四川省成都市2019届高三毕业班第二次诊断性检测数学(理)试题

合集下载

四川省成都市2019届高三二诊模拟考试数学理科试卷含答案

四川省成都市2019届高三二诊模拟考试数学理科试卷含答案

2019届2018~2018学年下期二诊模拟考试数学试卷(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,则复数.3A .3B -.3C i.4D i -2.已知全集U =R ,集合{|30}A x x =-<,那么集合U A C B ⋂等于.{|23}A x x -≤≤.{|23}B x x -<< .{|2}C x x ≤-.{|3}D x x <3.若,x y 满足约束条件02326x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =+ 的最小值是.3A -.6B.3D4.则sin 2α的值为5.执行如图所示的程序框图,输出的S 值为6. 一个底面为正方形的四棱锥,其三视图如图所示,若这个四棱锥的体积 为2 ,则此四棱锥最长的侧棱长为7.等比数列{}n a 中,20a >则25""a a <是35""a a <的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件8.已知函数()f x 对任意x ∈R 都有(4)()2(2)f x f x f +-=,若(1)y f x =-的图象关于直线1x =对称,则(2018)f=A. B. C. D.9、已知是双曲线的左、右焦点, 点在上若,则的离心率为A. B. C. D.10.,将()f x 图像的横坐标伸长为原来的2个单位后得到函数()g x ,在区间[0,]π上随机取一个数x ,则()1g x ≥的概率为11.若函数y =f (x )的图象上存在不同的两点,使得函数的图象在这两点处的切线的斜率之和等于常数t ,则称函数y =f (x )为“t 函数”.下列函数中为“2函数”的个数有① y =x -x 3 ②y =x +e x ③y =x ln x ④y =x +cos xA.1个B.2 个C.3 个D.4个12、已知向量满足,若,的最大值和最小值分别为,则等于A. B.2 C. D.二、填空题:本大题共4小题,每小题5分,共20分.133项和第5项的二项式系数相等,则展开式中的常数项为 .14、已知数列{}n a 的各项都为正数,前n 项和为n S ,若2{log }n a 是公差为1的等差数列,且5=62S ,则2=a15.已知四面体ABCD 的所有棱长都为,O 是该四面体内一点,且点O 到平面ABC 、平面ACD 、平面ABD 、平面BCD 的距离分别为,x ,和y ,则+的最小值是 .16.为抛物线上一点,且在第一象限,过点作垂直该抛物线的准线于点为抛物线的焦点,为坐标原点, 若四边形的四个顶点在同一个圆上,则该圆的方程为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分17.(本小题满分12分)如图,,,a b c 分别是锐角ABC ∆的三个内角A B C ,,的对边,(1)求sin C 的值;(2)若点D 在边BC 上,3BD CD =,ABC ∆的面积为14,求AD 的长度.18. (本小题满分12分)2018年9月,国务院发布了《关于深化考试招生制度改革的实施意见》,某地作为高考改革试点地区,从当年秋季新入学的高一学生开始实施,高考不再分文理科,每个考生,英语,语文,数学三科为必考科目,并从物理、化学、生物、政治、历史、地理六个科目中任选三个科目参加高考,物理、化学、生物为自然科学科目,政治、历史、地理为社会科学科目.假设某位考生选考这六个科目的可能性相等.(1)求他所选考的三个科目中,至少有一个自然科学科目的概率;(2)已知该考生选考的三个科目中有一个科目属于社会科学科目,两个科目属于自然科学科目,若该考生所选的社会科学科目考试的成绩获A等的概率都是0.75,所选的自然科学科目考试的成绩获A等的概率都是0.8,且所选考的各个科目考试的成绩相互独立,用随机变量X 表示他所选的三个科目中考试成绩获A等的科目数,求X的分布列和数学期望.19.(本小题满分12分)如图,在多面体ABCDEF中,矩形BDEF所在平面与正方形ABC D所在平面垂直,点M为AE的中点.(1)求证:BM//平面EFC,求直线AE与平面BDM所成角的正弦值.(2)若DE AB20、(本小题满分12分),O 为坐标原点. (1)求椭圆C 的方程;(2)若斜率大于0的直线l 交椭圆C 于A B 、两点(A 在x 轴上方),交x 轴正半轴于P 点, 若3PB PA +=0,求AOB ∆面积的最大值以及此时直线l 的方程.21.(本小题满分12分)已知a ∈R ,()(1)ln f x ax x =-(1)若2()ln f x x x x ≤--恒成立,求a 的值; (2)若()f x 有两个极值点,,求a 的范围并证明1()4f x >.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为2sin 2cos (0)a a ρθθ=>,过点的直线的参数方程为(t 为参数), 直线与曲线相交于两点.(1)写出曲线的直角坐标方程和直线的普通方程; (2)求a 的值.23.选修4-5:不等式选讲已知函数()|32|f x x =+. (1)解不等式()4|1|f x x <--(2)若0a >,不等式||()4x a f x --≤恒成立,求实数a 的取值范围.石室中学高2019届2018-2019学年下期二诊模拟考试数学参考答案(理科)一、选择题二、填空题13. 20-; 14. 4;三、解答题17. 解:(1,因B 为锐角,所以分,分(2分分,由余弦定理,2222cos AD AB BD AB BD B =+-⋅⋅,解得5AD =…………………………12分18..(1).记“某位考生选考的三个科目中至少有一个科目是自然科学科目”为事件M ,分 (2)随机变量X 的所有可能取值有0,1,2,3.所以X 的分布列为:19..(1)由题知B D E F A B C ⊥面面,而B D E D ⊥,BDEF ABCD=BD 面面∩,DE BDEF ⊂面所以DE ABCD 面⊥,以DA ,DC ,DE 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设AD=1,则()1,1,0B ,,()0,0,1E ,()1,1,1F ,()0,1,0C , 所以,1,1,MB ⎛= EFC 的法向量为()1,1,1m =-,则0MB m ⋅=即MB m ⊥,又面MB EFC ⊄,所以//面MB EFC ;……………6分(2)由(1)知.1,1,MB ⎛= , 1,0,DM ⎛=所以面BDM 的法向量为()1,1,1n =- 又()1,0,1AE =-,6cos ,n AE =所以直线AE 与面BDM12分 20.解: (1)设切线为0bx ay ab +-=,则,解得224,3a b ==,所以椭圆C 的方程分 (2)设直线l 为(0,0)x my n m n =+>>,联立得222(34)63120m y mny n +++-=,设1122(,),(,)A x y B x y ,②由0∆>,可得22340m n -+>…….6分 又因为3PB PA +=0,可得123y y -=③…………7分分分满足0∆>, 所以AOB ∆面积的最大值为此时直线l 的方程为分 21. 解(1)由题:得1ln 0x a x --≥ 令:,,…………………1分 所以F,且.所以当时恒成立,此时在上单调递增,(0,1),()0x F x ∴∈<这与F矛盾;………………………………..3分 当时令,解得,所以在上单调递减,在上单调递增,即,又因为,又F(1)=0 所以………………………..6分①若0a ≥时, 知:'()f x 在(0,)+∞单调递增,不合题…分 此时知道:()f x 在1(0,)x 单减,12(,)x x 单增,2(,)x +∞单减 且易知又110ax -<<1()4f x ∴>…………………………………………………12分 22. (1)由=整理得=,∴曲线的直角坐标方程为=,直线的普通方程为=…………………………………………………….4分(2)将直线的参数方程代入曲线的直角坐标方程=中,得, 设两点对应的参数分别为,则有==,……………………………….6分∵=,∴=即=…………………………….8分∴=即,解得或者(舍去),∴的值为1…………………………………………………………………………….10分23. (1)不等式.当,,解之得;当时,,解之得;当时,,无解.综上,不等式的解集为.…………………… 5分(2)令,则当时,.欲使不等式恒成立,只需,即.又因为,所以,即…………………………….10分。

四川省成都市2019届高三第二次诊断性检测理科综合试卷含答案

四川省成都市2019届高三第二次诊断性检测理科综合试卷含答案

【考试时间:2019年3月26日星期一上午9:00~11:30】成都市2016级高中毕业班第二次诊断性检测理科综合能力测试本试卷分选择题和非选择题两部分。

第I卷(选择题)1至5页,第II卷(非选择题)5至14页。

共14页。

满分300分,考试时间150分钟。

注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

3.答非选择题时,必须使用0.5mm黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试卷上答题无效。

5.考试结束后,只将答题卡交回。

.可能用到的相对原子质量H—1 C—12 O—16 Na—23 Si—28 Cl—35.5Ni—59 Cu—64第I卷(选择题,共126分)一、选择题:本题共13个小题,每小题6分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列关于细胞结构和功能的叙述,正确的是A.动物细胞没有原生质层,不能发生渗透作用B..动物细胞都有呼吸酶,能分解有机物释放能量C.植物根尖细胞没有叶绿体,不能发生能量的转换D.植物细胞间都有胞间连丝,细胞膜上没有受体蛋白2.艾滋病是由免疫缺陷病毒(HIV)感染引起的,死亡率极高。

下列叙述正确的是A.HIV的遗传物质会直接整合到宿主细胞的染色体中B.合成HIV蛋白质的遗传信息是由宿主细胞提供的C.感染HIV后的机体没有免疫应答不能产生特异抗体D.艾滋病人的直接死因是多种病原体感染或恶性肿瘤3.同位素标记法是生物科学研究中常用的方法。

下列叙述错误的是A.用C标记的CO2供给小球藻进行光合作用可证明碳的转化途径B.将3H标记的亮氨酸注射到胰腺腺泡细胞中可证明生物膜间有联系C.用14C或18O标记的噬菌体分别侵染细菌可证明DNA是遗传物质D..将15N标记的细菌转移到14N的培养液中可证明DNA的复制方式4.在生物体内,控制tRNA合成的基因经过转录生成tRNA前体,tRNA前体经过核糖核酸酶P的剪切加工才能成为成熟的tRNA。

四川省成都市2019届高三毕业班第二次诊断性检测数学(理)试题含解析

四川省成都市2019届高三毕业班第二次诊断性检测数学(理)试题含解析

四川省成都市2019届高三毕业班第二次诊断性检测数学(理)试题一、选择题(本大题共12小题,共60.0分)1.设全集U=R,集合A={x|-1<x<3},B={x|x≤-2或x≥1},则A∩(∁U B)=()A. B.C. D. 或2.已知双曲线C:>的焦距为4,则双曲线C的渐近线方程为()A. B. C. D.3.已知向量=(,),=(-3,),则向量在向量方向上的投影为()A. B. C. D. 14.条件甲:a>b>0,条件乙:<,则甲是乙成立的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件5.为比较甲、以两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定.其中所有正确结论的编号为()A. B. C. D.6.若,,,且,,则sinβ=()A. B. C. D.7.已知a,b是两条异面直线,直线c与a,b都垂直,则下列说法正确的是()A. 若平面,则B. 若平面,则,C. 存在平面,使得,,D. 存在平面,使得,,8.将函数f(x)的图象上的所有点向右平移个单位长度,得到函数g(x)的图象,若函数g(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则函数f(x)的解析式为()A. B.C. D.9.已知定义域R的奇函数f(x)的图象关于直线x=1对称,且当0≤x≤1时,f(x)=x3,则f()=()A. B. C. D.10.已知a R且为常数,圆C:x2+2x+y2-2ay=0,过圆C内一点(1,2)的直线l与圆C相切交于A,B两点,当弦AB最短时,直线l的方程为2x-y=0,则a的值为()A. 2B. 3C. 4D. 511.用数字0,2,4,7,8,9组成没有重复数字的六位数,其中大于420789的正整数个数为()A. 479B. 480C. 455D. 45612.某小区打算将如图的一直三角形ABC区域进行改建,在三边上各选一点连成等边三角形DEF,在其内建造文化景观.已知AB=20m,AC=10m,则△DEF区域内面积(单位:m2)的最小值为()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13.已知复数z=,a R,若z为纯虚数,则|z|=______.14.已知三棱锥A-BCD的四个顶点都在球O的表面上,若AB=AC=AD=1,BC=CD=BD=,则球O的表面积为______.15.在平面直角坐标系xOy中,定义两点A(x1,y1),B(x2,y2)间的折线距离为d(A,B)=|x1-x2|+|y1-y2|.已知点O(0,0),C(x,y),d(O,C)=1,则的取值范围是______.16.已知F为抛物线C:x2=4y的焦点,过点F的直线l与抛物线C相交于不同的两点A,B,抛物线C在A,B两点处的切线分别是l1,l2,且l1,l2相交于点P,则|PF|+的最小值是______.三、解答题(本大题共7小题,共82.0分)17.已知等比数列{a n}的前n项和为S,公比q>1,且a2+1为a1,a3的等差中项,S3=14.(Ⅰ)求数列{a n}的通项公式(Ⅱ)记b n=a n•log2a n,求数列{b n}的前n项和T n.18.为了让税收政策更好的为社会发展服务,国家在修订《中华人民共和国个人所得税法》之后,发布了《个人所得税专项附加扣除暂行办法》,明确“专项附加扣除”就是子女教育、继续教育大病医疗、住房贷款利息、住房租金赠养老人等费用,并公布了相应的定额扣除标准,决定自2019年1月1日起施行,某机关为了调查内部职员对新个税方案的满意程度与年龄的关系,通过问卷调查,整理数据得2×2()根据列联表,能否有的把握认为满意程度与年龄有关?(2)为了帮助年龄在40岁以下的未购房的8名员工解决实际困难,该企业拟员工贡献积分x(单位:分)给予相应的住房补贴y(单位:元),现有两种补贴方案,方案甲:y=1000+700x;方案乙:,<,<.已知这8名员工的贡献积分为2分,3分,6分,7分,7分,11分,12分,,>12分,将采用方案甲比采用方案乙获得更多补贴的员工记为“A类员工”.为了解员工对补贴方案的认可度,现从这8名员工中随机抽取4名进行面谈,求恰好抽到3名“A类员工”的概率.附:,其中n=a+b+c+d.参考数据:19.如图①,在等腰梯形ABCD中,AB∥CD,E,F分别为AB,CD的中点,CD=2AB=2EF=4,M为DF中点.现将四边形BEFC沿EF折起,使平面BEFC平面AEFD,得到如图②所示的多面体.在图②中,(Ⅰ)证明:EF MC;(Ⅱ)求二面角M-AB-D的余弦值.20.已知椭圆C:(a>b>0)的短轴长为4,离心率为.(Ⅰ)求椭圆C的标准方程;(Ⅱ)设椭圆C的左,右焦点分别为F1,F2,左,右顶点分别为A,B,点M,N为椭圆C上位于x轴上方的两点,且F1M∥F2N,记直线AM,BN的斜率分别为k1,k2,若3k1+2k2=0,求直线F1M的方程.21.已知函数,a R.(Ⅰ)若f(x)≥0,求实数a取值的集合;(Ⅱ)证明:e x+≥2-ln x+x2+(e-2)x.22.在直角坐标系xOy中,直线l的参数方程为(t为参数,α倾斜角),曲线C的参数方程为(β为参数,β[0,π]),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系.(Ⅰ)写出曲线C的普通方程和直线的极坐标方程;(Ⅱ)若直线与曲线C恰有一个公共点P,求点P的极坐标.23.已知函数f(x)=|x-m|-|x+2m|的最大值为3,其中m>0.(Ⅰ)求m的值;(Ⅱ)若a,b R,ab>0,a2+b2=m2,求证:.答案和解析1.【答案】A【解析】解:∁U B={x|-2<x<1};∴A∩(∁U B)={x|-1<x<1}.故选:A.进行交集、补集的运算即可.考查描述法的定义,以及交集、补集的运算.2.【答案】D【解析】解:双曲线C:的焦距为4,则2c=4,即c=2,∵1+b2=c2=4,∴b=,∴双曲线C的渐近线方程为y=x,故选:D.先求出c=2,再根据1+b2=c2=4,可得b,即可求出双曲线C的渐近线方程本题考查双曲线的方程和性质,考查双曲线的渐近线方程的运用,属于基础题3.【答案】A【解析】解:由投影的定义可知:向量在向量方向上的投影为:,又∵,∴=.故选:A.本题可根据投影的向量定义式和两个向量的数量积公式来计算.本题主要考查投影的向量定义以及根据两个向量的数量积公式来计算一个向量在另一个向量上的投影,本题属基础题.4.【答案】A【解析】解:条件乙:,即为⇔若条件甲:a>b>0成立则条件乙一定成立;反之,当条件乙成立不一定有条件甲:a>b>0成立所以甲是乙成立的充分非必要条件故选:A.先通过解分式不等式化简条件乙,再判断甲成立是否推出乙成立;条件乙成立是否推出甲成立,利用充要条件的定义判断出甲是乙成立的什么条件.判断一个条件是另一个条件的什么条件,应该先化简两个条件,再利用充要条件的定义进行判断.5.【答案】C【解析】解:甲的中位数为29,乙的中位数为30,故不正确;甲的平均数为29,乙的平均数为30,故正确;从比分来看,乙的高分集中度比甲的高分集中度高,故正确,不正确.故选:C.根据中位数,平均数,方差的概念计算比较可得.本题考查了茎叶图,属基础题.6.【答案】B【解析】解:,且,可得cosα=-=-.,可得sinαcosβ-cosαsinβ=-,可得cosβ+sinβ=-,即2cosβ+sinβ=-,sin 2β+cos 2β=1,解得sinβ=.故选:B .利用同角三角函数基本关系式求出cosα,通过两角和与差的三角函数化简已知条件,转化求解sinβ即可.本题考查两角和与差的三角函数,同角三角函数基本关系式的应用,是基本知识的考查. 7.【答案】C【解析】解:由a ,b 是两条异面直线,直线c 与a ,b 都垂直,知: 在A 中,若c 平面α,则a 与α相交、平行或a α,故A 错误;在B 中,若c 平面α,则a ,b 与平面α平行或a ,b 在平面α内,故B 错误; 在C 中,由线面垂直的性质得:存在平面α,使得c α,a α,b ∥α,故C 正确;在D 中,若存在平面α,使得c ∥α,a α,b α,则a ∥b ,与已知a ,b 是两条异面直线矛盾,故D 错误. 故选:C .在A 中,a 与α相交、平行或a α;在B 中,a ,b 与平面α平行或a ,b 在平面α内;在C 中,由线面垂直的性质得:存在平面α,使得c α,a α,b ∥α;在D 中,a ∥b ,与已知a ,b 是两条异面直线矛盾.本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题. 8.【答案】C【解析】解:由图象知A=1,=-(-)=,即函数的周期T=π,则=π,得ω=2,即g(x)=sin(2x+φ),由五点对应法得2×+φ=π,得φ=,则g(x)=sin(2x+),将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象,即f(x)=sin[2(x+)+]=sin(2x+)=sin(2x++)=cos(2x+),故选:C.根据图象求出A,ω和φ的值,得到g(x)的解析式,然后将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象.本题主要考查三角函数解析式的求解,结合图象求出A,ω和φ的值以及利用三角函数的图象变换关系是解决本题的关键.9.【答案】B【解析】解:∵f(x)是奇函数,且图象关于x=1对称;∴f(2-x)=f(x);又0≤x≤1时,f(x)=x3;∴.故选:B.根据f(x)的图象关于直线x=1对称,即可得出f(2-x)=f(x),从而得出,再根据f(x)是奇函数,且当0≤x≤1时,f(x)=x3,从而得出.考查奇函数的定义,函数f(x)的图象关于x=a对称时,满足f(2a-x)=f(x),以及已知函数求值的方法.10.【答案】B【解析】解:化圆C:x2+2x+y2-2ay=0为(x+1)2+(y-a)2=a2+1,圆心坐标为C(-1,a),半径为.如图,由题意可得,过圆心与点(1,2)的直线与直线2x-y=0垂直.则,即a=3.故选:B.由圆的方程求出圆心坐标与半径,结合题意,可得过圆心与点(1,2)的直线与直线2x-y=0垂直,再由斜率的关系列式求解.本题考查直线与圆位置关系的应用,考查数形结合的解题思想方法与数学转化思想方法,是中档题.11.【答案】C【解析】解:根据题意,分3种情况讨论:,六位数的首位数字为7、8、9时,有3种情况,将剩下的5个数字全排列,安排在后面的5个数位,此时有3×A55=360种情况,即有360个大于420789的正整数,,六位数的首位数字为4,其万位数字可以为7、8、9时,有3种情况,将剩下的4个数字全排列,安排在后面的4个数位,此时有3×A44=72种情况,即有72个大于420789的正整数,,六位数的首位数字为4,其万位数字为2,将剩下的4个数字全排列,安排在后面的4个数位,此时有A44=24种情况,其中有420789不符合题意,有24-1=23个大于420789的正整数,则其中大于420789的正整数个数有360+72+23=455个;故选:C.根据题意,分3种情况讨论:,六位数的首位数字为7、8、9时,,六位数的首位数字为4,其万位数字可以为7、8、9时,,六位数的首位数字为4,其万位数字为2,分别求出每种情况下的六位数的数目,由加法原理计算可得答案.本题考查排列、组合的应用,涉及分类计数原理的应用,属于基础题.12.【答案】D【解析】解:△ABC是直三角形,AB=20m,AC=10m,可得CB=,DEF是等边三角形,设∠CED=θ;DE=x,那么∠BFE=30°+θ;则CE=xcosθ,△BFE中由正弦定理,可得可得x=,其中tanα=;∴x≥;则△DEF面积S=故选:D.△ABC是直三角形,DEF是等边三角形,AB=20m,AC=10m,CB=,可得∠A=60°,∠B=30°;设∠CED=θ;DE=x,那么∠BFE=30°+θ;则CE=xcosθ,在三角形△BFE中利用正弦定理求解x的最小值,即可求解△DEF区域内面积的最小值.本题考查三角形的面积的求法,考查DEF边长的求法,角的表示求解最值问题,是中档题,解题时要注意正弦定理的合理运用.13.【答案】1【解析】解:∵z==是纯虚数,∴,即a=-1.∴z=i,则|z|=1.故答案为:1.利用复数代数形式的乘除运算化简,由实部为0且虚部不为0求得a值,得到复数z,则答案可求.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.14.【答案】3π【解析】解:如图,取CD中点E,连接BE,可得BE=,设等边三角形BCD的中心为G,则BG=,∴AG=,设三棱锥A-BCD的外接球的半径为R,则R2=BG2+OG2,即,解得R=.∴球O的表面积为.故答案为:3π.由题意画出图形,解三角形求得三棱锥外接球的半径,代入棱锥体积公式求解.本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,是中档题.15.【答案】【解析】解:d(O,C)=|x|+|y|=1,则≥=,.故答案为:.d(O,C)=|x|+|y|=1,利用≥即可得出.本题考查了基本不等式的性质、折线距离,考查了推理能力与计算能力,属于基础题.16.【答案】6【解析】解:设直线l的方程为:y=kx+1,A(x1,y1),B(x2,y2).联立,化为:x2-4kx-4=0,可得:x1+x2=4k,x1x2=-4,|AB|=y1+y2+p=k(x1+x2)+2+2=4k2+4.对x2=4y两边求导可得:y′=,可得切线PA的方程为:y-y1=(x-x1),切线PB的方程为:y-y2=(x-x2),联立解得:x=(x1+x2)=2k,y=x1x2=-1.∴P(2k,-1).∴|PF|=.∴|PF|+=+,令=t≥2.则|PF|+=t+=f(t),f′(t)=1-=,可得t=4时,函数f(t)取得极小值即最小值f(4)=6.当且仅当k=时取等号.故答案为:6.设直线l的方程为:y=kx+1,A(x1,y1),B(x2,y2).联立化为:x2-4kx-4=0,利用根与系数的关系可得|AB|=y1+y2+p=k(x1+x2)+4.对x2=4y两边求导可得:y′=,可得切线PA的方程为:y-y1=(x-x1),切线PB的方程为:y-y2=(x-x2),联立解得P点坐标,可得代入|PF|+,利用导数研究函数的单调性极值即可得出.本题考查了抛物线的定义标准方程及其性质、利用导数研究函数的单调性极值、切线方程、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于难题.17.【答案】解:(I)∵a2+1是a1,a3的等差中项,∴2(a2+1)=a1+a3,∴a1(q2+1)=2a1q+2,=14,化为2q2-5q+2=0,q>1,解得q=2,∴a1=2.∴a n=2n.(II)b n=a n•log2a n=n•2n.∴数列{b n}的前n项和T n=2+2•22+3•23+……+n•2n.2T n=2×2+2•23+……+(n-1)•2n+n•2n+1.∴-T n=2+22+23+……+2n-n•2n+1=-n•2n+1.解得:T n=(n-1)•2n+1+2.【解析】(I)由a2+1是a1,a3的等差中项,可得2(a2+1)=a1+a3,又a1(q2+1)=2a1q+2,=14,联立解得,即可得出.(II)b n=a n•log2a n=n•2n.利用错位相减法即可得出.本题考查了等差数列与等比数列的通项公式求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.18.【答案】解:(1)根据列联表可以求得K2的观测值:k==≈11.42>6.635,故有99%的把握认为满意程度与年龄有关.(2)据题意,该8名员工的贡献积分及按甲乙两种方案所获补贴情况为:设从这8名员工中随机抽取4名进行面谈,恰好抽到3名”A类员工“的概率为P,则P==.【解析】(1)根据列联表可以求得K2的观测值,结合临界值可得;(2)先得积分表可得A类员工的人数,再根据古典概型的概率公式可得.本题考查了独立性检验,属中档题.19.【答案】证明:(Ⅰ)由题意知在等腰梯形ABCD中,AB∥CD,∵E,F分别为AB,CD的中点,∴EF AB,EF CD,∴折叠后,EF DF,EF CF,∵DF∩CF=F,∴EF平面DCF,又MC平面DCF,∴EF MC.解:(Ⅱ)∵平面BEFC平面AEFD,平面BEFC∩平面AEFD=EF,且EF DF,∴DF平面BEFC,∴DF CF,∴DF,CF,EF两两垂直,以F为坐标原点,分别以FD,FC,FE所在直线为x,y,z轴,建立空间直角坐标系,∵DM=1,∴FM=1,∴M(1,0,0),D(2,0,0),A(1,0,2),B(0,1,2),∴=(0,0,2),=(-1,1,0),=(-1,0,2),设平面MAB的法向量=(x,y,z),则,取x=1,得=(1,1,0),设平面ABD的法向量=(x,y,z),则,取z=1,得=(2,2,1),∴cos<,>===,∴二面角M-AB-D的余弦值为.【解析】(Ⅰ)推导出EF AB,EF CD,折叠后,EF DF,EF CF,从而EF平面DCF,由此能证明EF MC.(Ⅱ)以F为坐标原点,分别以FD,FC,FE所在直线为x,y,z轴,建立空间直角坐标系,利用向量法能求出二面角M-AB-D的余弦值.本题考查线线垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题.20.【答案】解:(I)由题意可得:2b=4,=,a2=b2+c2.联立解得:b=2,c=1,a=3.∴椭圆C的标准方程为:+=1.(II)A(-3,0),B(3,0),F1(-1,0),F2(1,0),设F1M的方程为:x=my-1,M(x1,y1),(y1>0),直线F1M与椭圆的另一个交点为M′(x2,y2).∵F1M∥F2N,根据对称性可得:N(-x2,-y2).联立,化为:(8m2+9)y2-16my-64=0,∴y1+y2=,y1y2=,∵3k1+2k2=0,∴+=0,即5my1y2+6y1+4y2=0,联立解得:y1=,y2=,∵y1>0,y2<0,∴m>0.∴y1y2=•=,∴m=.∴直线F1M的方程为x=y-1,即2x-y+2=0.【解析】(I)由题意可得:2b=4,=,a2=b2+c2.联立解出即可得出椭圆C的标准方程.(II)A(-3,0),B(3,0),F1(-1,0),F2(1,0),设F1M的方程为:x=my-1,M(x1,y1),(y1>0),直线F1M与椭圆的另一个交点为M′(x2,y2).由F1M∥F2N,根据对称性可得:N(-x2,-y2).直线方程与椭圆方程联立化为:(8m2+9)y2-16my-64=0,根据根与系数的关系及其3k1+2k2=0,+=0,联立解得m.本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、一元二次方程的根与系数的关系、斜率计算公式,考查了推理能力与计算能力,属于难题.21.【答案】(I)解:f′(x)=-=.(x>0).当a≤0时,f′(x)>0,函数f(x)在(0,+∞)上单调递增,又f(1)=0.因此0<x<1时,f(x)<0.当a>0时,可得函数f(x)在(0,a)上单调递减,在(a,+∞)上单调递增,∴x=a时,函数f(x)取得极小值即最小值,则f(a)=ln a+1-a≥0.令g(a)=ln a+1-a,g(1)=0.g′(a)=-1=,可知:a=1时,函数g(a)取得极大值即最大值,而g(1)=).因此只有a=1时满足f(a)=ln a+1-a≥0.故a=1.∴实数a取值的集合是{1}.(II)证明:由(I)可知:a=1时,f(x)≥0,即ln x≥1-在x>0时恒成立.要证明:e x+≥2-ln x+x2+(e-2)x,即证明:e x≥1+x2+(e-2)x,即e x-1-x2-(e-2)x≥0.令h(x)=e x-1-x2-(e-2)x,x>0.h′(x)=e x-2x-(e-2),令u(x)=e x-2x-(e-2),u′(x)=e x-2,令u′(x)=e x-2=0,解得x=ln2.可得:x=ln2时,函数u(x)在(0,ln2)内单调递减,在(ln2,+∞)上单调递增.即函数h′(x)在(0,ln2)内单调递减,在(ln2,+∞)上单调递增.而h′(0)=1-(e-2)=3-e>0.h′(ln2)<h′(1)=0.∴存在x0(0,ln2),使得h′(x0)=0,当x(0,x0)时,h′(x)>0,h(x)单调递增;当x(x0,1)时,h′(x)<0,h(x)单调递减.当x(1,+∞)时,h′(x)>0,h(x)单调递增.又h(0)=1-1=0,h(1)=e-1-1-(e-2)=0,∴对∀x>0,h(x)≥0恒成立,即e x-1-x2-(e-2)x≥0.综上可得:e x+≥2-ln x+x2+(e-2)x,成立.【解析】(I)f′(x)=-=.(x>0).对a分类讨论即可得出单调性与极值,进而得出结论.(II)由(I)可知:a=1时,f(x)≥0,即lnx≥1-在x>0时恒成立.要证明:e x+≥2-lnx+x2+(e-2)x,即证明:e x≥1+x2+(e-2)x,即e x-1-x2-(e-2)x≥0.令h(x)=e x-1-x2-(e-2)x,x>0.利用导数研究其单调性极值与最值即可得出.本题考查了利用导数研究函数的单调性极值与最值、等价转化方法、分类讨论方法、方程与不等式的解法,考查了推理能力与计算能力,属于难题.22.【答案】解:(1)曲线C的参数方程为(β为参数,β[0,π]),转换为直角坐标方程为:(x-4)2+y2=4(y≥0).直线l的参数方程为(t为参数,α倾斜角),转换为极坐标方程为:θ=α.(2)由(1)可知:曲线C为半圆弧,若直线l与曲线C恰有一个公共点P,则直线l与半圆弧相切.设P(ρ,θ),由题意知:,故:,故:ρ2+22=42,解得:.所以:点P(,).【解析】1(1)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换.(2)利用一元二次方程根和系数的关系求出结果.本题考查的知识要点:参数方程直角坐标方程和极坐标方程之间的转换,一元二次方程根和系数关系的应用,主要考查学生的运算能力和转化能力,属于基础题型.23.【答案】解:(Ⅰ)∵m>0,∴f(x)=|x-m|-|x+2m|=,,<<,,∴当x≤-2m时,f(x)取得最大值3m.∴m=1.(Ⅱ)证明:由(Ⅰ)得,a2+b2=1,∴+===-2ab.∵a2+b2=1≥2ab,当且仅当a=b时等号成立.∴0<ab,令h(t)=-2t,0<t,则h(t)在(0,]上单调递减,∴h(t)≥h()=1,∴当0<ab时,-2ab≥1,∴+≥1.【解析】(Ⅰ)分三种情况去绝对值,求出最大值与已知最大值相等列式可解得;(Ⅱ)将所证不等式转化为-2ab≥1,再构造函数利用导数判断单调性求出最小值可证.本题考查了绝对值不等式的解法,属中档题.。

四川2019届成都高三理数二诊理科数学(含答题卡及答案)

四川2019届成都高三理数二诊理科数学(含答题卡及答案)

ʑ有9 9% 的把握认为满意程度与年龄有关 . ( 据题意 , 该 8 名员工的贡献积分及按甲 , 乙两种方案所获补贴情况为 : Ⅱ) 积分 方案甲 方案乙 2 4 0 0 3 0 0 0 2 3 1 0 0 3 0 0 0 3 5 2 0 0 5 6 0 0 6 5 9 0 0 5 6 0 0 7 5 9 0 0 5 6 0 0 7 8 7 0 0 9 0 0 0 1 1 9 4 0 0 9 0 0 0 1 2
������������4 分
������������2 分
( 解: 根据列联表可以求得 K 的观测值 : 1 8. Ⅰ)

n ) ( 2 1-2 n+1 n+1 = - nˑ2 =( 1- n) -2. 2 1-2 n+1 ) n-1 2 +2. ʑTn = (
8 0 (2 5ˑ3 0-1 0ˑ1 5) 2 8 0 k= = ʈ1 1. 4 2 9. 3 5ˑ4 5ˑ4 0ˑ4 0 7 ȵ1 1. 4 2 9>6. 6 3 5,
2 [ , ] ; 1 3. -1; ㊀㊀㊀ 1 4. 3 π;㊀㊀㊀1 5. 1 ㊀㊀㊀1 6. 6. 2 ( 三. 解答题 : 共7 0 分)
( 二㊁ 填空题 : 每小题 5 分 , 共2 0 分)
第Ⅱ卷
( 非选择题 , 共9 0 分)
( ) ( 解: 由题意 , 得2 又 S3 = 1 7. a2 +1 a1 + a3 . a1 + a2 + a3 =1 = 4, Ⅰ) ( ) ʑ2 a2 +1 a2 , a2 =4, =1 4- ʑ 1 4 ȵS3 = +4+4 4, ʑ q=1 q=2 或q= , 2 q , ȵ q>1 ʑ q=2.
+ nˑ2 .
n
������������7 分 ������������1 0分 ������������1 1分 ������������1 2分 ������������3 分

2019成都市高三二诊数学理科试题及详细解析

2019成都市高三二诊数学理科试题及详细解析

〖解析〗1、【考点】①集合的表示法;②全集,补集的定义与性质;③交集的定义,性质和运算方法。

【解题思路】根据集合的表示法,运用全集,补集的运算方法求出集合B 的补集,再利用交集的定义,性质和运算方法就可得出结果。

【详细解答】U=R ,B={x|x ≤-2或x ≥1},∴U C B ={x|-2<x<1},A={x|-1<x<3},∴A (U C B )={x|-1<x<1},⇒A 正确,∴选A 。

2、【考点】①双曲线的定义与性质;②双曲线焦距的定义与性质;③双曲线渐近线的定义与求法。

【解题思路】根据双曲线焦距的定义与性质,运用双曲线实半轴a ,虚半轴B ,半焦距之间的关系先求出b 的值,再利用双曲线渐近线的基本求法,结合问题条件就可得出结果。

【详细解答】双曲线C 为:2x -22y b =1(b>0)的焦距为4,∴2c=4,⇒c=2,a=1,2c =2a +2b ,∴2b =4-1=3,⇒∴双曲线的渐近线方程为:y=±, ⇒D 正确,∴选D 。

3、【考点】①向量坐标表示的定义与性质;②向量数量积坐标运算的基本方法;③向量数量积的几何意义。

【解题思路】根据向量的坐标表示,运用向量数量积坐标运算的基本方法求出向量的数量积,在利用数量积的几何意义就可得出结果。

【详细解答】a =1),b =(-3,∴|b ,a .b =-3⨯⨯a .b =|a |.|b |cos<a ,b >,∴|b |cos<a ,b >=.||a b a ==-1,⇒C 正确,∴选C 。

4、【考点】①不等式的定义与性质;②充分条件,必要条件的定义与性质;③充分条件,必要条件,充分必要条件判断的基本方法。

【解题思路】运用充分条件,必要条件,充分必要条件判断的基本方法,结合不等式的定义与基本性质,通过判断就可得出结果。

【详细解答】由a>b>0,可以推出1a <1b ,但由1a <1b,不能推出a>b>0, ∴由条件甲可以推出条件乙,但由条件乙不能推出条件甲,⇒条件甲是条件乙的充分不必要条件,⇒A 正确,∴选A 。

四川成都2019高三第二次诊断性检测_数学理(word版)

四川成都2019高三第二次诊断性检测_数学理(word版)

2019高三第二次诊断性检测-数学理(word 版)数学(理工农医类)本试卷分选择题和非选择题两部分·第I 卷(选择题)1至2页,第II 卷(非选择题)3至4页,共4页,满分150分,考试时间120分钟·注意事项:1. 答题前,务必将自己旳、考籍号填写在答题卡规定旳位置上·2. 答选择题时,必须使用2B 铅笔将答题卡上对应题目旳答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号·3. 答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定旳位置上·4. 所有题目必须在答题卡上作答,在试题卷上答题无效·5. 考试结束后,只将答题卡交回·第I 卷(选择题,共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出旳四个选项中,有且只有一项是符合题目要求旳.(A )第一象限(B )第二象限(C )第三象限(D )第四象限 2. 已知全集U ={x|x >0},M ={x|x 2<2x},则M C U =(A){x|x>2} (B){x|x>2} (C){X |x ≤0 或 x ≥2}(D) {X |0<x<2}3.若直线(a+l)x+2y=0与直线x 一ay =1互相垂直,则实数a 旳值等于 (A)-1(B)O(C)1(D)24. 已知直线l 和平面a ,若l//a ,P ∈a ,则过点P 且平行于l 旳直线(A)只有一条,不在平面a (B)只有一条,且在平面a(C)有无数条,一定在平面a (D)有无数条,不一定在平面a5.—个几何体旳三视图如图所示,其中正视图是一个正三角形,则该几何体旳体积为(A)33(B)1 (C)332 (D)3 6.函数f(x)= log 2x+x1—1旳零点旳个数为 (A)O 个(B)1个(C)2个(D)3个7. 已知双曲线)0,0(12222>>=-b a by a x (a>0,b>0)旳一条渐近线与曲线12-=x y 相切,则该双曲线旳离心率为(A)2 (B)3(C)2(D)228. 若不等式x x m -+≤1221当1∈(0,l)时恒成立,则实数m 旳最大值为 (A)9(B)29(C)5(D)259.已知数列{a n }满足a n +2-a n +1= a n +1-a n ,*N n ∈,且a 5=2π若函数f(x)= sin2x+2cos 22x,记y n =f(a n ),则数列{y n }旳前9项和为(A)O(B)-9(C)9(D)11O.某算法旳程序框图如图所示,则执行该程序后输出旳S 等于(A) 24 (B) 26 (C) 30 (D) 32第II 卷(非选择题,共100分)二、填空題:本大题共5小题,每小题5分,共25分.12.若(1-2x)4=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4,则a 1+a 2 +a 3 +a 4 =_______13.设G 为ΔABC 旳重心,若ΔABC 所在平面一点P 满足02=+BP PA=0,则14. 已知集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧≥-≥+≤-+00042),(y x y x y x y x 表示旳平面区域为Ω,若在区域Ω任取一点P(x,y),则点P 旳坐标满足不等式x 2+y 2≤2旳概率为_______15.对于定义在区间D 上旳函数f(x),若满足对D x x ∈∀21,,且x 1<x 2时都有)()(21x f x f ≥,则称函数f(x)为区间D 上旳“非增函数”.若f(x)为区间[0,1]上旳“非增函数”且f(0) = l ,f f(x)+f(l —x) = l ,又当]41,0[∈x 时,f(x)≤-2x+1恒成立.有下列命题:①0)(],1,0[≥∈∀x f x ;②当EMB E DE q u a t io n.3,且2121]1,0[,x x x x ≠∈时,f )≠f(x)③2)87()137()115()81(=f f f f +++;④当]41,0[∈x 时,)())((x f x f f ≤.其中你认为正确旳所有命题旳序号为________三、解答题:本大题共6小题,共75分. 16.(本小题满分12分)在ΔABC 中,已知角A ,B ,C 旳对边分别为a ,b ,c ,且满足c B a =+)4sin(2π(I)求角A 旳大小.,(II)若ΔABC 为锐角三角形,求sinBsinC 旳取值围.17.(本小题满分12分) 某校高三(1)班旳一次数学测试成绩旳茎叶图和频率分布直方图都受到不同程度旳破坏,可见部分如下:试根据图表中旳信息解答下列问题:(I )求全班旳学生人数与分数在[70,80)之间旳频数;(II)为快速了解学生旳答题情况,老师按分层抽样旳方法从位于[70,80),[80,90)和[90,100]分数段旳试卷中抽取8份进行分析,再从中任选3人进行交流,求交流旳学生中,成绩位于[70,80)分数段旳人数X 旳分布列和数学期望.18. (本小题满分12分)如图,在直三棱柱(侧棱与底面垂直旳三棱柱)ABC —A 1B 1C 1中,AC=AA 1=2AB = 2,BAC ∠=900,点D 是侧棱CC 1延长线上一点,EF 是平面ABD与平面A 1B 1C 1旳交线.(I)求证:EF 丄A 1C;(II)当平面DAB 与平面CA 1B 1所成锐二面角旳余弦值为2626时,求DC 1旳长.19. (本小题满分12分)设函数f(x)=x 2过点C 1(1,0)作X 轴旳垂线l 1交函数f(x)图象于点A 1,以A 1为切点作函数f(x)图象旳切线交X 轴于点C 2,再过C 2作X 轴旳垂线l 2交函数f(x)图象于点A 2,…,以此类推得点A n ,记A n 旳横坐标为a n ,*N n ∈.(I)证明数列{a n }为等比数列并求出通项公式a n ;标原点),求数列{b n }旳前n 项和S n .20. (本小题满分13分))0(122>>=+b a by (a>b>0)以抛物线y 2=8x 旳焦点为顶点,且离(I )求椭圆E旳方程;(II )若直线l:y=kx+m 与椭圆E 相交于A 、B 两点,与直线x= -4相交于Q 点,P 是椭圆E 上一点且满足OB OA OP+= (其中O 为坐标原点),试问在X 轴上是否存在一点T ,使得TQ OP .为定值?若存在,求出点了旳坐标与TQ OP .旳值;若不存在,请说明理由.21. (本小题满分14分)已知函数a x xx x g x a x x x f )(ln 1)(,ln 1)(-+=--=,其中x>0,a ∈R (I )若函数f (x )无极值,求a 旳取值围;(I I )当a 取(I )中旳最大值时,求函数g (x )旳最小值;(III)证明不等式∑=+∈+>+nk n n k k N n 11*)(122ln )12(21.11 / 11。

专题1用导数研究曲线的各类切线【解析版】

专题1用导数研究曲线的各类切线【解析版】

学霸养成.2020高考数学热点难点必杀技系列—导数用导数研究曲线的切线,是高考的一个热点,内容主要涉及求曲线的斜率与方程、曲线的条数、公切线问题,由切线满足条件求参数或参数范围等,高考中既有基础客观题,也有压轴客观题,时而也会以解答题形式考查.1.【2019全国卷Ⅲ】已知曲线e ln x y a x x =+在点1e a (,)处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e,b =1C .1e 1a b -==,D .1e a -= ,1b =-【答案】D【解析】e ln xy a x x =+的导数为'e ln 1xy a x =++,又函数e ln xy a x x =+在点(1,e)a 处的切线方程为2y x b =+,可得e 012a ++=,解得1e a -=,又切点为(1,1),可得12b =+,即1b =-.故选D .2.【2018全国卷Ⅰ】设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =-C .2y x =D .y x =【答案】D【解析】通解 因为函数32()(1)f x x a x ax =+-+为奇函数,所以()()f x f x -=-, 所以3232()(1)()()[(1)]x a x a x x a x ax -+--+-=-+-+,所以22(1)0a x -=,因为x ∈R ,所以1a =,所以3()f x x x =+,所以2()31f x x '=+,所以(0)1f '=,所以曲线()y f x =在点(0,0)处的切线方程为y x =.故选D .优解 因为函数32()(1)f x x a x ax =+-+为奇函数,所以(1)(1)0f f -+=,所以11(11)0a a a a -+--++-+=,解得1a =,所以3()=+f x x x ,所以2()31'=+f x x ,所以(0)1f '=,所以曲线()y f x =在点(0,0)处的切线方程为y x =.故选D .3.【2016年全国卷Ⅱ】若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的 切线,则b = . 【答案】1ln2-【解析】设y kx b =+与ln 2y x =+和ln(1)y x =+的切点分别为11(,ln 2)x x + 和22(,ln(1))x x +.则切线分别为1111ln 2()y x x x x --=-, 2221ln(1)()1y x x x x -+=-+,化简得111ln 1y x x x =⋅++,()22221ln 111xy x x x x =++-++依题意,()122122111ln 1ln 11x x x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩,解得112x =,从而1ln 11ln 2b x =+=-.4.【2019全国卷Ⅱ】已知函数()11ln x f x x x -=-+.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线e xy =的切线.【解析】(1)f (x )的定义域为(0,1)(1,+∞).因为212()0(1)f 'x x x =+>-,所以()f x 在(0,1),(1,+∞)单调递增. 因为f (e )=e 110e 1+-<-,22222e 1e 3(e )20e 1e 1f +-=-=>--,所以f (x )在(1,+∞)有唯一零点x 1,即f (x 1)=0.又1101x <<,1111111()ln ()01x f x f x x x +=-+=-=-,故f (x )在(0,1)有唯一零点11x . 综上,f (x )有且仅有两个零点.(2)因为0ln 01e x x -=,故点B (–ln x 0,01x )在曲线y =e x 上.由题设知0()0f x =,即0001ln 1x x x +=-,故直线AB 的斜率0000000000111ln 111ln 1x x x x x k x x x x x x +---===+-----. 曲线y =e x 在点001(ln ,)B x x -处切线的斜率是01x ,曲线ln y x =在点00(,ln )A x x 处切线的斜率也是01x , 所以曲线ln y x =在点00(,ln )A x x 处的切线也是曲线y =e x 的切线.一、利用导数研究曲线的斜率或倾斜角导数的几何意义是研究曲线的切线的基石,函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率.也就是说,曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率是()0f x '.【例1】已知f ′(x )是函数f (x )的导函数,如果f ′(x )是二次函数,f ′(x )的图象开口向上,顶点坐标为(1,3),那么曲线y =f (x )上任一点处的切线的倾斜角α的取值范围是( ) A.⎝⎛⎦⎤0,π3 B.⎣⎡⎭⎫π3,π2 C.⎝⎛⎦⎤π2,2π3 D.⎣⎡⎭⎫π3,π 【答案】B【分析】把倾斜角范围转化为求斜率范围【解析】依题意得f ′(x )≥3,即曲线y =f (x )在任意一点处的切线斜率不小于3,故其倾斜角的取值范围是⎣⎡⎭⎫π3,π2.故选B . 【点评】无论是求斜率或倾斜角,最终都可转化为导数值问题.【对点训练】【安徽省淮南市2019届高三第一次模拟】已知函数()ln f x x x =,若直线l 过点()0,e -,且与曲线()y f x =相切,则直线l 的斜率为( ) A .2- B .2C .e -D .e【答案】B【解析】函数()ln f x x x =的导数为()'ln 1f x x =+,设切点为(),m n ,则n mlnm =, 可得切线的斜率为1ln k m =+,所以ln 1ln n e m m em m m+++==,解得m e =,1ln 2k e =+=,故选B . 二、求曲线在某点处的切线求以曲线上的点(x 0,f (x 0))为切点的切线方程的求解步骤:①求出函数f (x )的导数f ′(x ); ②求切线的斜率f ′(x 0);③写出切线方程y -f (x 0)=f ′(x 0)(x -x 0),并化简. 【例2】【云南师范大学附属中学2019届高三月考】设()f x 是(,0)(0,)-∞+∞上的偶函数,当0x >时,()ln f x x x =,则()f x 在(1,(1))f --处的切线方程为( ) A .01=--y x B .10x y +-= C .10x y -+= D .10x y ++=【答案】D【分析】求得()f x 在0x >时的导函数,根据偶函数的定义可求得在1x =-处的导函数;根据点斜式即可求得切线方程.【解析】当0x >时,()ln f x x x =,则'()ln 1f x x =+,由()f x 是偶函数可得(1)(1)0f f -==,结合图象特征可知'(1)'(1)1f f -=-=-,所以()f x 在(1,(1))f --处的切线方程为0(1)y x -=-+,即10x y ++=,故选D.【点评】求曲线在某点的切线关键是确定切点坐标及切线斜率.【对点训练】【江西省新八校2019届高三第二次联考】若3()3()21f x f x x x +-=++对x R ∈恒成立,则曲线()y f x =在点()()1,1f 处的切线方程为( ) A .5250x y +-= B .10450x y +-= C .540x y += D .204150x y --=【答案】B 【解析】()()3321f x f x x x +-=++……①()()3321f x f x x x ∴-+=--+……②联立①②,解得:()31124f x x x =--+,则()2312f x x '=-- ()11511244f ∴=--+=-,()351122f '=--=-∴切线方程为:()55142y x +=--,即10450x y +-=,故选B三、求曲线过某点的切线求曲线过某点的切线,一般是设出切点(x 0,y 0),解方程组⎩⎪⎨⎪⎧y 0=f (x 0),y 1-y 0x 1-x 0=f ′(x 0),得切点(x 0,y 0),进而确定切线方程.【例3】已知函数f (x )=x 3+x -16.直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标. 【分析】设切点为(x 0,y 0),整理出关于0x 的方程,解方程求出切点(x 0,y 0),再用点斜式写出方程.【解析】法一:设切点为(x 0,y 0),则直线l 的斜率为f ′(x 0)=320x +1,∴直线l 的方程为y =(320x +1)(x -x 0)+3x +x 0-16,又∵直线l 过点(0,0),∴0=(320x +1)(-x 0)+30x +x 0-16,整理得, 30x =-8,∴x 0=-2,∴y 0=(-2)3+(-2)-16=-26,k =3×(-2)2+1=13. ∴直线l 的方程为y =13x ,切点坐标为(-2,-26). 法二:设直线l 的方程为y =kx ,切点为(x 0,y 0), 则k =y 0-0x 0-0=300016x x x +-,又∵k =f ′(x 0)=320x +1,∴300016x x x +-=320x +1,解之得x 0=-2,∴y 0=(-2)3+(-2)-16=-26,k =3×(-2)2+1=13. ∴直线l 的方程为y =13x ,切点坐标为(-2,-26). 【点评】求解本题的关键是利用切线斜率()10010y y k f x x x -'==-建立方程(其中()11,x y 为切线经过的点).【对点训练】曲线y =14x 2过点⎝⎛⎭⎫4,74 的切线方程为________. 【答案】14x -4y -49=0或2x -4y -1=0.【解析】设所求切线与曲线相切于点P ⎝⎛⎭⎫x 0,14x 20.易知y ′=12x ,则y ′|x =x 0=12x 0.故74-14x 204-x 0= 12x 0,整理得x 20-8x 0 + 7 = 0,解得x 0=7或x 0=1,所以点P ⎝⎛⎭⎫7,494或P ⎝⎛⎭⎫1,14,由两点式 切线方程为14x -4y -49=0或2x -4y -1=0.故填14x -4y -49=0或2x -4y -1=0.四、求曲线的切线条数求曲线切线的条数一般是设出切点()(),t f t ,由已知条件整理出关于t 的方程,把切线条数问题转化为关于t 的方程的实根个数问题.【例4】【江西省吉安市2019届高三下学期第一次模拟】已知过点(1,1)P 且与曲线3y x =相切的直线的条数有( ). A .0 B .1 C .2 D .3【答案】C【分析】设切点为()00x ,y ,则300y x =,由于直线l l 经过点(2,1),可得切线的斜率,再根据导数的几何意义求出曲线在点0x 处的切线斜率,建立关于0x 的方程,通过解方程确定切点个数.【解析】若直线与曲线切于点()()000x ,y x 0≠,则32000000y 1x 1k x x 1x 1x 1--===++--, 又∵2y'3x =,∴200y'x x 3x ==,∴2002x x 10--=,解得0x 1=,01x 2=-, ∴过点()P 1,1与曲线3C :y x =相切的直线方程为3x y 20--=或3x 4y 10-+=, 故选C .【点评】求解此类问题的关键是把切线条数转化为切点个数,进一步转化为方程实根个数.五、曲线的公切线研究曲线的公切线,一般是分别设出两切点,写出两切线方程,然后再使这两个方程表示同一条直线.【例5】【四川省成都市2019届高三毕业班第二次诊断性检测】已知直线l 即是曲线1:xC y e =的切线,又是曲线2221:4C y e x =的切线,则直线l 在x 轴上的截距为 A .2 B .1C .2eD .2e -.【答案】B【分析】设出直线l 与两曲线的切点,分别求出两曲线在切点处的切线方程,由斜率与截距相等列式求得切点的横坐标,代入切线方程,则答案可求.【解析】设直线l 与曲线C 1:y =e x 的切点为(11xx e ,),与曲线C 2:y 14=e 2x 2的切点为(222214x e x ,),由y =e x ,得11'|xx x y e ==,由y 14=e 2x 2,得2221'|2x x y e x ==,∴直线l 的方程为()111x xy e e x x -=-,或()2222221142y e x e x x x -=-,则111222222122121142x x x e e x e x e e x e x ⎧=⎪⎪⎨⎪-=-⎪⎩,解得x 1=x 2=2. ∴直线l 的方程为:y ﹣e 2=e 2(x ﹣2),取y =0,可得x =1. ∴直线l 在x 轴上的截距为1.故选B .【点评】写出两方程后一般利用斜率与截距分别相等求解,若其中一条曲线为二次函数图象也可利用判别式. 【对点训练】若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,则a 等于( )A . -1或-2564B .-1或214C .-74或-2564D .-74或7【答案】A【解析】设过点(1,0)的直线与曲线y =x 3相切于点(x 0,x 30),所以切线方程为y -x 30=3x 20(x -x 0),即y =3x 20x -2x 30,又点(1,0)在切线上,则x 0=0或x 0=32.当x 0=0时,由y =0与y =ax 2+154x -9相切可得a =-2564;当x 0=32时,由y =274x -274与y =ax 2+154x -9相切可得a =-1.故选A1.【江西省临川一中2019届高三年级考前模拟】已知曲线ln y x x =+在点()1,1处的切线与抛物线()221y ax a x =+++相切,则a 的值为( )A .0B .0或8C .8D .1【答案】C 【解析】11y x'=+,当1x =时,切线的斜率2k =, 切线方程为()21121y x x =-+=-,因为它与抛物线相切,()22121ax a x x +++=-有唯一解即220ax ax ++=故280a a a ≠⎧⎨-=⎩,解得8a =,故选C. 2.【山西省2019届高三高考考前适应性训练】函数()f x 为偶函数,当BC AP λ=时,()e xf x x =,则曲线()y f x =在1x =-处的切线方程为( )A .20ex y e ++=B .20ex y e --=C .230ex y e +-=D .230ex y e -+=【答案】A【解析】当BC AP λ=时,()()1x f x x e '=+,故()()12,1f e f e '==.,由函数()f x 为偶函数,所以()y f x =的图像关于y 轴对称,故()()12,1f e f e '-=--=,所求切线方程为:()21y e e x -=-+,即20ex y e ++=.故选A.3.【福建省南平市2019届5月综合质量检查】若直线52y x =与曲线ln(21)y mx x =-+相切于点(0,0)O ,则m =( ).A .0B .52C .72D .92【答案】D【解析】由()ln 21y mx x =-+,得2'21y m x =-+ 因为直线52y x =与曲线()ln 21y mx x =-+相切于点()0,0O 所以522m =-,解得92m =,故选D.4.【山西省太原市2019届高三模拟试题(一)】已知函数()ln f x x x a =+在点(1,(1))f 处的切线经过原点,则实数a ( ) A .1 B .0 C .1eD .-1【答案】A【解析】()()1,11,f x lnx f ''=+∴=∴切线方程为y x 1a =-+,故0=0-1+a,解a=1 故选A5.【甘肃省白银市靖远县2019届高三第四次联考】若1x =是函数()321f x x x ax =+++的极值点,则曲线()y f x =在点()()00f ,处的切线的斜率为( )A .1-B .1C .5-D .5【答案】C【解析】由题意可知:()232f x x x a '=++,则()150f a '=+=,解得5a =-所以()05k f '==-,故选C6.【2019年甘肃省兰州市高考数学一诊】若点P 是函数y=2sinxsinx cosx+图象上任意一点,直线l 为点P 处的切线,则直线l 斜率的范围是( ) A .(),1∞- B .[]0,1C .[)1,∞+D .(]0,1 【答案】C 【解析】∵22sin 2cos (sin cos )2sin (cos sin ),sin cos (sin cos )x x x x x x x y y x x x x '+--=∴=++222cos 2sin 212sin cos 1sin 2x x x x x+==++.∵-1<sin2x≤1,∴0<1+sin2x≤2,∴111sin 22x ≥+,则211sin 2y x'=≥+.∴直线l 斜率的范围是[1,+∞).故选C .7.【湖北省武汉市2019届高三4月调研】设曲线432:3294C y x x x =--+,在曲线C 上一点()14M -,处的切线记为l ,则切线l 与曲线C 的公共点个数为 A .1 B .2 C .3 D .4【答案】C 【解析】3212618y xx x '=-- 1261812k =--=-l ∴方程为:()4121y x +=--,即128y x =-+由4323294128y x x x y x ⎧=--+⎨=-+⎩得:4323291240x x x x --+-= 即:()()()212320x x x -+-=11x =,22x =-,323x =,∴曲线C 与l l 的公共点个数为:3个,故选C 。

专题10 双曲线及其性质-2019年高考理数母题题源系列(全国Ⅲ专版)(解析版)

专题10 双曲线及其性质-2019年高考理数母题题源系列(全国Ⅲ专版)(解析版)

【母题原题1】【2019年高考全国Ⅲ卷理数】双曲线C:2242x y-=1的右焦点为F,点P在C的一条渐近线上,O为坐标原点,若=PO PF,则△PFO的面积为A.4B.2C.D.【答案】A【解析】由2,,a b c===,2PPO PF x=∴=Q,又P在C的一条渐近线上,不妨设为在by xa=上,则222P Pby xa=⋅==,11224PFO PS OF y∴=⋅==△,故选A.【名师点睛】忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅,采取列方程组的方式解出三角形的高,便可求三角形面积.【母题原题2】【2018年高考全国Ⅲ卷理数】设12F F,是双曲线22221x yCa b-=:(00a b>>,)的左,右焦点,O是坐标原点.过2F作C的一条渐近线的垂线,垂足为P.若1PF=,则C的离心率为AB.2专题10 双曲CD【答案】B【解析】由题可知22,PF b OF c ==,∴||PO a =, 在2Rt POF △中,222cos PF bPF O OF c∠==, ∵在12PF F △中,22221212212cos 2PF F F PF b F PF F P O F c+-∠==,∴)222224322b c bc a b cc+-=⇒=⋅,∴e =,故选C . 【名师点睛】本题主要考查双曲线的相关知识,考查了双曲线的离心率和余弦定理的应用,属于中档题.【命题意图】高考对双曲线内容的考查以基础知识为主,重点考查双曲线的几何性质、方程思想及运算能力.2019年高考题考查了以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素养.采取公式法,利用数形结合、转化与化归和方程思想解题.【命题规律】主要考查双曲线的定义、标准方程和几何性质,其中离心率和渐近线问题是高考考查的重点,以选择题和填空题为主,难度中等. 【答题模板】1.求双曲线的离心率的值或范围一般考虑如下三步:第一步:将提供的双曲线的几何关系转化为关于双曲线基本量a ,b ,c 的方程或不等式; 第二步:利用222b c a +=和ce a=转化为关于e 的方程或不等式; 第三步:通过解方程或不等式求得离心率的值或取值范围. 2.其他问题:(1)双曲线的焦点到其渐近线的距离为b .(2)若P 是双曲线右支上一点,F 1,F 2分别为双曲线的左、右焦点,则|PF 1|min =a+c ,|PF 2|min =c –a .(3)同支的焦点弦中最短的为通径(过焦点且垂直于长轴的弦),其长为22b a;异支的弦中最短的为实轴,其长为2a .(4)若P 是双曲线上不同于实轴两端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,则12PF F S △=2tan 2b θ,其中θ为∠F 1PF 2.(5)若P 是双曲线22x a22y b -=1(a>0,b>0)右支上不同于实轴端点的任意一点,F 1,F 2分别为双曲线的左、右焦点,I 为△PF 1F 2内切圆的圆心,则圆心I 的横坐标为定值a . 【方法总结】1.双曲线定义的应用策略(1)根据动点与两定点的距离的差判断动点的轨迹是否为双曲线.(2)利用双曲线的定义解决与双曲线的焦点有关的问题,如最值问题、距离问题. (3)利用双曲线的定义解决问题时应注意三点:①距离之差的绝对值;②2a <|F 1F 2|;③焦点所在坐标轴的位置. 2.求双曲线的标准方程的方法 (1)定义法根据双曲线的定义确定a 2,b 2的值,再结合焦点位置,求出双曲线方程,常用的关系有: ①c 2=a 2+b 2;②双曲线上任意一点到双曲线两焦点的距离的差的绝对值等于2a .求轨迹方程时,满足条件:|PF 1|–|PF 2|=2a (0<2a <|F 1F 2|)的双曲线为双曲线的一支,应注意合理取舍. (2)待定系数法 一般步骤为①判断:根据已知条件,确定双曲线的焦点是在x 轴上,还是在y 轴上,还是两个坐标轴都有可能; ②设:根据①中的判断结果,设出所需的未知数或者标准方程; ③列:根据题意,列出关于a ,b ,c 的方程或者方程组; ④解:求解得到方程. 常见设法有①与双曲线22x a –22y b =1共渐近线的双曲线方程可设为22x a –22y b=λ(λ≠0);②若双曲线的渐近线方程为y =±ba x ,则双曲线方程可设为22x a –22yb =λ(λ≠0);③若双曲线过两个已知点,则双曲线方程可设为2x m +2y n=1(mn <0);④与双曲线22x a –22y b =1共焦点的双曲线方程可设为22x a k -–22y b k+=1(–b 2<k <a 2);⑤与椭圆22x a +22y b =1(a >b >0)有共同焦点的双曲线方程可设为22x a λ-+22y b λ-=1(b 2<λ<a 2).注意:当焦点位置不确定时,有两种方法来解决:一种是分类讨论,注意考虑要全面;另一种是如果已知中心在原点,但不能确定焦点的具体位置,可以设双曲线的方程为mx 2+ny 2=1(mn <0). 3.求双曲线离心率的值(1)直接求出c a ,,求解e :已知标准方程或a ,c 易求时,可利用离心率公式e =ca求解; (2)变用公式,整体求e :如利用e,e; 4.双曲线的离心率与渐近线方程之间有着密切的联系,二者之间可以互求.已知渐近线方程时,可得b a的值,于是e 2=22c a =222a b a +=1+2()b a ,因此可求出离心率e 的值;而已知离心率的值,也可求出渐近线的方程,即b a个解.1.【广西壮族自治区南宁、梧州等八市2019届高三4月联合调研考试数学】已知双曲线222:1(0)3x y C a a -=>的一个焦点为(2,0),则双曲线C 的渐近线方程为A .y x =±B .y =C .y =D .2y x =±【答案】C【解析】因为双曲线222:1(0)3x y C a a -=>的一个焦点为(2,0),所以234a +=,故21a =,因此双曲线的方程为2213y x -=,所以其渐近线方程为y =.故选C .【名师点睛】本题主要考查双曲线的渐近线方程,熟记双曲线的性质即可,属于基础题型.2.【广西壮族自治区柳州市2019届高三毕业班3月模拟考试数学】已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点为1F 、2F ,双曲线上的点P 满足121243PF PF F F +≥u u u v u u u u v u u u u v恒成立,则双曲线的离心率的取值范围是A .312e <≤B .32e ≥C .413e <≤D .43e ≥【答案】C【解析】∵OP 是12F PF △的边12F F 上的中线,∴122PF PF PO+=u u u v u u u u v u u u v. ∵121243PF PF F F u u u v u u u u v u u u u v +≥,∴1283PO F F ≥u u u v u u u u v,当且仅当12,,F P F 三点共线时等号成立. 又PO a ≥u u u v ,122F F c =u u u u v ,∴86a c ≥,∴43c e a =≤,又1e >,∴413e <≤.故离心率的取值范围为41,3⎛⎤⎥⎝⎦.故选C . 【名师点睛】解答本题时注意两点:一是注意数形结合在解题中的应用,特别是由题意得到PO a ≥u u u v;二是根据题意得到,,a b c 间的关系,再根据离心率的定义求解,属于基础题.3.【四川省华文大教育联盟2019届高三第二次质量检测考试数学】已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为()()12,0,,0F c F c -,过点2F 作x 轴的垂线,与双曲线的渐近线在第一象限的交点为P ,线段2PF 的中点M ,则此双曲线的渐近线方程为 A .2y x =± B .12y x =±C .4y x =±D .14y x =±【答案】A【解析】由题意知,双曲线的渐近线方程为b y x a =±,易求点P 的坐标为,bc c a ⎛⎫ ⎪⎝⎭,中点M 的坐标为,2bc c a ⎛⎫ ⎪⎝⎭,∵2222)2bc OM c a ⎛⎫=+= ⎪⎝⎭,∴224a b =,即2b a =.故选A . 【名师点睛】本题考查双曲线的方程与简单的几何性质,考查计算能力与转化能力,属于基础题. 4.【四川省棠湖中学2019届高三高考适应性考试数学】已知双曲线的中心在原点,焦点在坐标轴上,一条渐近线方程为340x y +=,则该双曲线的离心率是A .53 B .54C .43或53D .53或54【答案】D【解析】33404x y y x +=⇒=-,当焦点位于横轴时,2239416b b a a =⇒=,而222c a b =+,所以22295164c a c e a a -=⇒==; 当焦点位于纵轴时,22222222416165,,3993b bc a c c a b e a a a a -=⇒==+⇒=⇒==故选D . 【名师点睛】本题考查了通过双曲线的渐近线方程求离心率问题,解题的关键是对焦点的位置进行分类.5.【四川省棠湖中学2019届高三高考适应性考试数学】已知双曲线()2222:10,0x y C a b a b-=>>的左,右焦点分别为12,F F ,抛物线()220=>y px p 与双曲线C 有相同的焦点.设P 为抛物线与双曲线C 的一个交点,且12sin PF F ∠=,则双曲线C 的离心率为AB或3 C .2D .2或3【答案】D【解析】不妨设P 在第一象限且()00,P x y ,则1,02p F ⎛⎫- ⎪⎝⎭,2,02p F ⎛⎫⎪⎝⎭, 过P 作直线2px =-(抛物线的准线)的垂线,垂足为E , 则112F PE PF F ∠=∠,故112sin sin 7F PE PF F ∠=∠=, 因1F PE △为直角三角形,故可设,2p E ⎛⎫- ⎪⎝⎭,()0P x , 且25PE PF k ==,17PF k =,所以02052242p x k k px ⎧+=⎪⎨⎪=⎩,解得043p k x k =⎧⎨=⎩或062p k x k =⎧⎨=⎩, 若043p k x k =⎧⎨=⎩,则124F F k =,22752ke k k ==-; 若062p k x k =⎧⎨=⎩,则126F F k =,33752ke k k ==-. 综上可得,选D .【名师点睛】离心率的计算关键在于构建,,a b c 的一个等量关系,构建时可依据圆锥曲线的几何性质来转化,有两个转化的角度:(1)利用圆锥曲线的定义转化为与另一个焦点;(2)利用圆锥曲线的统一定义把问题转化为与曲线上的点到相应准线的距离.6.【四川省成都七中2019届高三5月高考模拟测试数学】已知双曲线1C :22142-=x y ,双曲线2C 的焦点在y 轴上,它的渐近线与双曲线1C 相同,则双曲线2C 的离心率为 A .3 B .2 CD .1【解析】由题意,双曲线2C 的焦点在y 轴上,它的渐近线与双曲线1C 相同,设双曲线2C 的方程为22(0)24y x λλ-=>,则双曲线2C =A . 【名师点睛】本题主要考查了双曲线的离心率的求解,其中解答中根据双曲线2C 的焦点在y 轴上,它的渐近线与双曲线1C 相同,得出双曲线2C 的方程的形式,再根据离心率的定义求解是解答的关键,着重考查了运算与求解能力,属于基础题.7.【四川省华文大教育联盟2019届高三第二次质量检测数学】已知双曲线的左、右焦点分别为()1,0F c -,()2,0F c ,过点2F 作x 轴的垂线,与双曲线的渐近线在第一象限内的交点为P ,线段2PF 的中点M 到,则双曲线的渐近线方程为 A .2y x =± B .12y x =±C .4y x =±D .14y x =±【答案】A【解析】设双曲线的渐近线方程为()0,0by x a b a=±>>, 根据题意可知P 点坐标,bc c a ⎛⎫ ⎪⎝⎭,M为2PF 中点,所以可得,2bc M c a ⎛⎫⎪⎝⎭, 所以222222bc OM c c a ⎛⎫=+= ⎪⎝⎭,所以224a b =,即2b a =, 所以双曲线的渐近线方程为2y x =±,故选A .【名师点睛】本题考查通过双曲线中,线段的几何关系求双曲线渐近线方程,属于简单题.8.【四川省雅安市2019届高三第三次诊断考试数学】双曲线2212x y -=的离心率为A BCD【解析】由双曲线的方程2212x y -=可得:222,1a b ==,所以2223c a b =+=,所以2c e a ===.故选D . 【名师点睛】本题主要考查了双曲线的简单性质,考查计算能力,属于基础题.9.【四川省内江市2019届高三第三次模拟考试数学】双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为34y x =,则该双曲线的离心率为 A .43 B .53C .54D .2【答案】C【解析】双曲线()2222100x y a b a b-=>>,的一条渐近线方程为34y x =,可得34b a =,即222916c a a -=,解得e 22516=,e 54=.故选C . 【名师点睛】本题考查双曲线的简单性质的应用,涉及双曲线的渐近线方程,离心率等知识,考查计算能力.10.【四川省双流中学2019届高三第一次模拟考试数学】已知M 为双曲线2222:1(0,0)x y C a b a b-=>>的右支上一点,,A F 分别为双曲线C 的左顶点和右焦点,线段FA 的垂直平分线过点M ,60MFA ∠=︒,则双曲线C 的离心率为A B .2 C .3 D .4【答案】D【解析】设双曲线另一个焦点为F ',如下图所示.因为线段FA 的垂直平分线过点M ,60MFA ∠=︒,所以MFA △是等边三角形,边长为a c +,M 为双曲线2222:1(0,0)x y C a b a b-=>>的右支上一点,所以有23MF MF a MF a c -=⇒='+',在MFF '△中,由余弦定理可得:'2222cos60MF MF FF MF FF ︒=+-'⋅', 即22430a ac c +-=,解得4a c =,即4ca=,双曲线的离心率为4,故选D . 【名师点睛】本题考查了双曲线的定义、离心率,考查了转化思想、数形结合思想.11.【四川省宜宾市2019届高三第三次诊断性考试数学】已知双曲线22213x y a -=的左右焦点分别为12,F F ,以它的一个焦点为圆心,半径为a 的圆恰好与双曲线的两条渐近线分别切于,A B 两点,则四边形12F AF B 的面积为A .3B .4C .5D .6【答案】D【解析】因为双曲线22213x y a -=的左右焦点分别为()()12,0,0F c F c -,,双曲线的渐近线方程为y x a=±0ay -=, 以它的一个焦点为圆心,半径为a 的圆恰好与双曲线的两条渐近线分别切于A ,B 两点, 根据焦点到渐近线的距离及双曲线中a b c 、、的关系,可得223a c a ==+⎪⎩,解得a c ==A ⎝⎭,则四边形12F AF B的面积为1212122622F AF B F AF S S ==⨯⨯=.故选D . 【名师点睛】本题考查双曲线的简单性质以及圆与双曲线的位置关系的应用,考查转化思想以及计算能力,属于中档题.12.【四川省成都市外国语学校2019届高三一诊模拟考试数学】过双曲线C :22221x y a b-=的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为A .221124x y -=B .22179x y -=C .22188x y -=D .221412x y -=【答案】D【解析】∵以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点), ∴半径4R c ==,则圆的标准方程为()22416x y -+=,(),0A a ,b y a b a=⋅=,即(),B a b ,则()22416a b -+=,即2281616a a b -++=,即280c a -=,即816a =,则2a =,216412b =-=,则双曲线C 的方程为221412x y -=,故选D .【名师点睛】本题主要考查双曲线方程的求解,根据圆的性质先求出半径4c =是解决本题的关键.属于简单题.13.【四川省成都市2019届高三毕业班第二次诊断性检测数学】已知双曲线()222:10y C x b b-=>的焦距为4,则双曲线C 的渐近线方程为 A.y =B .2y x =±C .3y x =± D.y =【答案】D【解析】双曲线C :()22210y x b b-=>的焦距为4,则2c =4,即c =2,∵1+b 2=c 2=4,∴b =C 的渐近线方程为y =x ,故选D .【名师点睛】本题考查双曲线的方程和性质,考查双曲线的渐近线方程的运用,属于基础题.14.【四川省2019届高三联合诊断数学】已知双曲线()222:103x y C a a -=>的右焦点为F ,则点F 到C的渐近线的距离为 A .3 BC .a D【答案】B【解析】因为双曲线()222:103x y C a a -=>的右焦点为()0F c ,,渐近线y x =, 所以点F到渐近线y x ===B . 【名师点睛】本题主要考查利用双曲线的方程求焦点坐标与渐近线方程,以及点到直线距离公式的应用,属于基础题.若双曲线方程为22221x y a b-=,则渐近线方程为b y x a =±.15.【四川省广安、眉山、内江、遂宁2019届高三第一次诊断性考试数学】若双曲线221x y m-=的一条渐近线为20x y -=,则实数m = A .2 B .4 C .6 D .8【答案】B【解析】∵双曲线的方程为221x y m-=,∴双曲线的渐近线方程为yx ,又∵一条渐近线方程为y =12x ,∴m =4.故选B . 【名师点睛】本题给出双曲线的方程和一条渐近线方程,求参数m 的值,属于基础题.16.【四川省高2019届高三第一次诊断性测试数学】中心在原点,对称轴为坐标轴的双曲线C 的两条渐近线与圆()2221x y -+=都相切,则双曲线C 的离心率是A .2B .2C2D.3或2【答案】A【解析】设双曲线C 的渐近线方程为y =kx,∴k =,得双曲线的一条渐近线的方程为3y =,∴焦点在x 、y 轴上两种情况讨论: ①当焦点在x轴上时有:b c e a a ==②当焦点在y轴上时有:23a c e b a ===.∴求得双曲线的离心率2A . 【名师点睛】本小题主要考查直线与圆的位置关系、双曲线的简单性质等基础知识,考查运算求解能力,考查数形结合思想.解题的关键是:由圆的切线求得直线的方程,再由双曲线中渐近线的方程的关系建立等式,从而解出双曲线的离心率的值.此题易忽视两解得出错误答案. 17.【贵州省遵义航天高级中学2019届高三第十一模(最后一卷)数学】设12,F F 是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,P 为双曲线右支上一点,若1290F PF ︒∠=,c =2,213PF F S =△,则双曲线的两条渐近线的夹角为 A .5π B .4πC .π6D .π3【答案】D【解析】由题意可得22121216132PF PF PF PF ⎧+=⎪⎨=⎪⎩,可得212)4PF PF -=(, 可得1222PF PF a -==,可得a =1,b所以双曲线的渐近线方程为y =,可得双曲线的渐近线的夹角为π3,故选D . 【名师点睛】本题主要考察双曲线的性质及渐近线的方程,熟练掌握其性质是解题的关键.18.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学】已知抛物线2y =的焦点为双曲线2221(0)x y a a-=>的一个焦点,那么双曲线的渐近线方程是A.3y x =±B.y =C.2y x =± D.y =【答案】C【解析】抛物线2y =的焦点为),所以双曲线中c =,由双曲线方程2221x y a-=,222+=a b c,所以a =因此双曲线的渐近线方程为2y x =±,故选C . 【名师点睛】本题考查抛物线的焦点,根据焦点求双曲线的方程和渐近线方程,属于简单题. 19.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学】已知A 为双曲线22221(0,0)x y a b a b-=>>的右顶点,P 为双曲线右支上一点,若点P 关于双曲线中心O 的对称点Q 满足AP k ⨯14AQ k =,则双曲线的离心率为 A1BCD1【答案】B【解析】设(,),(,),P x y Q x y --∵AP k ⨯14AQ k =, ∴222000014y y y y y x a x a x a x a x a -----⋅=⋅==----+-, ∵22221x y a b -=,∴22222=()b y x a a-,∴222222()14b x a ax a -=-, ∴a =2b ,∴222244()a b c a ==-,∴2254a c =,∴2e =.故选B . 20.【云南省昆明市2019届高三高考模拟(第四次统测)数学】已知双曲线C的一个焦点坐标为0),渐近线方程为2y x =±,则C 的方程是 A .2212y x -=B .2212x y -=C .2212y x -=D .2212x y -=【答案】B【解析】因为双曲线C的一个焦点坐标为),所以c =又因为双曲线C的渐近线方程为2y x =±,所以有2b a=a ⇒=,c =而c =1a b ==,因此双曲线方程为2212x y -=,故选B .【名师点睛】本题考查了求双曲线的标准方程,考查了解方程、运算能力.21.【云南省2019届高三第一次毕业生复习统一检测数学】双曲线M 的焦点是1F ,2F ,若双曲线M 上存在点P ,使12PF F △是有一个内角为23π的等腰三角形,则M 的离心率是 A1B1C D 【答案】C【解析】不妨设P 在第一象限,由于12PF F △是有一个内角为23π的等腰三角形,故()2P c ,代入双曲线方程得2222431c c a b -=,化简得4224480c a c a -+=,42810e e -+=,解得2e =,故e =C . 【名师点睛】本小题主要考查双曲线离心率的求法,考查等腰三角形的知识,属于基础题.22.【西藏山南市第二高级中学2019届高三下学期第一次模拟考试数学】已知椭圆22221x y a b+=左右焦点分别为12,F F ,双曲线22221x y m n-=的一条渐近线交椭圆于点P ,且满足12PF PF ⊥,已知椭圆的离心率为134e =,则双曲线的离心率2e =AB .8C .4D .2【答案】B【解析】椭圆22221x y a b+=左右焦点分别为12,F F ,椭圆的离心率为134e =,不妨令4,3a c ==,则b =221167x y +=,双曲线22221x y m n-=的一条渐近线交椭圆于点P ,且满足12PF PF ⊥,可设(),,0,0P s t s t >>,可得()13,PF s t =---u u u r ,()23,PF s t =--u u u u r ,则222291167s t s t ⎧+=⎪⎨+=⎪⎩,解得22329499s t ⎧=⎪⎪⎨⎪=⎪⎩, 代入双曲线方程渐近线方程n y x m =±,可得224932n m =,双曲线的离心率为:28e ===.故选B . 【名师点睛】本题考查椭圆的简单性质以及双曲线的简单性质的应用,利用垂直关系和点在椭圆上建立方程组,求得双曲线,a b 之间满足的关系是解题关键.23.【广西柳州市2019届高三毕业班1月模拟考试高三数学】已知双曲线()2222100x y C a b a b-=>>:,的离心率为2,左焦点为1F ,点()0Q (c 为半焦距).P 是双曲线C 的右支上的动点,且1PF PQ +的最小值为6.则双曲线C 的方程为___________.【答案】2213y x -=【解析】设双曲线右焦点为2F ,则122PF PF a -=,所以122PF PQ a PF PQ +=++, 而2PF PQ +的最小值为22QF c ==,所以1PF PQ +最小值为226a c +=,又2c a =,解得12a c ==,,于是23b =,故双曲线方程为2213y x -=. 【点睛】本题考查了双曲线的方程,双曲线的定义,及双曲线的离心率,考查了计算能力,属于中档题.24.【西藏拉萨市2019届高三第三次模拟考试数学】已知双曲线C :()222210,0x y a b a b-=>>的左、右焦点为1F 、2F ,过1F 且斜率为2的直线l 与C 的一条渐近线在第一象限相交于A 点,若21AF AF ⊥,则该双曲线的离心率为___________. 【答案】3【解析】∵21AF AF ⊥,∴12AF F △是直角三角形,又O 是12F F 中点,∴AO c =,又A 在双曲线渐近线上,∴(,)A a b ,∴12tan AF F ∠=2b ac =+, 变形可得:22230c ac a --=,()(3)0c a c a +-=,∴3c a =,3ce a==.故答案为:3. 【点睛】本题考查双曲线的几何性质,解题关键是掌握双曲线的性质:即过双曲线22221x y a b -=(0,0)a b >>的右顶点A 作x 轴垂线,交渐近线于点P ,则OP c =,AP b =.。

2019届成都二诊理科数学答案

2019届成都二诊理科数学答案

( 二㊁ 填空题 : 每小题 5 分 , 共2 0 分)
第Ⅱ卷
( 非选择题 , 共9 0 分)
( ( ) 解: 由题意 , 得2 又 S3 = 1 7. Ⅰ) a2 +1 = a1 + a3 . a1 + a2 + a3 =1 4, ) ( =1 4- ʑ ʑ2 a2 +1 a2 , a2 =4, 4 1 ȵS3 = +4+4 4, ʑ q=1 q=2 或q= , 2 q , ȵ q>1 ʑ q=2.
1 1-x ᶄ ( 令 g( x) = l n x-x+1. ʑg x) = -1= . x x ᶄ ᶄ , , , ) , 单调递增 ; 当 xɪ( 单调递减 . 当 xɪ( 时, 时, > 0 < 0 0 1 x) x) 1 + ¥) x) x) g( g( g( g( ) 在( 上有最大值 g( ʑg( x) 0, + ¥) 1 =0. ʑg( x) = l n x-x+1ɤ0. ������������5 分 ������������6 分
������������7 分 ������������8 分
������������1 0分 ������������1 1分 ������������1 2分 ������������1 分 ������������2 分 ������������3 分
1 a x- a ᶄ ( ( 解: 由已知 , 有f 2 1. Ⅰ) x) = - 2= 2 . x x x
C3 C1 5 3 则P = 4 C8
������������1 0分 ������������1 2分 ������������1 分 ������������2 分
( 平面 B 且D Ⅱ) ȵ 平面 B E F C ʅ 平面 A E F D, E F C ɘ 平面 A E F D =E F, F ʅE F, ʑD ʑD ʑD F ʅ 平面 B E F C, F ʅC F, F, C F, E F 两两垂直 . ȵDM =1, ʑFM =1. ) , ) , ) , ) D( A( B( 1, 0, 0 2, 0, 0 1, 0, 2 0, 1, 2 . ʑM ( ң ( , ,) ң ң ) , ) A B=( -1, 1, 0 DA = ( -1, 0, 2 . ʑMA = 0 0 2 , ������������8 分 , m =( x1 , z1) n= ( x2 , z2) . y1 , y2 , 由 设平面 MA 平面 A B, B D 的法向量分别为 ң 2 z1 =0 MA ������m =0 , 得 . ң ������ -x1 + y1 =0 A B m =0

2019届成都二诊理科数学答案

2019届成都二诊理科数学答案

2019届成都⼆诊理科数学答案路漫漫其修远兮成都市2016级⾼中毕业班第⼆次诊断性检测数学(理科)参考答案及评分意见第Ⅰ卷(选择题,共60分)⼀、选择题:(每⼩题5分,共60分)1.A;2.D;3.A;4.A;5.C;6.B;7.C;8.C;9.B;10.B;11.C;12.D.第Ⅱ卷(⾮选择题,共90分)⼆、填空题:(每⼩题5分,共20分)213.-1;14.3π;15.[,1];16.6.2三.解答题:(共70分)17.解:(Ⅰ)由题意,得2(a2+1)=a1+a3.⼜S3=a1+a2+a3=14,∴2(a2+1)=14-a2,∴a2=4,??2分41∵S3=+4+4q=14,∴q=2或q=,??4分q2∵q>1,∴q=2.??5分∴a n=a2qn-2=4?2n-2=2n.??6分(Ⅱ)由(Ⅰ),知a n.∴b n=a n?l o g n?n.??7分=22a n=2n∴T n=1×21+2×22+3×23+?+(n-1)×2n-1+n×2n.??8分∴2T n=1×22+2×23+3×24+?+(n-1)×2n+n×2n+1.??9分∴-T n=2+22+23+24+?+2n-n×2n+1??10分2(1-2n)=-n×2n+1=(1-n)2n+1-2.??11分80(25×30-10×15)280k==35×45×40×407≈11.429.??3分∵11.429>6.635,∴有99%的把握认为满意程度与年龄有关.??5分(Ⅱ)据题意,该8名员⼯的贡献积分及按甲,⼄两种⽅案所获补贴情况为:积分23677111212⽅案甲24003100520059005900870094009400⽅案⼄30003000560056005600900090009000由表可知,“A类员⼯”有5名.??8分设从这8名员⼯中随机抽取4名进⾏⾯谈,恰好抽到3名“A类员⼯”的概率为P.数学(理科)“⼆诊”考试题参考答案第1页(共4页)吾将上下⽽求索路漫漫其修远兮C313则 P =C4810分3=. ??12分719.解:(Ⅰ )由题意,可知在等腰梯形 A B C D 中,A B ∥CD,∵E,F 分别为AB,C D 的中点,∴EF ⊥AB,E F ⊥CD . ??1分∴折叠后,E F ⊥DF,E F ⊥C F . ??2分∵DF ∩C F =F ,∴EF ⊥平⾯ D C F . ??4分⼜ MC ?平⾯ D C F ,故EF ⊥MC .5分(Ⅱ)∵平⾯B E F C ⊥平⾯ A E F D ,平⾯B E F C ∩平⾯ A E F D =EF,且 DF ⊥EF, ∴DF ⊥平⾯B E F C ,∴DF ⊥C F ,∴DF,C F ,E F 两两垂直.以F 为坐标原点,分别以FD,F C ,F E 所在直线为x 轴,y 轴,z 轴建⽴如图所⽰的空间直⾓坐标系F x y z .6分∵DM =1,∴F M =1.8分设平⾯ MAB,平⾯ A B D 的法向量分别为 m =(x 1,y 1,z 1),n = (x 2,y 2,z 2).→?m =0{{2z 1=0MA 由,得.→?m =0-x 1+y 1=0 A B取x 1=1,则 m = (1,1,0).9分→?n =0{D A {-x 2+2z 2=0由,得.→?n =0-x 2+y 2=0 A B取x 2=2,则n = (2,2,1).10分m ?n2+22211分==|m |n |32×322∴⼆⾯⾓M-AB-D的余弦值为.??12分3c120.解:(Ⅰ)由题意,得2b=42,.??2分a3=⼜a2-c2=b2,∴a=3,b=22,c=1.??3分x y22∴椭圆C的标准⽅程为=1.??4分+98(Ⅱ)由(Ⅰ),可知A(-3,0),B(3,0),F1(-1,0).由题意,设直线F1M的⽅程为x=m y-1.??5分记直线F1M与椭圆的另⼀交点为M′.设M(x1,y)(y1>0),M′x2,y ().12∵F1M∥F2N,根据对称性,得N(-x2,-y).??6分2数学(理科)“⼆诊”考试题参考答案第2页(共4页)吾将上下⽽求索路漫漫其修远兮{8x2+9y2=72联⽴2-16m y-64=0,其判别式△>0.,消去x,得(8m2+9)yx=m y-116m643y12y2由3k1+2k2=0,得=0,即5m y1y2+6y1+4y2=0.②??8分+m y1+2m y2+2128m-112m由①②,解得y,y.??10分1=2=8m2+98m2+9∵y1>0,∴m>0.128m?(-112m)-646∴y1y2=2=.∴m=(8m2+9)8m2+912.??11分6∴直线F1M的⽅程为x=y-1,即26x-y+26=0.??12分121a x-a21.解:(Ⅰ)由已知,有f2.??1分′(x)=-2=x x x1当a≤0时,f()=-l n2+a<0,与条件f(x)≥0⽭盾;??2分2当a>0时,若x∈(0,a),则f′(x)<0,f(x)单调递减;若x∈(a,+¥),则f′(x)>0,则f(x)单调递增.??3分a由题意f(x)≥0,∴l n a+1-a≥0.11-x令g(x)=l n x-x+1.∴g′(x)=-1=.x x当x∈(0,1)时,g′(x)>0,g(x)单调递增;当x∈(1,+¥)时,g′(x)<0,g(x)单调递减.∴g(x)在(0,+¥)上有最⼤值g(1)=0.∴g(x)=l n x-x+1≤0.∴l n a-a+1≤0.??5分∴l n a-a+1=0,∴a=1,综上,当f(x)≥0时,实数a取值的集合为{1}.??6分1(Ⅱ)由(Ⅰ),可知当a=1时,f(x)≥0,即l n x≥1-在x∈(0,+¥)恒成⽴.x1要证e x+2+(e-2)x,≥2-l n x+xx只需证当x>0时,e x-x2-(e-2)x-1≥0.??7分令h(x)=e x-x2-(e-2)x-1(x≥0).则h′(x)=e x-2x-(e-2).令u(x)=e x-2x-(e-2).则u′(x)=e x-2.由u′(x)=0,得x=l n2.??8分当x∈[0,l n2)时,u′(x)<0,u(x)单调递减;当x∈[l n2,+¥)时,u′(x)>0,u(x)单调递增.即h′(x)在(0,l n2)上单调递减,在(l n2,+¥)上单调递增.??9分⽽h′(0)=1-(e-2)=3-e>0,h′(l n2)<h′(1)=0,数学(理科)“⼆诊”考试题参考答案第3页(共4页)吾将上下⽽求索路漫漫其修远兮∴?x0∈(0,l n2),使得h′(x0)=0.??10分当x∈(0,x0)时,h′(x)>0,h(x)单调递增;当x∈(x0,1)时,h′(x)<0,h(x)单调递减;当x∈(1,+¥)时,h′(x)>0,h(x)单调递增.??11分⼜h(0)=1-1=0,h(1)=e-1-(e-2)-1=0,综上所述,e x+2+(e-2)x成⽴.??12分≥2-l n x+xx{x=4+2c o sβ22.解:(Ⅰ)由曲线C的参数⽅程,得(x-4)2+y2=4.??2分y=2s i nβ2+y∵β∈[0,π],∴曲线C的普通⽅程为(x-4)2=4(y≥0).??3分{x=t c o sα∵直线l的参数⽅程为(t为参数,α为倾斜⾓),y=t s i nα∴直线l的倾斜⾓为α,且过原点O(极点).??4分∴直线l的极坐标⽅程为θ=α,ρ∈R.??5分(Ⅱ)由(Ⅰ),可知曲线C为半圆弧.若直线l与曲线C恰有⼀个公共点P,则直线l与半圆弧相切.??6分21π设P(ρ,θ).由题意,得s i nθ=.故θ=.??8分=426⽽ρ2+22=42,∴ρ=23.??9分π∴点P的极坐标为(23,).??10分623.解:(Ⅰ)∵m>0,-3m,x≥mì∴f(x)=x-m-x+2m=-2x-m,-2m<x<mí.??3分∴当x≤-2m时,f(x)取得最⼤值3m.??4分∴m=1.??5分(Ⅱ)由(Ⅰ),得a2+b2=1,a b a4+b433+==b a a b (a2+b2)2-2a2b21=-2a b.??7分a b a b∵a2+b2=1≥2a b,当且仅当a=b时等号成⽴,1∴0<a b≤2.??8分11令h(t)=-2t,0<t≤.t211则h(t)在(0,]上单调递减.∴h(t)≥h()=1.??9分2211∴当0<a b≤时,-2a b≥1.2a ba b∴+b a33≥1.??10分数学(理科)“⼆诊”考试题参考答案第4页(共4页)。

四川省成都市2019届高三数学第二次诊断性检测试题理(含解析)

四川省成都市2019届高三数学第二次诊断性检测试题理(含解析)

四川省成都市2019届高三数学第二次诊断性检测试题理(含解析)注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。

2.考试结束后,只将答题卡交回。

一、选择题:本大题共12小题。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设全集,集合,,则()A. B.C. D.【答案】A【解析】【分析】进行交集、补集的运算即可.【详解】∁U B={x|﹣2<x<1};∴A∩(∁U B)={x|﹣1<x<1}.故选:A.【点睛】考查描述法的定义,以及交集、补集的运算.2.已知双曲线的焦距为4,则双曲线的渐近线方程为()A. B.C. D.【答案】D【解析】【分析】先求出c=2,再根据1+b2=c2=4,可得b,即可求出双曲线C的渐近线方程.【详解】双曲线C:的焦距为4,则2c=4,即c=2,∵1+b2=c2=4,∴b,∴双曲线C的渐近线方程为y x,故选:D.【点睛】本题考查双曲线的方程和性质,考查双曲线的渐近线方程的运用,属于基础题.3.已知向量,,则向量在向量方向上的投影为()A. B. C. -1 D. 1【答案】A【解析】【分析】本题可根据投影的向量定义式和两个向量的数量积公式来计算.【详解】由投影的定义可知:向量在向量方向上的投影为:,又∵,∴.故选:A.【点睛】本题主要考查投影的向量定义以及根据两个向量的数量积公式来计算一个向量在另一个向量上的投影,本题属基础题.4.已知,条件甲:;条件乙:,则甲是乙的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】先通过解分式不等式化简条件乙,再判断甲成立是否推出乙成立;条件乙成立是否推出甲成立,利用充要条件的定义判断出甲是乙成立的什么条件.【详解】条件乙:,即为⇔若条件甲:a>b>0成立则条件乙一定成立;反之,当条件乙成立,则也可以,但是此时不满足条件甲:a>b>0,所以甲是乙成立的充分非必要条件故选:A.【点睛】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.5.为比较甲、以两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数;②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定;④从最近五场比赛的得分看,甲比乙更稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【考试时间:2019年3月25日星期一下午3:00~5:00】成都市2016级高中毕业班第二次诊断性检测数 学(理科)本试卷分选择题和非选择题两部分。

第Ⅰ卷(选择题)1至2页,第Ⅱ卷(非选择题)3至4页。

共4页。

满分150分,考试时间120分钟。

注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。

2.考试结束后,只将答题卡交回。

第Ⅰ卷(选择题,共60分)一、选择题:本大题共12小题,每小题5个,共60分。

在每小题给出的四个选项中,只 有一项是符合题目要求的。

1.设全集U R =,集合{}13A x x =-<<,{}21B x x x =≤-≥或,则()U A C B ⋂= A.{}11x x -<< B.{}23x x -<< C.{}23x x -≤<D.{}21x x x ≤->-或2.已知双曲线()222:10y C x b b-=>的焦距为4,则双曲线C 的渐近线方程为A.y =B.2y x =±C.3y x =±D.y =3.已知向量)a =,(b =-,则向量b 在向量a 方向上的投影为A.C.-1D.14.已知,a b R ∈,条件甲:0a b >>;条件乙:11a b<,则甲是乙的 A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件5.为比较甲、以两名篮球运动员的近期竞技状态,选取这两名球员最近五场比赛的得分制成如图所示的茎叶图,有以下结论:①甲最近五场比赛得分的中位数高于乙最近五场比赛得分的中位数; ②甲最近五场比赛得分平均数低于乙最近五场比赛得分的平均数;③从最近五场比赛的得分看,乙比甲更稳定; ④从最近五场比赛的得分看,甲比乙更稳定。

其中所有正确结论的编号为: A.①③B.①④C.②③D.②④6.若,,2παβπ⎛⎫∈⎪⎝⎭,且sin α=()sin αβ-=,则sin β=A.10 B.2C.12D.1107.已知,a b 是两条异面直线,直线c 与,a b 都垂直,则下列说法正确的是 A.若c ⊂平面α,则a α⊥ B.若c ⊥平面α,则//a α,//b a C.存在平面α,使得c α⊥,a α⊂,//b aD.存在平面α,使得//c a ,a α⊥,b a ⊥8.将函数()f x 的图像上的所有点向右平移4π个单位长度,得到函数()g x 的图像,若函数()()s i n 0,0,2g x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图像如图所示,则函数()f x 的解析式为A.()5sin 12f x x π⎛⎫=+⎪⎝⎭B.()2cos 23f x x π⎛⎫=-+⎪⎝⎭C.()cos 23f x x π⎛⎫=+⎪⎝⎭ D.()7sin 212f x x π⎛⎫=+⎪⎝⎭9.已知定义域R 的奇函数()f x 的图像关于直线1x =对称,且当01x ≤≤时,()3f x x =,则52f ⎛⎫= ⎪⎝⎭A.278-B.18-C.18D.27810.已知a R ∈且为常数,圆22:220C x x y ay ++-=,过圆C 内一点()1,2的直线l 与圆C 相切交于,A B 两点,当弦AB 最短时,直线l 的方程为20x y -=,则a 的值为 A.2B.3C.4D.511.用数字0,2,4,7,8,9组成没有重复数字的六位数,其中大于420789的正整数个数为 A.479B.480C.455D.45612.某小区打算将如图的一直三角形ABC 区域进行改建,在三边上各选一点连成等边三角形DEF ,在其内建造文化景观.已知20AB m =,10AC m =,则DEF ∆区域内面积(单位:2m )的最小值为A.C.7D.7第Ⅱ卷本卷包括必考题和选考题两部分。

第13题~第21题为必考题,每个试题考生都必须做。

第22~23题为选考题,考生根据要求做答。

二、填空题:本大题共4小题,每小题5分。

共20分。

把答案填写在答题卡相应位置上。

13.已知复数12iz i+=,则z =_____。

14.已知三棱锥P ABC -的四个顶点都在球O 的表面上,若1AB AC AD ===,BC CD BD ===O 的表面积为_____。

15.在平面直角坐标系xOy 中,定义两点()()1122,,,A x y B x y 间的折线距离为()1212,d A B x x y y =-+-,已知点()()()0,0,,,0,1O C x y d C =,的取值范围为___.16.已知F 为抛物线2:4C x y =的焦点,过点F 的直线l 与抛物线C 相交于不同的两点,A B ,抛物线C 在,A B 两点处的切线分别是12,l l ,且12,l l 相交于点P ,则32PF AB+的小值是___. 三、解答题:本大题共6小题,共70分。

解得应写出文字说明、证明过程或验算步骤。

17.(本题满分12分)已知等比数列{}n a 的前n 项和为S ,公比1q >,且21a +为13,a a 的等差中 项,314S =.(Ⅰ)求数列{}n a 的通项公式(Ⅱ)记2log n n n b a a =,求数列{}n b 的前n 项和n T .18.(本小题满分12分)为了让税收政策更好的为社会发展服务,国家在修订《中华人民共和国个人所得税法》之后,发布了《个人所得税专项附加扣除暂行办法》,明确“专项附加扣除”就是子女教育、继续教育大病医疗、住房贷款利息、住房租金赠养老人等费用,并公布了相应的定额扣除标准,决定自2019年1月1日起施行,某机关为了调查内部职员对新个税方案的满意程度与年龄的关系,通过问卷调查,整理数据得如下2×2列联表:(1)根据列联表,能否有99%的把握认为满意程度与年龄有关?(2)为了帮助年龄在40岁以下的未购房的8名员工解决实际困难,该企业拟员工贡献积分x (单位:分)给予相应的住房补贴y (单位:元),现有两种补贴方案,方案甲:1000700y x =+;方案乙:3000,055600,5109000,10x y x x <≤⎧⎪=<≤⎨⎪>⎩.已知这8名员工的贡献积分为2分,3分,6分,7分,7分,11分,12分,12分,将采用方案甲比采用方案乙获得更多补贴的员工记为“A 类员工”.为了解员工对补贴方案的认可度,现从这8名员工中随机抽取4名进行面谈,求恰好抽到3名“A 类员工”的概率。

附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:19.(本小题满分12分)如图①,在等腰梯形ABCD 中,//AB CD ,E ,F 分别为AB ,CD 的中点,224CD AB EF ===,M 为DF 中点现将四边形BEFC 沿EF 折起,使平面BEFC ⊥平面AEFD ,得到如图②所示的多面体在图②中,(Ⅰ)证明:EF MC ⊥;(Ⅱ)求三棱锥M AB D --的余弦值。

20.(本小题满分12分)已知椭圆()2222:10x y C a b a b +=>>的短轴长为,离心率为13。

(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设椭圆C 的左,右焦点分别为1F ,2F 左,右顶点分别为A ,B ,点M ,N ,为椭圆C 上位于x 轴上方的两点,且12//F M F N ,记直线AM ,BN 的斜率分别为1k ,2k ,求12320k k +=,求直线1F M 的方程。

21.(本小题满分12分)已知函数()1ln 1f x x a x ⎛⎫=+- ⎪⎝⎭,a R ∈。

(Ⅰ)若()0f x ≥,求实数a 取值的集合; (Ⅱ)证明:()12ln 2x e x e x x+≥-+-。

请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分.作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑。

22.(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩(为参数,倾斜角),曲线C 的参数方程为42cos 2sin x y ββ=+⎧⎨=⎩(β为参数,[]0,βπ∈),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系。

(Ⅰ)写出曲线C 的普通方程和直线的极坐标方程;(Ⅱ)若直线与曲线C 恰有一个公共点P ,求点P 的极坐标。

23.(本小题满分10分)选修4-5:不等式选讲已知函数()2f x x m x m =---+的最大值为3,其中0m >。

(Ⅰ)求m 的值;(Ⅱ)若,a b R ∈,0ab >,222a b m +=,求证:221a b b a+≥。

成都市2016级高中毕业班第二次诊断性检测数学(理科)参考答案及评分意见第Ⅰ卷 (选择题,共60分)一、选择题:(每小题5分,共60分) 1.A ;2.D ;3.A ;4.A ;5.C ;6.B ;7.C ;8.C ;9.B ;10.B ; 11.C ; 12.D.第Ⅱ卷 (非选择题,共90分)二、填空题:(每小题5分,共20分) 13.-1;14.3π;15.2⎤⎥⎣⎦;16.6.三.解答题:(共70分)17.解:(Ⅰ)由题意,得()21321a a a +=+.又312314S a a a =++=, ∴()222114a a +=-,∴24a =,……2分∵344414S q q =++=,∴2q =或12q =, ……4分∵1q >,∴2q =.……5分 ∴222422n n n n a a q--===.……6分 (Ⅱ)由(Ⅰ),知2n n a =.∴2log 2nn n n b a a n ==.……7分 ∴()1231122232122n n n T n n -=⨯+⨯+⨯++-⨯+⨯. ……8分 ∴()23412122232122n n n T n n +=⨯+⨯+⨯++-⨯+⨯.……9分 ∴2341222222n n n T n +-=+++++-⨯……10分()()11212212212n n n n n ++-=-⨯=---.……11分 ∴()1122n n T n +=-+.……12分18.解:(Ⅰ)根据列联表可以求得2K 的观测值:()280253010258011.429354540407k ⨯-⨯==≈⨯⨯⨯.……3分∵11.429 6.635>.∴有99%的把握认为满意程度与年龄有关.……5分(Ⅱ)据题意,该8名员工的贡献积分及按甲、乙两种方案所获补贴情况为:由表可知,“A 类员工”有5名.……8分设从这8名员工中随机抽取4名进行面谈,恰好抽到3名“A 类员工”的概率为P .则315348C C P C = ……10分37=. ……12分19.解:(Ⅰ)由题意,可知在等腰梯形ABCD 中,//AB CD , ∵E ,F 分别为AB ,CD 的中点,∴EF AB ⊥,EF CD ⊥. ……1分 ∴折叠后,EF DF ⊥,EF CF ⊥.……2分 ∵DFCF F =,∴EF ⊥平面DCF .……4分 又MC ⊂平面DCF ,∴EF MC ⊥.……5分(Ⅱ)∵平面BEFC ⊥平面AEFD ,平面BEFC 平面AEFD EF =,且DF EF ⊥,∴DF ⊥平面BEFC ,∴DF CF ⊥,∴DF ,CF ,EF 两两垂直.以F 为坐标原点,分别以FD ,FC ,FE 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系Fxyz .……6分∵1DM =,∴1FM =.∴()1,0,0M ,()2,0,0D ,()1,0,2A ,()0,1,2B . ∴()0,0,2MA =,()1,1,0AB =-,()1,0,2DA =-.……8分设平面MAB ,平面ABD 的法向量分别为()111,,m x y z =,()222,,n x y z =.由00MA m AB m ⎧=⎪⎨=⎪⎩,得111200z x y =⎧⎨-+=⎩.取11x =,则()1,1,0m =.……9分由0DA n AB n ⎧=⎪⎨=⎪⎩,得2222200x z x y -+=⎧⎨-+=⎩.取22x =,则()2,2,1n =.……10分∵cos ,3m n m n m n ===, ……11分∴二面角M AB D --. ……12分20.解:(Ⅰ)由题意,得2b =13c a =. ……2分 又222a c b -=,∴3a =,b =1c =.……3分∴椭圆C 的标准方程为22198x y +=. ……4分(Ⅱ)由(Ⅰ),可知()3,0A -,()3,0B ,()11,0F -. 据题意,直线1F M 的方程为1x my =- .……5分记直线1F M 与椭圆的另一交点为M ',设()()111,0M x y y >,()22,M x y '. ∵12//F M F N ,根据对称性,得()22,N x y --.……6分联立2289721x y x my ⎧+=⎨=-⎩,消去x ,得()228916640m y my +--=,其判别式0∆>, ∴1221689m y y m +=+,1226489y y m =-+.① ……7分由12320k k +=,得121232022y y my my +=++,即12125640my y y y ++=.②……8分由①②,解得1212889m y m =+,2211289my m -=+.……10分∵10y >,∴0m >. ∴()()12222128112648989m m y y m m--==++.∴m =. ……11分∴直线1F M的方程为1x y =-,即0y -+=. ……12分 21.解:(Ⅰ)由已知,有()221a x af x x x x-'=-=.……1分当0a ≤时,1ln 202f a ⎛⎫=-+<⎪⎝⎭,与条件()0f x ≥矛盾; ……2分当0a >时,若()0,x a ∈,则()0f x '<,()f x 单调递减; 若(),x a ∈+∞,则()0f x '>,()f x 单调递增.……3分∴()f x 在()0,+∞上有最小值()1ln 1ln 1f a a a a a a ⎛⎫=+-=+- ⎪⎝⎭. ……4分由题意()0f x ≥,∴ln 10a a +-≥. 令()ln 1g x x x =-+.∴()111x g x x x-'=-=. 当()0,1x ∈时,()0g x '>,()g x 单调递增; 当()1,x ∈+∞时,()0g x '<,()g x 单调递减.∴()g x 在()0,+∞上有最大值()10g =.∴()ln 10g x x x =-+≤. ∴ln 10a a -+≤.……5分∴ln 10a a -+=,∴1a =,综上,当()0f x ≥时,实数a 取值的集合为{}1.……6分(Ⅱ)由(Ⅰ),可知当1a =时,()0f x ≥,即1ln 1x x≥-在()0,+x ∈∞恒成立. 要证()212ln 2x e x x e x x+≥-++-,只需证当0x >时,()2210xe x e x ----≥.……7分令()()()2210xh x e x e x x =----≥.则()()22xh x e x e '=---. 令()()22xu x e x e =---.则()2xu x e '=-.由()0u x '=,得ln 2x =.……8分当[)0,ln 2x ∈时,()0u x '<,()u x 单调递减; 当[)ln 2,x ∈+∞时,()0u x '>,()u x 单调递增.即()h x '在()0,ln 2上单调递减,在()ln 2,+∞上单调递增.……9分而()()01230h e e '=--=->,()()ln 210h h ''<=, ∴()00,ln 2x ∃∈,使得()00h x '=.……10分当()00,x x ∈时,()0h x '>,()h x 单调递增;当()0,1x x ∈时,()0h x '<,()h x 单调递减;当()1,x ∈+∞时,()0h x '>,()h x 单调递增.……11分又()0110h =-=,()()11210h e e =----=,∴对0x ∀>,()0h x ≥恒成立,即()2210xe x e x ----≥.综上所述,()212ln 2x e x x e x x+≥-++-成立. ……12分22.解:(Ⅰ)由曲线C 的参数方程42cos 2sin x y ββ=+⎧⎨=⎩,得()2244x y -+=.……2分∵[]0,βπ∈,∴曲线C 的普通方程为()()22440x y y -+=≥. ……3分∵直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩(t 为参数,α为倾斜角),∴直线l 的倾斜角为α,且过原点O (极点). ……4分 ∴直线l 的极坐标方程为θα=,R ρ∈.……5分(Ⅱ)由(Ⅰ),可知曲线C 为半圆弧.若直线l 与曲线C 恰有一个公共点P ,则直线l 与半圆弧相切. ……6分 设(),P ρθ,由题意,得21sin 42θ==.故6πθ=.……8分而22224ρ+=,∴ρ= ……9分 ∴点P的极坐标为6π⎛⎫⎪⎝⎭.……10分23.解:(Ⅰ)∵0m >,∴()3,22,23,2m x m f x x m x m x m m x m m x m -≥⎧⎪=--+=---<<⎨⎪≤-⎩.……3分∴当2x m ≤-时,()f x 取得最大值3m . ……4分 ∴1m =.……5分(Ⅱ)由(Ⅰ),得221a b +=,()222223344212a b a b a b a bab b a ababab+-++===-. ……7分∵2212a b ab +=≥,当且仅当a b =时等号成立, ∴102ab <≤. ……8分令()12h t t t =-,102t <≤. 则()h t 在10,2⎛⎤ ⎥⎝⎦上单调递减.∴()112h t h ⎛⎫≥= ⎪⎝⎭.……9分∴当102ab <≤时,121ab ab-≥. ∴331a b b a+≥.……10分。

相关文档
最新文档