《勾股定理》之十三大考点

合集下载

勾股定理知识点总结大全

勾股定理知识点总结大全

勾股定理知识点总结大全一、勾股定理的定义勾股定理又称毕达哥拉斯定理,它是指:在直角三角形中,直角边的平方等于其他两条边的平方和。

具体表达方式是:设直角三角形的两个直角边分别为a、b,斜边为c,则有a²+b²=c²。

这就是著名的毕达哥拉斯定理,也是勾股定理的核心概念。

二、勾股定理的证明1. 几何证明勾股定理有多种证明方法,其中有几何证明是最常见的。

几何证明主要通过图形的构造和变换,利用几何形状的属性,从而证明勾股定理。

常见的几何证明方法包括利用正方形、相似三角形、垂直平分线、圆的性质等,通过构造等辅助图形,最终得到a²+b²=c²的结论。

2. 代数证明另外,勾股定理也可以通过代数方法进行证明。

代数证明主要通过变换方程、化简运算,利用数学公式和规律,从而得到a²+b²=c²的结论。

通过几何和代数两种证明方法,可以更全面地理解勾股定理的内涵和外延,为后续的学习和应用打下坚实的基础。

三、勾股定理的性质1. 勾股三元数根据勾股定理,我们可以找到很多满足a²+b²=c²的整数解组,这样的整数解组叫做勾股三元数。

例如:3²+4²=5²、5²+12²=13²、9²+40²=41²等。

勾股三元数的性质是研究勾股定理的重要方面,它们具有很多有趣的特性和规律,对于数论的研究有着重要的意义。

2. 勾股定理的逆定理对于一个三元数组(a, b, c),如果它满足a²+b²=c²,则称它是勾股三元数。

而勾股定理的逆定理表明,每个整数对(a, b),都可以构成一个勾股三元数。

这个逆定理的证明非常复杂,它涉及到模运算、费马大定理、椭圆曲线等高深的数学知识,是数论和代数学研究的重要课题之一。

3. 勾股定理的推广在直角三角形外,勾股定理也有很多推广成立的情况。

物理勾股定理知识点总结

物理勾股定理知识点总结

物理勾股定理知识点总结一、勾股定理的概念勾股定理是指直角三角形中,直角边的平方和等于斜边的平方。

勾股定理广泛应用于物理学中的各个领域,如力学、光学、电磁学等。

它不仅是物理学的基础知识,也是解决实际问题的重要工具。

在直角三角形ABC中,若角C为90度,则有a²+b²=c²,其中a、b分别为直角边,c为斜边。

这是勾股定理的基本表达形式。

二、勾股定理的证明1. 几何证明:勾股定理最早由古希腊数学家毕达哥拉斯提出,并给出了一种几何证明。

这种证明方法是通过构造一个正方形,利用三角形的相似性和面积相等来证明。

在直角三角形ABC中,作a和b为直角边的正方形,其边长分别为a和b。

然后再构造一个以c为边长的正方形。

根据相似三角形的性质和面积相等,可以得出a²+b²=c²。

2. 代数证明:勾股定理也可以通过代数方法进行证明。

假设直角三角形的两直角边分别为a和b,斜边为c。

则可以利用勾股定理进行代数运算。

首先,将直角三角形的两直角边分别表示为a 和b,根据毕达哥拉斯定理,得:a²+b²=c²然后,对两边取平方根,得:c=√(a²+b²)因此,可以通过代数方法证明勾股定理的成立。

三、物理学中勾股定理的应用1. 力学:在力学中,勾股定理常常用于解决叠加物体受力的问题。

例如,一个物体受到两个力的作用,可以利用勾股定理计算合成力的大小和方向。

另外,勾股定理也可用于解决斜面上物体滑动的问题。

2. 光学:在光学中,勾股定理常常用于计算光的反射和折射。

例如,当光线入射到一个介质边界上时,可以通过勾股定理计算入射角和折射角之间的关系。

另外,勾股定理也可以用于计算物体在镜子中的像的位置和大小。

3. 电磁学:在电磁学中,勾股定理常常用于计算电场和磁场的合成和分解。

例如,两个电荷之间的相互作用力可以通过勾股定理计算合成力的大小和方向。

勾股定理重点知识点

勾股定理重点知识点

勾股定理重点知识点2017精选关于勾股定理重点知识点一、勾股定理与逆定理A.勾股定理在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。

如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2。

1、勾股定理应用的前提条件是在直角三角形中。

2、勾股定理公式a2+b2=c2 的变形有:a2= c2—b2,b2=c2-a2及c2=a2+b2。

3、由于a2+b2=c2>a2 ,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边。

B.勾股定理的逆定理如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形。

说明:①勾股定理的逆定理验证利用了三角形的全等。

②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形。

必须满足较小两边平方的和等于最大边的平方才能做出判断。

(2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角。

然后进一步结合其他已知条件来解决问题。

注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是。

面积分割法、构造直角三角形二、实数与数轴1、实数与数轴上的点是一一对应关系。

任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数。

数轴上的任一点表示的数,不是有理数,就是无理数。

2、在数轴上,表示相反数的两个点在原点的两旁,并且两点到原点的距离相等,实数a的绝对值就是在数轴上这个数对应的点与原点的距离。

3、利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小。

三、矩形的性质1、矩形的定义:有一个角是直角的平行四边形是矩形。

2、矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形。

勾股定理知识点总结

勾股定理知识点总结

17.1勾股定理考点一:勾股定理直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

(即:a 2+b 2=c 2) 技巧归纳:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则22c a b =+,22b c a =-,22a c b =-)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题考点二:勾股定理的证明一般是通过剪拼,借助面积进行证明。

其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不变。

图1是由4个全等三角形拼成的,得到一个以a+b 为边长的大正方形和以直角三角形斜边c 为边长的小正方形。

则大正方形的面积可表示为(a+b)2,又可表示为12ab ·4+c 2,所以(a+b)2=12ab ·4+c 2,整理得a 2+b 2=c 2在图2的另一种拼法中,以c 为边长的正方形的面积可表示成四个全等的直角三角形与边长为(b-a)的正方形的面积的和,所以12ab ·4+(b-a)2=c 2,整理得a 2+b 2=c 2.考点三:勾股定理的应用(1)勾股定理的应用条件勾股定理只适用于直角三角形,所以常作辅助线——高,构造直角三角形。

(2)勾股定理的实际应用勾股定理反映了直角三角形3条边之间的关系,利用勾股定理,可以解决直角三角形的有关计算和证明.例如:已知直角三角形的两条直角边可求斜边;已知直角三角形的斜边和一条直角边,可求另一条直角边。

勾股定理还可以解决生产生活中的一些实际问题。

在解决问题的过程中,往往利用勾股定理列方程(组),将实际问题转化成直角三角形的模型来解决。

(3)利用勾股定理作长为 n (n 为大于1的整数)的线段实数与数轴上的点是一一对应的,有理数在数轴上较易找到与它对应的点,而若要在数轴上直接标出无理数对应的点则较难。

勾股定理知识点总结梳理

勾股定理知识点总结梳理

勾股定理知识点总结梳理一、概念勾股定理是指直角三角形中,直角边上的两个小正方形的面积之和等于斜边上的一个大正方形的面积。

具体来说,设直角三角形的斜边长为 c,直角边长分别为 a 和 b,则有 a^2 + b^2 = c^2。

这就是著名的勾股定理。

这个定理是古希腊数学家毕达哥拉斯在公元前6世纪发现的,因而也被称为毕达哥拉斯定理。

二、证明方法勾股定理的证明方法有很多种,其中比较经典的是几何证明和代数证明两种方法。

1. 几何证明几何证明是从图形的角度出发,通过构造几何图形来证明勾股定理。

一种经典的几何证明是通过构造一个边长为 a+b,边长为 a,b的三个正方形,然后利用这三个正方形的关系来证明勾股定理。

具体步骤如下:(1)首先,我们分别在直角三角形的两条直角边上分别构造正方形,假设它们的边长分别为 a 和 b。

(2)然后再对边长为 a+b 的正方形进行构造,使得它的面积等于 a^2 + b^2,这样就构成了一个大正方形。

(3)最后,我们可以通过计算其中每个三角形的面积,再将它们相加,就可以得到大正方形的面积,从而证明 a^2 + b^2 = c^2。

2. 代数证明代数证明是通过代数方程式来推导和证明勾股定理。

一种经典的代数证明方法是利用平面直角坐标系,假设直角三角形的顶点分别为(0,0)、(a,0)和(0,b),斜边的顶点为(a,b)。

然后根据两点间的距离公式,可以推导出 a^2 + b^2 = c^2。

这种方法比较直观和简单,适合初学者理解和掌握。

三、应用勾股定理在实际生活和科学研究中有着广泛的应用。

主要体现在以下几个方面:1. 测量和建筑在测量和建筑领域,勾股定理被广泛应用于测量三角形的边长和角度,以及设计相应的建筑结构。

例如,在房屋建筑中可以利用勾股定理来确定墙角是否垂直,以及计算各种角落的长度。

2. 航空航天在航空航天领域,勾股定理被应用于导航、飞行轨迹规划和飞行器设计等方面。

例如,飞行员需要根据勾股定理计算飞机的飞行距离和高度,以确保飞行过程中的安全。

中考数学:《勾股定理》知识要点及十三个考点典型例题分析

中考数学:《勾股定理》知识要点及十三个考点典型例题分析

中考数学:《勾股定理》知识要点及十三个考点典型例题分析一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。

也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。

公式的变形:a2 = c2- b2, b2= c2-a2 。

2、勾股定理的逆定理如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。

这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方.③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.④如果不满足条件,就说明这个三角形不是直角三角形。

3、勾股数满足a2 + b2= c2的三个正整数,称为勾股数。

注意:①勾股数必须是正整数,不能是分数或小数。

②一组勾股数扩大相同的正整数倍后,仍是勾股数。

常见勾股数有:(3,4,5)(5,12,13) (6,8,10)(7,24,25)(8,15,17)(9,12,15)4、最短距离问题:主要5、运用的依据是两点之间线段最短。

二、考点剖析考点一:利用勾股定理求面积1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.2. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( )A. S 1- S 2= S 3B. S 1+ S 2= S 3C. S 2+S 3< S 1D. S 2- S 3=S 1S 3S 2S 14、四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。

5、(难)在直线上依次摆放着七个正方形(如图4所示)。

完整版)勾股定理知识点与常见题型总结

完整版)勾股定理知识点与常见题型总结

完整版)勾股定理知识点与常见题型总结勾股定理复勾股定理是指直角三角形两直角边的平方和等于斜边的平方,表示为a^2 + b^2 = c^2,其中a、b为直角三角形的两直角边,c为斜边。

勾股定理的证明常用拼图的方法。

通过割补拼接图形后,根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。

常见的证明方法有以下三种:1.通过正方形的面积证明,即4ab + (b-a)^2 = c^2,化简可证。

2.四个直角三角形的面积与小正方形面积的和等于大正方形的面积,即4ab + c^2 = 2ab + c^2,化简得证。

3.通过梯形的面积证明,即(a+b)×(a+b)/2 = 2ab + c^2,化简得证。

勾股定理适用于直角三角形,因此在应用勾股定理时,必须明确所考察的对象是直角三角形。

勾股定理可用于解决直角三角形中的边长计算或直角三角形中线段之间的关系的证明问题。

在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算。

同时,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解。

勾股定理的逆定理是:如果三角形三边长a、b、c满足a^2 + b^2 = c^2,那么这个三角形是直角三角形,其中c为斜边。

a^2+b^2=c^2$是勾股定理的基本公式。

如果三角形ABC 不是直角三角形,我们可以类比勾股定理,猜想$a+b$与$c$的关系,并对其进行证明。

勾股定理的实际应用有很多。

例如,在图中,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B 到地面的距离为7m。

现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m。

同时梯子的顶端B下降至B′。

那么BB′的长度是小于1m的(选项A)。

又如,在图中,一根24cm的筷子置于底面直径为15cm,高8cm的圆柱形水杯中。

设筷子露在杯子外面的长度为h cm,则h的取值范围是7cm ≤ h ≤ 16cm(选项D)。

勾股定理知识要点及重点题型

勾股定理知识要点及重点题型

勾股定理知识要点及重点题型一、知识梳理(一)勾股定理:如果直角三角形两直角边分别为a 、b,斜边为c ,那么222a b c +=即:直角三角形两直角边的平方和等于斜边的平方。

1.用面积法证明勾股定理:(1)如图,将四个全等的直角三角形拼成正方形。

(Ⅰ)ab c b a S ABCD 214)(22⨯+=+=正方形。

(Ⅱ) ab b a c S EFGH 214)(22⨯+-==正方形。

∴222c b a =+∴222b a c +=.2.勾股定理各种表达式:在ABC Rt ∆中,︒=∠90C ,∠A 、∠B 、∠C 的对边分别为a 、b 、c.则222b a c +=,222b c a -=,222a c b -=。

3.勾股定理的面积表示法(如右图) 4.勾股定理的作用:(1)已知直角三角形的两边求第三边。

(2)利用勾股定理解决实际问题。

(3)用于证明平方关系的问题。

(二)勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形。

勾股定理是直角三角形的性质定理,而勾股定理的逆定理是直角三角形的判定定理。

即:在△ABC 中,若222c b a =+,则△ABC 为Rt △。

1.满足a 2+b 2=c 2的三个正整数,称为勾股数.常用的勾股数组如:3,4,5;6,8,10;···若a ,b ,c 为一组勾股数,那么ka ,kb ,kc (k 为正整数)也是勾股数. 2.如何判定一个三角形是否是直角三角形。

①首先求出最大边(如c );②验证2c 与22b a +是否具有相等关系。

若222b ac +=,则△ABC 是以∠C =90°的直角三角形; 若222c b a >+,则三角形是锐角三角形; 若222c b a <+,则三角形是钝角三角形。

二、重难点突破1、重点:(1)勾股定理的性质和判定。

勾股定理全章知识点归纳总结

勾股定理全章知识点归纳总结

勾股定理全章知识点归纳总结一.基础知识点:1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。

(即:a2+b2=c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC∆中,90∠=︒,则c,Cb,a=)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题2:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。

要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2<a2+b2,则△ABC为锐角三角形)。

(定理中a,b,c及222+=只是一种表现形式,不可认为是唯一的,如若三角形a b c三边长a,b,c满足222a c b+=,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边)3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

4:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

规律方法指导1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。

2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。

3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。

勾股定理中考章节复习知识点+经典题型分析总结)

勾股定理中考章节复习知识点+经典题型分析总结)

AB Ca b c弦股勾勾股定理(知识点)【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方。

2. 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形,其中c 为斜边。

3. 勾股数:①满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。

)②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25;8,15,17等 ③用含字母的代数式表示n 组勾股数: 221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数) 2222,2,m n mn m n -+(,m n >m ,n 为正整数)4.命题、定理、证明⑴ 命题的概念:判断一件事情的语句,叫做命题。

理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。

⑵ 命题的分类(按正确、错误与否分) 真命题(正确的命题) 命题假命题(错误的命题)所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。

所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。

⑶ 公理:人们在长期实践中总结出来的得到人们公认的真命题,叫做公理。

⑷ 定理:用推理的方法判断为正确的命题叫做定理。

⑸ 证明:判断一个命题的正确性的推理过程叫做证明。

⑹ 证明的一般步骤 ① 根据题意,画出图形。

② 根据题设、结论、结合图形,写出已知、求证。

③ 经过分析,找出由已知推出求证的途径,写出证明过程。

5.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。

勾股定理知识点归纳笔记

勾股定理知识点归纳笔记

勾股定理知识点归纳笔记
勾股定理是数学上一个非常重要的定理,它描述了直角三角形的边之间的关系。

勾股定理的正式表述为:在一个直角三角形中,直角边的平方和等于斜边的平方。

勾股定理可以用一个简单的公式来表示:a + b = c,其中a和b是直角三角形的两条直角边,c是斜边。

勾股定理的应用十分广泛。

以下是一些常见的应用场景:
1. 测量距离:勾股定理可以用来测量两点之间的直线距离。

假设有两个坐标点A(x, y)和B(x, y),可以使用勾股定理计算出两点之间的距离:AB = √((x - x) + (y - y))。

2. 解决几何问题:勾股定理可以用来解决各种几何问题,如计算三角形的边长、角度等。

通过已知的边长或角度,可以利用勾股定理来推导其他未知量。

3. 设计建筑和工程:在设计建筑和工程中,勾股定理被广泛应用于测量角度、计算斜边长度等问题。

它可以帮助工程师和建筑师确定结构的稳定性和安全性。

4. 导航和航海:勾股定理也被用于导航和航海中,帮助确定船只或飞机的位置和航向。

通过测量两个已知位置之间的距离和角度,可以利用勾股定理计算出目标位置的坐标。

勾股定理的历史可以追溯到古希腊时期的毕达哥拉斯学派。

数学家毕达哥拉斯是该学派的创始人,他发现了这个定理并给出了证明。

因此,勾股定理也被称为毕达哥拉斯定理。

总结起来,勾股定理是一项非常重要的数学定理,它在实际生活和各个领域中都有广泛的应用。

了解和掌握勾股定理对于几何和数学的学习非常重要。

勾股定理知识点归纳和题型归类

勾股定理知识点归纳和题型归类

勾股定理知识点归纳和题型归类勾股定理作为数学中的一条基本定理,是数学中的重要知识点。

它描述了直角三角形三条边之间的关系,充分利用了勾股定理可以解决很多与直角三角形相关的问题。

下面将对勾股定理的知识点进行归纳,并对常见的勾股定理题型进行分类。

一、知识点归纳:1.勾股定理的表述:直角三角形斜边的平方等于两直角边平方和。

2.勾股定理的符号表示:对于直角三角形ABC,设斜边为c,两直角边分别为a和b,可以表示为:$a^2+b^2=c^2$。

3.勾股定理的逆定理:如果一个三角形的三边满足$a^2+b^2=c^2$,其中a、b、c为三角形的边长,那么这个三角形一定是直角三角形。

4.勾股定理的证明方法:勾股定理有多种不同的证明方法,比如平方构造法和几何法。

5.勾股定理的推广应用:勾股定理不仅适用于直角三角形,还可以推广应用到其他类型的几何形状中。

二、题型归类:根据勾股定理的应用不同场景,常见的题型可以归类为以下几种:1.求边长问题:(1)已知两边求第三边:已知直角三角形两直角边的长度,求斜边的长度。

(2)已知一边求另一边:已知直角三角形一边和斜边的长度,求另一边的长度。

(3)已知斜边和一边求另一边:已知直角三角形一边和斜边的长度,求未知边的长度。

2.求角度问题:(1)已知两边求夹角:已知直角三角形两直角边的长度,求两直角边之间的夹角。

(2)已知斜边和一边求夹角:已知直角三角形一边和斜边的长度,求斜边与该边之间的夹角。

3.判断问题:(1)判断是否为直角三角形:已知三角形的三边长度,判断是否为直角三角形。

4.应用问题:(1)三角形的面积问题:已知直角三角形的两个直角边的长度,求其面积。

(2)其他几何问题:如斜边长为x的直角三角形,边的长度与斜边比为1:4,求边的长度。

以上是一些常见的勾股定理题型,通过不同的题目训练可以更好地掌握勾股定理的应用和解题思路。

在解题的过程中,需要根据问题的具体要求,合理运用勾股定理的知识,灵活运用数学方法,进行推导和计算,以得到准确的结果。

《勾股定理中考十三大考点》-经典

《勾股定理中考十三大考点》-经典

《勾股定理》典型例题分析一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。

也就是说:如果直角三角形的两直角边为a、b,斜边为c,那么a2 + b2= c2。

公式的变形:a2 = c2- b 2,b2= c2-a2。

2、勾股定理的逆定理如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC是直角三角形。

这个定理叫做勾股定理的逆定理.该定理在应用时,要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方.③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角④如果不满足条件,就说明这个三角形不是直角三角形。

3、勾股数满足a2 + b2= c2的三个正整数,称为勾股数。

注意:①勾股数必须是正整数,不能是分数或小数。

②一组勾股数扩大相同的正整数倍后,仍是勾股数。

常见勾股数有:(3, 4, 5 )(5,12,13 )( 6, 8,10 )( 7, 24, 25 )( 8,15,17 )(9, 12, 15 )、考点剖析4、最短距离问题:主要运用的依据是两点之间线段最短。

考点一:利用勾股定理求面积1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.1. 在直角三角形中,若两直角边的长分别为1cm 2cm ,则斜边长为 ___________________2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是 3、已知直角三角形两直角边长分别为 5和12,求斜边上的高.4、 把直角三角形的两条直角边同时扩大到原来的 2倍,则斜边扩大到原来的( )A. 2倍B. 4倍C. 6倍D. 8倍5、 在 Rt △ ABC 中, Z C=90°①若 a=5,b=12,则 c= ___________ ;②若 a=15,c=25,则 b= __________ ; 6、 如果直角三角形的两直角边长分别为 n 2-1,2n (n >1),那么它的斜边长是()2 2A 、2nB 、n+1C 、n — 1D n 1 7、 在Rt △ ABC 中, a,b,c 为三边长,则下列关系中正确的是()222 222 222A. a b=cB. a c=bC. c b= aD.以上都有可能2. 如图,以Rt △ ABC 勺三边为直径分别向外作三个半圆,试探索三个半 圆的面积之间的关系.3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是它们之间的关系是()A. S 1- S 2= S 3B. S i + S 2= S 3C. S 2+S 3V S 1D. S -S=S4、四边形 ABCDK / B=90°, AB=3 BC=4 CD=12 AD=13 求四边形 ABCD 勺面积。

“勾股定理”必考点,你必须掌握!建议收藏!

“勾股定理”必考点,你必须掌握!建议收藏!

“勾股定理”必考点,你必须掌握!建议收藏!勾股定理以及其逆定理的应用是中考的重点考查内容,对今后几何的学习也具有举足轻重的作用。

今天小编给大家整理了《勾股定理》的全部知识点!01勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a,b,斜边为c,那么.勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理.我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方02勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理☞常见方法如下:方法一:,,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为大正方形面积为所以方法三:,,化简得证.03勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形04勾股定理的应用①已知直角三角形的任意两边长,求第三边在中,,则,,②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题05勾股定理的逆定理如果三角形三边长a,b,c满足,那么这个三角形是直角三角形,其中c为斜边.①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c 为三边的三角形是直角三角形;若,时,以a,b,c 为三边的三角形是钝角三角形;若,时,以a,b,c 为三边的三角形是锐角三角形;②定理中a,b,c 及只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c 满足,那么以a,b,c 为三边的三角形是直角三角形,但是b为斜边.③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形06勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即中,a,b,c 为正整数时,称a,b,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3、4、5;6、8、10;5、12、13;7、24、25等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
D
E
B
F
C
4、如图,在长方形 ABCD 中,将 ABC 沿 AC 对折至 AEC 位置,CE 与 AD 交于点 F。 (1)试说明:AF=FC;(2)如果 AB=3,BC=4,求 AF 的长
5、 如图 2-3,把矩形 ABCD 沿直线 BD 向上折叠,使点 C 落在 C′的位置上,已知 AB=3,BC=7, 重合部分△EBD 的面积为________.
A.直角三角形
B.等腰三角形
C.等腰直角三角形
D.等腰三角形或直角三角形
6、将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )
第 3页—总 8页
3
A. 钝角三角形 B. 锐角三角形 C. 直角三角形 D. 等腰三角形 7、若△ABC 的三边长 a,b,c 满足 a2 b2 c2 200 12a 16b 20c,试判断△ABC 的形状。
A. 4,5,6
B. 2,3,4
C. 11,12,13
D. 8,15,17
2、若线段 a,b,c 组成直角三角形,则它们的比为( )
A、2∶3∶4
B、3∶4∶6 C、5∶12∶13
D、4∶6∶7
3、下面的三角形中:
①△ABC 中,∠C=∠A-∠B;
②△ABC 中,∠A:∠B:∠C=1:2:3;
③△ABC 中,a:b:c=3:4:5; ④△ABC 中,三边长分别为 8,15,17.
米,
铺设红色地毯,则在 AB 段楼梯所铺地毯的长度应为

,因某种活动要求

考点七:折叠问题
1、如图所示,已知△ABC 中,∠C=90°,AB 的垂直平分线交 BC于 M,交 AB 于 N,若 AC=4, MB=2MC,求 AB 的长.
第 4页—总 8页
4
3、折叠矩形 ABCD 的一边 AD,点 D 落在 BC 边上的点 F 处,已知 AB=8CM,BC=10CM,求 CF 和 EC。
考点十:其他图形与直角三角形 如图是一块地,已知 AD=8m,CD=6m,∠D=90°,AB=26m,BC=24m,求这块地的面积。
第 6页—总 8页
6
考点十一:与展开图有关的计算
1、如图,在棱长为 1 的正方体 ABCD—A’B’C’D’的表面上,求从顶点 A 到顶点 C’的最短 距离.
2、如图一个圆柱,底圆周长 6cm,高 4cm,一只蚂蚁沿外壁爬行,要从 A 点爬到 B 点,则最
少要爬行
cm
B
A 考点十二、航海问题 1、一轮船以 16 海里/时的速度从 A 港向东北方向航行,另一艘船同时以 12 海里/时的速度从 A 港向西北方向航行,经过 1.5 小时后,它们相距________海里.
2、如图,某货船以 24 海里/时的速度将一批重要物资从 A 处运往正东方向的 M 处,在点 A 处测得某岛 C 在北偏东 60°的方向上。该货船航行 30 分钟到达 B 处,此时又测得该岛在北 偏东 30°的方向上,已知在 C 岛周围 9 海里的区域内有暗礁,若继续向正东方向航行,该货 船有无暗礁危险?试说明理由。
(3,4,5 )(5,12,13 ) ( 6,8,10 ) ( 7,24,25 )( 8,15,17 ) (9,12,15 )
4、最短距离问题:主要运用的依据是两点之间线段最短。
二、考点剖析
考点一:利用勾股定理求面积 1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.
角形。这个定理叫做勾股定理的逆定理. 该定理在应用时,要注意处理好如下几个要点: 1 已知的条件:某三角形的三条边的长度. ②满足的条件:最大边的平方=最小边的平方+中间边的平方. ③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。 3、勾股数 满足 a2 + b2= c2 的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数 或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。常见勾股数有:
3、如图,小方格都是边长为 1 的正方形,则四边形 ABCD 的面积是 ( )
A. 25
B. 12.5
C. 9
D. 8.5
A
C
C
D
BA
C
B
(图 1)
A
(图 2)
B
(图 3)
4、如图,正方形网格中的每个小正方形边长都是 1,每个小格的顶点叫格点,以格点为顶点 分别按下列要求画三角形: ①使三角形的三边长分别为 3、 8 、 5 (在图甲中画一个即可); ②使三角形为钝角三角形且面积为 4(在图乙中画一个即可).
其中是直角三角形的个数有( ).
பைடு நூலகம்
A.1 个
B.2 个 C.3 个 D.4 个
4、若三角形的三边之比为 2 : 1 :1,则这个三角形一定是( ) 22
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.不等边三角形
5、已知 a,b,c 为△ABC 三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为( )
第 7页—总 8页
7
考点十三、网格问题
1、如图,正方形网格中,每个小正方形的边长为 1,则网格上的三角形 ABC 中,边长为无理
数的边数是( )
A.0
B.1
C.2
D.3
2、如图,正方形网格中的△ABC,若小方格边长为 1,则△ABC 是 ( )
A.直角三角形 B.锐角三角形 C.钝角三角形 D.以上答案都不对


第 8页—总 8页
8
3、已知直角三角形两直角边长分别为5和12, 求斜边上的高.
4、把直角三角形的两条直角边同时扩大到原来的 2 倍,则斜边扩大到原来的( )
A. 2 倍
B. 4 倍
C. 6 倍
D. 8 倍
5、在 Rt△ABC 中,∠C=90°
①若 a=5,b=12,则 c=___________;②若 a=15,c=25,则 b=___________;
A、5
B、25
C、7
D、15
考点三:应用勾股定理在等腰三角形中求底边上的高
例、如图 1 所示,等腰
中,
, 是底边上的高,若

求 ①AD 的长;②ΔABC 的面积.
考点四:勾股数的应用、利用勾股定理逆定理判断三角形的形状、最大、最小角的问题
1、下列各组数据中的三个数,可作为三边长构成直角三角形的是( )
第 2页—总 8页
2
8、已知 Rt△ABC 中,∠C=90°,若 a+b=14cm,c=10cm,则 Rt△ABC 的面积是( )
A、24 cm2
B、36 cm2
C、48 cm2
D、60 cm2
9、已知 x、y 为正数,且│x2-4│+(y2-3)2=0,如果以 x、y 的长为直角边作一个直角三
角形,那么以这个直角三角形的斜边为边长的正方形的面积为( )
D. S2- S3=S1
S3 S1
S2
4、四边形 ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形 ABCD 的面积。
考点二:在直角三角形中,已知两边求第三边
1.在直角三角形中,若两直角边的长分别为 1cm,2cm ,则斜边长为

2.(易错题、注意分类的思想)已知直角三角形的两边长为 3、2,则另一条边长的平方是
2-5 12、如图所示,△ABC 是等腰直角三角形,AB=AC,D 是斜边 BC 的中点,E、F 分别是 AB、AC 边上的点,且 DE⊥DF,若 BE=12,CF=5.求线段 EF 的长。
第 5页—总 8页
5
考点八:应用勾股定理解决勾股树问题
已知△ABC 是边长为 1 的等腰直角三角形,以 Rt△ABC 的斜边 AC 为直角边,画第二个等腰 Rt
6、如果直角三角形的两直角边长分别为 n 2 1,2n(n>1),那么它的斜边长是( )
A、2n
B、n+1
C、n2-1
D、 n 2 1
7、在 Rt△ABC 中,a,b,c 为三边长,则下列关系中正确的是( )
A. a2 b2 c2
B. a2 c2 b2
C. c2 b2 a2
D.以上都有可能
《勾股定理》典型例题分析
一、知识要点: 1、勾股定理 勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形
的两直角边为 a、b,斜边为 c ,那么 a2 + b2= c2。 公式的变形:a2 = c2- b2, b2= c2-a2 。 2、勾股定理的逆定理 如果三角形 ABC 的三边长分别是 a,b,c,且满足 a2 + b2= c2,那么三角形 ABC 是直角三
△ACD,再以 Rt△ACD 的斜边 AD 为直角边,画第三个等腰 Rt△ADE,…,依此类推,第 n 个
等腰直角三角形的斜边长是

E
F
D
CA
G
B
考点九、图形问题
1、如图 2,已知,在△ABC 中,∠A = 45°,AC = 2,AB = 3+1,则边 BC 的长为

2、某公司的大门如图所示,其中四边形ABCD是长方形,上部是以AD为直径的半圆,其中 AB=2.3m,BC=2m,现有一辆装满货物的卡车,高为 2.5m,宽为 1.6m,问这辆卡车能否通 过公司的大门?并说明你的理由 .
第 1页—总 8页
1
2. 如图,以 Rt△ABC 的三边为直径分别向外作三个半圆,试探索三个半 圆的面积之间的关系.
3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是 S1、S2、S3,则
相关文档
最新文档