠DCF=∠ACF-30t=(45-15t)度 ∴2∠DCF=2(45-15t)= 90-30t=∠BCE
即∠BCE=2α
(3)α=∠FCA-∠DCA=12
(90+30t)-30t=45-15t β=∠AC 1D 1+∠AC 1F 1=30t+
12(90-30t)=45+15t ||45βα-=︒
|30t|=45° ∴3t 2
=
【点睛】 本题考查了角平分线,角的旋转,角度的和差计算问题,熟练掌握角平分线的定义,找出图形中角度的关系是解题的关键.
8.(1)1D ;2D ,3D (2)点P 表示的数为24或
212
. 【解析】
【分析】
(1)分别计算D 1,D 2,D 3三点与M,N 的距离,再根据新定义的概念得到答案; (2)设点P 表示的数为x ,分以下情况列方程求解:①2NP NM =;②2NP NM =.
【详解】
解:(1)D 1M=3,D 1N=6,2D 1M=D 1N ,故D 1符合题意;
D 2M=6.5,D 2N=2.5,故D 2不符合题意;
D 3M=14,D 3N=5,故D 3不符合题意;
因此点D 1是点,M N 的“倍联点”.
又2D 2N= D 3N ,∴点N 是D 2,D 3的“倍联点”.
故答案为:D 1;D 2,D 3.
(2)设点P 表示的数为x ,
第一种情况:当2NP NM =时, 则62[6(3)]x -=⨯--,
解得24x =.
第二种情况:当2NP NM =时,
则2(6)6(3)x -=--,
解得:212
x =. 综上所述,点P 表示的数为24或
212. 【点睛】
本题考查了数轴及数轴上两点的距离、动点问题,认真理解新定义的概念是解题的关键.
9.问题(1)点C 表示的数是8或-4;问题(2)x y +的值为1,-1,5,-5;问题(3)150BOD ∠= , 30BOD ∠=;见解析.
【解析】
【分析】
问题(1)分两种情况进行讨论,当C 在B 的左侧以及当C 在B 的右侧,并依据BC=2AB 进行分析计算.
问题(2)利用2x =,3y =得到2,3x y =±=±,再进行分类讨论代入x ,y 求值. 问题(3)根据题意画出图形,利用角的和差关系进行计算,直接写出答案.
【详解】
解:问题(1) 点C 是数轴上一点,且BC=2AB ,结合数轴可知当C 在B 的左侧以及当C 在B 的右侧分别为-4或8.
问题(2)∵2x =,3y =∴2, 3.x y =±=±
情况① 当x=2,y=3时,x y +=5,
情况② 当x=2,y=-3时,x y +=-1,
情况③ 当x=-2,y=3时,x y +=1,
情况④ 当x=-2,y=-3时,x y +=-5,
所以,x y +的值为1,-1,5,-5.
问题⑶
【点睛】
本题考查有理数与数轴,垂线的定义以及角的运算,根据题意画出图像进行分析.
10.(1)22.5° (2)1
2
n° (3) 120
【解析】
【分析】
(1)由∠AOE=45°,可以求得∠BOE=135°,再由OC平分∠BOE,可求得∠COE=67.5°,∠EOF为直角,所以可得∠COF=∠EOF-∠EOC=22.5°;
(2)由(1)的方法即可得到∠COF=1
2 n°;
(3)先设∠BOF为x°,再根据角的关系得出方程,解答后求出n的值即可.【详解】
解:(1)∵∠AOE=45°,
∴∠BOE=135°,
∵OC平分∠BOE,
∴∠COE=67.5°,
∵∠EOF为直角,
∴∠COF=∠EOF-∠EOC=22.5°,
(2))∵∠AOE=n°,
∴∠BOE=180°-n°,
∵OC平分∠BOE,
∴∠COE=1
2
(180°-n°),
∵∠EOF为直角,
∴∠COF=∠EOF-∠EOC=90°-1
2
(180°-n°)=
1
2
n°,
(3)设∠BOF为x°,∠AOD为(x+45)°,∠EOB为(90-x)°,OC平分∠BOE,则可得:∠AOD+∠DOC+∠EOB=∠AOB+∠EOC.
x+45+x+45+90-x=180+1
2
(90-x),
解得:x=30,
所以可得:∠EOB=(90-x)°=60°,
∠AOE=180°-∠EOB=180°-60°=120°,
故n的值是120.
【点睛】
本题考查了角平分线定义,邻补角定义,角的和差,准确识图是解题的关键.从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.
11.(1)点P在线段AB上的1
3
处;(2)
1
3
;(3)②MN
AB
的值不变.
【解析】【分析】
(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在
线段AB上的1
3
处;
(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ 与AB的关系;
(3)当点C停止运动时,有CD=1
2
AB,从而求得CM与AB的数量关系;然后求得以AB
表示的PM与PN的值,所以MN=PN−PM=
1
12
AB.
【详解】
解:(1)由题意:BD=2PC
∵PD=2AC,
∴BD+PD=2(PC+AC),即PB=2AP.
∴点P在线段AB上的1
3
处;
(2)如图:
∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,
∴PQ=1
3 AB,

1
3 PQ AB
(3)②MN
AB
的值不变.理由:如图,
当点C停止运动时,有CD=1
2 AB,
∴CM=1
4 AB,
∴PM=CM-CP=1
4
AB-5,
∵PD=2
3
AB-10,
∴PN=12
23
(AB-10)=
1
3
AB-5,
∴MN=PN-PM=
1
12
AB,
当点C停止运动,D点继续运动时,MN的值不变,
所以
1
1
12
12
AB
MN
AB AB
==.
【点睛】
本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
12.(1)2(2)8或2;(3)见解析.
【解析】
【分析】
(1)根据线段之间的和差关系求解即可;
(2)由于B点的位置不能确定,故应分当B点在线段AC的上和当B点在线段AC的延长线上两种情况进行分类讨论;
(3)由(1)(2)可知MC=1
2
(a+b)或
1
2
(a-b).
【详解】
解:解:(1)∵AC=10,BC=6,∴AB=AC+BC=16,
∵点M是AB的中点,
∴AM=1
2
AB
∴MC=AC-AM=10-8=2.
(2)线段MC的长度不只是(1)中的结果,
由于点B的位置不能确定,故应分当B点在线段AC的上和当B点在线段AC的延长线上两种情况:
①当B点在线段AC上时,
∵AC=10,BC=6,
∴AB=AC-BC=4,
∵点M是AB的中点,
∴AM=1
2
AB=2,
∴MC=AC-AM=10-2=8.
②当B点在线段AC的延长线上,此时MC=AC-AM=10-8=2.
(3)由(1)(2)可知MC=AC-AM=AC-1
2
AB 因为当B点在线段AC的上,AB=AC-BC,
故MC=AC-1
2
(AC-BC)=
1
2
AC+
1
2
BC=
1
2
(a+b)
当B点在线段AC的延长线上,AB=AC+BC,
故MC=AC-1
2
(AC+BC)=1
2
AC-
1
2
BC=
1
2
(a-b)
【点睛】
主要考察两点之间的距离,但是要注意题目中的点不确定性,需要分情况讨论.。

相关文档
最新文档