高三数学数列多选题专项训练单元 期末复习测试提优卷试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、数列多选题
1.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,66771
1,
01
a a a a -><-,则下列结论正确的是( ) A .01q <<
B .681a a >
C .n S 的最大值为7S
D .n T 的最大值为6T
答案:AD 【分析】
分类讨论大于1的情况,得出符合题意的一项. 【详解】 ①, 与题设矛盾. ②符合题意. ③与题设矛盾. ④ 与题设矛盾. 得,则的最大值为. B ,C ,错误. 故选:AD. 【点睛】
解析:AD 【分析】
分类讨论67,a a 大于1的情况,得出符合题意的一项. 【详解】
①671,1a a >>, 与题设
671
01
a a -<-矛盾. ②671,1,a a ><符合题意.
③671,1,a a <<与题设
671
01
a a -<-矛盾. ④ 671,1,a a <>与题设11a >矛盾.
得671,1,01a a q ><<<,则n T 的最大值为6T .
∴B ,C ,错误.
故选:AD. 【点睛】
考查等比数列的性质及概念. 补充:等比数列的通项公式:()
1
*1n n a a q
n N -=∈.
2.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小
B .130S =
C .49S S =
D .70a =
答案:BCD 【分析】
由是等差数列及,求出与的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】
设等差数列数列的公差为. 由有,即
所以,则选项D 正确.
选项A. ,无法判断其是否有最小
解析:BCD 【分析】
由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】
设等差数列数列{}n a 的公差为d .
由13522,a a S +=有()111254
2252
a a a d d ⨯+=++,即160a d += 所以70a =,则选项D 正确. 选项A. ()71176
773212
S a d a d d ⨯=+=+=-,无法判断其是否有最小值,故A 错误. 选项B. 113
137131302
a S a a +=
⨯==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确. 故选:BCD 【点睛】
关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件
13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,
属于中档题.
3.已知S n 是等差数列{}n a (n ∈N *)的前n 项和,且S 5>S 6>S 4,以下有四个命题,其中正确的有( )
A .数列{}n a 的公差d <0
B .数列{}n a 中S n 的最大项为S 10
C .S 10>0
D .S 11>0
答案:AC
由,可得,且,然后逐个分析判断即可得答案 【详解】
解:因为,所以,且,
所以数列的公差,且数列中Sn 的最大项为S5,所以A 正确,B 错误, 所以,,
所以C 正确,D 错误, 故选:AC
解析:AC 【分析】
由564S S S >>,可得650,0a a ,且650a a +>,然后逐个分析判断即可得答案 【详解】
解:因为564S S S >>,所以650,0a a ,且650a a +>,
所以数列的公差0d <,且数列{}n a 中S n 的最大项为S 5,所以A 正确,B 错误, 所以110105610()
5()02a a S a a +=
=+>,11111611()1102
a a S a +=
=<, 所以C 正确,D 错误, 故选:AC
4.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .911a a = C .当9n =或10时,n S 取得最大值
D .613S S =
答案:ABD 【分析】
由题意利用等差数列的通项公式、求和公式可得,结合等差数列的性质,逐一判断即可得出结论. 【详解】
∵等差数列的前项和为,, ∴,解得, 故,故A 正确;
∵,,故有,故B 正确; 该数
解析:ABD 【分析】
由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论.
∵等差数列{}n a 的前n 项和为n S ,1385a a S +=, ∴()11187
5282
a a d a d ⨯++=+
,解得19a d =-, 故10190a a d =+=,故A 正确;
∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119
2
22
n n n n S na d d d n -=+=-⋅ ,它的最值,还跟d 的值有关,
故C 错误; 由于61656392S a d d ⨯=+=-,1311312
13392
S a d d ⨯=+=-,故613S S =,故D 正确, 故选:ABD. 【点睛】
思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果.
5.已知数列{}n a 满足:12a =,当2n ≥时,)
2
12n a =
-,则关于数列
{}n a 的说法正确的是 ( )
A .27a =
B .数列{}n a 为递增数列
C .2
21n a n n =+-
D .数列{}n a 为周期数列
答案:ABC 【分析】
由,变形得到,再利用等差数列的定义求得,然后逐项判断. 【详解】 当时,由, 得, 即,又,
所以是以2为首项,以1为公差的等差数列, 所以,
即,故C 正确; 所以,故A 正确; ,
解析:ABC 【分析】
由)
2
12n a =
-1=,再利用等差数列的定义求
得n a ,然后逐项判断. 【详解】
当2n ≥时,由)
2
12n a =-,
得)
2
21n a +=
,
1=,又12a =,
所以
是以2为首项,以1为公差的等差数列,
2(1)11n n =+-⨯=+, 即2
21n a n n =+-,故C 正确; 所以27a =,故A 正确;
()2
12n a n =+-,所以{}n a 为递增数列,故正确;
数列{}n a 不具有周期性,故D 错误; 故选:ABC
6.已知等差数列{}n a 的前n 项和为n S ,公差为d ,且35a =,73a =,则( ) A .12
d =
B .12
d =-
C .918S =
D .936S =
答案:BD 【分析】
由等差数列下标和性质结合前项和公式,求出,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B . 【详解】 因为, 所以.
因为,,所以公差. 故选:BD
解析:BD 【分析】
由等差数列下标和性质结合前n 项和公式,求出9S ,可判断C ,D ,由等差数列基本量运算,可得公差,判断出A ,B . 【详解】
因为1937538a a a a +=+=+=, 所以()199998
3622
a a S +⨯=
==.
因为35a =,73a =,所以公差731
732
a a d -==--. 故选:BD
7.首项为正数,公差不为0的等差数列{}n a ,其前n 项和为n S ,则下列4个命题中正确的有( )
A .若100S =,则50a >,60a <;
B .若412S S =,则使0n S >的最大的n 为15;
C .若150S >,160S <,则{}n S 中7S 最大;
D .若89S S <,则78S S <.
答案:ABD 【分析】
利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】
对于A :因为正数,公差不为0,且,所以公差, 所以,即,
根据等差数列的性质可得,又, 所以,,故A 正
解析:ABD 【分析】
利用等差数列的求和公式及等差数列的性质,逐一检验选项,即可得答案. 【详解】
对于A :因为正数,公差不为0,且100S =,所以公差0d <, 所以1101010()
02
a a S +=
=,即1100a a +=, 根据等差数列的性质可得561100a a a a +=+=,又0d <, 所以50a >,60a <,故A 正确; 对于B :因为412S S =,则1240S S -=,
所以561112894()0a a a a a a ++⋅⋅⋅++=+=,又10a >, 所以890,0a a ><, 所以115815815()15215022a a a S a +⨯=
==>,116891616()16()
022
a a a a S ++===, 所以使0n S >的最大的n 为15,故B 正确; 对于C :因为1158
15815()15215022
a a a S a +⨯=
==>,则80a >,
116891616()16()
022
a a a a S ++=
==,则890a a +=,即90a <, 所以则{}n S 中8S 最大,故C 错误;
对于D :因为89S S <,则9980S a S =->,又10a >, 所以8870a S S =->,即87S S >,故D 正确, 故选:ABD 【点睛】
解题的关键是先判断d 的正负,再根据等差数列的性质,对求和公式进行变形,求得项的正负,再分析和判断,考查等差数列性质的灵活应用,属中档题. 8.下列命题正确的是( )
A .给出数列的有限项就可以唯一确定这个数列的通项公式
B .若等差数列{}n a 的公差0d >,则{}n a 是递增数列
C .若a ,b ,c 成等差数列,则111
,,a b c
可能成等差数列 D .若数列{}n a 是等差数列,则数列{}12++n n a a 也是等差数列
答案:BCD 【分析】
根据等差数列的性质即可判断选项的正误. 【详解】
A 选项:给出数列的有限项不一定可以确定通项公式;
B 选项:由等差数列性质知,必是递增数列;
C 选项:时,是等差数列,而a = 1,
解析:BCD 【分析】
根据等差数列的性质即可判断选项的正误. 【详解】
A 选项:给出数列的有限项不一定可以确定通项公式;
B 选项:由等差数列性质知0d >,{}n a 必是递增数列;
C 选项:1a b c ===时,
111
1a b c
===是等差数列,而a = 1,b = 2,c = 3时不成立; D 选项:数列{}n a 是等差数列公差为d ,所以
11112(1)223(31)n n a a a n d a nd a n d ++=+-++=+-也是等差数列;
故选:BCD 【点睛】
本题考查了等差数列,利用等差数列的性质判断选项的正误,属于基础题.
9.在下列四个式子确定数列{}n a 是等差数列的条件是( )
A .n a kn b =+(k ,b 为常数,*n N ∈);
B .2n n a a d +-=(d 为常数,
*n N ∈);
C .()
*
2120n n n a a a n ++-+=∈N ;
D .{}n a 的前n 项和2
1
n S n n =++(*n N ∈).
答案:AC 【分析】
直接利用等差数列的定义性质判断数列是否为等差数列. 【详解】
A 选项中(,为常数,),数列的关系式符合一次函数的形式,所以是等差数列,故正确,
B 选项中(为常数,),不符合从第二项起
解析:AC 【分析】
直接利用等差数列的定义性质判断数列是否为等差数列. 【详解】
A 选项中n a kn b =+(k ,b 为常数,*n N ∈),数列{}n a 的关系式符合一次函数的形式,所以是等差数列,故正确,
B 选项中2n n a a d +-=(d 为常数,*n N ∈),不符合从第二项起,相邻项的差为同一个常数,故错误;
C 选项中()
*
2120n n n a a a n ++-+=∈N ,对于数列{}n a 符合等差中项的形式,所以是等差
数列,故正确;
D 选项{}n a 的前n 项和2
1n S n n =++(*n N ∈),不符合2
n S An Bn =+,所以{}n a 不
为等差数列.故错误. 故选:AC 【点睛】
本题主要考查了等差数列的定义的应用,如何去判断数列为等差数列,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.
10.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <
B .70a >
C .{}n S 中5S 最大
D .49a a <
答案:AD 【分析】
先根据题意得,,再结合等差数列的性质得,,,中最大,,即:.进而得答案. 【详解】
解:根据等差数列前项和公式得:, 所以,, 由于,, 所以,, 所以,中最大, 由于, 所以,即:
解析:AD 【分析】
先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,
0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.
【详解】
解:根据等差数列前n 项和公式得:()111111102a a S +=>,()
112121202
a a S +=< 所以1110a a +>,1120a a +<, 由于11162a a a +=,11267a a a a +=+, 所以60a >,760a a <-<, 所以0d <,{}n S 中6S 最大, 由于11267490a a a a a a +=+=+<, 所以49a a <-,即:49a a <. 故AD 正确,BC 错误. 故选:AD. 【点睛】
本题考查等差数列的前n 项和公式与等差数列的性质,是中档题.。