四川省成都市龙泉一中2014届高三12月月考文科数学试题

合集下载

2014年四川省高考数学试题(卷)(文科)答案与解析

2014年四川省高考数学试题(卷)(文科)答案与解析

2014年四川省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,共50分)1.(5分)(2014•四川)已知集合A={x|(x+1)(x﹣2)≤0},集合B为整数集,则A∩B=()A.{﹣1,0} B.{0,1} C.{﹣2,﹣1,0,1} D.{﹣1,0,1,2}考点:交集及其运算.专题:集合.分析:由题意,可先化简集合A,再求两集合的交集.解答:解:A={x|(x+1)(x﹣2)≤0}={x|﹣1≤x≤2},又集合B为整数集,故A∩B={﹣1,0,1,2}故选D.点评:本题考查求交,掌握理解交的运算的意义是解答的关键.2.(5分)(2014•四川)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,在这个问题中,5000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本考点:用样本的频率分布估计总体分布.专题:概率与统计.分析:根据题意,结合总体、个体、样本、样本容量的定义可得结论.解答:解:根据题意,结合总体、个体、样本、样本容量的定义可得,5000名居民的阅读时间的全体是总体,故选:A.点评:本题主要考查总体、个体、样本、样本容量的定义,属于基础题.3.(5分)(2014•四川)为了得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动1个单位长度B.向右平行移动1个单位长度C.向左平行移动π个单位长度D.向右平行移动π个单位长度考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:直接利用函数图象的平移法则逐一核对四个选项得答案.解答:解:∵由y=sinx到y=sin(x+1),只是横坐标由x变为x+1,∴要得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点向左平行移动1个单位长度.故选:A.点评:本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减.是基础题.4.(5分)(2014•四川)某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积为()(锥体体积公式:V=Sh,其中S为底面面积,h为高)A.3B.2C.D.1考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据三棱锥的俯视图与侧视图判定三棱锥的一个侧面与底面垂直,判断三棱锥的高与底面三角形的形状及边长,把数据代入棱锥的体积公式计算.解答:解:由三棱锥的俯视图与侧视图知:三棱锥的一个侧面与底面垂直,高为,底面为等边三角形,边长为2,∴三棱锥的体积V=××2××=1.故选:D.点评:本题考查了由三棱锥的侧视图与俯视图求体积,判断三棱锥的结构特征及相关几何量的数据是解题的关键.5.(5分)(2014•四川)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<考点:不等关系与不等式.专题:不等式的解法及应用.分析:利用特例法,判断选项即可.解答:解:不妨令a=3,b=1,c=﹣3,d=﹣1,则,∴C、D不正确;=﹣3,=﹣∴A不正确,B正确.解法二:∵c<d<0,∴﹣c>﹣d>0,∵a>b>0,∴﹣ac>﹣bd,∴,∴.故选:B.点评:本题考查不等式比较大小,特值法有效,带数计算正确即可.6.(5分)(2014•四川)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.3考点:程序框图的三种基本逻辑结构的应用;简单线性规划.专题:算法和程序框图.分析:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域,求得取得最大值的点的坐标,得出最大值.解答:解:由程序框图知:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域如图:当时,S=2x+y的值最大,且最大值为2.故选:C.点评:本题借助选择结构的程序框图考查了线性规划问题的解法,根据框图的流程判断算法的功能是解题的关键.7.(5分)(2014•四川)已知b>0,log5b=a,lgb=c,5d=10,则下列等式一定成立的是()A.d=ac B.a=cd C.c=ad D.d=a+c考点:对数值大小的比较.专题:函数的性质及应用.分析:利用指数式与对数式的互化、对数的运算性质和换底公式即可得出.解答:解:由5d=10,可得,∴cd=lgb=log5b=a.故选:B.点评:本题考查了指数式与对数式的互化、对数的运算性质和换底公式,属于基础题.8.(5分)(2014•四川)如图,从气球A上测得正前方的河流的两岸B、C的俯角分别为75°、30°,此时气球的高是60m,则河流的宽度BC等于()A.240(﹣1)m B.180(﹣1)m C.120(﹣1)m D.30(+1)m考点:解三角形的实际应用;余弦定理的应用.专题:解三角形.分析:由题意画出图形,由两角差的正切求出15°的正切值,然后通过求解两个直角三角形得到DC和DB的长度,作差后可得答案.解答:解:如图,由图可知,∠DAB=15°,∵tan15°=tan(45°﹣30°)==.在Rt△ADB中,又AD=60,∴DB=AD•tan15°=60×(2﹣)=120﹣60.在Rt△ADC中,∠DAC=60°,AD=60,∴DC=AD•tan60°=60.∴BC=DC﹣DB=60﹣(120﹣60)=120()(m).∴河流的宽度BC等于120()m.故选:C.点评:本题考查了解三角形的实际应用,考查了两角差的正切,训练了直角三角形的解法,是中档题.9.(5分)(2014•四川)设m∈R,过定点A的动直线x+my=0和过定点B的直线mx﹣y﹣m+3=0交于点P(x,y),则|PA|+|PB|的取值范围是()A.[,2] B.[,2] C.[,4] D.[2,4]考点:两条直线的交点坐标;函数最值的应用.专题:直线与圆.分析:可得直线分别过定点(0,0)和(1,3)且垂直,可得|PA|2+|PB|2=10.三角换元后,由三角函数的知识可得.解答:解:由题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即 m(x﹣1)﹣y+3=0,经过点定点B(1,3),∵动直线x+my=0和动直线mx﹣y﹣m+3=0的斜率之积为﹣1,始终垂直,P又是两条直线的交点,∴PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.设∠ABP=θ,则|PA|=sinθ,|PB|=cosθ,由|PA|≥0且|PB|≥0,可得θ∈[0,]∴|PA|+|PB|=(sinθ+cosθ)=2sin(θ+),∵θ∈[0,],∴θ+∈[,],∴sin(θ+)∈[,1],∴2sin(θ+)∈[,2],故选:B.点评:本题考查直线过定点问题,涉及直线的垂直关系和三角函数的应用,属中档题.10.(5分)(2014•四川)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.考点:直线与圆锥曲线的关系.专题:圆锥曲线中的最值与范围问题.分析:可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及•=2消元,最后将面积之和表示出来,探求最值问题.解答:解:设直线AB的方程为:x=ty+m,点A(x,y1),B(x2,y2),直线AB与x轴的交1点为M(m,0),由⇒y2﹣ty﹣m=0,根据韦达定理有y1•y2=﹣m,∵•=2,∴x1•x2+y1•y2=2,结合及,得,∵点A,B位于x轴的两侧,∴y1•y2=﹣2,故m=2.不妨令点A在x轴上方,则y1>0,又,∴S△ABO+S△AFO==.当且仅当,即时,取“=”号,∴△ABO与△AFO面积之和的最小值是3,故选B.点评:求解本题时,应考虑以下几个要点:1、联立直线与抛物线的方程,消x或y后建立一元二次方程,利用韦达定理与已知条件消元,这是处理此类问题的常见模式.2、求三角形面积时,为使面积的表达式简单,常根据图形的特征选择适当的底与高.3、利用基本不等式时,应注意“一正,二定,三相等”.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)(2014•四川)双曲线﹣y2=1的离心率等于.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据双曲线的方程,求出a,b,c,即可求出双曲线的离心率.解答:解:由双曲线的方程可知a2=4,b2=1,则c2=a2+b2=4+1=5,则a=2,c=,即双曲线的离心率e==,故答案为:点评:本题主要考查双曲线的离心率的计算,求出a,c是解决本题的关键,比较基础.12.(5分)(2014•四川)复数= ﹣2i .考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用两个复数代数形式的乘除法法则化简所给的复数,可得结果.解答:解:复数===﹣2i,故答案为:﹣2i.点评:本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.13.(5分)(2014•四川)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f(x)=,则f()= 1 .考点:函数的值.专题:计算题.分析:由函数的周期性f(x+2)=f(x),将求f()的值转化成求f()的值.解答:解:∵f(x)是定义在R上的周期为2的函数,∴=1.故答案为:1.点评:本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.14.(5分)(2014•四川)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m= 2 .考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:利用向量的坐标运算、数量积运算、向量的夹角公式即可得出.解答:解:∵向量=(1,2),=(4,2),=m+(m∈R),∴=m(1,2)+(4,2)=(m+4,2m+2).∴=m+4+2(2m+2)=5m+8,=4(m+4)+2(2m+2)=8m+20.,=2.∵与的夹角等于与的夹角,∴=,∴,化为5m+8=4m+10,解得m=2.故答案为:2.点评:本题考查了向量的坐标运算、数量积运算、向量的夹角公式,属于基础题.15.(5分)(2014•四川)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有①③④.(写出所有真命题的序号)考点:命题的真假判断与应用;充要条件;全称命题;特称命题;函数的值域.专题:新定义;极限思想;函数的性质及应用;不等式的解法及应用;简易逻辑.分析:根据题中的新定义,结合函数值域的概念,可判断出命题①②③是否正确,再利用导数研究命题④中函数的值域,可得到其真假情况,从而得到本题的结论.解答:解:(1)对于命题①,若对任意的b∈R,都∃a∈D使得f(a)=b,则f(x)的值域必为R.反之,f(x)的值域为R,则对任意的b∈R,都∃a∈D使得f(a)=b,故①是真命题;(2)对于命题②,若函数f(x)∈B,即存在一个正数M,使得函数f(x)的值域包含于区间[﹣M,M].∴﹣M≤f(x)≤M.例如:函数f(x)满足﹣2<f(x)<5,则有﹣5≤f(x)≤5,此时,f(x)无最大值,无最小值,故②是假命题;(3)对于命题③,若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)值域为R,f(x)∈(﹣∞,+∞),并且存在一个正数M,使得﹣M≤g (x)≤M.故f(x)+g(x)∈(﹣∞,+∞).则f(x)+g(x)∉B,故③是真命题;(4)对于命题④,∵﹣≤≤,当a>0或a<0时,alnx∈(﹣∞,+∞),f(x)均无最大值,若要使f(x)有最大值,则a=0,此时f(x)=,f(x)∈B,故④是真命题.故答案为①③④.点评:本题考查了函数值域的概念、基本不等式、充要条件,还考查了新定义概念的应用和极限思想.本题计算量较大,也有一定的思维难度,属于难题.三、解答题(共6小题,共75分)16.(12分)(2014•四川)一个盒子里装有三张卡片,分别标记有1,2,3,这三张卡片除标记的数字外完全相同,随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(Ⅰ)求“抽取的卡片上的数字满足a+b=c”的概率;(Ⅱ)求“抽取的卡片上的数字a,b,c不完全相同”的概率.考点:相互独立事件的概率乘法公式.专题:概率与统计.分析:(Ⅰ)所有的可能结果(a,b,c)共有3×3×3=27种,而满足a+b=c的(a,b,c 有计3个,由此求得“抽取的卡片上的数字满足a+b=c”的概率.(Ⅱ)所有的可能结果(a,b,c)共有3×3×3种,用列举法求得满足“抽取的卡片上的数字a,b,c完全相同”的(a,b,c)共计三个,由此求得“抽取的卡片上的数字a,b,c完全相同”的概率,再用1减去此概率,即得所求.解答:解:(Ⅰ)所有的可能结果(a,b,c)共有3×3×3=27种,而满足a+b=c的(a,b,c)有(1,1,2)、(1,2,3)、(2,1,3),共计3个,故“抽取的卡片上的数字满足a+b=c”的概率为=.(Ⅱ)满足“抽取的卡片上的数字a,b,c完全相同”的(a,b,c)有:(1,1,1)、(2,2,2)、(3,3,3),共计三个,故“抽取的卡片上的数字a,b,c完全相同”的概率为=,∴“抽取的卡片上的数字a,b,c不完全相同”的概率为1﹣=.点评:本题主要考查相互独立事件的概率乘法公式的应用,属于中档题.17.(12分)(2014•四川)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.考点:两角和与差的余弦函数;正弦函数的单调性.专题:三角函数的求值.分析:(1)令2kπ﹣≤3x+≤2kπ+,k∈z,求得x的范围,可得函数的增区间.(2)由函数的解析式可得 f()=sin(α+),又f()=cos(α+)cos2α,可得sin(α+)=cos(α+)cos2α,化简可得(cosα﹣sinα)2=.再由α是第二象限角,cosα﹣sinα<0,从而求得cosα﹣sinα 的值.解答:解:(1)∵函数f(x)=sin(3x+),令2kπ﹣≤3x+≤2kπ+,k∈Z,求得﹣≤x≤+,故函数的增区间为[﹣,+],k∈Z.(2)由函数的解析式可得 f()=sin(α+),又f()=cos(α+)cos2α,∴sin(α+)=cos(α+)cos2α,即sin(α+)=cos(α+)(cos2α﹣sin2α),∴sinαcos+cosαsin=(cosαcos﹣sinαsin)(cosα﹣sinα)(cosα+sinα)即(sinα+cosα)=•(cosα﹣sinα)2(cosα+sinα),又∵α是第二象限角,∴cosα﹣sinα<0,当sinα+cosα=0时,此时cosα﹣sinα=﹣.当sinα+cosα≠0时,此时cosα﹣sinα=﹣.综上所述:cosα﹣sinα=﹣或﹣.点评:本题主要考查正弦函数的单调性,三角函数的恒等变换,体现了分类讨论的数学思想,属于中档题.18.(12分)(2014•四川)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形(Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(Ⅱ)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.考点:直线与平面垂直的判定;直线与平面平行的判定.专题:综合题;空间位置关系与距离.分析:(Ⅰ)先证明AA⊥平面ABC,可得AA1⊥BC,利用AC⊥BC,可以证明直线BC⊥平面1ACC1A1;(Ⅱ)取AB的中点M,连接A1M,MC,A1C,AC1,证明四边形MDEO为平行四边形即可.解答:(Ⅰ)证明:∵四边形ABBA1和ACC1A1都为矩形,1∴AA1⊥AB,AA1⊥AC,∵AB∩AC=A,∴AA1⊥平面ABC,∵BC⊂平面ABC,∴AA1⊥BC,∵AC⊥BC,AA1∩AC=A,∴直线BC⊥平面ACC1A1;(Ⅱ)解:取AB的中点M,连接A1M,MC,A1C,AC1,设O为A1C,AC1的交点,则O 为AC1的中点.连接MD,OE,则MD∥AC,MD=AC,OE∥AC,OE=AC,∴MD∥OE,MD=OE,连接OM,则四边形MDEO为平行四边形,∴DE∥MO,∵DE⊄平面A1MC,MO⊂平面A1MC,∴DE∥平面A1MC,∴线段AB上存在一点M(线段AB的中点),使直线DE∥平面A1MC.点评:本题考查线面垂直的判定与性质的运用,考查存在性问题,考查学生分析解决问题的能力,属于中档题.19.(12分)(2014•四川)设等差数列{a n}的公差为d,点(a n,b n)在函数f(x)=2x的图象上(n∈N*)(Ⅰ)证明:数列{b n}为等比数列;(Ⅱ)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{a n b n2}的前n项和S n.考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:(Ⅰ)利用等比数列的定义证明即可;(Ⅱ)先由(Ⅰ)求得a n,b n,再利用错位相减求数列{a n b n2}的前n项和S n.解答:(Ⅰ)证明:由已知得,b n=>0,当n≥1时,===2d,∴数列{b n}为首项是,公比为2d的等比数列;(Ⅱ)解:f′(x)=2x ln2∴函数f(x)的图象在点(a2,b2)处的切线方程为y﹣=ln2(x﹣a2),∵在x轴上的截距为2﹣,∴a2﹣=2﹣,∴a2=2,∴d=a2﹣a1=1,a n=n,b n=2n,a n b n2=n4n,∴T n=1•4+2•42+3•43+…+(n﹣1)•4n﹣1+n•4n,4T n=1•42+2•43+…+(n﹣1)•4n+n•4n+1,∴T n﹣4T n=4+42+…+4n﹣n•4n+1=﹣n•4n+1=,∴T n=.点评:本题考查等差数列与等比数列的概念,等差数列与等比数列的通项公式及前n项和公式,导数的几何意义等知识;考查学生的运算求解能力、推理论证能力,属中档题.20.(13分)(2014•四川)已知椭圆C:+=1(a>b>0)的左焦点为F(﹣2,0),离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设O为坐标原点,T为直线x=﹣3上一点,过F作TF的垂线交椭圆于P、Q,当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)由题意可得,解出即可;(Ⅱ)由(Ⅰ)可得F(﹣2,0),设T(﹣3,m),可得直线TF的斜率k TF=﹣m,由于TF⊥PQ,可得直线PQ的方程为x=my﹣2.设P(x1,y1),Q(x2,y2).直线方程与椭圆方程可得根与系数的关系.由于四边形OPTQ是平行四边形,可得,即可解得m.此时四边形OPTQ的面积S=.解答:解:(Ⅰ)由题意可得,解得c=2,a=,b=.∴椭圆C的标准方程为;(Ⅱ)由(Ⅰ)可得F(﹣2,0),设T(﹣3,m),则直线TF的斜率,∵TF⊥PQ,可得直线PQ的方程为x=my﹣2.设P(x1,y1),Q(x2,y2).联立,化为(m2+3)y2﹣4my﹣2=0,△>0,∴y1+y2=,y1y2=.∴x1+x2=m(y1+y2)﹣4=.∵四边形OPTQ是平行四边形,∴,∴(x1,y1)=(﹣3﹣x2,m﹣y2),∴,解得m=±1.此时四边形OPTQ的面积S=═=.点评:本题中考查了椭圆与圆的标准方程及其性质、直线与椭圆及圆相交可得根与系数的关系及弦长问题、向量相等问题、平行四边形的面积计算公式等基础知识与基本技能方法,考查了推理能力和计算能力,考查了数形结合和转化能力,属于难题.21.(14分)(2014•四川)已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.考点:导数在最大值、最小值问题中的应用;函数的零点.专题:导数的综合应用.分析:(1)求出f(x)的导数得g(x),再求出g(x)的导数,对它进行讨论,从而判断g(x)的单调性,求出g(x)的最小值;(2)利用等价转换,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,所以g(x)在(0,1)上应有两个不同的零点.解答:解:∵f(x)=e x﹣ax2﹣bx﹣1,∴g(x)=f′(x)=e x﹣2ax﹣b,又g′(x)=e x﹣2a,x∈[0,1],∴1≤e x≤e,∴①当时,则2a≤1,g′(x)=e x﹣2a≥0,∴函数g(x)在区间[0,1]上单调递增,g(x)min=g(0)=1﹣b;②当,则1<2a<e,∴当0<x<ln(2a)时,g′(x)=e x﹣2a<0,当ln(2a)<x<1时,g′(x)=e x ﹣2a>0,∴函数g(x)在区间[0,ln(2a)]上单调递减,在区间[ln(2a),1]上单调递增,g(x)min=g[ln(2a)]=2a﹣2aln(2a)﹣b;③当时,则2a≥e,g′(x)=e x﹣2a≤0,∴函数g(x)在区间[0,1]上单调递减,g(x)min=g(1)=e﹣2a﹣b,综上:函数g(x)在区间[0,1]上的最小值为;(2)由f(1)=0,⇒e﹣a﹣b﹣1=0⇒b=e﹣a﹣1,又f(0)=0,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,由(1)知当a≤或a≥时,函数g(x)在区间[0,1]上单调,不可能满足“函数f(x)在区间(0,1)内至少有三个单调区间”这一要求.若,则g min(x)=2a﹣2aln(2a)﹣b=3a﹣2aln(2a)﹣e+1令h(x)=(1<x<e)则=,∴.由>0⇒x<∴h(x)在区间(1,)上单调递增,在区间(,e)上单调递减,==<0,即g min(x)<0 恒成立,∴函数f(x)在区间(0,1)内至少有三个单调区间⇔⇒,又,所以e﹣2<a<1,综上得:e﹣2<a<1.点评:本题考查了,利用导数求函数的单调区间,分类讨论思想,等价转换思想,函数的零点等知识点.是一道导数的综合题,难度较大.。

高三数学下学期入学考试试题 文1

高三数学下学期入学考试试题 文1

成都龙泉中学2014级高三下期入学考试卷数 学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择),考生作答时,须将答案答答题卡上,在本试卷、草稿纸上答题无效。

满分150分,考试时间120分钟。

第Ⅰ卷(选择题,共60分)注意事项:1.必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑. 2.考试结束后,将本试题卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A={1,2,3},B={4,5},C={x|x=b ﹣a ,a ∈A ,b ∈B},则C 中元素的个数是( ) A .3B .4C .5D .62.已知i 是复数的虚数单位,若复数(1)|2|z i i +=,则复数z =( )A. iB. 1i -+C. 1i +D. 1i -3.已知)12(+x f 是偶函数,则函数)2(x f 的图象的对称轴是( )A.1-=xB.x =1C.21-=x D.21=x 4.设()f x 是定义在R 上的奇函数,当x ≤0时,()f x x x 2=2-,则()f 1=( ) A.-3 B. -1 C.1 D.35. 经过抛物线24x y =的焦点和双曲线22145y x -=的右焦点的直线方程为 ( )A .330x y +-=B .330x y +-=C .4830x y +-=D .4830x y +-=6.执行如图所示的程序框图,输出的S 值为( )A .1 B.23C .1321D .6109877. ,a b 为平面向量,已知(4,3),2(3,18),a a b =+=则,a b 夹角的余弦值等于( )A.865 B .-865 C.1665 D .-16658.不等式2()0f x ax x c =-->的解集为{|21}x x -<<,则函数()y f x =-的图象为( )9. 在△ABC 中,若2,23a b ==,030A = , 则B 等于( )A .60B .60或 120C .30D .30或150 10.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的体积为( )A.13B.16C.83D.4311.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为()02,2P -,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图象大致为( )P 0PO y12.O 为坐标原点,F 为抛物线x y C 4:2=的焦点,过F 的直线交C 于B A ,且BF FA 2=,则OAB ∆的面积为( )A .4B .2C .322D .22 第Ⅱ卷(非选择题,共90分)二、填空题(每题5分,共20分)13.已知(0,1),(3,0),(3,2)A B C --,则ABC ∆内切圆的圆心到直线31y x =-+的距离为_____. 14.若函数)2(log )(22a x x x f a ++=是奇函数,则a =15. 实数a ∈[0,3],b ∈[0,2],则关于x 的方程x 2+2ax +b 2=0有实根的概率是__________. 16.某班级有50名学生,现采取系统抽样的方法在这50名学生中抽出10名,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,,第十组46~50号,若在第三组中抽得号码为12号的学生,则在第八组中抽得号码为______的学生.三、解答题:本大题共6小题,共70分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,满足()()sin sin sin sin a b A B c C a B --=-. (1)求角C 的大小;(2)若7,c a b =>,且ABC ∆的面积为323,求ba的值.18.(本小题满分12分) 已知函数12)(+=x xx f 与函数)(x g y =的图象关于直线2=x 对称,(1)求)(x g 的表达式。

2014届高三数学上册第一次月考文科试题(有答案)

2014届高三数学上册第一次月考文科试题(有答案)

2014届高三数学上册第一次月考文科试题(有答案)望江四中2014届高三上学期第一次月考数学(文)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答题时120分钟,满分150分。

第Ⅰ卷(选择题共10小题,每小题5分,共50分)一、选择题(每小题给出的四个选项中,只有一个选项符合题目要求.)1.若集合,,则()A.B.C.D.答案:A解析:集合A={},A={},所以,2.设是虚数单位,则“x=-3”是“复数z=(x2+2x-3)+(x-1)i为纯虚数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:C【解析】若复数z=(x2+2x-3)+(x-1)i为纯虚数,则,所以“x=-3”是“复数z=(x2+2x-3)+(x-1)i为纯虚数”的充要条件。

3.已知为等差数列,若,则的值为()A.B.C.D.答案:D解析:因为为等差数列,若,所以,,4.下列四个函数中,既是奇函数又在定义域上单调递增的是()A.B.C.D.答案:C【解析】A、D既不是奇函数,也不是偶函数,排除,B只是在区间上递增,只以C符合。

5.已知函数有且仅有两个不同的零点,,则()A.当时,,B.当时,,C.当时,,D.当时,,答案:B解析:函数求导,得:,得两个极值点:因为函数f(x)过定点(0,-2),有且仅有两个不同的零点,所以,可画出函数图象如下图:因此,可知,,只有B符合。

6.函数的最小正周期是()A.B.C.2πD.4π答案:B【解析】函数,所以周期为.7.函数的零点所在的区间为()A.B.C.D.答案:D【解析】<0,>0,所以,在上有零点。

8.设集合是的子集,如果点满足:,称为集合的聚点.则下列集合中以为聚点的有:;②;③;④()A.①④B.②③C.①②D.①②④答案:A【解析】①中,集合中的元素是极限为1的数列,∴在的时候,存在满足0<|x-1|<a的x,∴1是集合的聚点②集合中的元素是极限为0的数列,最大值为2,即|x-1|≥1对于某个a>1,不存在0<|x-1|,∴1不是集合的聚点③对于某个a<1,比如a=0.5,此时对任意的x∈Z,都有|x﹣1|=0或者|x﹣1|≥1,也就是说不可能0<|x﹣1|<0.5,从而1不是整数集Z的聚点④>0,存在0<|x-1|<0.5的数x,从而1是整数集Z的聚点故选A9.一个盒子里有3个分别标有号码为1,2,3的小球,每次取出一个,记下它的标号后再放回盒子中,共取3次,则取得小球标号最大值是3的取法有()A.12种B.15种C.17种D.19种答案:D解析:分三类:第一类,有一次取到3号球,共有取法;第二类,有两次取到3号球,共有取法;第三类,三次都取到3号球,共有1种取法;共有19种取法。

2014年四川省成都市高三文科一模数学试卷

2014年四川省成都市高三文科一模数学试卷

2014年四川省成都市高三文科一模数学试卷一、选择题(共10小题;共50分)1. 已知集合,,则A. B. C. D.2. 若复数满足(为虚数单位),则复数为A. B. C. D.3. 在等比数列中,,则A. B. C. D.4. 计算所得的结果为A. B. C. D.5. 已知,是两条不同的直线,为平面,则下列命题正确的是A. 若,,则B. 若,,则C. 若,,则D. 若与相交,与相交,则,一定不相交6. 如图,在平面直角坐标系中,角,的顶点与坐标原点重合,始边与轴的非负半轴重合,它们的终边分别与单位圆相交于,两点,若点,的坐标为和,则的值为A. B. C. D.7. 已知,则的概率为A. B. C. D.8. 一个长方体被一个平面截去一部分后所剩几何体的三视图如下图所示(单位:),则该几何体的体积为A. B. C. D.9. 某种特色水果每年的上市时间从月号开始仅能持续个月的时间.上市初期价格呈现上涨态势,中期价格开始下跌,后期价格在原有价格基础之上继续下跌.若用函数进行价格模拟(注表示月号,表示月号,,以此类推,通过多年的统计发现,当函数取得最大值时,拓展外销市场的效果最为明显,则可以预测明年拓展外销市场的时间为A. 月日B. 月日C. 月日D. 月日10. 已知函数,若函数在区间上恰好有一个零点,则的取值范围为A. B.C. D.二、填空题(共5小题;共25分)11. 若是定义在上的偶函数,则实数.12. 某公司生产A,B,C三种型号的轿车,产量分别是辆,辆和辆,为检验产品的质量,现从这三种型号的轿车中,用分层抽样的方法抽取辆作为样本进行检验,若B型号轿车抽取辆,则样本容量.13. 已知向量,满足,,且+,则向量,的夹角为.14. 设,是函数的两个极值点,若,则实数的取值范围是.15. 已知和是定义在上的两个函数,则下列关于,的四个命题:①函数的图象关于直线对称;②关于的方程恰有四个不相等实数根的充要条件是;③当时,对,,成立;④若,,成立,则.其中正确的命题有(写出所有正确命题的序号).三、解答题(共5小题;共65分)16. 已知向量,,设函数.(1)求函数的最小正周期;(2)在中,角,,所对边的长分别为,,,且,,,求的值.17. 如图①,四边形为等腰梯形,,,为的中点,现将沿翻折到的位置,如图②,且平面平面.(1)求证:平面平面;(2)求三棱锥与的体积之比.18. 已知等差数列中,,,.(1)求数列的通项公式;(2)若为递增数列,请根据如图的程序框图,求输出框中的值(要求写出解答过程).19. 我国采用的的标准为:日均值在微克/立方米以下的空气质量为一级;在微克/立方米一微克/立方米之间的空气质量为二级;微克/立方米以上的空气质量为超标.某城市环保部门随机抽取该市天的的日均值,发现其茎叶图和频率分布直方图都受到不同程度的破坏,可见部分如图所示.(1)求的值,并分别计算:频率分布直方图中的和这两个矩形的高;(2)通过频率分布直方图估计这天的日均值的中位数(结果保留分数形式);(3)从中任意抽取一个容量为的样本来研究汽车尾气对空气质量的影响,求至少有一个数据在之间的概率.20. 已知函数,,.(1)若,求曲线在处的切线方程;(2)若对任意的,都有恒成立,求的取值范围;(3)求证:,.答案第一部分1. B 【解析】因为,,所以.2. B 【解析】因为复数满足,所以,所以.3. D 【解析】因为数列是等比数列,由等比数列的性质得,,再由已知,得,所以.原式4. A 【解析】5. C【解析】对A,,,则直线,位置关系不确定,故A错误;对B,,,所以,故B错误;对C,,,过的平面,,所以,又,所以,所以,故C正确;对D,若与相交,与相交,当交点重合时,,相交,故D错误.6. A 【解析】因为点,的坐标为和,所以,,,,则.7. C 【解析】因为,,所以,所以所求概率为.8. C 【解析】由三视图可判断几何体为一个长方体削去一个角,其直观图如图:长方体的长、宽、高分别为,,,所以长方体的体积为,削去的三棱锥的体积为,所以该几何体的体积为.9. B 【解析】由题意可得,函数当且仅当,即时,取等号.即月日展外销市场的效果最为明显.10. A【解析】由题意可得函数的图象和直线在区间上恰好有一个交点,如图所示:显然,当时,满足条件.当和相切时,设切点为.由导数的几何意义可得,解得,故切线的斜率为.当经过点时,.故的范围为.第二部分11.【解析】因为是定义在上的偶函数,所以,即,所以,所以,解得.12.【解析】因为A,B,C三种型号的轿车,产量分别是辆,辆和辆,所以根据B型号轿车抽取辆,得,所以.13.【解析】因为解得 . 所以所以向量 , 的夹角为 . 14.【解析】由题意得 的两个零点 , 满足 , 所以 , 解得 . 15. ①④【解析】因为函数的图象如下图所示:故函数 的图象关于直线 对称,即①正确; 作出 如图所示,可知,关于 的方程 恰有四个不相等的实数根的充要条件是 ,故②错误. 当 时, ,因为 时,, 时, ,故时,不存在 ,使成立,故③错误;因为时,,时,若,,成立,则,即满足条件的的范围为,故④正确;故正确的命题有:①④第三部分16. (1)因为向量,,函数,所以所以;(2)因为,所以,所以,因为,所以由正弦定理可得.17. (1)因为,,所以四边形为平行四边形,又,,所以四边形为正方形,所以,所以平面平面,,平面平面,所以平面,所以,又,所以平面,平面,所以平面平面.(2)因为,,因为三棱锥与的高相等,底面与的面积也相等,所以三棱锥与的体积之比为.18. (1)因为等差数列中,所以解得或所以或,.(2)若为递增数列,可得公差为正,所以,.由已知中的程序框图可得:则由得:,所以19. (1)因为,所以,易知,矩形的高为,矩形的高为.(2)根据频率分布直方图可以估计这天的日均值的中位数为.(3)在中共有个数据,从个数据中选取个共有个,考虑问题的对立面即所取的两数都不在之间的基本事件个数为个,所以所求的概率为.20. (1)当时,,,,所以曲线在处的切线方程为:,即.(2)恒成立,即恒成立,也就是恒成立,令,,则,.①若,则恒成立.所以在上为单调递增函数,恒成立,又,所以符合条件;②若,由可得和(舍去),当时,,,所以极小值所以,这与恒成立矛盾,综上,,所以的最小值为.(3)由(Ⅱ)可知,当时,,当且仅当时等号成立,令,即,所以,累加得,因为,所以,,,所以,因为,所以,所以,.。

2014年高考文科数学四川卷有答案

2014年高考文科数学四川卷有答案

数学试卷 第1页(共18页) 数学试卷 第2页(共18页) 数学试卷 第3页(共18页)绝密★启用前2014年普通高等学校招生全国统一考试(四川卷)数学(理工类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至2页,第Ⅱ卷3至6页,共6页.满分150分.考试时间120分钟.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑. 第Ⅰ卷共10小题.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|20}A x x x =--≤,集合B 为整数集,则A B = ( )A .{1,0,1,2}-B .{2,1,0,1}--C .{0,1}D .{1,0}- 2.在6(1)x x +的展开式中,含3x 项的系数为( )A .30B .20C .15D .103.为了得到函数sin(21)y x =+的图象,只需把函数sin 2y x =的图象上所有的点( )A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度 4.若0a b >>,0c d <<,则一定有( )A .a bc d > B .a b c d < C .a b d c> D .a b d c<5.执行如图的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( )A .0B .1C .2D .36.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( ) A .192 种B .216 种C .240 种D .288 种7.平面向量a (1,2)=,b (4,2)=,c m =a +b ()m ∈R ,且c 与a 的夹角等于c 与b 的夹角,则m =( )A .2-B .1-C .1D .28.如图,在正方体1111ABCD A B C D -中,点O 为线段BD 的中点.设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是 ( )A.B .C .[]33D .[39.已知()ln(1)ln(1)f x x x =+--,(1,1)x ∈-.现有下列命题:①()()f x f x -=-;②22()2()1xf f x x =+;③|()|2||f x x ≥.其中的所有正确命题的序号是( )A .①②③B .②③C .①③D .①②10.已知F 为抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB =(其中O 为坐标原点),则ABO △与AFO △面积之和的最小值是( )A .2B .3CD 第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷、草稿纸上无效.第Ⅱ卷共11小题.二、填空题:本大题共5小题,每小题5分,共25分. 11.复数22i1i-=+ . 12.设()f x 是定义在R 上的周期为2的函数,当[1,1)x ∈-时,242,10,(),01,x x f x x x ⎧-+-=⎨⎩≤<≤<则3()2f = .13.如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67,30,此时气球的高是46 m ,则河流的宽度BC 约等于m .(用四舍五入法将结果精确到个位.参考数据:sin670.92≈,cos670.39≈,sin370.60≈,cos370.80≈ 1.73≈)14.设m ∈R ,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB 的最大值是 .15.以A 表示值域为R 的函数组成的集合,B 表示具有如下性质的函数()x ϕ组成的集合:对于函数()x ϕ,存在一个正数M ,使得函数()x ϕ的值域包含于区间[,]M M -.例如,当31()x x ϕ=,2()sin x x ϕ=时,1()x A ϕ∈,2()x B ϕ∈.现有如下命题:①设函数()f x 的定义域为D ,则“()f x A ∈”的充要条件是“b ∀∈R ,a D ∃∈,()f a b =”; ②函数()f x B ∈的充要条件是()f x 有最大值和最小值;③若函数()f x ,()g x 的定义域相同,且()f x A ∈,()g x B ∈,则()()f x g x B +∉; ④若函数2()ln(2)1xf x a x x =+++(2x >-,a ∈R )有最大值,则()f xB ∈. 其中的真命题有 (写出所有真命题的序号).-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)已知函数π()sin(3)4f x x=+.(Ⅰ)求()f x的单调递增区间;(Ⅱ)若α是第二象限角,4π()cos()cos2354fααα=+,求cos sinαα-的值.17.(本小题满分12分)一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(Ⅰ)设每盘游戏获得的分数为X,求X的分布列;(Ⅱ)玩三盘游戏,至少有一盘出现音乐的概率是多少?(Ⅲ)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了.请运用概率统计的相关知识分析分数减少的原因. 18.(本小题满分12分)三棱锥A BCD-及其侧视图、俯视图如图所示.设M,N分别为线段AD,AB的中点,P为线段BC上的点,且MN NP⊥.(Ⅰ)证明:P为线段BC的中点;(Ⅱ)求二面角A NP M--的余弦值.19.(本小题满分12分)设等差数列{}na的公差为d,点(,)n na b在函数()2xf x=的图象上(n*∈N).(Ⅰ)若12a=-,点87(,4)a b在函数()f x的图象上,求数列{}na的前n项和nS;(Ⅱ)若11a=,函数()f x的图象在点22(,)a b处的切线在x轴上的截距为12ln2-,求数列{}nnab的前n项和nT.20.(本小题满分13分)已知椭圆C:22221x ya b+=(0)a b>>的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设F为椭圆C的左焦点,T为直线3x=-上任意一点,过F作TF的垂线交椭圆C于点P,Q.(ⅰ)证明:OT平分线段PQ(其中O为坐标原点);(ⅱ)当||||TFPQ最小时,求点T的坐标.21.(本小题满分14分)已知函数2()e1xf x ax bx=---,其中,a b∈R,e 2.71828=⋅⋅⋅为自然对数的底数.(Ⅰ)设()g x是函数()f x的导函数,求函数()g x在区间[0,1]上的最小值;(Ⅱ)若(1)0f=,函数()f x在区间(0,1)内有零点,求a的取值范围.数学试卷第4页(共18页)数学试卷第5页(共18页)数学试卷第6页(共18页)101{A B-=,【提示】由题意,可先化简集合【考点】交集及其运算32最大值,画出可行域如图:1x=⎧【解析】解:如图:31tan45tan30-︒-︒tan1560AD︒=,∴tan6060DC AD=︒=120(31)(m)-.数学试卷第7页(共18页)数学试卷第8页(共18页)数学试卷第9页(共18页)数学试卷 第10页(共18页) 数学试卷 第11页(共18页) 数学试卷 第12页(共18页)2OA OB =,∴12122x x y y +=,结合,B 位于x 轴的两侧,∴122y y =-,故不妨令点A 在轴上方,则0y >,又1123y y =. 面积之和的最小值是【提示】可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及2OA OB =消元,最后将面积之和表示出来,探求最值问题【考点】直线与圆锥曲线的关系【答案】2【解析】(,2)c a b m m m =+=||||||||a c b ca cbc =,即2252051620525m m m =+++,即584m +=解得2m =.【提示】利用向量的坐标运算、数量积运算、向量的夹角公式即可得出.数学试卷 第13页(共18页) 数学试卷 第14页(共18页) 数学试卷 第15页(共18页)4cos sin 5α(﹣是第二象限角,∴cos α-ABAC A =1BC AA AC A =,,11BC ACC A ⊥平面AB 的中点M 1DEA MC 平面1DE A MC 平面231142434(1)44n nn n -++++-+2341142434(1)44n n n n +++++-+114(13)4443n n n n ++----⋅=,∴1(31)449n n n T +-+=. 是平行四边形,∴OP QT =,∴(1=±.2122242|||242333m y y m m -⎛⎫-=-= ⎪++⎝⎭. 22(,)Q x y .直线方程与椭圆方程可得根与系可得OP QT =,即可解得21|||y y -. 【考点】直线与圆锥曲线的综合问题数学试卷 第16页(共18页) 数学试卷 第17页(共18页) 数学试卷 第18页(共18页)11ln 2x x ⎫=-⎪⎭上单调递增,在区间。

2014年四川高考文科数学试卷(word版)和答案

 2014年四川高考文科数学试卷(word版)和答案

2014年普通高等学校招生全国统一考试(四川卷)数 学(文史类)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)。

第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。

满分150分。

考试时间120分钟。

考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。

考试结束后,将本试题卷和答题卡一并交回。

第Ⅰ卷 (选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。

第Ⅰ卷共10小题。

一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合题目要求的。

1、已知集合{|(1)(2)0}A x x x =+-≤,集合B 为整数集,则A B =( )A 、{1,0}-B 、{0,1}C 、{2,1,0,1}--D 、{1,0,1,2}-2、在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。

在这个问题中,5000名居民的阅读时间的全体是( )A 、总体B 、个体C 、样本的容量D 、从总体中抽取的一个样本3、为了得到函数sin(1)y x =+的图象,只需把函数sin y x =的图象上所有的点( )A 、向左平行移动1个单位长度B 、向右平行移动1个单位长度C 、向左平行移动π个单位长度D 、向右平行移动π个单位长度 4、某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( )(锥体体积公式:13V Sh=,其中S 为底面面积,h 为高)学科网A 、3B 、2C 、3D 、15、若0a b >>,0c d <<,则一定有( )侧视图俯视图11222211A 、a b d c >B 、a b d c <C 、a b c d >D 、a b c d <6、执行如图的程序框图,如果输入的,x y R ∈,那么输出的S 的最大值为( ) A 、0B 、1C 、2D 、37、已知0b >,5log b a =,lg b c =,510d =,则下列等式一定成立的是( )A 、d ac =B 、a cd =C 、c ad =D 、d a c =+8、如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75,30,此时气球的高是60cm ,则河流的宽度BC 等于( )A、1)m B、1)m - C、1)m -D、1)m +9、设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是( )学科网A、B、C、D、10、已知F 为抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( )A 、2B 、3CD第Ⅱ卷 (非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所示的答题区域内作答。

成都市2014级高中毕业班第一次诊断性检测数学(文科)

成都市2014级高中毕业班第一次诊断性检测数学(文科)

市2014级高中毕业班第一次诊断性检测数学〔文科〕本试卷分选择题和非选择题两局部。

第I卷〔选择题〕1至2页,第二卷〔非选择题〕2至4页,共4页,总分值150分,考试时间120分钟。

第I卷〔选择题,共60分〕一、选择题:本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.(1)设集合U=R,A={x|(x+l) (x -2)<0},那么(A)〔一∞,-1) (2,+∞) (B)[-l,2](C)(一∞,-1] [2,+∞) (D)〔一1,2〕(2)命题“假设a>b,那么a+c>b+c〞的逆命题是(A)假设a>b,那么a+c≤b+c (B)假设a+c≤b+c,那么a≤b(C)假设a+c>b+c,那么a>b (D)假设a≤b,那么a+c≤b+c(3)双曲线22154x y-=的离心率为(A)4 (B)35(C)5(D)32(4)α为锐角,且sinα=詈,那么cos〔π+α〕=(A)一35 (B)35 (C) —45 (D)45(5)执行如下图的程序框图,如果输出的结果为0,那么输入的x为(A)19 (B) -1或1 (C) –l (D)l(6)x与y之间的一组数据:假设y关于x的线性回归方程为=2.lx-1.25,那么m的值为(A)l (B)0. 85 (C)0.7 (D)0.5(7)定义在R上的奇函数f(x)满足f(x+3〕=f(x),且当x∈[0,32〕时,f(x)= 一x3.那么f〔112〕=(A) - 18 (B)18 (C) -1258 (D)1258 (8)如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,那么该四棱锥的所有棱中,最长的棱的长度为(A)41 (B)34 (C)5 (D) 32(9)将函数f(x)=sin2x+3cos2x 图象上所有点向右平移6π个单位长度,得到函数g (x)的图象,那么g(x)图象的一个对称中心是(A)〔3π,0〕 (B)(4π,0) (C)〔一12π,0〕 (D)〔2π,0〕(10)在直三棱柱ABC-A 1B l C 1中,平面α与棱AB ,AC ,A 1C 1,A 1B 1分别交于点E ,F ,G , H ,且直线AA 1∥平面α.有以下三个命题:①四边形EFGH 是平行四边形;②平面α∥平面BCC 1B 1;③平面α上平面BCFE .其中正确的命题有(A)①② (B)②③ (C)①③ (D)①②③(11)A,B 是圆O:x 2+y 2=4上的两个动点,假设M 是线段AB 的中点,那么的值为 (A)3 (B) 23(C)2 (D) -3(12)曲线C 1:y 2 =tx (y>0,t>0)在点M(4t ,2)处的切线与曲线C 2:y=e x+l +1也相切,那么t 的值为(A) 4e 2(B) 4e (C) 4x e (D) 4e第二卷〔非选择题,共90分〕二、填空题:本大题共4小题,每题5分,共20分.(13)复数z=21ii +〔i 为虚数单位〕的虚部为.(14)我国南北朝时代的数学家祖暅提出体积的计算原理〔祖暅原理〕:“幂势既同,那么积不容异〞.“势〞即是高,“幂〞是面积.意思是:如果两等高的几何体在同高处截得两几何体的截面积恒等,那么这两个几何体的体积相等,类比祖暅原理,如下图,在平面直角坐标系中,图1是一个形状不规那么的封闭图形,图2是一个矩形,且当实数t 取[0,4]上的任意值时,直线y=t 被图1和图2所截得的线段长始终相等,那么图1的面积为.(15)假设实数x ,y 满足约束条件,那么3x-y 的最大值为(16)△ABC 中,AC=2,BC=6,△ABC 的面积为32,假设线段BA 的延长线上存在点D ,使∠BDC =4,那么CD =.三、解答题:本大题共6小题,共70分.解容许写出文字说明、证明过程或演算步骤.(17)〔本小题总分值12分〕某省2016年高中数学学业水平测试的原始成绩采用百分制,发布成绩使用等级制.各等级划分标准为:85分与以上,记为A 等;分数在[70,85),记为B 等;分数在[60,70〕,记为C 等;60分以下,记为D 等.同时认定A ,B ,C 为合格,D 为不合格.甲,乙两所学校学生的原始成绩均分布在[50,100],为了比拟两校学生的成绩,分别抽取50名学生的原始成绩作为样本进展统计.按照[50,60〕,[60,70〕,[70,80〕,[80,90〕,[90,100]的分组作出甲校的样本频率分布直方图如图1所示,乙校的样本中等级为C ,D 的所有数据的茎叶图如图2所示.(I)求图中x 的值,并根据样本数据比拟甲乙两校的合格率;(Ⅱ)在乙校的样本中,从成绩等级为C ,D 的学生中随机抽取两名学生进展调研,求抽出的两名学生中至少有一名学生成绩等级为D 的概率.(18)〔本小题总分值12分〕在等比数列{a n }中,a 4=8a 1,且a 1,a 2 +1,a 3成等差数列.(I)求数列{a n }的通项公式;(Ⅱ)求数列{|a n -4|}的前n 项和S n .(19)〔本小题总分值12分〕如图l ,在正方形ABCD 中,点E ,F 分别是AB ,BC 的中点,BD 与EF 交于点H ,点G,R 分别在线段DH ,HB 上,且DGGH =BRRH .将△AED ,△CFD ,△BEF 分别沿DE ,DF ,EF 折起,使点A ,B ,C 重合于点P ,如图2所示,〔I 〕求证:GR ⊥平面PEF ;(Ⅱ)假设正方形ABCD 的边长为4,求三棱锥P- DEF 的切球的半径.(20)〔本小题总分值12分〕 椭圆22:154x y E +=的右焦点为F ,设直线l :x=5与x 轴的交点为E ,过点F 且斜率为k 的直线l 1与椭圆交于A ,B 两点,M 为线段EF 的中点.(I)假设直线l 1的倾斜角为4π,|AB|的值;(Ⅱ)设直线AM 交直线l 于点N ,证明:直线BN ⊥l .(21)〔本小题总分值12分〕函数f(x)=xlnx+(l-k)x+k ,k ∈R.(I)当k=l 时,求函数f(x)的单调区间;(Ⅱ)当x>1时,求使不等式f(x)>0恒成立的最大整数k 的值.请考生在第(22)、(23)题中任选一题作答,如果多做,那么按所做的第一题计分.(22)〔本小题总分值10分〕选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,倾斜角为α(α≠2π〕的直线l 的参数方程为1cos ,sin ,x t y t αα=+⎧⎨=⎩〔t 为参数〕.以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程是ρcosx θ - 4sin θ=0.(I)写出直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)点P(1,0).假设点M 的极坐标为〔1,2π〕,直线l 经过点M 且与曲线C 相交于A ,B 两点,设线段AB 的中点为Q ,求|PQ|的值.(23)〔本小题总分值10分〕选修4-5:不等式选讲函数f(x 〕=x +1+ |3 -x|,x ≥-1.(I)求不等式f(x 〕≤6的解集;(Ⅱ)假设f(x 〕的最小值为n ,正数a ,b 满足2nab =a+2b ,求2a+b 的最小值.。

2014四川高考文科数学试题及答案(word)

2014四川高考文科数学试题及答案(word)

2014年普通高等学校招生全国统一考试(四川卷)数 学(文史类)第Ⅰ卷 (选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一个是符合题目要求的。

1、已知集合{|(1)(2)0}A x x x =+-≤,集合B 为整数集,则AB =( )A 、{1,0}-B 、{0,1}C 、{2,1,0,1}--D 、{1,0,1,2}-2、在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析。

在这个问题中,5000名居民的阅读时间的全体是( )A 、总体B 、个体C 、样本的容量D 、从总体中抽取的一个样本3、为了得到函数sin(1)y x =+的图象,只需把函数sin y x =的图象上所有的点( ) A 、向左平行移动1个单位长度 B 、向右平行移动1个单位长度 C 、向左平行移动π个单位长度 D 、向右平行移动π个单位长度4、某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积是( )(锥体体积公式:13V Sh =,其中S 为底面面积,h 为高)A 、3B 、2 CD 、15、若0a b >>,0c d <<,则一定有( )A 、a b d c > B 、a b d c < C 、a b c d > D 、a b c d<6、执行如图的程序框图,如果输入的,x y R ∈,那么输出的S 的最大值为( )A 、0B 、1C 、2D 、37、已知0b >,5log b a =,lg b c =,510d=,则下列等式一定成立的是( )侧视图俯视图112222118、如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为75,30,此时气球的高是60cm ,则河流的宽度BC 等于( )A、1)m B、1)m C、1)m D、1)m9、设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是( )A、 B、 C、 D、10、已知F 为抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( ) A 、2 B 、3 C、8D第Ⅱ卷 (非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分。

四川省龙泉中学2014届高三数学阶段测试卷(三)文

四川省龙泉中学2014届高三数学阶段测试卷(三)文

龙泉中学2014届高三文科数学阶段测试卷三 集合、逻辑、函数、导数、三角、向量命题:李学功 审题:吴金玉 时间:2013.9.26一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合{}{})2lg(.1x y R x B x y R x A -=∈=-=∈=则A B =[)2,1.A (]2,1.B []2,1.C )2,1.(D2.已知命题;32,:x x R x P <∈∀命题231,:x x R x q -=∈∃则下列命题中为真命题的是: .A p q ∧ q p B ∧⌝. q p C ⌝∧. q p D ⌝∧⌝.3.若1sin()63πα-=,则cos()3πα+的值为( )A .13-B .13CD.4. 若将函数sin y x =的图象变为函数sin(2)4y x π=+的图象,则正确的变换是A .向右平行移动4π个单位长度,再将每个点的横坐标缩短为原来的12倍B .向左平行移动8π个单位长度,再将每个点的横坐标缩短为原来的12倍C .每个点的横坐标缩短为原来的12倍,再向右平行移动4π个单位长度D .每个点的横坐标缩短为原来的12倍,再向左平行移动8π个单位长度5. 122a e e =+, 1234b e e =-,且12,e e 共线,则a 与b A.共线 B.不共线 C.可能共线也可能不共线 D.不能确定6.对数函数a x x f -=ln )(在[]1,1-区间上恒有意义,则a 的取值范围是:[]1,1.-A (][).,11,B -∞-+∞ .(,1)(1,)C -∞-+∞ .(,0)(0,)D -∞+∞7.对于函数,12log 212)(33++++=x x x b ax x f 若,2)1(=-f 则=)1(f2.A 23.B 23.-C 5.D8. 若∀k ∈R ,BA k BC CA -≥恒成立,则△ABC 的形状一定是A .锐角三角形B .直角三角形C .钝角三角形D .不能确定 9. 已知,,(0,)2παβγ∈,且sin sin sin ,cos cos cos αγββγα+=+=,则αβ-的值为A.3π-B.3π C.3π± D. 6π± 10.设函数3()4(02)f x x x a a =-+<<有三个零点123,,x x x ,且123x x x <<则下列结论正确的是A.11x >-B.20x <C.201x <<D.32x >二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上. 答错位置,书写不清,模棱两可均不得分.11.函数x axxx f ln 1)(+-=的导函数是)(x f ',则=')1(f ; 12.如图,,,O A B 是平面上的三点,向量OA a , OB b ,设P 为线段AB 的垂直平分线CP 上任意一点,向量OP p .若|a |=5,|b |=3,则()p a b ⋅-等于 ;13. 若02log )1(log 2<<+a a a a ,则a 的取值范围是 ;14. 已知函数⎪⎩⎪⎨⎧<+≥=4),1(4,)21()(x x f x x f x,则(2)f 的值为__________; 15. 已知函数π()sin(2)6f x x =+,其中π[,]6x a ∈-.当3a π=时,()f x 的值域是______;若()f x 的值域是1[,1]2-,则a 的取值范围是___ __; 16.已知2OA OB ==,点C 在线段AB 上,且OC 的最小值为1,则()OA tOB t R -∈的最小值为 ; 17.以下四个命题:①在△ABC 中,内角A,B,C 的对边分别为,,a b c ,且B a A b cos sin =,则4π=B ;②设b a ,是两个非零向量且a b a b ⋅=,则存在实数λ,使得a b λ=; ③方程0sin =-x x 在实数范围内的解有且仅有一个; ④,a b R ∈且3333a b b a ->-,则a b >; 其中正确的命题序号为 。

2014年四川省高考数学试卷(文科)答案与解析

2014年四川省高考数学试卷(文科)答案与解析

2014年四川省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,共50分)1.(5分)(2014•四川)已知集合A={x|(x+1)(x﹣2)≤0},集合B为整数集,则A∩B=()A.{﹣1,0} B.{0,1} C.{﹣2,﹣1,0,1} D.{﹣1,0,1,2}考点:交集及其运算.专题:集合.分析:由题意,可先化简集合A,再求两集合的交集.解答:解:A={x|(x+1)(x﹣2)≤0}={x|﹣1≤x≤2},又集合B为整数集,故A∩B={﹣1,0,1,2}故选D.点评:本题考查求交,掌握理解交的运算的意义是解答的关键.2.(5分)(2014•四川)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,在这个问题中,5000名居民的阅读时间的全体是()A.总体B.个体C.样本的容量D.从总体中抽取的一个样本考点:用样本的频率分布估计总体分布.专题:概率与统计.分析:根据题意,结合总体、个体、样本、样本容量的定义可得结论.解答:解:根据题意,结合总体、个体、样本、样本容量的定义可得,5000名居民的阅读时间的全体是总体,故选:A.点评:本题主要考查总体、个体、样本、样本容量的定义,属于基础题.3.(5分)(2014•四川)为了得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点()A.向左平行移动1个单位长度B.向右平行移动1个单位长度C.向左平行移动π个单位长度D.向右平行移动π个单位长度考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:直接利用函数图象的平移法则逐一核对四个选项得答案.解答:解:∵由y=sinx到y=sin(x+1),只是横坐标由x变为x+1,∴要得到函数y=sin(x+1)的图象,只需把函数y=sinx的图象上所有的点向左平行移动1个单位长度.故选:A.点评:本题主要考查三角函数的平移.三角函数的平移原则为左加右减上加下减.是基础题.4.(5分)(2014•四川)某三棱锥的侧视图、俯视图如图所示,则该三棱锥的体积为()(锥体体积公式:V=Sh,其中S为底面面积,h为高)A.3B.2C.D.1考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据三棱锥的俯视图与侧视图判定三棱锥的一个侧面与底面垂直,判断三棱锥的高与底面三角形的形状及边长,把数据代入棱锥的体积公式计算.解答:解:由三棱锥的俯视图与侧视图知:三棱锥的一个侧面与底面垂直,高为,底面为等边三角形,边长为2,∴三棱锥的体积V=××2××=1.故选:D.点评:本题考查了由三棱锥的侧视图与俯视图求体积,判断三棱锥的结构特征及相关几何量的数据是解题的关键.5.(5分)(2014•四川)若a>b>0,c<d<0,则一定有()A.>B.<C.>D.<考点:不等关系与不等式.专题:不等式的解法及应用.分析:利用特例法,判断选项即可.解答:解:不妨令a=3,b=1,c=﹣3,d=﹣1,则,∴C、D不正确;=﹣3,=﹣∴A不正确,B正确.解法二:∵c<d<0,∴﹣c>﹣d>0,∵a>b>0,∴﹣ac>﹣bd,∴,∴.故选:B.点评:本题考查不等式比较大小,特值法有效,带数计算正确即可.6.(5分)(2014•四川)执行如图所示的程序框图,若输入的x,y∈R,那么输出的S的最大值为()A.0B.1C.2D.3考点:程序框图的三种基本逻辑结构的应用;简单线性规划.专题:算法和程序框图.分析:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域,求得取得最大值的点的坐标,得出最大值.解答:解:由程序框图知:算法的功能是求可行域内,目标还是S=2x+y的最大值,画出可行域如图:当时,S=2x+y的值最大,且最大值为2.故选:C.点评:本题借助选择结构的程序框图考查了线性规划问题的解法,根据框图的流程判断算法的功能是解题的关键.7.(5分)(2014•四川)已知b>0,log5b=a,lgb=c,5d=10,则下列等式一定成立的是()A.d=ac B.a=cd C.c=ad D.d=a+c考点:对数值大小的比较.专题:函数的性质及应用.分析:利用指数式与对数式的互化、对数的运算性质和换底公式即可得出.解答:解:由5d=10,可得,∴cd=lgb=log5b=a.故选:B.点评:本题考查了指数式与对数式的互化、对数的运算性质和换底公式,属于基础题.8.(5分)(2014•四川)如图,从气球A上测得正前方的河流的两岸B、C的俯角分别为75°、30°,此时气球的高是60m,则河流的宽度BC等于()A.240(﹣1)m B.180(﹣1)m C.120(﹣1)m D.30(+1)m考点:解三角形的实际应用;余弦定理的应用.专题:解三角形.分析:由题意画出图形,由两角差的正切求出15°的正切值,然后通过求解两个直角三角形得到DC和DB的长度,作差后可得答案.解答:解:如图,由图可知,∠DAB=15°,∵tan15°=tan(45°﹣30°)==.在Rt△ADB中,又AD=60,∴DB=AD•tan15°=60×(2﹣)=120﹣60.在Rt△ADC中,∠DAC=60°,AD=60,∴DC=AD•tan60°=60.∴BC=DC﹣DB=60﹣(120﹣60)=120()(m).∴河流的宽度BC等于120()m.故选:C.点评:本题考查了解三角形的实际应用,考查了两角差的正切,训练了直角三角形的解法,是中档题.9.(5分)(2014•四川)设m∈R,过定点A的动直线x+my=0和过定点B的直线mx﹣y﹣m+3=0交于点P(x,y),则|PA|+|PB|的取值范围是()A.[,2]B.[,2]C.[,4]D.[2,4]考点:两条直线的交点坐标;函数最值的应用.专题:直线与圆.分析:可得直线分别过定点(0,0)和(1,3)且垂直,可得|PA|2+|PB|2=10.三角换元后,由三角函数的知识可得.解答:解:由题意可知,动直线x+my=0经过定点A(0,0),动直线mx﹣y﹣m+3=0即m(x﹣1)﹣y+3=0,经过点定点B(1,3),∵动直线x+my=0和动直线mx﹣y﹣m+3=0的斜率之积为﹣1,始终垂直,P又是两条直线的交点,∴PA⊥PB,∴|PA|2+|PB|2=|AB|2=10.设∠ABP=θ,则|PA|=sinθ,|PB|=cosθ,由|PA|≥0且|PB|≥0,可得θ∈[0,]∴|PA|+|PB|=(sinθ+cosθ)=2sin(θ+),∵θ∈[0,],∴θ+∈[,],∴sin(θ+)∈[,1],∴2sin(θ+)∈[,2],故选:B.点评:本题考查直线过定点问题,涉及直线的垂直关系和三角函数的应用,属中档题.10.(5分)(2014•四川)已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,•=2(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是()A.2B.3C.D.考点:直线与圆锥曲线的关系.专题:圆锥曲线中的最值与范围问题.分析:可先设直线方程和点的坐标,联立直线与抛物线的方程得到一个一元二次方程,再利用韦达定理及•=2消元,最后将面积之和表示出来,探求最值问题.解答:解:设直线AB的方程为:x=ty+m,点A(x1,y1),B(x2,y2),直线AB与x轴的交点为M(m,0),由⇒y2﹣ty﹣m=0,根据韦达定理有y1•y2=﹣m,∵•=2,∴x1•x2+y1•y2=2,结合及,得,∵点A,B位于x轴的两侧,∴y1•y2=﹣2,故m=2.不妨令点A在x轴上方,则y1>0,又,∴S△ABO+S△AFO==.当且仅当,即时,取“=”号,∴△ABO与△AFO面积之和的最小值是3,故选B.点评:求解本题时,应考虑以下几个要点:1、联立直线与抛物线的方程,消x或y后建立一元二次方程,利用韦达定理与已知条件消元,这是处理此类问题的常见模式.2、求三角形面积时,为使面积的表达式简单,常根据图形的特征选择适当的底与高.3、利用基本不等式时,应注意“一正,二定,三相等”.二、填空题(本大题共5小题,每小题5分,共25分)11.(5分)(2014•四川)双曲线﹣y2=1的离心率等于.考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:根据双曲线的方程,求出a,b,c,即可求出双曲线的离心率.解答:解:由双曲线的方程可知a2=4,b2=1,则c2=a2+b2=4+1=5,则a=2,c=,即双曲线的离心率e==,故答案为:点评:本题主要考查双曲线的离心率的计算,求出a,c是解决本题的关键,比较基础.12.(5分)(2014•四川)复数=﹣2i.考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用两个复数代数形式的乘除法法则化简所给的复数,可得结果.解答:解:复数===﹣2i,故答案为:﹣2i.点评:本题主要考查两个复数代数形式的乘除法法则的应用,属于基础题.13.(5分)(2014•四川)设f(x)是定义在R上的周期为2的函数,当x∈[﹣1,1)时,f (x)=,则f()=1.考点:函数的值.专题:计算题.分析:由函数的周期性f(x+2)=f(x),将求f()的值转化成求f()的值.解答:解:∵f(x)是定义在R上的周期为2的函数,∴=1.故答案为:1.点评:本题属于容易题,是考查函数周期性的简单考查,学生在计算时只要计算正确,往往都能把握住,在高考中,属于“送分题”.14.(5分)(2014•四川)平面向量=(1,2),=(4,2),=m+(m∈R),且与的夹角等于与的夹角,则m=2.考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:利用向量的坐标运算、数量积运算、向量的夹角公式即可得出.解答:解:∵向量=(1,2),=(4,2),=m+(m∈R),∴=m(1,2)+(4,2)=(m+4,2m+2).∴=m+4+2(2m+2)=5m+8,=4(m+4)+2(2m+2)=8m+20.,=2.∵与的夹角等于与的夹角,∴=,∴,化为5m+8=4m+10,解得m=2.故答案为:2.点评:本题考查了向量的坐标运算、数量积运算、向量的夹角公式,属于基础题.15.(5分)(2014•四川)以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“∀b∈R,∃a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)∉B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有①③④.(写出所有真命题的序号)考点:命题的真假判断与应用;充要条件;全称命题;特称命题;函数的值域.专题:新定义;极限思想;函数的性质及应用;不等式的解法及应用;简易逻辑.分析:根据题中的新定义,结合函数值域的概念,可判断出命题①②③是否正确,再利用导数研究命题④中函数的值域,可得到其真假情况,从而得到本题的结论.解答:解:(1)对于命题①,若对任意的b∈R,都∃a∈D使得f(a)=b,则f(x)的值域必为R.反之,f(x)的值域为R,则对任意的b∈R,都∃a∈D使得f(a)=b,故①是真命题;(2)对于命题②,若函数f(x)∈B,即存在一个正数M,使得函数f(x)的值域包含于区间[﹣M,M].∴﹣M≤f(x)≤M.例如:函数f(x)满足﹣2<f(x)<5,则有﹣5≤f(x)≤5,此时,f(x)无最大值,无最小值,故②是假命题;(3)对于命题③,若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)值域为R,f(x)∈(﹣∞,+∞),并且存在一个正数M,使得﹣M≤g(x)≤M.故f(x)+g(x)∈(﹣∞,+∞).则f(x)+g(x)∉B,故③是真命题;(4)对于命题④,∵﹣≤≤,当a>0或a<0时,alnx∈(﹣∞,+∞),f(x)均无最大值,若要使f(x)有最大值,则a=0,此时f(x)=,f(x)∈B,故④是真命题.故答案为①③④.点评:本题考查了函数值域的概念、基本不等式、充要条件,还考查了新定义概念的应用和极限思想.本题计算量较大,也有一定的思维难度,属于难题.三、解答题(共6小题,共75分)16.(12分)(2014•四川)一个盒子里装有三张卡片,分别标记有1,2,3,这三张卡片除标记的数字外完全相同,随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(Ⅰ)求“抽取的卡片上的数字满足a+b=c”的概率;(Ⅱ)求“抽取的卡片上的数字a,b,c不完全相同”的概率.考点:相互独立事件的概率乘法公式.专题:概率与统计.分析:(Ⅰ)所有的可能结果(a,b,c)共有3×3×3=27种,而满足a+b=c的(a,b,c有计3个,由此求得“抽取的卡片上的数字满足a+b=c”的概率.(Ⅱ)所有的可能结果(a,b,c)共有3×3×3种,用列举法求得满足“抽取的卡片上的数字a,b,c完全相同”的(a,b,c)共计三个,由此求得“抽取的卡片上的数字a,b,c完全相同”的概率,再用1减去此概率,即得所求.解答:解:(Ⅰ)所有的可能结果(a,b,c)共有3×3×3=27种,而满足a+b=c的(a,b,c)有(1,1,2)、(1,2,3)、(2,1,3),共计3个,故“抽取的卡片上的数字满足a+b=c”的概率为=.(Ⅱ)满足“抽取的卡片上的数字a,b,c完全相同”的(a,b,c)有:(1,1,1)、(2,2,2)、(3,3,3),共计三个,故“抽取的卡片上的数字a,b,c完全相同”的概率为=,∴“抽取的卡片上的数字a,b,c不完全相同”的概率为1﹣=.点评:本题主要考查相互独立事件的概率乘法公式的应用,属于中档题.17.(12分)(2014•四川)已知函数f(x)=sin(3x+).(1)求f(x)的单调递增区间;(2)若α是第二象限角,f()=cos(α+)cos2α,求cosα﹣sinα的值.考点:两角和与差的余弦函数;正弦函数的单调性.专题:三角函数的求值.分析:(1)令2kπ﹣≤3x+≤2kπ+,k∈z,求得x的范围,可得函数的增区间.(2)由函数的解析式可得f()=sin(α+),又f()=cos(α+)cos2α,可得sin(α+)=cos(α+)cos2α,化简可得(cosα﹣sinα)2=.再由α是第二象限角,cosα﹣sinα<0,从而求得cosα﹣sinα的值.解答:解:(1)∵函数f(x)=sin(3x+),令2kπ﹣≤3x+≤2kπ+,k∈Z,求得﹣≤x≤+,故函数的增区间为[﹣,+],k∈Z.(2)由函数的解析式可得f()=sin(α+),又f()=cos(α+)cos2α,∴sin(α+)=cos(α+)cos2α,即sin(α+)=cos(α+)(cos2α﹣sin2α),∴sinαcos+cosαsin=(cosαcos﹣sinαsin)(cosα﹣sinα)(cosα+sinα)即(sinα+cosα)=•(cosα﹣sinα)2(cosα+sinα),又∵α是第二象限角,∴cosα﹣sinα<0,当sinα+cosα=0时,此时cosα﹣sinα=﹣.当sinα+cosα≠0时,此时cosα﹣sinα=﹣.综上所述:cosα﹣sinα=﹣或﹣.点评:本题主要考查正弦函数的单调性,三角函数的恒等变换,体现了分类讨论的数学思想,属于中档题.18.(12分)(2014•四川)在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形(Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1;(Ⅱ)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.考点:直线与平面垂直的判定;直线与平面平行的判定.专题:综合题;空间位置关系与距离.分析:(Ⅰ)先证明AA1⊥平面ABC,可得AA1⊥BC,利用AC⊥BC,可以证明直线BC⊥平面ACC1A1;(Ⅱ)取AB的中点M,连接A1M,MC,A1C,AC1,证明四边形MDEO为平行四边形即可.解答:(Ⅰ)证明:∵四边形ABB1A1和ACC1A1都为矩形,∴AA1⊥AB,AA1⊥AC,∵AB∩AC=A,∴AA1⊥平面ABC,∵BC⊂平面ABC,∴AA1⊥BC,∵AC⊥BC,AA1∩AC=A,∴直线BC⊥平面ACC1A1;(Ⅱ)解:取AB的中点M,连接A1M,MC,A1C,AC1,设O为A1C,AC1的交点,则O为AC1的中点.连接MD,OE,则MD∥AC,MD=AC,OE∥AC,OE=AC,∴MD∥OE,MD=OE,连接OM,则四边形MDEO为平行四边形,∴DE∥MO,∵DE⊄平面A1MC,MO⊂平面A1MC,∴DE∥平面A1MC,∴线段AB上存在一点M(线段AB的中点),使直线DE∥平面A1MC.点评:本题考查线面垂直的判定与性质的运用,考查存在性问题,考查学生分析解决问题的能力,属于中档题.19.(12分)(2014•四川)设等差数列{a n}的公差为d,点(a n,b n)在函数f(x)=2x的图象上(n∈N*)(Ⅰ)证明:数列{b n}为等比数列;(Ⅱ)若a1=1,函数f(x)的图象在点(a2,b2)处的切线在x轴上的截距为2﹣,求数列{a n b n2}的前n项和S n.考点:等差数列与等比数列的综合.专题:等差数列与等比数列.分析:(Ⅰ)利用等比数列的定义证明即可;(Ⅱ)先由(Ⅰ)求得a n,b n,再利用错位相减求数列{a n b n2}的前n项和S n.解答:(Ⅰ)证明:由已知得,b n=>0,当n≥1时,===2d,∴数列{b n}为首项是,公比为2d的等比数列;(Ⅱ)解:f′(x)=2x ln2∴函数f(x)的图象在点(a2,b2)处的切线方程为y﹣=ln2(x﹣a2),∵在x轴上的截距为2﹣,∴a2﹣=2﹣,∴a2=2,∴d=a2﹣a1=1,a n=n,b n=2n,a n b n2=n4n,∴T n=1•4+2•42+3•43+…+(n﹣1)•4n﹣1+n•4n,4T n=1•42+2•43+…+(n﹣1)•4n+n•4n+1,∴T n﹣4T n=4+42+…+4n﹣n•4n+1=﹣n•4n+1=,∴T n=.点评:本题考查等差数列与等比数列的概念,等差数列与等比数列的通项公式及前n项和公式,导数的几何意义等知识;考查学生的运算求解能力、推理论证能力,属中档题.20.(13分)(2014•四川)已知椭圆C:+=1(a>b>0)的左焦点为F(﹣2,0),离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设O为坐标原点,T为直线x=﹣3上一点,过F作TF的垂线交椭圆于P、Q,当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)由题意可得,解出即可;(Ⅱ)由(Ⅰ)可得F(﹣2,0),设T(﹣3,m),可得直线TF的斜率k TF=﹣m,由于TF⊥PQ,可得直线PQ的方程为x=my﹣2.设P(x1,y1),Q(x2,y2).直线方程与椭圆方程可得根与系数的关系.由于四边形OPTQ是平行四边形,可得,即可解得m.此时四边形OPTQ的面积S=.解答:解:(Ⅰ)由题意可得,解得c=2,a=,b=.∴椭圆C的标准方程为;(Ⅱ)由(Ⅰ)可得F(﹣2,0),设T(﹣3,m),则直线TF的斜率,∵TF⊥PQ,可得直线PQ的方程为x=my﹣2.设P(x1,y1),Q(x2,y2).联立,化为(m2+3)y2﹣4my﹣2=0,△>0,∴y1+y2=,y1y2=.∴x1+x2=m(y1+y2)﹣4=.∵四边形OPTQ是平行四边形,∴,∴(x1,y1)=(﹣3﹣x2,m﹣y2),∴,解得m=±1.此时四边形OPTQ的面积S=═=.点评:本题中考查了椭圆与圆的标准方程及其性质、直线与椭圆及圆相交可得根与系数的关系及弦长问题、向量相等问题、平行四边形的面积计算公式等基础知识与基本技能方法,考查了推理能力和计算能力,考查了数形结合和转化能力,属于难题.21.(14分)(2014•四川)已知函数f(x)=e x﹣ax2﹣bx﹣1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,求a的取值范围.考点:导数在最大值、最小值问题中的应用;函数的零点.专题:导数的综合应用.分析:(1)求出f(x)的导数得g(x),再求出g(x)的导数,对它进行讨论,从而判断g(x)的单调性,求出g(x)的最小值;(2)利用等价转换,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,所以g(x)在(0,1)上应有两个不同的零点.解答:解:∵f(x)=e x﹣ax2﹣bx﹣1,∴g(x)=f′(x)=e x﹣2ax﹣b,又g′(x)=e x﹣2a,x∈[0,1],∴1≤e x≤e,∴①当时,则2a≤1,g′(x)=e x﹣2a≥0,∴函数g(x)在区间[0,1]上单调递增,g(x)min=g(0)=1﹣b;②当,则1<2a<e,∴当0<x<ln(2a)时,g′(x)=e x﹣2a<0,当ln(2a)<x<1时,g′(x)=e x﹣2a >0,∴函数g(x)在区间[0,ln(2a)]上单调递减,在区间[ln(2a),1]上单调递增,g(x)min=g[ln(2a)]=2a﹣2aln(2a)﹣b;③当时,则2a≥e,g′(x)=e x﹣2a≤0,∴函数g(x)在区间[0,1]上单调递减,g(x)min=g(1)=e﹣2a﹣b,综上:函数g(x)在区间[0,1]上的最小值为;(2)由f(1)=0,⇒e﹣a﹣b﹣1=0⇒b=e﹣a﹣1,又f(0)=0,若函数f(x)在区间(0,1)内有零点,则函数f(x)在区间(0,1)内至少有三个单调区间,由(1)知当a≤或a≥时,函数g(x)在区间[0,1]上单调,不可能满足“函数f(x)在区间(0,1)内至少有三个单调区间”这一要求.若,则g min(x)=2a﹣2aln(2a)﹣b=3a﹣2aln(2a)﹣e+1令h(x)=(1<x<e)则=,∴.由>0⇒x<∴h(x)在区间(1,)上单调递增,在区间(,e)上单调递减,==<0,即g min(x)<0 恒成立,∴函数f(x)在区间(0,1)内至少有三个单调区间⇔⇒,又,所以e﹣2<a<1,综上得:e﹣2<a<1.点评:本题考查了,利用导数求函数的单调区间,分类讨论思想,等价转换思想,函数的零点等知识点.是一道导数的综合题,难度较大.。

四川省成都高三12月月考数学(文)试题 Word版含答案1

四川省成都高三12月月考数学(文)试题 Word版含答案1

成都经开区实验高级中学2014级高三上期12月月考试题数 学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择),考生作答时,须将答案答答题卡上,在本试卷、草稿纸上答题无效。

满分150分,考试时间120分钟。

第Ⅰ卷(选择题,共60分)注意事项:1.必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑. 2.考试结束后,将本试题卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足(2-i )z=5,则z=( )A.2+iB.2-iC.-2-iD.-2+i2.在复平面内O 为极坐标原点,复数i 21+-与i 31+分别为对应向量和,=( )A .3B .17C .5D .5 3.已知0<a <1,则方程a |x |=|log a x |的实根个数为( )A .1个B .2个C .3个D .1个或2个或3个4. 已知某几何体的三视图如图所示, 三视图是边长为1的等腰直角三角形和边长为1的正方形, 则该几何体的体积为( )A. 16B. 13 C. 12 D. 235.设函数的图像为C ,下面结论正确的是 ( )A .函数f (x )的最小正周期是π2B .函数在区间上是增函数C .图象C 可由函数x x g 2cos )(=的图象向右平移3π个单位得到 D .图象C 关于点(,0)6π对称正视 侧视俯视6.一个口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两个球,则摸出的两个都是白球的概率是( )A .B .C .D .7. 若等差数列{}n a 的公差0d ≠, 前n 项和为n S , 若*n N ∀∈, 都有10n S S ≤, 则( )A. *n N ∀∈,1n n a a -<B. 9100a a ⋅>C. 217S S >D. 190S ≥8.设抛物线2:4C y x =的焦点为F ,其准线与x 轴的交点为Q ,过点F 作直线与抛物线C交于A B ,两点,且90QBF ∠=.则AF BF -=( ) A.1 B.2 C.3 D.49.已知直线x+ay ﹣1=0是圆C :x2+y2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( )A .2B .6C .4D .210.设,m n 是不同的直线,,αβ是不同的平面,下列命题中正确的是( ) A .若//,,m n m n αβ⊥⊥,则αβ⊥ B .若//,,m n m n αβ⊥⊥,则//αβ C .若//,,//m n m n αβ⊥,则αβ⊥ D .若//,,//m n m n αβ⊥,则//αβ 11..函数1x y e--=的图象大致形状是( )12.已知,A B 是球O 的球面上两点,60AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为O 的体积为( )A .81πB .128πC .144πD .288π二、填空题(每小题5分,共20分)13.函数()()2sin f x x ωϕ=+的图像,其部分图象如图所示,则()0f =_______.14.在棱长为2的正方体1111ABCD A B C D -内(含正方体表面)任取一点M ,则11AA AM⋅≥的概率p = .15.已知O 是坐标原点,点)1,1(-A ,若点),(y x M 为平面区域⎪⎩⎪⎨⎧≤-≤≥+-0)1(log 12221y y x x 上的一个动点,则AO OM ⋅的取值范围是________.16.设βα,是两个不重合的平面,n m ,是两条不重合的直线,给出下列四个命题:①若α⊂n ,β//n ,m =βα ,则m n //; ②若α⊂m ,α⊂n ,β//m ,β//n ,则βα//;③若βα⊥,m =βα ,α⊂n ,m n ⊥,则β⊥n ; ④α⊥m ,βα⊥,n m /,则β//n .其中正确的命题序号为 .三、解答题(共6小题,共70分.解答应写出文字说明,演算步骤或证明过程) 17、 (本小题满分12分) 在△ABC 中,内角所对的边分别为,已知.(Ⅰ)求证:成等比数列; (Ⅱ)若,求△的面积S.18.(本题满分12分) 已知函数在[1,+∞)上为增函数.且θ∈(0,π),(1)求θ的值;(2)若f (x )﹣g (x )在[1,+∞)函数是单调函数,求m 的取值范围.19. 设数列{}n a 为等差数列,且355,9a a ==,数列{}n b 的前n 项和为n S ,且2n n S b += (I )求{}n a ,{}n b 的通项公式; (II )若()nn na c n Nb *=∈,n T 为数列{}nc 的前n 项和,求n T 。

成都市2014届高中毕业班第一次诊断性检测数学(文史类)word版

成都市2014届高中毕业班第一次诊断性检测数学(文史类)word版

数学文科试题一、选择题:1.已知集合{2,3}A =-,{|0}B x x =≥,则A B =(A ){2}- (B) {3} (C) {23}-,(D) ∅ 2.若复数z 满足(12i)5z -=(i 为虚数单位),则复数z 为(A)12i + (B)2i - (C) 12i - (D)2i + 3.在等比数列{}n a 中,若181564a a a =,则8a =(A )16 (B )8 (C) (D )4(A)12 (B)1(D)525.已知,m n 是两条不同的直线,α为平面,则下列命题正确的是(A )若//,//m n αα,则//m n (B )若,,m n αα⊥⊥则m n ⊥ (C )若 ,//m n αα⊥,则m n ⊥(D )若m 与α相交,n 与α相交,则,m n 一定不相交6.如图,在平面直角坐标系xOy 中,角α,β的顶点与坐标原点重合,始边与x 轴的非负半轴重合,它们的终边分别与单位圆相交于A ,B 两点,若点A ,B 的坐标分别为34(,)55和43(,)55-,则cos()αβ+的值为(A )2425- (B )725- (C )0 (D ) 24257.已知]2,2[ππα-∈,则1cos 2α>的概率为(A )13 (B )12 (C )23 (D ) 348.一个长方体被一个平面截去一部分后所剩几何体的三视图如图所示(单位(单位:cm ),则该几何体的体积为(A )3120cm (B )380cmO(C )3100cm (D )360cm9. 某种特色水果每年的上市时间从4月1号开始仅能持续5个月的时间.上市初期价格呈现上涨态势,中期价格开始下跌,后期价格在原有价格基础之上继续下跌.若用函数2()47f x x x =-++([0,5]x ∈,x ∈N )进行价格模拟(注:0x =表示4月1日,1x =表示5月1日,⋅⋅⋅ ,以此类推).通过多年的统计发现:当函数()()f x x g x x --=+2131取得最大值时,拓展外销市场效果最为明显,则可以预测明年拓展外销市场的时间为(A )5月1日 (B )6月1日 (C )7月1日 (D )8月1日10.已知函数ln ,14()12ln ,14x x f x x x ≤≤⎧⎪=⎨-≤<⎪⎩ ,若函数()()F x f x kx =-在区间1,44⎡⎤⎢⎥⎣⎦恰有一个零点,则k 的取值范围为(A ) {}1,16ln 20e ⎛⎤ ⎥⎝⎦ (B ){}1,0e ⎡⎫+∞⎪⎢⎣⎭(C ) {}ln 2,16ln 202⎡⎫⎪⎢⎣⎭ (D ){}ln 2,16ln 202⎛⎤⎥⎝⎦ 二、填空题:11.若2()(1)1f x x a x =+-+是定义在R 上的偶函数,则实数a = .12.某公司生产A ,B ,C 三种型号的轿车,产量分别是600辆,1200辆和1800辆.为检验产品质量,现从这三种型号的轿车中,用分层抽样的抽取n 辆作为样本进行检验,若B 型号轿车抽取了24辆,则样本容量n= .13.已知向量a ,b 的夹角为60︒,||2,||1==a b ,则||-=b a .14.设1x ,2x 是函数322()2f x x ax a x =-+的两个极值点,若122x x <<,则实数a 的取值15. 已知()f x x =--++2211和2()2g x x x m =-+(m ∈R )是定义在R 上的两个函数,有四个命题:①函数()f x 的图象关于直线0x =对称;②关于x 的方程()0f x k -=恰有四个不相等实数根的充要条件是(,)k ∈-11; ③当1m =时,对1[1,0]x ∀∈-,2[1,0]x ∃∈-,12()()f x g x <成立; ④若1[1,1]x ∃∈-,2[1,1]x ∃∈-,12()()f x g x <成立,则(1,)m ∈-+∞.其中正确的命题有 .(写出所有正确命题的序号) 三、解答题:16.(本小题满分12分)已知向量2,cos ),(2sin ,2)444x x x==a b ,设函数()f x =⋅a b . (1)求函数()f x 的最小正周期;(2)在ABC ∆中,角,,A B C 所对边的长分别为,,a b c,且(21,3f B π-3,a b ==sin A 的值.17.(本小题满分12分)如图(1),四边形ABCD 为等腰梯形,AE DC ⊥,13AB AE DC ==,F 为EC 的中点,现将DAE ∆沿AE 翻折到PAE ∆的位置,如图(2),且平面PAE ⊥平面ABCE . (Ⅰ)求证:AF ⊥平面PBE ;(Ⅱ)求三棱锥A PBC -与E BPF -的体积之比.18.(本小题满分12分)已知等差数列{}n a 中,464,a a =-280a a +=,*n ∈N .(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若{}n a 为递增数列,请你根据右边的程序框图求出输出框中S 的值.(要求写出解答过程)。

四川省龙泉中学高三数学综合测试卷(1)文

四川省龙泉中学高三数学综合测试卷(1)文

第9题图 第5题图龙泉中学2014届高三文科数学综合测试卷(1)一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,集合{}|23A x x =-≤≤,{}2|340B x x x =-->,那么()U AB =ðA .{}|24x x -<≤B .{}|34x x x 或≤≥C .{}|21x x -<-≤D .{}|13x x -≤≤2.函数)22sin(2x y -=π是A .最小正周期为π的偶函数B .最小正周期为π的奇函数C .最小正周期为2π的偶函数 D .最小正周期为2π的奇函数 3.已知命题p :1x ∃>,210x ->,那么p ⌝是A .1x ∀>,210x -≤B .1x ∀>,210x ->C .1x ∃>,210x -≤D .1x ∃≤,210x -≤ 4.已知i 是虚数单位,则复数3(12)z i i =⋅-+的虚部为A .2-B .2C .1-D .15.右图是一个几何体的三视图,根据图中数据,可得该几何体的体积是A .4πB .133π C .143πD .5π 6.设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩≥≤≥,则32z x y =-+的最小值为 A .2- B .4- C .6- D .8- 7.已知数列{}n a 的前n 项和22n S n n =-,则218a a +=A .36B .35C .34D .338.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,若222a b bc -=,sin 3sin C B =,则A =A .6π B .3π C .23π D .56π9.若右边的程序框图输出的S 是126,则条件①可为 A .5n ≤ B .6n ≤ C .7n ≤D .8n ≤10.椭圆2243x y +=1的左右焦点分别为1F 、2F ,点P 是椭圆上任意一点,则12PF PF ⋅的取值范围是A .(0,4]B .(0,3]C .[3,4)D .[3,4]二、填空题:本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号.......的位置上. 答错位置,书写不清,模棱两可均不得分.11.若直线l 与幂函数n y x =的图象相切于点(2,8)A ,则直线l 的方程为 . 12.已知向量(2,3)=a ,(2,1)=-b ,则a 在b 方向上的投影等于 . 13.圆C :222220x y x y ++--=的圆心到直线3x +4y +14=0的距离是 .14.已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为.21,则ADAB=__ __. 15.通过全国人口普查工作,得到我国人口的年龄频率分布直方图如下所示:那么在一个总人口数为200万的城市中,年龄在[20,60)之间的人大约有 万.16.有三个命题: ① “若x +y =0,则x ,y 互为相反数”的逆命题; ②“若a >b ,则a 2>b 2”的逆否命题; ③“若x ≤-3,则x 2+x -6>0”的否命题.其中真命题的序号为________(填序号). 17.函数()2|}f x x =-,其中{},min ,,a a ba b b a b≤⎧=⎨>⎩,若动直线y m =与函数()y f x =的图像有三个不同的交点,它们的横坐标分别为123,,x x x ,(1)m 的取值范围是_______________.(2)123x x x ⋅⋅是否存在最大值?若存在,在横线处填写其最大值;若不存在,直接填写“不存在”_______________.三、解答题:本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤. 18 (本小题满分12分)已知函数)cos()(ϕω+=x A x f (0>A ,0>ω,02<<-ϕπ)的图像与y 轴的交点为)1,0(,它在y轴右侧的第一个最高点和第一个最低点的坐标分别为)2,(0x 和)2,2(0-+πx .(1)求函数)(x f 的解析式;(2)若锐角θ满足1cos 3θ=,求)2(θf 的值.19.(本小题满分13分)已知各项均不为零的数列}{n a 的前n 项和为n S ,且)2(031≥=+-n S S a n n n ,311=a . (Ⅰ)求证:}1{nS 是等差数列; (Ⅱ)求n a 的表达式;20.(本小题满分13分)如图,直角梯形ABCD 中,AB ∥CD ,AD ⊥AB ,CD =2AB =4,AD =2,E 为CD 的中点,将△BCE 沿BE 折起,使得CO ⊥DE ,其中垂足O 在线段DE 上. (1)求证:CO ⊥平面ABED ;(2)问∠CEO (记为θ)多大时,三棱锥C -AOE 的体积最大,最大值为多少.21.(本小题满分13分)已知椭圆12222=+y a x (0>>b a )的右焦点为2(3,0)F ,离心率为e .(1)若e =,求椭圆的方程;(2)设直线ykx =与椭圆相交于A ,B 两点,,M N 分别为线段22,AF BF 的中点. 若坐标原点O 在以MN3b ≤,求k 的取值范围.22. (本小题满分14分)已知函数()f x 的定义域是(0,)+∞,'()f x 是()f x 的导函数,且'()()0xf x f x ->在(0,)+∞内恒成立. (1) 求函数()()f x F x x=的单调区间; (2) 若2()ln f x x ax =+,求a 的取值范围; (3) 设0x 是()f x 的零点,0,(0,)m n x ∈,求证:()1()()f m n f m f n +<+龙泉中学2014届高三文科数学综合测试卷(1)参考答案及评分标准二、填空题:11.12160x y --= 12.-.3 1415.116 16.① 17.(1)02m <<;(2)1三、解答题: 18. 解:(1)由题意可得2=Aπ22=T 即π4=T ,21=ω………………………………………………………………3分 )21cos(2)(ϕ+=x x f ,1)0(=f由21cos =ϕ且02<<-ϕπ,得3πϕ-=函数)321cos(2)(π-=x x f ………………………………………………………………6分(2)由于1cos 3θ=且θ为锐角,所以322sin =θ)2(θf )3sin sin 3cos(cos 2)3cos(2πθπθπθ+=-=………………………………10分)233222131(2⨯+⨯⋅=3621+=………………………………………………12分19. 解(Ⅰ)∵13-=-n n n S S a . ∴113)(--=--n n n n S S S S .由于n a 均不为零,且13-=-n n n S S a ,则有n S 不为零.∴)2(3111≥=--n S S n n . 又311,3111211=-==S S a S 且. ∴}1{nS 是以3为首项,3为公差的等差数列. …………………………………6分(Ⅱ)由(Ⅰ)可知nS n n S n n 31,33)1(31=∴=⨯-+=. 当n=1时,3111==a S .当2≥n 时,)1(31)1(31311--=--=-=-n n n n S S a n n n . ∴⎪⎪⎩⎪⎪⎨⎧≥--==)2()1(31)1( 31n n n n a n …………………………………………………………13分20、解:解:(1)在直角梯形ABCD 中,CD =2AB ,E 为CD 的中点,则AB =DE , 又AB ∥DE ,AD ⊥AB ,可知BE ⊥CD . 在四棱锥C ­ABEO 中,BE ⊥DE ,BE ⊥CE , CE ∩DE =E ,CE ,DE ⊂平面CDE ,则BE ⊥平面CDE .因为CO ⊂平面CDE ,所以BE ⊥CO .又CO ⊥DE ,且BE ,DE 是平面ABED 内的两条相交直线.故CO ⊥平面ABED . …………………………………………………………6分(2)由(1)知CO ⊥平面ABED ,所以三棱锥C ­AOE 的体积V =13S △AOE ×OC =13×12×OE ×AD ×OC .在直角梯形ABCD 中,CD =2AB =4,AD =2,CE =2, 得OE =CE cos θ=2cos θ,OC =CE sin θ=2sin θ, V =23 sin 2θ≤23, 当且仅当sin 2θ=1,θ∈(0,π2),即θ=π4时取等号(此时OE =2<DE ,O 落在线段DE 上).故当θ=π4时,三棱锥C ­AOE 的体积最大,最大值为23.……………………………13分21、解:解:(1)由题意得3c c a=⎧⎪⎨=⎪⎩a = 结合222a b c =+,解得212a =,23b =. 所以椭圆的方程为131222=+y x .……………………………………………………5分(2)由22221,,x y a by kx ⎧+=⎪⎨⎪=⎩得222222()0b a k x a b +-=. 设1122(,),(,)A x y B x y , 所以2212122220,a b x x x x b a k +==-+,则22221212222k a b y y k x x b a k ==-+.因为113,22x y M +⎛⎫⎪⎝⎭、223,22x y N +⎛⎫ ⎪⎝⎭,且OM ON ⊥, 所以1OM ON k k ⋅=-,即1212133y y x x ⋅=-++. 即121290y y x x ++=,即222222(1)90a b k a k b+-+=+, 因为229a b =+,所以 222222(9)(1)90(9)b b k b k b ++-+=++.222222(9)(1)9(1)81b b k b k k ∴++=++ 整理得242224181(1)81k b k kk b++=∴=.43981b b ≤∴≤≤,所以48119b ≤≤,22119k k +∴≤≤.所以218k ≥,即2,,k ⎛⎡⎫∈-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭.……………………………………………13分22.解:(1)2'()()'()xf x f x F x x-=,∵'()()0xf x f x ->在(0,)+∞内恒成立 ∴'()0F x >在(0,)x ∈+∞内恒成立,∴()F x 的单调区间为(0,)+∞ ………………………………………………………………4分(2)1'()2(0)f x ax x x=+>,∵'()()0xf x f x ->在(0,)+∞内恒成立 ∴21(2)ln 0x ax x ax x +-->在(0,)+∞内恒成立,即2ln 1x a x ->在(0,)+∞内恒成立,设2ln 1()x h x x -=,332ln '()xh x x -=32(0,)x e ∈,'()0h x >,32(,)x e ∈+∞,'()0h x <,故函数()h x 在32(0,)e 内单调递增,在32(,)e +∞内单调递减, ∴32max 31()()2h x h e e==,∴312a e > ……………………………………………………8分 (3)∵0x 是()f x 的零点,∴0()0f x =由(1),()F x 在(0,)+∞内单调递增, ∴当0(0,)x x ∈时,0()()F x F x <,即00()()0f x f x x x <=, ∴0(0,)x x ∈时()0f x <,∵0,(0,)m n x ∈,∴()0,()0f m f n <<, 且()(),()(),F m F m n F n F m n <+<+即()()()(),f m f m n f n f m n m m n n m n++<<++ ∴()()()()()mf m n nf m n f m f n f m n m n m n+++<+=+++,∴()1()()f m n f m f n +<+ …………………………………………………………………………14分。

(完整版)高三数学一诊模拟考试试题文

(完整版)高三数学一诊模拟考试试题文

成都龙泉中学高2014 级高三上期期末考试模拟试题数学(文史类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择),考生作答时,须将答案答答题卡上,在本试卷、底稿纸上答题无效。

满分150 分,考试时间120 分钟。

第Ⅰ卷 ( 选择题,共60 分 )注意事项:1 .一定使用2B 铅笔在答题卡大将所选答案对应的标号涂黑.2.考试结束后,将本试题卷和答题卡一并交回。

一、选择题:本大题共12 小题,每题 5 分,共 60 分 . 在每题给出的四个选项中,只有一项为哪一项符合题目要求的 .1、设会合,则会合等于()A. B. C. D.2. 在复平面内,复数z 与的对应点对于虚轴对称,则z=()A . 2﹣ i B.﹣ 2﹣ i C . 2+i D .﹣ 2+i3.一个几何体的三视图如图,则该几何体的体积为()A. 6 4B. 12 4 3 34 2 2C. 6 12D. 12 12主视侧视24. 设等比数列{ a n}的前n项和为S n,若S3俯视9, S6 36 ,则 a7 a8 a9 ()A. 54 B . 81 C . 45 D . 18x y 2,5. 若变量x, y知足拘束条件x 1, 则 z 2x y 的最大值和最小值分别为()y 0,A. 3和 2B. 2和 0C. 4和3D. 4和26. 函数 f (x) 3 sin( 2x )()的图像向左平移个单位后对于原点对称, 则等于2 6()A.6B.6C.3D.3ππ7.△ ABC 的内角 A , B , C ,已知 b = 2, B = 6 ,C = 4 ,则△ ABC 的面积为( )A .2 3+2B.3+ 1C.2 3-2D.3- 18. 设函数 f (x) 是定义在 R 上的函数,且对随意的x R ,有f ( x 2) f (x) 3 2x , f ( x 6) f ( x)632x ,若 f (0) 2016 ,,则 f (2016) ( )A.220162015B.220152016C.2201142015 D.2201320149. 若函数 f (x) 1x lga x是其定义域上的偶函数,则函数yf (x) 的图象不行能是 ()b x10. 已知函数 f ( x ) =3-3 2+ 1,若 f ( x ) 存在独一的零点x 0,且 x 0>0,则 a 的取值范围是 ()ax xA .(2 ,+∞ ) B.(1 ,+∞ ) C. ( -∞,- 2) D. ( -∞,- 1)11. 在四周体 S-ABC 中, SA ⊥平面 ABC ,∠ BAC = 120°, SA = AC = 2,AB =1,则该四周体的外接球的表面积为( )A .11B. 28C. 10D. 4033312.函数 f (x)ln x x 22x, x 02x 1, x 0的零点个数为()A . 0B. 1 C . 2 D. 3第Ⅱ卷 ( 非选择题,共 90 分)二、填空题(每题 5 分,共 20 分)13. ABC 中, a3, b 2, B 45 ,则 A= _________ ;14.已知数列 b n的通项公式是 b nn ,则1 1 1.b 1b 3b 3b 5b 2n 1b2 n 115. 已知函数f ( x) x2 2tx 4t 4 , g( x) 1 (t 2) 2 , 两个函数图象的公切线恰为 3 条 ,x则实数 t 的取值范围为.16.给出以下命题:①“若 a 0 ,则x2 x a 0 有实根”的逆否命题为真命题;②命题“x [1,2], x2 a 0 ”为真命题的一个充足不用要条件是a 4 ;③ 命题“x R ,使得x2 2x 1 0 ”的否认是真命题;④命题 p:函数y e x e x为偶函数;命题q:函数 y e x e x在 R 上为增函数,则 p ( q) 为真命题此中正确命题的序号是.( 把你以为正确命题的序号都填上)三、解答题(共 6 小题,共70 分.解答应写出文字说明,演算步骤或证明过程)17.(本小题满分 12 分)实数 m 取什么值时,复平面内表示复数z (m28m 15) ( m25m 14)i 的点(Ⅰ)位于第四象限象限;(Ⅱ)位于直线yx上.18.( 本小题满分12 分)已知函数. ( Ⅰ) 求函数的最小正周期;( Ⅱ) 若函数在上的最大值与最小值之和为,务实数的值.19.(本小题 12 分)递加数列 { a n } 知足 a n a n 2 2a n 1, a3 a7 10, a1a9 9 .( 1)求数列{an2a n 21 } 的前 n 项和 S n;a nan 1( 2)求数列{(1)n} 的前n项和T n.anan 220.(本小题满分 12 分)已知国家某5A 级大型景区对拥堵等级与每天旅客数目n (单位:百人)的关系有以下规定:当n [0,100) 时,拥堵等级为“优”;当 n [100, 200) 时,拥堵等级为“良”;当 n [200,300) 时,拥堵等级为“拥堵”;当 n 300 时,拥堵等级为“严重拥堵”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省成都市龙泉一中2014届高三12月月考文科数学试题一.选择题:
1. 集合P={1,2},Q={x||x|<2},则集合P∩Q为()
2.复数的虚部是()
3.已知,则的值为()
B C D
4.阅读右边的程序框图,运行相应的程序,则输出s的值为()
5.设a、b是不同的直线,α、β是不同的平面,则下列四个命题中正确的是()
6.已知不等式组,表示的平面区域的面积为4,点P(x,y)在所给平面区域内,则z=2x+y的最大值为()
7..定义运算,则函数
的图象大致为
( )
8. 在数列{a n }中,a 1=2,na n+1=(n+1)a n +2(n ∈N *),则a 10为( )
9.O 为平面上的定点,A 、B 、C 是平面上不共线的三点
,则△ABC 是( )
10.已知关于x 的方程﹣2x 2+bx+c=0,若b ,c ∈{0,1,2,3},记“该方程有实数根x 1,x 2且满足﹣1≤x 1≤x 2≤2”为事件A ,则事件A 发生的概率为( )
C
D
二.
填空题:
11. 某校现有高一学生210人,高二学生270人,高三学生300人,用分层抽样的方法从这三个年级的学生中随机抽取n 名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为 .
12已知数列{a n }的前n 项和
,则a n = .
13. 如图是一个空间几何体的主视图、左视图、俯视图,如果主视图、左视图所对应的三角形皆为边长为2的正三角形,俯视图对应的四边形为正方形,那么这个几何体的体积为 。


14.已知A (x 1,y 1),B (x 2,y 2)是函数f (x )=的图象上的两点
(可以重合),点M 在直线x=上,且
.则y 1+y 2的值为 .
15. 15.定义:如果函数()y f x =在定义域内给定区间[,]a b 上存在00()x a x b <<,满足0()()
()f b f a f x b a
-=
-,则称函数()y f x =是[,]a b 上的“平均值函数”,0x 是它的
一个均值点,如4y x =是[1,1]-上的平均值函数,0就是它的均值点.现有函数
2()1
f x x mx =-++是[1,1]-上的平均值函数,则实数m 的取值范围
是 .
三、解答题:本大题共6小题,共75分. 解答应写出文字说明、证明过程或演
算步骤.
16.在一次数学统考后,某班随机抽取10名同学的成绩进行样本分析,获得成绩数据的茎叶图如下.
(Ⅰ)计算样本的平均成绩及方差;
(Ⅱ)现从80分以上的样本中随机抽出2名学生,求抽出的2名学生的成绩分别在[80,90)、[90,100]上的概率.
17.已知△ABC 的面积S 满足,
的夹角为θ.
(Ⅰ)求θ的取值范围;
(Ⅱ)求函数f (θ)=sin 2θ+2sinθcosθ+3cos 2θ的最大值.
18.三棱锥P﹣ABC中,PA=PB=PC,∠ACB=90°,AC=CB=2.
(Ⅰ)求证:平面PAB⊥平面ABC;
(Ⅱ)当∠PCB=60°时,求三棱锥A﹣PCB的体积.
}的前n项和.
19. 已知数列{a
n
(1)求{a
}的通项公式;
n
≥4n+1成立,求实数k的取值范围.(2)若对于任意的n∈N*,有k•a
n
20.已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且
(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千年时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入﹣年总成本)
21.已知函数f(x)=ln(1+x)﹣mx.
(I)当m=1时,求函数f(x)的单调递减区间;
(II)求函数f(x)的极值;
(III)若函数f(x)在区间[0,e2﹣1]上恰有两个零点,求m的取值范围.
参考答案:
选择题:1-5:BCACD 6-10CDCBC
11.10 12. a n = ﹣3×2n ﹣1(n ∈N *) . 13.
14.-2 15.(0,2)
2分
4

6分
(Ⅱ)从80分以上的样本中随机抽出2名学生,共有10种不同的抽取方法, 〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 8分
而抽出的2名学生的分数分别在[80,90),[90,100]上共有6中不同的抽取方法,因此所求的概率为
63
=. 〃〃〃〃〃〃〃〃〃〃〃〃〃 12分 =
===3tanθ.
,≨
=

时,,≨f(θ)的最大值为

=•PO=
==

,≨
=
成立,等价于
==,≨
≨W=
时,
时,时,
21. (I)解:依题意,函数f(x)的定义域为(﹣1,+≦),
当m=1时,f(x)=ln(1+x)﹣x,≨…(2分)
由f'(x)<0得,即,解得x>0或x<﹣1,
又≧x>﹣1,≨x>0,≨f(x)的单调递减区间为(0,+≦). (4)
(II)求导数可得,(x>﹣1)
(1)m≤0时,f'(x)≥0恒成立,≨f(x)在(﹣1,+≦)上单调递增,无极值.…(6分)
(2)m>0时,由于,所以f(x)在上单调递增,在
上单调递减,
从而. (9)
(III)由(II)问显然可知,
当m≤0时,f(x)在区间[0,e2﹣1]上为增函数,≨在区间[0,e2﹣1]不可能恰有两个零点.…(10分)
=,
当m>0时,由(II)问知f(x)
极大值
又f(0)=0,≨0为f(x)的一个零点.…(11分)
≨若f(x)在[0,e2﹣1]恰有两个零点,只需
即,
≨…(13分)。

相关文档
最新文档