河南新乡市第一中学等差数列高考重点题型及易错点提醒
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等差数列选择题
1.设n S 是等差数列{}n a (*n N ∈)的前n 项和,且141,16a S ==,则7a =( )
A .7
B .10
C .13
D .16
2.数列{}n a 是项数为偶数的等差数列,它的奇数项的和是24,偶数项的和为30,若它的末项比首项大21
2
,则该数列的项数是( ) A .8
B .4
C .12
D .16
3.等差数列{}n a 中,已知14739a a a ++=,则4a =( ) A .13
B .14
C .15
D .16
4.设n S 是等差数列{}n a 的前n 项和.若1476a a a ++=,则7S =( ) A .10-
B .8
C .12
D .14
5.设等差数列{}n a 的前n 项和为n S ,公差1d =,且62
10S S ,则34a a +=( )
A .2
B .3
C .4
D .5
6.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于( ) A .160
B .180
C .200
D .220
7.设等差数列{}n a 的前n 项和为n S ,10a <且11101921
a a =,则当n S 取最小值时,n 的值为( ) A .21
B .20
C .19
D .19或20
8.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11
B .12
C .23
D .24
9.已知各项不为0的等差数列{}n a 满足2
6780a a a -+=,数列{}n b 是等比数列,且
77b a =,则3810b b b =( )
A .1
B .8
C .4
D .2
10.已知等差数列{}n a ,其前n 项的和为n S ,3456720a a a a a ++++=,则9S =( ) A .24
B .36
C .48
D .64
11.已知数列{}n a 中,11a =,22a =,对*n N ∀∈都有333
122n n n a a a ++=+,则10a 等于
( ) A .10
B
C .64
D .4
12.已知数列{}n a 的前n 项和为n S ,11
2
a =
,2n ≥且*n ∈N ,满足120n n n a S S -+=,
数列1n S ⎧⎫
⎨
⎬⎩⎭
的前n 项和为n T ,则下列说法中错误的是( ) A .21
4
a =-
B .
648
211S S S =+ C .数列{}12n n n S S S +++-的最大项为
712
D .1121
n n n n n
T T T n n +-=
++ 13.在等差数列{}n a 中,10a >,81335a a =,则n S 中最大的是( ) A .21S B .20S C .19S D .18S 14.在等差数列{a n }中,已知a 5=3,a 9=6,则a 13=( )
A .9
B .12
C .15
D .18
15.已知数列{}n a 满足25111,,25
a a a ==且
*121
2
1
0,n n n n a a a ++-+=∈N ,则*n N ∈时,使得不等式100n n a a +≥恒成立的实数a 的最大值是( ) A .19 B .20 C .21 D .22 16.若等差数列{a n }满足a 2=20,a 5=8,则a 1=( )
A .24
B .23
C .17
D .16
17.在1与25之间插入五个数,使其组成等差数列,则这五个数为( )
A .3、8、13、18、23
B .4、8、12、16、20
C .5、9、13、17、21
D .6、10、14、18、22
18.设等差数列{}n a 的前n 项和为n S ,若7916+=a a ,则15S =( ) A .60
B .120
C .160
D .240
19.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,戊所得为( ) A .
5
4
钱 B .
43
钱 C .
23
钱 D .
53
钱 20.已知数列{}n a ,{}n b 都是等差数列,记n S ,n T 分别为{}n a ,{}n b 的前n 项和,且
713n n S n T n -=,则5
5
a b =( ) A .
34
15
B .
2310
C .
317
D .
62
27
二、多选题
21.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小
B .130S =
C .49S S =
D .70a =
22.(多选)在数列{}n a 中,若2
2
1(2,,n n a a p n n N p *
--=≥∈为常数),则称{}n a 为“等方
差数列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .
(){}1n
- 是等方差数列
C .{}2
n
是等方差数列.
D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列23.题目文件丢失!
24.题目文件丢失!
25.若数列{}n a 满足112,02
121,1
2
n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,则数列{}n a 中的项的值可能为
( )
A .
15
B .
25 C .45 D .65
26.已知数列0,2,0,2,0,2,,则前六项适合的通项公式为( )
A .1(1)n
n a =+-
B .2cos
2
n n a π= C .(1)2sin
2
n n a π
+= D .1cos(1)(1)(2)n a n n n π=--+--
27.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( ) A .59823a a S +=
B .27S S =
C .5S 最小
D .50a =
28.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且3201911
111
a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T > D .当数列{}n a 为等比数列时,20210T <
29.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .24
37
d -
<<- C .S n <0时,n 的最小值为13
D .数列n n S a ⎧⎫
⎨
⎬⎩⎭
中最小项为第7项 30.等差数列{}n a 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( ) A .109S S >
B .170S <
C .1819S S >
D .190S >
【参考答案】***试卷处理标记,请不要删除
一、等差数列选择题 1.C 【分析】
由题建立关系求出公差,即可求解. 【详解】
设等差数列{}n a 的公差为d ,
141,16a S ==,
41464616S a d d ∴=+=+=,2d ∴=, 71613a a d ∴=+=.
故选:C 2.A 【分析】
设项数为2n ,由题意可得()21
212
n d -⋅=,及6S S nd -==奇偶可求解. 【详解】
设等差数列{}n a 的项数为2n , 末项比首项大
212
, ()212121;2
n a a n d ∴-=-⋅=① 24S =奇,30S =偶,
30246S S nd ∴-=-==奇偶②.
由①②,可得3
2
d =,4n =, 即项数是8, 故选:A. 3.A
【分析】
利用等差数列的性质可得1742a a a +=,代入已知式子即可求解. 【详解】
由等差数列的性质可得1742a a a +=, 所以1474339a a a a ++==,解得:413a =, 故选:A 4.D 【分析】
利用等差数列下标性质求得4a ,再利用求和公式求解即可 【详解】
147446=32a a a a a ++=∴=,则()
177477142
a a S a +=
== 故选:D 5.B 【分析】
根据等差数列的性质,由题中条件,可直接得出结果. 【详解】
因为n S 为等差数列{}n a 的前n 项和,公差1d =,6
2
10S S ,
所以()()6543434343222410a a a a a d a d a a a a +++=+++++=++=, 解得343a a +=. 故选:B. 6.B 【分析】
把已知的两式相加得到12018a a +=,再求20S 得解. 【详解】
由题得120219318()()()247854a a a a a a +++++=-+=, 所以1201203()54,18a a a a +=∴+=. 所以2012020
()10181802
S a a =+=⨯=. 故选:B 7.B 【分析】 由题得出1392
a d =-,则2202n d
S n dn =-,利用二次函数的性质即可求解.
【详解】
设等差数列{}n a 的公差为d ,
由
111019
21
a a =得11102119a a =,则()()112110199a d a d +=+, 解得1392
a d =-
,10a <,0d ∴>,
()211+
2022
n n n d
S na d n dn -∴==-,对称轴为20n =,开口向上, ∴当20n =时,n S 最小.
故选:B. 【点睛】
方法点睛:求等差数列前n 项和最值,由于等差数列
()2111+
222n n n d d S na d n a n -⎛
⎫==+- ⎪⎝
⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值. 8.C 【分析】
由题设求得等差数列{}n a 的公差d ,即可求得结果. 【详解】
32153S a ==,25a ∴=, 12a =,∴公差213d a a =-=, 81727323a a d ∴=+=+⨯=,
故选:C. 9.B 【分析】
根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】
因为各项不为0的等差数列{}n a 满足2
6780a a a -+=,
所以2
7720a a -=,解得72a =或70a =(舍);
又数列{}n b 是等比数列,且772b a ==,
所以3
3810371178b b b b b b b ===.
故选:B. 10.B 【分析】
利用等差数列的性质进行化简,由此求得9S 的值. 【详解】
由等差数列的性质,可得345675520a a a a a a ++++==,则54a =
19592993622
a a a
S +=
⨯=⨯= 故选:B 11.D 【分析】
利用等差中项法可知,数列{}
3n a 为等差数列,根据11a =,22a =可求得数列{}
3
n a 的公
差,可求得3
10a 的值,进而可求得10a 的值. 【详解】
对*n N ∀∈都有3
3
3
122n n n a a a ++=+,由等差中项法可知,数列{}
3
n a 为等差数列,
由于11a =,22a =,则数列{}
3n a 的公差为33
217d a a =-=,
所以,33
101919764a a d =+=+⨯=,因此,104a .
故选:D. 12.D 【分析】
当2n ≥且*n ∈N 时,由1n n n a S S -=-代入120n n n a S S -+=可推导出数列1n S ⎧⎫
⎨
⎬⎩⎭
为等差数列,确定该数列的首项和公差,可求得数列1n S ⎧⎫
⎨
⎬⎩⎭
的通项公式,由221a S S =-可判断A 选项的正误;利用n S 的表达式可判断BC 选项的正误;求出n T ,可判断D 选项的正误. 【详解】
当2n ≥且*n ∈N 时,由1n n n a S S -=-, 由120n n n a S S -+=可得11111
2020n n n n n n
S S S S S S ----+=⇒
-+=, 整理得
1
112n n S S --=(2n ≥且n +∈N ). 则1n S ⎧⎫
⎨⎬⎩⎭
为以2为首项,以2为公差的等差数列
()12122n n n S ⇒=+-⋅=,12n S n ∴=. A 中,当2n =时,221111
424
a S S =-=-=-,A 选项正确; B 中,1n S ⎧⎫
⎨
⎬⎩⎭
为等差数列,显然有648
211S S S =+,B 选项正确; C 中,记()()
1212211221n n n n b S S n n n S ++=+-=
+-++,
()()()
1123111
212223n n n n b S S S n n n ++++=+-=+-+++,
()()()
1111602223223n n n b b n n n n n n ++∴-=
--=-<++++,故{}n b 为递减数列, ()1123max 1117
24612
n b b S S S ∴==+-=
+-=,C 选项正确; D 中,
12n n S =,()()2212
n n n T n n +∴==+,()()112n T n n +∴=++. ()()()()()()111121121
11n n n n T T n n n n n n n n n n n n n n +-=⋅++⋅++=+--+++++222122212n n n n n n T =-++=+-≠,D 选项错误.
故选:D . 【点睛】
关键点点睛:利用n S 与n a 的关系求通项,一般利用11,1
,2n n
n S n a S S n -=⎧=⎨-≥⎩来求解,在变形
过程中要注意1a 是否适用,当利用作差法求解不方便时,应利用1n n n a S S -=-将递推关系转化为有关n S 的递推数列来求解. 13.B 【分析】
设等差数列的公差为d .由已知得()()1137512a d a d +=+,可得关系139
2
a d =-.再运用求和公式和二次函数的性质可得选项. 【详解】
设等差数列的公差为d .由81335a a =得,()()1137512a d a d +=+,整理得,1392
a d =-. 又10a >,所以0d <,因此
222120(20)2002222n d d d d
S n a n n dn n d ⎛⎫=
+-=-=-- ⎪⎝
⎭, 所以20S 最大. 故选:B. 14.A 【分析】
在等差数列{a n }中,利用等差中项由95132a a a =+求解. 【详解】
在等差数列{a n }中,a 5=3,a 9=6, 所以95132a a a =+,
所以139522639a a a =-=⨯-=, 故选:A 15.B 【分析】
由等差数列的性质可得数列1n a ⎧⎫
⎨⎬
⎩⎭
为等差数列,再由等差数列的通项公式可得1n n a ,进
而可得1
n a n
=,再结合基本不等式即可得解. 【详解】 因为
*12121
0,n n n n a a a ++-+=∈N ,所以12
211n n n a a a ++=+, 所以数列1n a ⎧⎫
⎨
⎬⎩⎭
为等差数列,设其公差为d , 由25111,25
a a a ==可得25112,115a a a ==⋅, 所以11
11
2
1145d a d a a ⎧+=⎪⎪⎨⎪+=⋅⎪⎩,解得1111
a d ⎧=⎪⎨⎪=⎩,
所以
()1111n n d n a a =+-=,所以1n a n
=,
所以不等式100n n a a +≥即100
n a n
+≥对任意的*n N ∈恒成立,
又10020n n +
≥=,当且仅当10n =时,等号成立, 所以20a ≤即实数a 的最大值是20. 故选:B. 【点睛】
关键点点睛:解决本题的关键是构造新数列求数列通项及基本不等式的应用. 16.A 【分析】 由题意可得52820
45252
a a d --===---,再由220a =可求出1a 的值 【详解】 解:根据题意,52820
45252
a a d --===---,则1220(4)24a a d =-=--=, 故选:A. 17.C
【分析】
根据首末两项求等差数列的公差,再求这5个数字. 【详解】
在1与25之间插入五个数,使其组成等差数列,
则171,25a a ==,则71251
4716
a a d --=
==-, 则这5个数依次是5,9,13,17,21. 故选:C 18.B 【分析】
利用等差数列的性质,由7916+=a a ,得到88a =,然后由15815S a =求解. 【详解】
因为7916+=a a ,
所以由等差数列的性质得978216a a a +==, 解得88a =, 所以()
11515815151581202
a a S a +===⨯=. 故选:B 19.C 【分析】
根据甲、乙、丙、丁、戊所得依次成等差数列,设甲、乙、丙、丁、戊所得钱分别为
2a d -,a d -,a ,a d +,2a d +,然后再由五人钱之和为5,甲、乙的钱与与丙、丁、戊的钱相同求解. 【详解】
设甲、乙、丙、丁、戊所得钱分别为2a d -,a d -,a ,a d +,2a d +,
则根据题意有(2)()()(2)5
(2)()()(2)a d a d a a d a d a d a d a a d a d -+-+++++=⎧⎨
-+-=++++⎩
,
解得1
16a d =⎧⎪⎨=-⎪⎩
,
所以戊所得为2
23
a d +=, 故选:C . 20.D 【分析】
利用等差数列的性质以及前n 项和公式即可求解. 【详解】
由
713n n S n T n
-=, ()()1955199195519992791622923927
2
a a a a a a S
b b b b b b T ++⨯-======++⨯. 故选:D
二、多选题
21.BCD 【分析】
由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】
设等差数列数列{}n a 的公差为d .
由13522,a a S +=有()111254
2252
a a a d d ⨯+=++,即160a d += 所以70a =,则选项D 正确.
选项A. ()71176
773212S a d a d d ⨯=+
=+=-,无法判断其是否有最小值,故A 错误. 选项B. 1
13
137131302
a S a a +=⨯==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确. 故选:BCD 【点睛】
关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件
13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,
属于中档题. 22.BD 【分析】
根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】
对于A ,若{}n a 是等差数列,如n a n =,则12222
(1)21n n a a n n n --=--=-不是常数,故
{}n
a 不是等方差数列,故A 错误;
对于B ,数列
(){}1n
-中,222121[(1)][(1)]0n n n n a a ---=---=是常数,{(1)}n ∴-是等方
差数列,故B 正确;
对于C ,数列{}2
n
中,()(
)
2
2
221
112
234n n n n n a
a ----=-=⨯不是常数,{}
2n
∴不是等方差
数列,故C 错误; 对于D ,
{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+,{}n a 是等方差数
列,()()2
2
2
112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,
故220d =,故0d =,所以(2)0m d d +=,22
10n n a a --=是常数,故D 正确.
故选:BD. 【点睛】
关键点睛:本题考查了数列的新定义问题和等差数列的定义,解题的关键是正确理解等差数列和等方差数列定义,利用定义进行判断.
23.无 24.无
25.ABC 【分析】
利用数列{}n a 满足的递推关系及13
5
a =
,依次取1,2,3,4n =代入计算2345,,,a a a a ,能得到数列{}n a 是周期为4的周期数列,得项的所有可能值,判断选项即得结果. 【详解】
数列{}n a 满足112,02
121,1
2n n n n n a a a a a +⎧
≤≤⎪⎪=⎨⎪-<<⎪⎩,135a =,依次取1,2,3,4,...n =代入计算得,
211215a a =-=
,32225a a ==,43425a a ==,5413
215
a a a =-==,因此继续下去会循环,数列{}n a 是周期为4的周期数列,所有可能取值为:1234
,,,5555
. 故选:ABC. 【点睛】
本题考查了数列的递推公式的应用和周期数列,属于基础题. 26.AC 【分析】
对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】
对于选项A ,1(1)n
n a =+-取前六项得:0,2,0,2,0,2,满足条件;
对于选项B ,2cos 2
n n a π
=取前六项得:0,2,0,2,0,2--,不满足条件; 对于选项C ,(1)2sin
2
n n a π
+=取前六项得:0,2,0,2,0,2,满足条件; 对于选项D ,1cos(1)(1)(2)n a n n n π=--+--取前六项得:0,2,2,8,12,22,不满足条件; 故选:AC 27.BD 【分析】
设等差数列{}n a 的公差为d ,根据条件12a 、8S 、9S 成等差数列可求得1a 与d 的等量关系,可得出n a 、n S 的表达式,进而可判断各选项的正误. 【详解】
设等差数列{}n a 的公差为d ,则81187
88282
S a d a d ⨯=+
=+,91198
99362
S a d a d ⨯=+
=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,
解得14a d =-,()()115n a a n d n d ∴=+-=-,()()21
9122
n n n d n n d S na --=+=. 对于A 选项,59233412a a d d +=⨯=,()2
8
88942
d S d -⨯=
=-,A 选项错误; 对于B 选项,()2
2
29272
d S
d -⨯=
=-,()2
7
79772
d S
d -⨯=
=-,B 选项正确;
对于C 选项,()2
298192224n d d S n n n ⎡⎤
⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦
.
若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误; 对于D 选项,50a =,D 选项正确. 故选:BD. 【点睛】
在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和n S 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解. 28.AC 【分析】 将
3201911111a a e e +≤++变形为32019
1111
01212
a a e e -+-≤++,构造函数
()11
12
x
f x e =
-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项 【详解】 由
3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()11
12
x f x e =-+, ()()1111101111
x x x x x e f x f x e e e e --+=+-=+-=++++,
所以()1112
x f x e =
-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()
320192*********
a a S +=
≥;
当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021
202110110T a =>.
故选:AC 【点睛】
本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题 29.ABCD 【分析】
S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得24
7
-
<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫
⎨⎬⎩⎭
中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断
出D 是否正确. 【详解】
∵S 12>0,a 7<0,∴
()
67122
a a +>0,a 1+6d <0.
∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴24
7
-<d <﹣3.a 1>0. S 13=
()
113132
a a +=13a 7<0.
∴S n <0时,n 的最小值为13.
数列n n S a ⎧⎫
⎨⎬⎩⎭
中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0.
对于:7≤n ≤12时,
n
n
S a <0.S n >0,但是随着n 的增大而减小;a n <0, 但是随着n 的增大而减小,可得:
n
n
S a <0,但是随着n 的增大而增大. ∴n =7时,n
n
S a 取得最小值.
综上可得:ABCD 都正确. 故选:ABCD . 【点评】
本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题. 30.ABD 【分析】
先根据题意可知前9项的和最小,判断出A 正确;根据题意可知数列为递减数列,则
190a >,又181919S S a =-,进而可知1516S S >,判断出C 不正确;利用等差中项的性质
和求和公式可知()0117917917
217
172
2
a a a S a <+⨯⨯=
=
=,()11910191019
219
1902
2
a a a S a +⨯⨯=
=
=>,故BD 正确. 【详解】
根据题意可知数列为递增数列,90a <,100a >,
∴前9项的和最小,故A 正确;
()117917917217
1702
2a a a S a +⨯⨯=
==<,故B 正确; ()1191019
1019219
1902
2
a a a S a +⨯⨯=
=
=>,故D 正确; 190a >, 181919S S a ∴=-, 1819S S ∴<,故C 不正确.
故选:ABD . 【点睛】
本题考查等差数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。