高考数学压轴专题最新备战高考《空间向量与立体几何》知识点总复习有答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【最新】数学《空间向量与立体几何》专题解析(1)
一、选择题
1.已知ABC V 的三个顶点在以O 为球心的球面上,且22cos 3A =,1BC =,3AC =,三棱锥O ABC -的体积为
146,则球O 的表面积为( ) A .36π
B .16π
C .12π
D .163
π 【答案】B
【解析】
【分析】 根据余弦定理和勾股定理的逆定理即可判断三角形ABC 是直角三角形,根据棱锥的体积求出O 到平面ABC 的距离,利用勾股定理计算球的半径OA ,得出球的面积.
【详解】
由余弦定理得22229122cos 26AB AC BC AB A AB AC AB +-+-===g ,解得22AB =, 222AB BC AC ∴+=,即AB BC ⊥.
AC ∴为平面ABC 所在球截面的直径.
作OD ⊥平面ABC ,则D 为AC 的中点,
11114221332O ABC ABC V S OD OD -∆==⨯⨯⨯⨯=Q g , 7OD ∴=. 222OA OD AD ∴=+=.
2416O S OA ππ∴=⋅=球.
故选:B .
【点睛】
本题考查了球与棱锥的关系,意在考查学生对这些知识的理解掌握水平,判断ABC ∆的形状是关键.
2.如图所示是一个组合几何体的三视图,则该几何体的体积为( )
A .163π
B .643
C .16643
π+ D .1664π+ 【答案】C 【解析】由三视图可知,该几何体是有一个四棱锥与一个圆锥的四分之一组成,其中四棱锥的底面是边长为4 的正方形,高为4 ,圆锥的底面半径为4 ,高为4,该几何体的体积为, 221116644444333
V ππ+=⨯⨯+⨯⨯⨯=, 故选C.
3.已知一个几何体的三视图如图所示(正方形边长为1),则该几何体的体积为( )
A .34
B .78
C .1516
D .2324
【答案】B
【解析】
【分析】
【详解】
由三视图可知:该几何体为正方体挖去了一个四棱锥A BCDE -,
该几何体的体积为1111711132228
⎛⎫-⨯
⨯+⨯⨯= ⎪⎝⎭ 故选B 点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.
4.一个几何体的三视图如图所示,其中正视图和俯视图中的四边形是边长为2的正方形,则该几何体的表面积为( )
A .132π
B .7π
C .152π
D .8π
【答案】B
【解析】
【分析】
画出几何体的直观图,利用三视图的数据求解表面积即可.
【详解】
由题意可知:几何体是一个圆柱与一个
14的球的组合体,球的半径为:1,圆柱的高为2, 可得:该几何体的表面积为:22141212274
ππππ⨯⨯+⨯⨯+⨯=.
故选:B .
【点睛】
思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.
5.已知圆锥SC 的高是底面半径的3倍,且圆锥SC 的底面直径、体积分别与圆柱OM 的底面半径、体积相等,则圆锥SC 与圆柱OM 的侧面积之比为( ).
A 10
B .3:1
C .2:1
D 102 【答案】A
【解析】
【分析】
设圆锥SC 的底面半径为r ,可求得圆锥的母线长,根据圆锥侧面积公式求得侧面积;由圆锥体积与圆柱体积相等可构造方程求得圆柱的高,进而根据圆柱侧面积公式求得圆柱侧面积,从而求得比值.
【详解】
设圆锥SC 的底面半径为r ,则高为3r ,∴圆锥SC 的母线长22910l r r r =+=, ∴圆锥SC 的侧面积为210rl r ππ=;
圆柱OM 的底面半径为2r ,高为h , 又圆锥的体积23133V r r r ππ=⋅=,234r h r ππ∴=,4
r h ∴=, ∴圆柱OM 的侧面积为2224rh rh r πππ⋅==,
∴圆锥SC 与圆柱OM 2210:10r r ππ=.
故选:A .
【点睛】
本题考查圆锥和圆柱侧面积的求解问题,涉及到圆锥和圆柱体积公式的应用,属于基础题.
6.正方体1111ABCD A B C D -的棱长为1,动点M 在线段1CC 上,动点P 在平面..1111D C B A 上,且AP ⊥平面1MBD .线段AP 长度的取值范围为( )
A .2⎡⎣
B .3⎡⎣
C .32⎣
D .62⎣ 【答案】D
【解析】
【分析】 以1,,DA DC DD 分别为,,x y z 建立空间直角坐标系,设(),,1P x y ,()0,1,M t ,由AP ⊥
平面1MBD ,可得+11x t y t =⎧⎨=-⎩
,然后用空间两点间的距离公式求解即可. 【详解】
以1,,DA DC DD 分别为,,x y z 建立空间直角坐标系,
则()()()()11,0,0,1,1,0,0,1,,0,0,1A B M t D ,(),,1P x y .
()1,,1AP x y =-u u u r ,()11,1,1BD =--u u u u r ,()[]1,0,0,1,BM t t =-∈u u u u r
由AP ⊥平面1MBD ,则0BM AP ⋅=u u u u r u u u r 且01BD AP ⋅=u u u u r u u u r
所以10x t -+=且110x y --+=得+1x t =,1y t =-. 所以()2
221311222AP x y t ⎛⎫=-++=-+ ⎪⎝⎭u u u r 当12t =时,min 6AP =u u u r ,当0t =或1t =时,max 2AP =u u u r , 62AP ≤≤u u u r 故选:D
【点睛】
本题考查空间动线段的长度的求法,考查线面垂直的应用,对于动点问题的处理用向量方法要简单些,属于中档题.
7.已知正方体1111ABCD A B C D -中,M ,N 分别为AB ,1AA 的中点,则异面直线1C M 与BN 所成角的大小为( )
A .30°
B .45︒
C .60︒
D .90︒
【答案】D
【解析】
【分析】
根据题意画出图形,可将异面直线转化共面的相交直线,再进行求解
【详解】
如图:
作AN 的中点'N ,连接'N M ,1'C N 由题设可知'N M BN P ,则异面直线1C M 与BN 所成角为1'N MC ∠或其补角,设正方体的边长为4,由几何关系可得,'5N M =,16C M =,1'41C N =2
1122''N M M C N C =+,即1'90N MC ∠=︒ 故选D
【点睛】
本题考查异面直线的求法,属于基础题
8.在正方体1111ABCD A B C D -中,点E ∈平面11AA B B ,点F 是线段1AA 的中点,若
1D E CF ⊥,则当EBC V 的面积取得最小值时,EBC ABCD S S
=△( ) A .25 B .12 C .5 D .5 【答案】D
【解析】
【分析】
根据1D E CF ⊥分析出点E 在直线1B G 上,当EBC V 的面积取得最小值时,线段EB
的长度为点B 到直线1B G 的距离,即可求得面积关系.
【详解】
先证明一个结论P :若平面外的一条直线l 在该平面内的射影垂直于面内的直线m ,则l ⊥m ,
即:已知直线l 在平面内的射影为直线OA ,OA ⊥OB ,求证:l ⊥OB .
证明:直线l 在平面内的射影为直线OA ,
不妨在直线l 上取点P ,使得PA ⊥OB ,OA ⊥OB ,OA ,PA 是平面PAO 内两条相交直线, 所以OB ⊥平面PAO ,PO ⊂平面PAO ,
所以PO ⊥OB ,即l ⊥OB .以上这就叫做三垂线定理.
如图所示,取AB 的中点G ,
正方体中:1111A C D B ⊥,CF 在平面1111D C B A 内的射影为11A C ,
由三垂线定理可得:11CF D B ⊥,
CF 在平面11A B BA 内的射影为FB ,1FB B G ⊥
由三垂线定理可得:1CF B G ⊥,1B G 与11D B 是平面11B D G 内两条相交直线, 所以CF ⊥平面11B D G ,
∴当点E 在直线1B G 上时,1D E CF ⊥,
设BC a =,则1122
EBC S EB BC EB a =
⨯⨯=⨯⨯△, 当EBC V 的面积取最小值时, 线段EB 的长度为点B 到直线1B G 的距离,
∴线段EB
,
EBC
ABCD S S ∴==△. 故选:D .
【点睛】
此题考查立体几何中的轨迹问题,通过位置关系讨论面积关系,关键在于熟练掌握线面垂直关系的判定和平面图形面积的计算.
9.已知平面α⊥平面β,l αβ=I ,a α⊂,b β⊂,则“a l ⊥”是“a b ⊥r r
”的( ) A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件 【答案】A
【解析】
【分析】 根据面面垂直的性质定理,以及充要条件的判定方法,即可作出判定,得到答案.
【详解】
由题意知,平面α⊥平面β,,,l a b αβαβ⋂=⊂⊂, 当a l ⊥时,利用面面垂直的性质定理,可得a b ⊥r r 成立,
反之当a b ⊥r r 时,此时a 与l 不一定是垂直的,
所以a l ⊥是a b ⊥r r 的充分不必要条件,故选A.
【点睛】
本题主要考查了充要条件的判定,其中解答中熟记线面位置关系的判定定理与性质定理,以及充要条件的判定方法是解答的关键,着重考查了推理与论证能力,属于基础题.
10.在四面体ABCD 中,AB ,BC ,BD 两两垂直,4AB BC BD ===,E 、F 分别为棱BC 、AD 的中点,则直线EF 与平面ACD 所成角的余弦值( )
A .13 B
.3 C
D
【答案】C
【解析】
【分析】
因为AB ,BC ,BD 两两垂直,以BA 为X 轴,以BD 为Y 轴,以BC 为Z 轴建立空间直角坐标系,求出向量EF u u u r 与平面ACD 的法向量n r ,再根据cos ,|
|||EF n EF n EF n ⋅〈〉=u u u r r u u u r r u u u r r ,即可得出答案.
【详解】
因为在四面体ABCD 中,AB ,BC ,BD 两两垂直,
以BA 为X 轴,以BD 为Y 轴,以BC 为Z 轴建立空间直角坐标系,
又因为4AB BC BD ===;
()4,0,0,(0,0,0),(0,4,0),(0,0,4)A B D C ,又因为E 、F 分别为棱BC 、AD 的中点 所以(0,0,2),(2,2,0)E F 故()2,2,2EF =-u u u r ,(4,4,0)AD =-u u u r ,(4,0,4)AC =-u u u r .
设平面ACD 的法向量为(,,)n x y z =r ,则00n AD n AC ⎧⋅=⎨⋅=⎩
u u u v v u u u v v 令1,x = 则1y z ==; 所以(1,1,1)n =r 1cos ,3
||||332EF n EF n EF n ⋅〈〉===⨯u u u r r u u u r r u u u r r 设直线EF 与平面ACD 所成角为θ ,则sin θ= cos ,EF n 〈〉u u u r r
所以222cos 1sin 3
θθ=-=
故选:C
【点睛】
本题主要考查线面角,通过向量法即可求出,属于中档题目.
11.如图,在正三棱柱111ABC A B C -中,2AB =,123
AA =D ,F 分别是棱AB ,1AA 的中点,E 为棱AC 上的动点,则DEF ∆的周长的最小值为()
A .222+
B .232+
C .62+
D .72+
【答案】D
【解析】
【分析】 根据正三棱柱的特征可知ABC ∆为等边三角形且1AA ⊥平面ABC ,根据1AA AD ⊥可利用勾股定理求得2DF =;把底面ABC 与侧面11ACC A 在同一平面展开,可知当,,D E F 三点共线时,DE EF +取得最小值;在ADF ∆中利用余弦定理可求得最小值,加和得到结果.
【详解】
Q 三棱柱111ABC A B C -为正三棱柱 ABC ∆∴为等边三角形且1AA ⊥平面ABC AD ⊂Q 平面ABC 1AA AD ∴⊥ 132DF ∴=+=
把底面ABC 与侧面11ACC A 在同一平面展开,如下图所示:
当,,D E F 三点共线时,DE EF +取得最小值
又150FAD ∠=o ,3AF =1AD =
()2
2min 32cos 42372DE EF AF AD AF AD FAD ⎛⎫∴+=+-⋅∠=-⨯-= ⎪ ⎪⎝⎭DEF ∴∆72+
本题正确选项:D
本题考查立体几何中三角形周长最值的求解问题,关键是能够将问题转化为侧面上两点间最短距离的求解问题,利用侧面展开图可知三点共线时距离最短.
12.如图,在正方体1111ABCD A B C D -中,M , N 分别为棱111,C D CC 的中点,以下四个结论:①直线DM 与1CC 是相交直线;②直线AM 与NB 是平行直线;③直线BN 与1MB 是异面直线;④直线AM 与1DD 是异面直线.其中正确的个数为( )
A .1
B .2
C .3
D .4
【答案】C
【解析】
【分析】 根据正方体的几何特征,可通过判断每个选项中的两条直线字母表示的点是否共面;如果共面,则可能是相交或者平行;若不共面,则是异面.
【详解】
①:1CC 与DM 是共面的,且不平行,所以必定相交,故正确;
②:若AM BN 、平行,又AD BC 、平行且,AM AD A BN BC B ⋂=⋂=,所以平面BNC P 平面ADM ,明显不正确,故错误;
③:1BN MB 、不共面,所以是异面直线,故正确;
④:1AM DD 、不共面,所以是异面直线,故正确;
故选C.
【点睛】
异面直线的判断方法:一条直线上两点与另外一条直线上两点不共面,那么两条直线异面;反之则为共面直线,可能是平行也可能是相交.
13.已知,m l 是两条不同的直线,,αβ是两个不同的平面,则下列可以推出αβ⊥的是( )
A .,,m l m l βα⊥⊂⊥
B .,,m l l m αβα⊥⋂=⊂
C .//,,m l m l αβ⊥⊥
D .,//,//l m l m αβ⊥
【答案】D
【解析】
A ,有可能出现α,β平行这种情况.
B ,会出现平面α,β相交但不垂直的情况.
C ,根据面面平行的性质定理判断.
D ,根据面面垂直的判定定理判断.
【详解】
对于A ,m l ⊥,m β⊂,若l β⊥,则//αβ,故A 错误;
对于B ,会出现平面α,β相交但不垂直的情况,故B 错误;
对于C ,因为//m l ,m α⊥,则l α⊥,又因为l βαβ⊥⇒∥,故C 错误; 对于D ,l α⊥,m l m α⇒⊥∥,又由m βαβ⇒⊥∥,故D 正确.
故选:D
【点睛】
本题考查空间中的平行、垂直关系的判定,还考查学生的空间想象能力和逻辑推理能力,属于中档题.
14.设A ,B ,C ,D 是同一个球面上四点,ABC ∆是斜边长为6的等腰直角三角形,若三棱锥D ABC -体积的最大值为27,则该球的表面积为( )
A .36π
B .64π
C .100π
D .144π
【答案】C
【解析】
【分析】
由题意画出图形,求出三棱锥D ABC -的外接球的半径,代入表面积公式求解.
【详解】
解:如图,
ABC ∆是斜边BC 长为6的等腰直角三角形,则当D 位于直径的端点时,三棱锥D ABC -体积取最大值为27,
由AB AC =,AB AC ⊥,6BC =,可得斜边BC 上的高3AE =,32AB AC == 由1132322732
DE ⨯⨯=,解得9DE =, 则2
1AE EF DE
==. ∴球O 的直径为10DE EF +=,
则球O 的半径为11052⨯=. ∴该球的表面积为245100S ππ=⨯=.
故选C . 【点睛】 本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,是中档题.
15.设,为两条不同的直线,,为两个不同的平面,下列命题中,正确的是( )
A .若,与所成的角相等,则
B .若,,则
C .若
,,则 D .若,,则 【答案】C
【解析】 试题分析:若,与所成的角相等,则或,相交或,异面;A 错. 若,
,则或,B 错. 若,,则正确. D .若,,则 ,相交或,异面,D 错
考点:直线与平面,平面与平面的位置关系
16.如图长方体中,过同一个顶点的三条棱的长分别为2、4、6,A 点为长方体的一个顶点,B 点为其所在棱的中点,则沿着长方体的表面从A 点到B 点的最短距离为( )
A 29
B .35
C 41
D .213【答案】C
【解析】
【分析】 由长方体的侧面展开图可得有3种情况如下:①当B 点所在的棱长为2;②当B 点所在的棱长为4;③当B 点所在的棱长为6,分别再求出展开图AB 的距离即可得最短距离.
【详解】
由长方体的侧面展开图可得:
(1)当B 点所在的棱长为2,则沿着长方体的表面从A 到B 的距离可能为
()22461101++=()2241661++=()2
246165++= (2)当B 点所在的棱长为4,则沿着长方体的表面从A 到B 的距离可能为
()22226213++=;()22262217++=;()22262217++=. (3)当B 点所在的棱长为6,则沿着长方体的表面从A 到B 的距离可能为()2223441++=;()2224335++=;()2
223453++=. 综上所述,沿着长方体的表面从A 点到B 点的最短距离为41.
故选:C .
【点睛】
本题考查长方体的展开图,考查空间想象与推理能力,属于中等题.
17.如图,棱长为1的正方体1111ABCD A B C D -,O 是底面1111D C B A 的中心,则O 到平面11ABC D 的距离是( )
A .12
B .24
C .22
D .32
【答案】B
【解析】
【分析】
如图建立空间直角坐标系,可证明1A D ⊥平面11ABC D ,故平面11ABC D 的一个法向量为:1DA u u u u r ,利用点到平面距离的向量公式即得解.
【详解】
如图建立空间直角坐标系,则:
1111(,,1),(0,0,1),(1,0,0),(1,1,0),(0,1,1)22
O D A B C 111(,,0)22
OD ∴=--u u u u r 由于AB ⊥平面111,ADD A AD ⊂平面11ADD A
1AB A D ∴⊥,又11AD A D ⊥,1AB AD I
1A D ∴⊥平面11ABC D 故平面11ABC D 的一个法向量为:1(1
,0,1)DA =u u u u r O ∴到平面11ABC D 的距离为:
1111||224||2
OD DA d DA ⋅===u u u u r u u u u r u u u u r 故选:B
【点睛】
本题考查了点到平面距离的向量表示,考查了学生空间想象,概念理解,数学运算的能力,属于中档题.
18.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为
A .122π
B .12π
C .82π
D .10π
【答案】B
【解析】
分析:首先根据正方形的面积求得正方形的边长,从而进一步确定圆柱的底面圆半径与圆柱的高,从而利用相关公式求得圆柱的表面积. 详解:根据题意,可得截面是边长为2
结合圆柱的特征,可知该圆柱的底面为半径是2的圆,且高为22,
所以其表面积为22(2)222212S πππ=+⋅⋅=,故选B.
点睛:该题考查的是有关圆柱的表面积的求解问题,在解题的过程中,需要利用题的条件确定圆柱的相关量,即圆柱的底面圆的半径以及圆柱的高,在求圆柱的表面积的时候,一定要注意是两个底面圆与侧面积的和.
19.在直四棱柱1111ABCD A B C D -中,底面ABCD 是边长为4的正方形,15AA =,垂直于1AA 的截面分别与面对角线1D A ,1B A ,1B C ,1D C 相交于四个不同的点E ,F ,G ,H ,则四棱锥1A EFGH -体积的最大值为( ).
A .83
B .1258
C .12825
D .64081
【答案】D
【解析】
【分析】
由直棱柱的特点和底面为正方形可证得四边形EFGH 为矩形,设点1A 到平面EFGH 的距离为()501t t <<,可表示出,EF FG ,根据四棱锥体积公式将所求体积表示为关于t 的函数,利用导数可求得所求的最大值.
【详解】
Q 四棱柱1111ABCD A B C D -为直四棱柱,1AA ∴⊥平面ABCD ,1AA ⊥平面1111D C B A ∴平面//EFGH 平面ABCD ,平面//EFGH 平面1111D C B A ,
由面面平行性质得:11EF //B D //GH ,EH //AC//FG ,
又11B D AC ⊥,EF FG ∴⊥,∴四边形EFGH 为矩形.
设点1A 到平面EFGH 的距离为()501t t <<,
1142AC B D ==Q )421EF t ∴=-,42FG t =,
∴四棱锥1A EFGH -的体积()()231
160532133
V t t t t t =⨯⨯-=-,
()2160233V t t '∴=-,∴当20,3t ⎛⎫∈ ⎪⎝⎭
时,0V '>,当2,13t ⎛⎫∈ ⎪⎝⎭时,0V '<, ∴当23t =
时,max 16048640392781V ⎛⎫=⨯-= ⎪⎝⎭. 故选:D .
【点睛】
本题考查立体几何中的体积最值的求解问题,关键是能够将所求四棱锥的体积表示为关于某一变量的函数的形式,进而利用导数来求解函数最值,从而得到所求体积的最值.
20.已知直线和不同的平面,下列命题中正确的是
A .//m m αβαβ⊥⎫⇒⎬⊥⎭
B .m m αββα⊥⎫⇒⊥⎬⊂⎭
C .//////m m ααββ⎫⇒⎬⎭
D .////m m αββα⎫⇒⎬⊂⎭
【答案】D
【解析】
【分析】
对各个选项逐一进行分析即可
【详解】 A ,若αβ⊥,m β⊥,则有可能m α⊂,故A 错误
B ,若αβ⊥,m α⊂,则m 与β不一定垂直,可能相交或平行,故B 错误
C ,若//m α,//m β则推不出//αβ,面面平行需要在一个面内找出两条相交线与另一个平面平行,故C 错误
D ,若//αβ,m α⊂,则有//m β,故D 正确
故选D
【点睛】
本题考查了线面平行与面面平行的判断和性质,在对其判定时需要运用其平行的判定定理或者性质定理,所以要对课本知识掌握牢固,从而判断结果。