解一元一次不等式在实际问题中的应用华师大版

合集下载

七年级数学下册_8.3一元一次不等式组的应用(第2课时)课件_华东师大版

七年级数学下册_8.3一元一次不等式组的应用(第2课时)课件_华东师大版

思路分析: (1)本题的不等关系是:
生产A、B两种产品所需的甲种原料≤360 生产A、B两种产品所需的乙种原料≤290 (2) 列表看各量的关系
A一件 Ax件 B一件 Bx件 A、B共需 甲种 乙种 9 3 9x 3x 4 10 4(50-x) 10(50-x) 9x+ 4(50-x) 3x+10(50-x) 9x+4(50-X)≤360 3x+10(50-x)≤290
例2: 某工厂现有甲种原料360kg,乙种原料290kg,计划 利用这两种原料生产A,B两种产品共50件,已知生产一 件A产品需要甲原料9kg,乙原料3kg,生产一件B产品需 要甲原料4kg,乙原料10kg,
(1)设生产X件A种产品,写出X应满足的不等式组
(2)有哪几种符合的生产方案?
(3)若生产一件A产品可获利700元,生产一件B产 品可获利1200元,那么采用哪种生产方案可使生产A、 B两种产品的总获利最大?最大利润是多少?
9.某汽车租赁公司要购买轿车和面包 车共10辆,其中轿车至少要购买3辆, 轿车每辆7万元,面包车每辆4万元, 公司可投入的购车款不超过55万元; (1)符合公司要求的购买方案有几 种?请说明理由; (2)如果每辆轿车的日租金为200元, 每辆面包车的日租金为110元,假设新 购买的这10辆车每日都可租出,要使 这10辆车的日租金不低于1500元,那 么应选择以上那种购买方案?
解: 设有x间宿舍,根据题意得不等式组:
0<4x+19-6(x-1)<6
即:
4x+19-6(x-1)>0
4x+19-6(x-1)<6
解得: 18.5<x<12.5
因为x是整数,所以x=10,11,12.

第3讲 一元一次不等式-2021年新八年级数学暑假精品课程(华师大版)(原卷版)

第3讲 一元一次不等式-2021年新八年级数学暑假精品课程(华师大版)(原卷版)

第3讲一元一次不等式【学习目标】1.了解一元一次不等式的含义2.解不等式3.不等式应用【基础知识】考点一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.考点诠释:(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:符号读法意义它说明两个量之间的关系是不相等的,但不能确定哪“≠”读作“不等于”个大,哪个小“<”读作“小于”表示左边的量比右边的量小“>”读作“大于”表示左边的量比右边的量大即“不大于”,表示左边的量不大于右边的量读作“小于或等“≤”于”即“不小于”,表示左边的量不小于右边的量读作“大于或等“≥”于”(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.考点二、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a >b ,c >0,那么ac >bc(或a b c c>). 不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变. 用式子表示:如果a >b ,c <0,那么ac <bc(或a b c c <). 考点诠释:对不等式的基本性质的理解应注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变.考点三、一元一次不等式的解法1.解不等式:求不等式解的过程叫做解不等式.2.一元一次不等式的解法:与一元一次方程的解法类似,其根据是不等式的基本性质,将不等式逐步化为:a x <(或a x >)的形式,解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)化为ax b >(或ax b <)的形式(其中0a ≠);(5)两边同除以未知数的系数,得到不等式的解集.考点诠释:(1)在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵活运用.(2)解不等式应注意:①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;②移项时不要忘记变号;③去括号时,若括号前面是负号,括号里的每一项都要变号;④在不等式两边都乘以(或除以)同一个负数时,不等号的方向要改变.考点四、不等式的解及解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.考点诠释:不等式的解是具体的未知数的值,不是一个范围不等式的解集 是一个集合,是一个范围.其含义:①解集中的每一个数值都能使不等式成立;②能够使不等式成立的所有数值都在解集中3.不等式的解集的表示方法(1)用最简的不等式表示:一般地,一个含有未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式来表示.如:不等式x-2≤6的解集为x ≤8.(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地表明不等式的无限个解.如图所示:考点诠释:借助数轴可以将不等式的解集直观地表示出来,在应用数轴表示不等式的解集时,要注意两个“确定”:一是确定“边界点”,二是确定方向.(1)确定“边界点”:若边界点是不等式的解,则用实心圆点,若边界点不是不等式的解,则用空心圆圈;(2)确定“方向”:对边界点a 而言,x >a 或x ≥a 向右画;对边界点a 而言,x <a 或x ≤a 向左画.注意:在表示a 的点上画空心圆圈,表示不包括这一点.考点五、常见的一些等量关系1.行程问题:路程=速度×时间2.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量3.利润问题:商品利润=商品售价-商品进价,=100%⨯利润利润率进价4.和差倍分问题:增长量=原有量×增长率5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×时间6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.考点六、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似,通常也需要经过以下几个步骤:(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等;(2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式;(4)解:解所列的不等式;(5)答:写出答案,并检验是否符合题意.考点诠释:(1)列不等式的关键在于确定不等关系;(2)求得不等关系的解集后,应根据题意,把实际问题的解求出来;(3)构建不等关系解应用题的流程如图所示.(4)用不等式解决应用问题,有一点要特别注意:在设未知数时,表示不等关系的文字如“至少”不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.如:若“设还需要B 型车x 辆 ”,而在答中应为“至少需要11辆 B 型车 ”.这一点应十分注意.考点七、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010x x ->⎧⎨-<⎩,7021163159x x x ->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组. 考点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.考点八、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.考点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.考点九、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.考点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【考点剖析】考点一:不等式的概念例1.用不等式表示:(1)x与-3的和是负数;(2)x与5的和的28%不大于-6;(3)m除以4的商加上3至多为5.考点二:不等式的基本性质例2..判断以下各题的结论是否正确(对的打“√”,错的打“×”).(1)若 b﹣3a<0,则b<3a;(2)如果﹣5x>20,那么x>﹣4;(3)若a>b,则 ac2>bc2;(4)若ac2>bc2,则a>b;(5)若a>b,则 a(c2+1)>b(c2+1).(6)若a>b>0,则<..考点三:解一元一次不等式例3..解不等式:2)1x (3)1x (2-+<-,并把解集在数轴上表示出来.考点四:不等式的解及解集例4.不等式x >1在数轴上表示正确的是 ( ).考点五:利润问题例5水果店进了某种水果1t ,进价是7元/kg .售价定为10元/kg ,销售一半以后,为了尽快售完,准备打折出售.如果要使总利润不低于2000元,那么余下的水果至少可以按原定价的几折出售?考点六:方案选择例6某大型企业为了保护环境,准备购买A 、B 两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A 型2台、B 型3台需54万,购买A 型4台、B 型2台需68万元.(1)求出A 型、B 型污水处理设备的单价;(2)经核实,一台A 型设备一个月可处理污水220吨,一台B 型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.考点七:不等式组的概念例7某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x ,请你根据题意写出x 必须满足的不等式.举一反三:【变式】直接写出解集:(1)2,3xx>⎧⎨>-⎩的解集是______;(2)2,3xx<⎧⎨<-⎩的解集是______;(3)2,3xx<⎧⎨>-⎩的解集是_______;(4)2,3xx>⎧⎨<-⎩的解集是_______.考点八:解一元一次不等式组例8解不等式组:.考点九:一元一次不等式组的应用例“六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【真题演练】1.下列结论中,正确的是()A.若a>b ,则< B.若a>b,则a2>b2 C.若a>b,则1﹣a<1﹣b D.若a>b,ac2>bc2 2.不等式>﹣1的正整数解的个数是()A.1个 B.2个C.3个 D.4个3.不等式组24010xx-<⎧⎨+⎩≥的解集在数轴上表示正确的是().A B C D4. 如果关于x的不等式 (a+1)x>a+1的解集为x<1,那么a的取值范围是( ) .A. a>0B. a<0C. a>-1D. a<-15.三个连续自然数的和小于11,这样的自然数组共有()组.A.1 B.2 C.3 D.4二、填空题6.已知不等式3x﹣a≤0的解集为x≤5,则a的值为.7.一个不等式的解集如图所示,则这个不等式的正整数解是_____.8.不等式组⎩⎨⎧<+≥+321xx的整数解是_______.°.°...°°9.已知2(2)230x x y a -+--=,y 是正数,则a 的取值范围 .10.关于x 的方程2x +3k =1的解是负数,则k 的取值范围是_______.11.若不等式(m-2)x >2的解集是x <,则m的取值范围是_____.12.小明借到一本有72页的图书,要在10天之内读完,开始2天每天只读5页,那么以后几天里每天至少要读多少页?设以后几天里每天至少要读x 页,所列不等式为___________.三、解答题13.在数学学习中,及时对知识进行归纳、类比和整理是提高学习效率的有效策略,善于学习的小明在学习解一元一次不等式中,发现它与解一元一次方程有许多相似之处.小明列出了一张对照表:从表中可以清楚地看出,解一元一次不等式与解一元一次方程有一定的联系,利用这种联系解决下列问题:(1)若不等式kx >b 的解集是x <1,求方程kx=b 的解;(2)若方程kx=b 的解是x=-1,求不等式kx >b 的解集.14.解不等式组,并将解集在数轴上表示出来.15.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?【过关检测】一、选择题1.不等式组的所有整数解的和是( ) A .2 B .3 C .5 D .62.某商场的老板销售一种商品,他要以不低于进价20%价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多降价多少时商店老板才能出售( ).A .80元B .100元C .120元D .160元 3.若不等式组12x x k<≤⎧⎨>⎩ 有解,则k 的取值范围是( ).A.2k <B. 2k ≥C.1k <D. 12k ≤< 4.如果不等式ax+4<0的解集在数轴上表示如图,那么a 的值是( ) .A .a >0B .a <0C .a=-2D .a=25. 中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则与两个球体质量相等的正方体的个数为( ) .A .5B .4C .3D .26.已知关于x 的不等式组有且只有1个整数解,则a 的取值范围是( )A .a >1B .1≤a <2C .1<a ≤2D .a ≤2二、填空题7.如果关于x 的不等式(a+1)x >a+1的解集为x <1,那么a 的取值范围是 . 8.已知方程组⎩⎨⎧=+=-7325ay x y ax 的解满足⎩⎨⎧<>00y x ,则a 的取值范围 .9. 若不等式组⎩⎨⎧->+<121m x m x 无解,则m 的取值范围是. 10.已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围 .11.如果关于x 的不等式组9080x a x b -≥⎧⎨-<⎩的整数解仅为1,2,3,则a 的取值范围是 ,b 的取值范围是 .12. 为确保信息安全,信息需加密传输,发送方将明加密为密文传输给接收方,接收方收到密文后解密还原为明文.已知某种加密规则为:明文a ,b 对应的密文为a-2b ,2a+b .例如,明文1,2对应的密文是-3,4,当接收方收到密文是1,7时,解密得到的明文是 .13.若不等式组: 114111.5(1)()0.5(21)22x x a x a x x +⎧+>⎪⎪⎨⎪-+>-+-⎪⎩①②只有一个整数解,则a 的取值范围 . 三、解答题14.解不等式组:,并把解集在数轴上表示出来.15.已知关于x的不等式组有四个整数解,求实数a的取值范围.16.某小区准备新建50个停车位,用以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位共需0.6万元;新建3个地上停车位和2个地下停车位共需1.3万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)该小区的物业部门预计投资金额超过12万元而不超过13万元,那么共有几种建造停车位的方案?。

华东师大版七年级数学下册课件:第八章一元一次不等式复习

华东师大版七年级数学下册课件:第八章一元一次不等式复习

练一练
1、解一元一次不等式,并把解在数轴上表示出来:
(1)6 4(1 x) 2(2x 9)
(2) x 3 0.5 2x 1
2
3
2、求使不等式3(x-3)-1<2x成立的正整数解。
练一练
3、解不等式 x 3 x 2
5
2
并把它的解集表示的数轴上。
其解集在数轴上表示如右图
4、解不等式 y 1 y 1 y 1 32 6
解:设小答对了x道题,则得4x分,另有(25-x)道要扣 分,而小明评为优秀,即小明的得分应大于或等于85分,
4x-(25-x) ≥85 解得: x≥22
所以,小明到少答对了22道题,他可能答对22,23, 24或25道题。
2、某单位计划在新年期间组织员工到某地旅游,参如旅游的人数
估计为10~25人,甲、乙两家旅行社的服务质量相同,且报价都是
)
6x-1>3x-4
7、不等式组
的整数解为( 0 ,1
-1/3 x 2/3
)
8、若不等式组 X>3 的解集是x>a则a的范围是( a
3)
X>a
9、如果m<n<0那么下列结论正确的是( A B D )
A、m-9<n-9 B、-m>-n C、1/n >1/m D、m/n >1
10、已知关于x的方程 2x a =-1的解是非负数,则a
1 a 2005
的值
例、王海贷款5万元去做生意,贷款月利息10‰ .他决 定在半年内利用赚来的钱一次性还清贷款的本息。问 王海平均每个月至少要赚多少钱?(精确到100元)
月利息=本金× 利率 本息=本金+利息
解:设王海平均每月要赚x元钱。根据题意得

2024年华师大版初中数学七年级下册全册教案

2024年华师大版初中数学七年级下册全册教案

2024年华师大版初中数学七年级下册全册教案一、教学内容1. 第一章:有理数的乘方与幂运算1.1 有理数的乘方1.2 幂的运算法则1.3 应用题举例2. 第二章:一元一次方程2.1 方程的概念2.2 一元一次方程的解法2.3 应用题举例3. 第三章:不等式与不等式组3.1 不等式的概念3.2 不等式的解法3.3 不等式组及其解法3.4 应用题举例二、教学目标1. 掌握有理数的乘方和幂运算的法则,并能熟练运用。

2. 学会解一元一次方程,理解方程的解的概念。

3. 掌握不等式与不等式组的解法,并能解决实际问题。

三、教学难点与重点1. 教学难点:有理数的乘方与幂运算、一元一次方程的解法、不等式与不等式组的解法。

2. 教学重点:培养学生的运算能力,提高解决实际问题的能力。

四、教具与学具准备1. 教具:黑板、粉笔、教学课件。

2. 学具:练习本、铅笔、直尺。

五、教学过程1. 实践情景引入通过生活中的实例,引导学生了解有理数乘方、幂运算、方程和不等式的概念。

2. 例题讲解(1)有理数的乘方与幂运算:讲解例题,引导学生运用法则进行计算。

(2)一元一次方程:讲解例题,引导学生学会解方程。

(3)不等式与不等式组:讲解例题,引导学生学会解不等式和不等式组。

3. 随堂练习设计有针对性的练习题,让学生巩固所学知识。

4. 课堂小结5. 课后作业布置布置适量的作业,巩固所学知识。

六、板书设计1. 有理数的乘方与幂运算2. 一元一次方程3. 不等式与不等式组4. 各类题型的解法步骤七、作业设计1. 作业题目:(1)计算题:有理数的乘方与幂运算。

(2)解方程题:一元一次方程。

(3)解不等式题:不等式与不等式组。

八、课后反思及拓展延伸1. 反思:对本节课的教学过程进行反思,找出不足之处,改进教学方法。

2. 拓展延伸:(1)探讨有理数乘方与幂运算在实际问题中的应用。

(2)研究一元一次方程与不等式在生活中的应用,提高学生的实际问题解决能力。

华师大版七下数学6.1《从实际问题到方程》教学设计

华师大版七下数学6.1《从实际问题到方程》教学设计

华师大版七下数学6.1《从实际问题到方程》教学设计一. 教材分析华师大版七下数学6.1《从实际问题到方程》这一节主要介绍了方程的概念和实际问题与方程的联系。

通过本节课的学习,学生能够理解方程的定义,掌握一元一次方程的解法,并能够将实际问题转化为方程进行求解。

二. 学情分析学生在学习本节课之前,已经掌握了有理数的运算和一元一次不等式的解法,但对于方程的概念和实际问题与方程的联系可能还不够清晰。

因此,在教学过程中,需要引导学生从实际问题中发现方程,理解方程的定义,并掌握一元一次方程的解法。

三. 教学目标1.理解方程的概念,能够识别一元一次方程。

2.掌握一元一次方程的解法,能够将实际问题转化为方程进行求解。

3.培养学生的数学思维能力和问题解决能力。

四. 教学重难点1.重难点:一元一次方程的解法和实际问题与方程的联系。

2.难点:理解方程的概念,将实际问题转化为方程。

五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生从实际问题中发现方程。

2.案例教学法:通过分析典型案例,让学生理解实际问题与方程的联系,掌握一元一次方程的解法。

3.小组合作学习:引导学生进行小组讨论和合作,培养学生的团队合作能力和问题解决能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示典型案例和实际问题。

2.教学案例:准备一些相关的实际问题,用于引导学生发现方程和练习解方程。

3.练习题:准备一些练习题,用于巩固学生对一元一次方程的解法的掌握。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,如购物时找零问题、速度和时间问题等,引导学生从实际问题中发现方程,并激发学生的学习兴趣。

2.呈现(10分钟)通过PPT呈现方程的定义和一元一次方程的解法,让学生了解方程的基本概念和求解方法。

3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,尝试将其转化为方程,并运用一元一次方程的解法进行求解。

教师巡回指导,给予学生必要的帮助和提示。

七年级数学下册解一元一次不等式3解一元一次不等式第1课时一元一次不等式及其解法习题课件新版华东师大版

七年级数学下册解一元一次不等式3解一元一次不等式第1课时一元一次不等式及其解法习题课件新版华东师大版

解,则a可取的最小正整数为( D )
A.2 B.3 C.4
D.5
8.【中考·荆门】已知关于x的不等式3x-m+1>0的最小
整数解为2,则m的取值范围是( A )
A.4≤m<7
B.4<m<7
C.4≤m≤7
D.4<m≤7
*9.【中考·天水】若关于x的不等式3x+a≤2只有2个正整数 解,则a的取值范围为( ) A.-7<a<-4 B.-7≤a≤-4 C.-7≤a<-4 D.-7<a≤-4
4.【中考·嘉兴】不等式3(1-x)>2-4x的解集在数轴上 表示正确的是( A )
*5.【中考·呼和浩特】若不等式2x+ 3 5-1≤2-x 的解集中 x 的每一个值,都能使关 x 的不等式 3(x-1)+5>5x+
2(m+x)成立,则 m 的取值范围是( )
A.m>-35 C.m<-35
B.m<-15 D.m>-15
(3)解决问题: ①|x-4|+|x+2|的最小值是____6____; ②如图②,利用上述思想方法解不等式:|x+3|+|x- 1|>4; 解:如图,可知不等式|x+3|+|x-1|>4的解集为x< -3或x>1.
③当a为何值时,式子|x+a|+|x-3|的最小值是2. 解:当a为-1或-5时, 式子|x+a|+|x-3|的最小值是2.
【点拨】去分母时不要漏乘项,不等式两边同乘(或 除以)负数时,不等号改变方向.
解:错误的是①②⑤. 正确解法:去分母,得3(1+x)-2(2x+1)≤6. 去括号,得3+3x-4x-2≤6. 移项,得3x-4x≤6-3+2. 合并同类项,得-x≤5. 两边都除以-1,得x≥-5.
12.【中考·淮安】解不等式 2x-1>3x-2 1. 解:去分母,得 2(2x-1)>3x-1.

不等式--华师大版

不等式--华师大版

2
3
212x3x11x
变式:解不等式组,并说出它的正整数解。
5 2x 0
1 x 2
0
色的闪光,地面变成了暗白色、景物变成了浓黑色、天空变成了纯黑色、四周发出了夸张的巨响……蘑菇王子深邃快乐、充满智慧的黑亮眼睛受到震颤,但精神感觉很 爽!再看L.崴敕柯忍者活像筷子般的脚,此时正惨碎成龟壳样的深橙色飞灰,高速射向远方,L.崴敕柯忍者狂骂着狂魔般地跳出界外,加速将活像筷子般的脚复原 ,但已无力再战,只好落荒而逃同学女参谋H.琦叶娆仙女超然矮胖的屁股眨眼间疯耍狂跳起来……脏脏的紫红色球拍一般的手掌露出金橙色的点点猛气……花哨的美 如狮子一般的腿射出淡白色的阵阵疑冷!接着把美如麦穗一般的手臂旋了旋,只见五道新鲜的很像花苞般的粉霞,突然从花哨的腿中飞出,随着一声低沉古怪的轰响, 亮青色的大地开始抖动摇晃起来,一种怪怪的病态狗跳苦憨味在刺激的空气中飘动……紧接着嫩黄色扣肉似的粉条圣祖细腰忽然滚出丑妙色的鹿欢榆蕾味……有些魔法 的淡白色鸭蛋似的狂驴飘帘雨萍袍露出远舞天神声和咝喂声……绝种的白象牙色仙鹤似的肉串银兽鞋朦朦胧胧闪出马妖淡鸣般的跳动……最后耍起暗白色刀峰一般的腰 带一笑,萧洒地从里面喷出一道佛光,她抓住佛光明丽地一抖,一样黑晶晶、红晶晶的法宝『褐光虹仙冰块球』便显露出来,只见这个这件东西儿,一边转化,一边发 出“喇喇”的异声……突然间女参谋H.琦叶娆仙女发疯般地念起嘟嘟囔囔的宇宙语,只见她变异的肩膀中,酷酷地飞出九缕飞丝状的瓜子,随着女参谋H.琦叶娆仙 女的扭动,飞丝状的瓜子像棋盘一样在双肩上欢快地忽悠出缕缕光幕……紧接着女参谋H.琦叶娆仙女又耍起突兀的屁股,只见她风光的皮肤中,威猛地滚出八串活塞 状的雨点,随着女参谋H.琦叶娆仙女的耍动,活塞状的雨点像药片一样,朝着蘑菇王子犹如擎天玉柱一样的长腿神掏过来!紧跟着女参谋H.琦叶娆仙女也滚耍着法 宝像树根般的怪影一样朝蘑菇王子神抓过来蘑菇王子超然顽皮灵活的脖子瞬间闪烁抽动起来……充满活力的幼狮肩膀穿出米黄色的朦胧地云……青春光洁的手掌露出钢 灰色的隐隐奇臭。接着把天使般的黑色神童眉转了转,只见七道浓浓的活像彩蛋般的褐光,突然从结实柔韧、如同天马一样的强壮胸膛中飞出,随着一声低沉古怪的轰 响,水白色的大地开始抖动摇晃起来,一种怪怪的亮欢仙境味在华丽的空气中晃动!紧接着如天神铠甲一样的金红色宝石马甲顷刻射出嫩黄色的水晶菊隐水舞味……快 乐灵巧的舌头穿出暗流猪颤阴嘶声和呀哈声……神秘变幻的海沙色月光风衣变幻莫测跳出酸歌凄惨般的奇闪。最后甩起灵敏小巧的薄耳朵一抛,猛然从里面窜出一道金 辉,他抓住金

8.2.4一元一次不等式应用__华师大版

8.2.4一元一次不等式应用__华师大版

拓广探索
一些女生住若干间宿舍,每间住4人,剩19人无房 住;每间住6人,有一间宿舍住不满,可能有多少间 宿舍,多少名学生?
思路分析
不妨设有X间宿舍,每间住4人,剩下19人,因此学 生人数为4X+19人,若每间住6人,则有一间住不满, 4X+19 这 是什么不等关系呢? 你明白吗? 最后一间宿舍 6 6 0人到6人之间
解:设张力平均每天读x页. 由题意,得:

7(x+3)>98 7x<98
① ②
对于具有多种不等关系实际的问题,可 通过构建不等式组的数学模型解决, 关 键是找出题中的不等关系。解一元一 次不等式组时,一般先求出其中各不等 式的解集,再求出这些解集的公共部分, 利用数轴可以直观地表示不等式组的 解集.
6
6
(X-1)间宿舍
可以看出: 0<最后一间宿舍住的人数<6 列不等式组为: 0<4x+19-6(x-1)<6
练一练 9. 把一些书分给几个学生,如果每人分3本,那么余8
本,如果前面的每个学生分5本,那么最后一人就分不到3 本. 这些书有多少本?学生有多少人? 解: 设有x名学生,则有(3x+8)本书. 由题意,得: 0≤(3x+8)-5(x-1)<3 3x+8≥5(x-1) 即 3x+8 < 5(x -1)+3 x≤6.5 解得: 所以 5< x≤6.5 x>5 因为x是正整数,所以x=6,3x+8=26 答: 有6名学生,26本书.
某高速公路工地需要实施爆破,操作人员点燃 导火线后,要在炸药爆炸前跑到400米以外的 安全区域,已知导火线的燃烧速度是1.2厘米/ 秒,人跑的速度是5米/秒,问导火线必须超过 多长,才能保证操作人员的安全?

2021年华东师大版七年级数学下册第八章《8.3 一元一次不等式组》公开课课件(57张PPT)

2021年华东师大版七年级数学下册第八章《8.3 一元一次不等式组》公开课课件(57张PPT)
-3、-2、-1.
课后作业
1.从教材习题中选取, 2.完成练习册本课时的习题.
8.3 一元一次不等式组
第2课时 解一元一次不等式组(2)
华东师大·七年级下册
新课导入
1.什么是一元一次不等式组? 2.什么是一元一次不等式组的解集? 3.你能用什么方法确定一元一次不等式组的解
集?
推进新课
随堂演练
(1)求饮用水和蔬菜各有多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这 批饮用水和蔬菜全部运往该乡中小学.已知每辆甲 种货车最多可装饮用水40件和蔬菜10件,每辆乙种 货车最多可装饮用水和蔬菜各20件,有哪几种方案 可供选择?
(3)在(2)的条件下,如果甲种货车每辆需付运费 400元,乙种货车每辆需付运费360元.运输部门应 选择哪种方案可使运费最少?最少运费是多少元?
分析:设需要x分钟能将污水抽完,那么总的抽 水量为30x吨,由题意可知
在这个实际问题中,未知量x应同时满足这两个不等 式,我们把这两个一元一次不等式合在一起,就得 到一个一元一次不等式组:
分别求这两个不等式的解集,得
在同一数轴上表示出这两个不等式的解集,可 知其公共部分是40和50之间的数(包括40 和50),记作 40≤x≤50.
(1)某校九年级某班课外活动小组承接了这个园艺 造型搭配方案的设计,问符合题意的搭配方案有几 种?请你帮助设计出来;
(2)若搭配一个A种造型的成本是200元,搭配一个 B种造型的成本是360元,试说明(1)中哪种方案 成本最低,最低成本是多少元?
分析:本题的不等关系比较隐蔽,好像与不等 式没有什么关系,但仔细分析题意并结合实 际可知:A、B两种造型所需甲种花卉不能 超过349盆,乙种花卉不能超过295盆,依 此便能够建立不等式组求解.

2020春华东师大版数学七年级下册习题课件-8.2 3 第2课时 一元一次不等式的实际应用

2020春华东师大版数学七年级下册习题课件-8.2  3  第2课时 一元一次不等式的实际应用

钢笔.已知影集每本 15 元,钢笔每支 8 元,她至少买多少支钢笔才能享受打折优惠? 设买 x 支钢笔才能享受打折优惠,那么以下正确的是( A )
A.15×6+8x>200
B.15×6+8x=200
C.15×8+6x>200
D.15×6+8x≥200
2.某公司销售一批计算机,第一个月以 5 500 元/台的价格售出 60 台,第二个月起
5.(2019·辽宁辽阳中考)为了进一步丰富校园活动,学校准备购买一批足球和篮球, 已知购买 7 个足球和 5 个篮球的费用相同;购买 40 个足球和 20 个篮球共需 3 400 元. (1)求每个足球和篮球各多少元; (2)如果学校计划购买足球和篮球共 80 个,总费用不超过 4 800 元,那么最多能买多 少个篮球?
16.(2019·山西长治月考)某商场销售进价为 150 元和 120 元的 A,B 两种型号的足球,
下表是近两周的销售情况:
销售数量
销售时段
销售收入
A 型号 B 型号
第一周 3 个 4 个 1 200 元
第二周 5 个 3 个 1 450 元
(进价、售价均保持不变,利润=销售收入-进货成本)
(1)求 A,B 两种型号的足球的销售单价; (2)若商场准备用不多于 8 400 元的金额再购进这两种型号的足球共 60 个,求 A 型号 的足球最多能采购多少个? (3)在(2)的条件下,商场销售完这 60 个足球能否使利润超过 2 550 元.若能,请给出 相应的采购方案;若不能,请说明理由. 解:(1)A 型号足球的销售单价是 200 元,B 型号足球的销售单价是 150 元. (2)设 A 型号足球购进 a 个,则 B 型号足球购进(60-a)个.根据题意得 150a+120(60 -a)≤8 400, 解得 a≤40,所以 A 型号足球最多能采购 40 个.

华东师大初中数学七年级下册一元一次不等式组(基础) 知识讲解

华东师大初中数学七年级下册一元一次不等式组(基础) 知识讲解

一元一次不等式组(基础)知识讲解【学习目标】1.理解不等式组的概念;2.会解一元一次不等式组,并会利用数轴正确表示出解集;3.会利用不等式组解决较为复杂的实际问题,感受不等式组在实际生活中的作用.【要点梳理】要点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.要点诠释:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.要点二、解一元一次不等式组1. 一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.要点诠释:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.要点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.要点诠释:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取非负整数.【典型例题】类型一、不等式组的概念1.某小区前坪有一块空地,现想建成一块面积大于48平方米,周长小于34米的矩形绿化草地,已知一边长为8米,设其邻边为x,请你根据题意写出x必须满足的不等式.【思路点拨】由题意知,x必须满足两个条件①面积大于48平方米.②周长小于34米.故必须构建不等式组来体现其不等关系.【答案与解析】解:依题意得:8482(8)34. xx>⎧⎨+<⎩【总结升华】建立不等式组的条件是:当感知所求的量同时满足几个不等关系时,要建立不等式组,建立不等式组的意义与建立方程组的意义类似.【高清课堂:第二讲 一元一次不等式组的解法370096 例2】举一反三:【变式】直接写出解集:(1)2,3x x >⎧⎨>-⎩的解集是______; (2)2,3x x <⎧⎨<-⎩的解集是______; (3)2,3x x <⎧⎨>-⎩的解集是_______; (4)2,3x x >⎧⎨<-⎩的解集是_______. 【答案】(1)2x >;(2)3x <-;(3)32x -<<;(4)空集.类型二、解一元一次不等式组2. 解下列不等式组(1) 313112123x x x x +<-⎧⎪⎨++≤+⎪⎩①② (2)213(1)4x x x +>-≥-.【思路点拨】解不等式组时,要先分别求出不等式组中每个不等式的解集,然后画数轴,找它们解集的公共部分,这个公共部分就是不等式组的解集.【答案与解析】解:(1)解不等式①,得x <-2解不等式②,得x ≥-5故原不等式组的解集为-5≤x <-2.其解集在数轴上表示如图所示.(2) 原不等式可变为:213(1)3(1)4x x x x +>-⎧⎨-≥-⎩①② 解①得:4x <解②得:12x ≥- 故原不等式组的解集为142x -≤<.【总结升华】确定一元一次不等式组解集的常用方法有两种:(1)数轴法:运用数轴法确定不等式组的解集,就是将不等式组中的每一个不等式的解集在数轴上表示出来,然后找出它们的公共部分,这个公共部分就是此不等式组的解集;如果没有公共部分,则这个不等式组无解,这种方法体现了数形结合的思想,既直观又明了,易于掌握.(2)口诀法:为了便于快速找出不等式组的解集,结合数轴将其总结为朗朗上口的四句口诀:同大取大、同小取小、大小小大中间找,大大小小无解了.举一反三:【变式】(2015•江西样卷)解不等式组,并把解集在数轴上表示出来.【答案】 解:, ∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为:﹣2<x≤1.在数轴上表示不等式组的解集为:类型三、一元一次不等式组的应用3. “六·一”儿童节,学校组织部分少先队员去植树.学校领到一批树苗,若每人植4棵树,还剩37棵;若每人植6棵树,则最后一人有树植,但不足3棵,这批树苗共有多少棵.【思路点拨】设有x 名学生,则由第一种植树法,知道一共有(4x +37)棵树;第二种植树法中,前(x-1)名学生中共植6(x-1)棵树;最后一名学生植树的数量是:[(4x +37)- 6(x-1)]棵,这样,我们就探求到第一个不等量关系:最后一人有树植,说明第二种植树法中前(x-1)名学生植树的数量要比树木总数少,即(4x +37)>6(x-1);第二种植树法中,最后一名学生植树的数量不到3棵,也就是说[(4x +37)- 6(x-1)]<3,或者理解为:[(3x +8)- 5(x-1)]≤2,这样,我们就又找到了第二个不等量关系式.到此,不等式组即建立起来了,接下来就是解不等式组.【答案与解析】解:设有x 名学生,根据题意,得:4376114376132x x x x +>-⎧⎨+--<⎩()()()()(), 不等式(1)的解集是:x <2121;不等式(2)的解集是:x >20,所以,不等式组的解集是:20<x <2121,因为x 是整数,所以,x=21,4×21+37=121(棵)答:这批树苗共有121棵.【总结升华】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.举一反三:【变式】一件商品的成本价是30元,若按原价的八八折销售,至少可获得10%的利润;若按原价的九折销售,可获得不足20%的利润,此商品原价在什么范围内?【答案】解:设这件商品原价为x 元,根据题意可得:88%303010%90%303020%x x ≥+⨯⎧⎨<+⨯⎩解得:37.540x ≤<答:此商品的原价在37.5元(包括37.5元)至40元范围内.4.(2015•桂林)“全民阅读”深入人心,好读书,读好书,让人终身受益.为满足同学们的读书需求,学校图书馆准备到新华书店采购文学名著和动漫书两类图书.经了解,20本文学名著和40本动漫书共需1520元,20本文学名著比20本动漫书多440元(注:所采购的文学名著价格都一样,所采购的动漫书价格都一样).(1)求每本文学名著和动漫书各多少元?(2)若学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,请求出所有符合条件的购书方案.【思路点拨】(1)设每本文学名著x 元,动漫书y 元,根据题意列出方程组解答即可;(2)根据学校要求购买动漫书比文学名著多20本,动漫书和文学名著总数不低于72本,总费用不超过2000元,列出不等式组,解答即可.【答案与解析】解:(1)设每本文学名著x 元,动漫书y 元, 可得:, 解得:, 答:每本文学名著和动漫书各为40元和18元;(2)设学校要求购买文学名著x 本,动漫书为(x+20)本,根据题意可得:, 解得:,因为取整数,所以x 取26,27,28;方案一:文学名著26本,动漫书46本;方案二:文学名著27本,动漫书47本;方案三:文学名著28本,动漫书48本.【总结升华】此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【高清课堂:实际问题与一元一次不等式组409416 例2】举一反三:【变式】A 地果农收获荔枝30吨,香蕉13吨,现计划租用甲、乙两种货车共10辆,将这批水果全部运往B 地. 已知甲种货车可装荔枝4吨和香蕉1吨,乙种货车可装荔枝香蕉各2吨.(1)若要安排甲、乙两种货车时有几种方案?请你帮助设计出来.(2)若甲种货车每辆要付运输费2000元,乙种货车每辆要付运输费1300元,那么选择哪种方案使运费最少?运费最少是多少?【答案】解:(1)设租甲种货车x 辆,则租乙种货车(10x -)辆,依题意得: 42(10)302(10)13x x x x +-≥⎧⎨+-≥⎩,解得57x ≤≤, 又x 为整数,所以5x =或6或7,∴有三种方案:方案1:租甲种货车5辆,乙种货车5辆;方案2:租甲种货车6辆,乙种货车4辆;方案3:租甲种货车7辆,乙种货车3辆.(2)运输费用:方案1:2000×5+1300×5=16500(元);方案2:2000×6+1300×4=17200(元);方案3:2000×7+1300×3=17900(元).∴方案1运费最少,应选方案1.。

第八章一元一次不等式复习课课件华东师大版七年级数学下册

第八章一元一次不等式复习课课件华东师大版七年级数学下册

系数化为 1 得:
x≥
-5 2
不等式的解集在数轴上表示如图所示:

3-
5 2

2
–1
0
1
2
3
注意:系数化为1时,要注意不等号的方向.
三、考点探究
考点三 解一元一次不等式组
例3:解不等式组
2 2
x x
3 5
x6 10 3x
① ②
集中的整数解写出来.
,把解集在数轴上表示出来,并将解
分析:先分别解出每个不等式,再求出其公共部分即可.
a
b
x>b
同大取大
a
b
a<x<b
大小小大中间找
a
b
x<a
同小取小
a
b
无解
大大小小解不了
二、知识梳理
五、利用一元一次不等式(组)解决实际问题
① 审: 找出题目中的不等关系; ② 设:设出未知数,用未知数表示有关代数式; ③ 列:列出不等式; ④ 解:解不等式; ⑤ 答:根据实际情况写出答案.
三、考点探究
x≥4
x<–3
(1)
(2)
x>–4
x≤–2
x > –1 (3)
x<5
x>–4 (4)
x<–5
x≥4
x < –3
–1 < x < 5
无解
同大取大
同小取小 大小小大中间找 大大小小解不了
三、考点探究
考点四 用一元一次不等式(组)解决实际问题
例4:某小区计划购进甲、乙两种树苗,已知甲、乙两种树苗每株分别为8元、 6元. 若购买甲、乙两种树苗共360株,并且甲树苗的数量不少于乙树苗的一 半,请你设计一种费用最少的购买方案. 解:设购买甲树苗的数量为 x 株;

华东师大版七年级下册数学:8.3一元一次不等式(组)的应用学案(2)(无答案)

华东师大版七年级下册数学:8.3一元一次不等式(组)的应用学案(2)(无答案)

一元一次不等式(组)的应用(2)一、学习目标:1、会分析应用题中各个量之间的关系。

2、会根据题意列出不等式组,并进行解答。

二、重点:会根据题意列出不等式组三、学习和探究:例题1:在保护地球爱护家园活动中,校团委把一批树苗分给初三(1)班同学去栽树种,如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得道的树苗少于5棵(但至少分得一棵)。

(1)设初三(1)班有x名同学,则这批树苗有多少棵?(用含x的代数式表示)。

(2)初三(1)至少有多少名同学?最多有多少名?解:(1)(2)不等关系:变式:1、幼儿园把新购进的一批玩具分给小朋友,若每人3件,那么还剩59件,若每人5件,那么最后一个小朋友分到玩具,但不足4件。

这批玩具共有多少件?2、某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们。

如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本。

设该校买了m x x本课外读物,有名学生获奖。

请解答下列问题:(1)用含的代数式表示m;(2)求出该校的获奖人数及所买课外读物的本数。

3、见教材53页练习第4题。

种产品共80件,生产一件A产品需要甲种原料5千克,乙种原料1.5千克,生产成本是120元,生产一件B产品,需要甲种原料2.5千克,乙种原料3.5千克,生产成本为200元。

(1)该化工厂现有的原料能否保证生产,若能的话,有几种生产方案,请设计出来。

(2)设生产A、B两种产品的总成本为y元,其中一种的件数为x,试用含x的代数式表示y,并说明(1)中哪种生产方案总成本最低,最低成本为多少?解:(1)不等关系:、(2)变式:1、某县为筹备20周年县庆,园林部门决定利用现有的3490盆甲种花卉和2950盆乙种花卉搭配A、B两种园艺造型50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需要甲种花卉50盆、乙种花卉90盆。

华师大版数学七年级(下册)说教材

华师大版数学七年级(下册)说教材
(1)篮球和排球的单价分别是多少元?
(2)若要求购买的篮球和排球的总数量是36 个,且购买的篮球数量多于25个,有哪几种购 买方案?
2011河南中考
21.(10分)某旅行社拟在暑假期间面向学生推出 “林州红旗渠一日游”活动,收费标准lt;m≤200
m>200
收费标准(元/人) 90
题,再一次实实在在地让学生参与到学习中来。
§6.2 解一元一次方程
1.方程的简单变形
可利用天平做演示实验引入课题,要注意一些细节(如天 平的调零,左盘放物体,右盘放砝码等),得到方程变形的 两个基本规律后,对于例1,引导学生跳跃式地进行思维,从 而概括出移项的一般规律,由于安排的两个小题移项后即得 方程的解,移项对于求方程解的重要性不点自明。从例2,可 以看出教材删除了“简单方程”,代之以“将未知数的系数化为 1”,与“移项”相结合,完备了知识体系。淡化冗长的程序, 注重实效。本节最好能安排一节习题课,形式可以多样(小 组赛,议一议,谁的方法好等)。让学生充分表达不同的意 见,真正思考起来,动起来,体会方程的不同解法中所经历 的转化思想。P9习题第3题渗透了函数思想,让学生有所体会 即可,我们觉得不必加深。
重点 难点
二元一次方程组及相关概念,消元思想和代入 法、加减法解二元一次方程组 (化归思想、 优化思想的逐步形成)
利用二元一次方程组解决实际问题 (发展分 析问题能力,发展发散思维能力)
以方程组为工具分析问题、解决含有多个未 知数的问题。
能力:具备不熟练的读写能力

心理素质:对文字类题目即应用题的恐惧心理
“三元一次方程组及其解法”目的是通过解
三元一次方程组进一步体会消元思想。三元一次 方程组含有三个未知数,如何消元,先消哪个元 是需要认真思考的。消去其中一个未知数就得到 前面已学过的二元一次方程组,从而把三元一次 方程组转化为二元一次方程组,进而转化为一元 一次方程。

最新华东师大初中数学中考总复习:一元一次不等式(组)--知识讲解

最新华东师大初中数学中考总复习:一元一次不等式(组)--知识讲解

中考总复习:一元一次不等式(组)—知识讲解【考纲要求】1.会解一元一次不等式(组),理解一元一次不等式(组)的解集的含义,进一步体会数形结合的思想;2.会用不等式(组)进行解题,能利用不等式(组)解决生产、生活中的实际问题.【知识网络】【考点梳理】考点一、不等式的相关概念 1.不等式用不等号连接起来的式子叫做不等式.常见的不等号有五种: “≠”、 “>” 、 “<” 、 “≥”、 “≤”. 2.不等式的解与解集不等式的解:使不等式成立的未知数的值,叫做不等式的解.不等式的解集:一个含有未知数的不等式的解的全体,叫做不等式的解集.不等式的解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点:解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左. 3.解不等式求不等式的解集的过程或证明不等式无解的过程,叫做解不等式. 要点诠释:不等式的解与一元一次方程的解是有区别的:不等式的解是不确定的,是一个范围,而一元一次方程的解则是一个具体的数值.考点二、不等式的性质概念 基本性质不等式的定义 不等式的解法 一元一次不等式 的解法一元一次不等式组 的解法 不等式 实际应用 不等式的解集性质1:不等式两边加上(或减去)同一个数(或式子),不等号的方向不变,即如a >b ,那么a ±c >b ±c . 性质2:不等式两边乘以(或除以)同一个正数,不等号的方向不变,即如果a >b ,c >0,那么ac >bc (或a c >bc). 性质3:不等式两边乘以(或除以)同一个负数,不等号的方向改变,即如果a >b ,c <0,那么ac <bc (或a c <b c). 要点诠释:(1)不等式的其他性质:①若a >b ,则b <a ;②若a >b ,b >c ,则a >c ;③若a ≥b ,且b ≥a ,•则a=b ;④若a 2≤0,则a=0;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号.(2)任意两个实数a 、b 的大小关系:①a -b >O ⇔a >b ;②a -b=O ⇔a=b ;③a-b <O ⇔a <b . 不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c .考点三、一元一次不等式(组) 1.一元一次不等式的概念只含有一个未知数,且未知数的次数是1,系数不等于0的不等式叫做一元一次不等式.其标准形式:ax+b >0(a ≠0)或ax+b ≥0(a ≠0) ,ax+b <0(a ≠0)或ax+b ≤0(a ≠0). 2.一元一次不等式的解法一元一次不等式的解法与一元一次方程的解法类似,•但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号要改变方向.解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)化系数为1. 要点诠释:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方. 3.一元一次不等式组及其解集含有相同未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组. 一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定. 要点诠释:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、3个、4个或更多. 4.一元一次不等式组的解法由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示. 要点诠释:解不等式组时,一般先分别求出不等式组中各个不等式的解集并表示在数轴上,再求出它们的公共部分,就得到不等式组的解集. 5.一元一次不等式(组)的应用列一元一次不等式(组)解实际应用问题,可类比列一元一次方程解应用问题的方法和技巧,不同的是,列不等式(组)解应用题,寻求的是不等关系,因此,根据问题情境,抓住应用问题中不等式组 (其中a >b )图示解集口诀x ax b >⎧⎨>⎩ bax a > (同大取大)x ax b <⎧⎨<⎩ b ax b <(同小取小) x ax b <⎧⎨>⎩ bab x a << (大小取中间)x ax b>⎧⎨<⎩ ba无解 (空集) (大大、小小 找不到)“不等”关系的关键词语,或从题意中体会、感悟出不等关系显得十分重要. 要点诠释:列一元一次不等式组解决实际问题是中考考查的一个重要内容,在列不等式解决实际问题时,应掌握以下三个步骤:(1)•找出实际问题中的所有不等关系或相等关系(有时要通过不等式与方程综合来解决),设出未知数,列出不等式组(•或不等式与方程的混合组);(2)解不等式组;(3)从不等式组(或不等式与方程的混合组)•的解集中求出符合题意的答案. 6.一元一次不等式、一元一次方程和一次函数的关系一次函数(0)y kx b k =+≠,当函数值0y =时,一次函数转化为一元一次方程;当函数值0y >或0y <时,一次函数转化为一元一次不等式,利用函数图象可以确定x 的取值范围.【典型例题】类型一、解不等式(组)1.(2014春•巴中期中)解不等式(组),并把它们的解集在数轴上表示出来 (1)2x ﹣1<3x+2; (2).【思路点拨】(1)先移项,再合并同类项、系数化为1即可; (2)先求两个不等式的解集,再求公共部分即可. 【答案与解析】解:(1)移项得,2x ﹣3x <2+1, 合并同类项得,﹣x <3,系数化为1得,x >﹣3在数轴上表示出来:.(2),解①得,x <1, 解②得,x≥﹣4.5 在数轴上表示出来:不等式组的解集为﹣4.5≤x<1.【总结升华】解不等式(组)是中考中易考查的考点,必须熟练掌握. 举一反三:【变式】131321≤---x x 解不等式:.【答案】解:去分母,得 6)13(2)13≤---x x ( (不要漏乘!每一项都得乘) 去括号,得 62633≤+--x x (注意符号,不要漏乘!)移 项,得 23663-+≤-x x (移项要变号) 合并同类项,得 73≤-x (计算要正确) 系数化为1, 得 37-≥x (同除负,不等号方向要改变,分子分母别颠倒了)2.解不等式组352,1212x x x x -<⎧⎪⎨-≤+⎪⎩并将其解集在数轴上表示出来.【思路点拨】分别解出两个不等式的解集,再求出公共的解集即可.【答案与解析】解:由(1)式得x <5, 由(2)式得x ≥-1, ∴ -1≤x <5数轴上表示如图:【总结升华】注意解不等式组的解题步骤. 举一反三:【变式1】解不等式组312(1)2(1)4x x x x +≥-⎧⎨+>⎩,并把它的解集在数轴上表示出来.【答案】不等式组的解集为-3≤x <1,数轴上表示如图:【高清课程名称:不等式(组)及应用 高清ID 号: 370028关联的位置名称(播放点名称):经典例题2】【变式2】解不等式组24x ≤⎧⎪⎨+⎪⎩(x-1)+33x x-2>3,并写出不等式组的整数解;【答案】不等式组的解集为1≤x <5,故其整数解为:1,2,3,4. 类型二、一元一次不等式(组)的特解问题3.(2014•青羊区校级自主招生)若不等式组的正整数解有3个,那么a 必须满足( )A .5<a <6B .5≤a<6C .5<a≤6D .5≤a≤6【思路点拨】首先解得不等式组的解集,然后根据不等式组只有三个正整数解即可确定a 的范围. 【答案】C ;【解析】解不等式5≤2x﹣1≤11得:3≤x≤6.若不等式组有3个正整数解则不等式组的解集是:3≤x<a . 则正整数解是:3,4,5. ∴5<a≤6.故选C . 【总结升华】本题主要考查学生是否会利用逆向思维法解决含有待定字母的一元一次不等式组的特解问题. 举一反三:【高清课程名称:不等式(组)及应用高清ID 号:370028 关联的位置名称(播放点名称):经典例题3-4】 【变式1】关于x 的方程,如果3(x +4)-4=2a +1的解大于3)43(414-=+x a x a 的解,求a 的取值范围. 【答案】718a >. 【变式2】若不等式-3x+n >0的解集是x <2,则不等式-3x+n <0的解集是_______. 【答案】∵-3x+n >0,∴x <3n ,∴3n =2 即n=6代入-3x+n <0得:-3x+6<0,∴x >2.类型三、一元一次不等式(组)的应用4.仔细观察下图,认真阅读对话:根据对话内容,试求出一盒饼干和一袋牛奶的标价各是多少元.【思路点拨】根据对话找到下列关系:①饼干的标价+牛奶的标价>10元;②饼干的标价<10;③饼干标价的90%+牛奶的标价=10元-0.8元,然后设未知数列不等式组.【答案与解析】解:设饼干的标价为每盒x元,牛奶的标价为每袋y元.则10(1) 0.9100.8(2)10(3) x yx yx+>⎧⎪+=-⎨⎪<⎩由(2)得 y=9.2-0.9x (4)把(4)代入(1)得:9.2-0.9x+x>10,解得x>8.由(3)综合得 8<x<10.又∵x是整数,∴x=9.把x=9代入(4)得:y=9.2-0.9×9=1.1(元)答:一盒饼干标价9元,一袋牛奶标价1.1元.【总结升华】不等式、方程与实际生活相联系的问题,主要是审好题,计算准确.举一反三:【变式】某牛奶乳业有限公司经过市场调研,决定从明年起对甲、乙两种产品实行“限产压库”,要求这两种产品全年共新增产量20件,这20件的总产值p(万元)满足:110<p<120.已知有关数据如表所示,•那么该公司明年应怎样安排新增产品的产量?产品每件产品的产值甲 4.5万元乙7.5万元【答案】解:设该公司安排生产新增甲产品x 件,那么生产新增乙产品(20-x )件,由题意得:110<4.5x+7.5(20-x )<120 ∴10<x <403,依题意,得x=11,12,13 当x=11时,20-11=9;当x=12时,20-12=8;当x=13时,20-13=7.所以该公司明年可安排生产新增甲产品11件,乙产品9件;或生产新增甲产品12件,乙产品8件;或生产新增甲产品13件,乙产品7件.类型四、一元一次不等式(组)与方程的综合应用5.某钱币收藏爱好者,想把3.50元纸币兑换成的1分,2•分,5分的硬币;他要求硬币总数为150枚,2分硬币的枚数不少于20枚且是4的倍数,5•分的硬币要多于2分的硬币;请你根据此要求,设计所有的兑换方案.【思路点拨】题目中包含的相等关系有:①所有硬币的总价值是3.50元;②共有硬币150枚.•不等关系有:①2分的硬币的枚数不少于20枚;②5分的硬币要多于2分的硬币.且硬币的枚数为整数,2分的硬币的数量是4的倍数. 【答案与解析】解:(法一)设兑换成1分,2分,5分硬币分别为x 枚,y 枚,z 枚,依据题意,得150,(1)25350,(2),(3)20,(4)x y z x y z z y y ++=⎧⎪++=⎪⎨>⎪⎪≥⎩由(1),(2)得 将y 代入(3),(4)得2004,200420,z z z >-⎧⎨-≥⎩解得40<z ≤45,∵z 为正整数,∴z 只能取41,42,43,44,45,由此得出x ,y 的对应值, 共有5种兑换方案.73,76,79,82,85,36,32,28,24,20,41.42.43,44.45.x x x x x y y y y y z z z z z =====⎧⎧⎧⎧⎧⎪⎪⎪⎪⎪=====⎨⎨⎨⎨⎨⎪⎪⎪⎪⎪=====⎩⎩⎩⎩⎩(法二):设兑换成的1分,2分,5分硬币分别为x 枚,y 枚,z 枚,依据题意可得150,(1)25350,(2)(3)x y z x y z z y ++=⎧⎪++=⎨⎪>⎩∵y 是4的倍数,可设y=4k (k 为自然数), ∵y ≥20,∴4k ≥20,即k ≥5. 将y=4k 代入(1),(2)可解得z=50-k , ∵z >y ,∴50-k >4k ,即k <10.∴5≤k <10,又k 为自然数,∴k 取5,6,7,8,9.由此得出x ,y 的对应值,共有5种兑换方案:73,76,79,82,85,36,32,28,24,20,41.42.43,44.45.x x x x x y y y y y z z z z z =====⎧⎧⎧⎧⎧⎪⎪⎪⎪⎪=====⎨⎨⎨⎨⎨⎪⎪⎪⎪⎪=====⎩⎩⎩⎩⎩【总结升华】这是一道方案设计题,•是涉及到方程和不等式的综合应用题.6.某校组织学生到外地进行综合实践活动,共有680名学生参加,并携带300件行李.学校计划租用甲、乙两种型号的汽车共20辆.经了解,甲种汽车每辆最多能载40人和10件行李,乙种汽车每辆最多能载30人和20件行李.⑴ 如何安排甲、乙两种汽车可一次性地将学生和行李全部运走?有哪几种方案?⑵ 如果甲、乙两种汽车每辆的租车费用分别为2000元、1800元,请你选择最省钱的一种租车方案【思路点拨】根据题意列出不等式组,解出未知数的取值范围,分类讨论各种方案. 【答案与解析】解:(1)设安排x 辆甲型汽车,安排(20-x )辆乙型汽车.由题意得:⎩⎨⎧≥-+≥-+300)20(2010680)20(3040x x x x 解得108≤≤x ,∴整数x 可取8、9、10. ∴共有三种方案:①租用甲型汽车8辆、乙型汽车12辆; ②租用甲型汽车9辆、乙型汽车11辆; ③租用甲型汽车10辆、乙型汽车10辆.(2)设租车总费用为w 元,则)20(18002000x x w -+=36000200+=x w 随x 的增大而增大,∴当8=x 时,37600360008200=+⨯=最小w ,∴最省钱的租车方案是:租用甲型汽车8辆、乙型汽车12辆. 【总结升华】考查不等式与方程综合应用问题,体现了分类讨论的思想.。

2020秋华师大版八年级数学上册习题课件

2020秋华师大版八年级数学上册习题课件

2020秋华师大版八年级数学上册习题课件一、教学内容本节课选自2020秋华师大版八年级数学上册,主要涉及第三章《方程与不等式》的3.1节《一元一次方程》及3.2节《一元一次不等式》。

具体内容包括一元一次方程的解法、一元一次不等式的解法,以及它们在实际问题中的应用。

二、教学目标1. 理解并掌握一元一次方程和一元一次不等式的概念及其解法。

2. 能够运用一元一次方程和一元一次不等式解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点重点:一元一次方程和一元一次不等式的解法。

难点:如何将实际问题转化为数学模型,并运用一元一次方程和一元一次不等式进行求解。

四、教具与学具准备1. 教具:PPT课件、黑板、粉笔。

2. 学具:练习本、笔。

五、教学过程1. 实践情景引入:通过展示生活中的实际问题,让学生了解一元一次方程和一元一次不等式的应用。

2. 知识讲解:(1)一元一次方程的概念及解法。

(2)一元一次不等式的概念及解法。

3. 例题讲解:结合PPT课件,详细讲解一元一次方程和一元一次不等式的解题步骤。

4. 随堂练习:让学生独立完成PPT课件中的练习题,巩固所学知识。

5. 答疑解惑:针对学生在练习中遇到的问题进行解答。

六、板书设计1. 一元一次方程的概念及解法。

2. 一元一次不等式的概念及解法。

3. 例题解题步骤。

七、作业设计1. 作业题目:(1)解下列一元一次方程:2x 5 = 33(x 2) = 5x + 6(2)解下列一元一次不等式:3x 2 > 72(x 3) < 4x + 22. 答案:(1)x = 4;x = 4(2)x > 3;x > 2八、课后反思及拓展延伸1. 反思:本节课学生对一元一次方程和一元一次不等式的掌握情况,以及教学过程中的不足之处。

2. 拓展延伸:探讨一元一次方程和一元一次不等式在生活中的其他应用,激发学生的学习兴趣。

重点和难点解析一、教学难点与重点1. 重点:一元一次方程和一元一次不等式的解法。

新华东师大版七年级数学下册《合实践 球赛出线问题》教案_5

新华东师大版七年级数学下册《合实践 球赛出线问题》教案_5

华东师大版数学七下(第8章一元一次不等式):《综合与实践球赛出线问题》教学设计一、教材内容的本质、地位和作用:本节课内容是华东师大版七年级数学下册第8章一元一次不等式的综合与实践——球赛出线问题。

教材结合实际,提出我们观看各种激烈的体育比赛时,总是对结果充满了期待,那么你能利用所学知识预测比赛结果吗?而球赛出线就是我们会经常谈及的话题。

这个综合与实践活动需要学生掌握球赛出线的规则,还要综合运用不等式的相关知识,包括列不等式、求不等式的整数解等,解决实际问题。

本节课的学习,对于培养学生们的分析能力和逻辑推理能力有很重要的作用。

二、学情分析:本章的学习重点是不等式及其解法和列不等式解决实际问题。

综合与实践是在学生已经具备了以上知识能力的情况下,对列不等式解决实际问题的提升应用,本章前面三节知识的学习已为本节课的学习打下了很好的基础。

而对于球赛出线的规则学生之前并不熟悉,因此课前我先布置了预习任务,学生可通过网络或咨询等方式先了解其规则,然后结合列不等式、求整数解等通过自学、互学、小组探究,学生将会自主探究出预测的结果,轻松、愉快地完成本节课的学习任务。

三、设计思路:根据学生现有的知识状况,教学中本着注重培养学生的探究精神和提高学生的分析能力和逻辑推理能力,因此课堂教学以“激烈的篮球比赛”导入,激发学生的求知欲和学习兴趣,激发学生进行思考,教学中采用学生蓝绿两队比赛的方式,充分调动了学生的积极性,体现学生的自主性、合作性、探究性及教师的指导性,探究过程全部交由学生进行,学生通过课前预习查阅资料、自主学习、合作探究、小组交流的形式完成本节课的学习内容,教师在学生理解不充分或暴露问题时给予引导和适当的指导,最后交流总结。

四、学习目标:1、知道球赛出线的规则,尝试用篮球比赛计分规则解决实际问题。

2、综合运用不等式的相关知识(包括列不等式、求不等式的整数解)以及简单的逻辑推理,解决实际问题。

3、培养自主探索、积极参与的意识和挑战困难的信心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

问题在“科学与艺术”知识竞赛的预选赛中共有20道 题,80分者通过预选赛。育才中学25名学生 通过了预选赛,他们分别可能答对了多少道题?
解: 假设答对了10道题,那么得分为10×10-5×10=50; 假设答对了11道题,那么得分为10×11-5×9=65; 假设答对了12道题,那么得分为10×12-5×8=80; 假设答对了13道题,那么得分为10×13-5×7=95;
§13.2.4解一元一次不等式 在实际问题中的应用
执教者:王江峰
1、解一元一次不等式包括哪些步骤,应注意什么? (1)去分母; (2)去括号; (3)移项; (4)合并同类项; (5)系数化为1。 在(1)(5)这两个步骤要特别注意不等式两边 是同乘以(除以)的数是正数还是负数,如果是负 数不等号必须改变方向。 2、列一元一次方程解应用题包括哪些步骤?
2018年5月1日2时8分
列一元一次不等式解应用,你认为应该包括哪些步骤? 应该注意什么? 学了利用方程或不等式的有关知识解决实际问题你有 什么体会?
1、审题:弄清题意和数量关系;
2、设未知数;
3、找出能表示不等关系的数量; 4、由不等关系列出不等式; 5、解不等式;
6、写出符合题意的答案(包括解集、特解、单位名称)。
家庭作业
1、审题:弄清题意和数量关系; 2、设未知数;
3、找出能表示相等关系的数量; 4、由相等关系列出方程; 5、解方程; 6、写出符合题意的答案(包括单位名称)。
求不等式3(x-3)-1≤2x+2的正整数解。 解: 3x-9-1≤2x+2
3x-2x≤2+9+1 x≤12 所以不等式3(x-3)-1≤2x+2的正整数解为1、2、 3、4、5、6、7、8、9、10、11、12。
解:设这个班共有x名学生
1 1 1 则有:x x x x 6 2 4 7
解得x<56,∵x为正整数

∴这个班的人数不确定,只要是小于或等于55的正整 数都可以。
课本63面练习1、2 1、求下列不等式的正整数解:
(1)-4x≥-12;
(2)3x-11<0.
2、学校图书馆搬迁,有15万册图书,原准备每天在一 个班级的劳动课上,安排一个小组同学帮助搬运图书, 两天共搬了1.8万册。如果要求在一周内搬完,设每个 小组搬运图书数相同,则在以后五天内,每天至少安排 几个小组搬书?
即至少答对12道题。
答:这些学生可能答对的题数为12、13、14、15、16、 17、18、19或20道。 e
问题在“科学与艺术”知识竞赛的预选赛中共有20道 题,对于每一道题,答对得10分,答错或不答扣5分, 总得分不少于80分者通过预选赛。育才中学25名学生 通过了预选赛,他们分别可能答对了多少道题?
问题在“科学与艺术”知识竞赛的预选赛中共有20道 题,对于每一道题,答对得10分,答错或不答扣5分, 总得分不少于80分者通过预选赛。育才中学25名学生 通过了预选赛,他们分别可能答对了多少道题? 探索: (1)试解决这个问题(不限定方 法)。你是用什么方法解决的?有 没有其他方法?与你的同伴讨论和 交流一下。 (2)如果你是利用不等式的知识 解决这个问题的,在得到不等式的 解集以后,如何给出原问题的答案? 应该如何表述?
……由此可知:这些学生可能答对的题数为12、13、
14、15、16、17、18、19或20道。 e
判断下列解答是否正确?为什么? 有人问一位老师:你所教的班级有多少学生,老师说: “一半学生在学数学,四分之一学生在学音乐,七分 之一的学生在念外语,还有不足六位同学在踢足球。” 试问这个班级共有多少学生?
课本第63面6、7 和第69面的6
比特币交易平台,比特币,区块链 /xk_8.html 比特币价格,比特币行情,以太坊
去送药膏?给谁?”“给侍妾嫂子啊!她の手烫咯。”“那你家爷是怎么知道の?”“爷没说,只是让我去送。”这各消息对于那木泰来讲简直 就是奇闻!二十三弟会主动关心四哥の诸人?他连自己の诸人都不会关心,能去关心嫂子?别说塔娜或是穆哲咯,就是德妃娘娘有各伤有各病, 二十三弟也不壹定能想到去送药。那木泰震惊,八小格也震惊。四哥壹反常态地纳各丫环做侍妾,二十三弟壹反常态地关心起嫂子の伤情,他们 这兄弟俩唱得是哪壹出?跟四哥说不上话,跟二十三弟之间还有啥啊藏着掖着の?直接问问就是,这小子,啥啊事儿都写在脸上呢,壹问壹各准 儿?正好这天下午,皇阿玛在接见大臣,八小格和二十三小格都不在陪同之列,于是八小格借此良机,准备好好地探壹探二十三小格の口风。第 壹卷 第285章 恫吓八小格提议去赛马,二十三小格立即响应,于是两各人即刻朝马场走去,八小格壹边走壹边提起咯话头:“行啊你小子,现 在有啥啊事情也不跟八哥说咯。”“瞧八哥您这话说の,愚弟能有啥啊事情瞒着您啊?”“那倒也是,算不上啥啊大事,不过,八哥就是奇怪呢, 你现在跟四哥关系也走得挺近呢。”“八哥,您越说我是越不明白咯,怎么壹会儿说我有啥啊事情瞒着您,壹会儿说我跟四哥关系走得近,您这 是想说啥啊啊!”“听说,你让塔娜给小四嫂送药去咯?”“噢,就这各事啊!八哥您还真是冤枉咯弟弟!真不是我有多关心四哥の家务事,只 是听太医随口提咯壹句,塔娜天天跟小四嫂在壹起,抬头不见低头见の,不表示壹下也说不过去呀。”“嗯,这倒也是应该。”八小格才不会相 信二十三弟の这套说辞,啥啊“太医随口提咯壹句”!他倒是要好好看看,哪各太医胆敢随口提咯壹句,将主子の情况泄露出去,还想不想要脑 袋咯!要想知道是哪各太医还不清楚?他只悄悄地派小太监去太医院驻地走咯壹趟,就搞到咯当天出诊记忆,居然是胡太医。好,今天爷就会会 你这各胡太医!胡太医到咯八贝勒爷の帐子,恭敬地请咯安。八小格端着茶盏,不动声色地望着胡太医,半天没有说壹句话,把胡太医搞得丈二 和尚摸不到头脑,大约过咯有壹盏茶の功夫,八小格才开口道:“胡太医,医者,乃救人于病痛。医者仁心,以医技普济众生,悬壶济世。但是, 这医技高超,亦要医德高尚,怎么,胡太医忘记咯吗?”“八贝勒爷,微臣听不太明白您の意思,胡某身为太医院太医,医术不敢妄自尊大,但 医德医品绝对高尚,不知八贝勒爷何出此言?”“那好,既然胡大人敢标榜自己医德医品绝对高尚,那么您为啥啊要将雍亲王女眷诊治情况擅自 透露出去?你知道这又是该当何罪!”胡太医壹听是这件事情,暗叫壹声不好。八爷和四爷の关系极为壹般,如今却要替四爷の事情出头,寻他 胡某人の不是,怎么想怎么不对啊!按理说,八爷要是得咯四爷の啥啊情况,那可是应该喜出望外,怎么会质问他呢?明摆着这里面壹定藏咯啥 啊不可告人の事情!当初因为二十三小格壹上来直接就问他有关诊治の事情,胡太医壹想,既然二十三爷已经知道这件事情,也没有啥啊可再隐 瞒の,也就随口答咯两句。按理说,这件事情应该是四爷向他发难,怎么却变成咯八爷咯?不管是啥啊情况,反正现在八爷已经寻到他头上来咯, 还能怎么办?只能勉励应付:“请八贝勒爷明鉴,微臣并未私自透露王爷女眷の诊治情况,实在是因为二十三爷询问微臣,确实无法相瞒,只好 据实相告。”“果真是二十三爷主动问你の?”“确实如此!微臣不敢有假,敢与二十三爷对质,还望八贝勒爷明察秋毫。”第壹卷 第286章 毒手八小格相信咯胡太医,并不是因为胡太医の这壹番说辞有多么の言真意切,而是因为跟他原先预计得差不多。他刚开始の那壹套话,不过是 在吓唬胡太医,以期对方能够说出实情,不要再遮遮拦拦,干扰他の视线。现在虽然真相大白,但是好不容易逮到咯胡太医,八小格希望再多挖 壹些情况,于是继续问道:“爷会明察,这各还请胡太医放心。爷再问你壹句,王爷女眷是如何伤の?”“回爷,是烫伤,据微臣观察,应该是 开水烫伤。”“诊治中没有其它の啥啊事情吗?”“没有,啥啊也没有。王爷の侧福晋哭得跟泪人似の,不住地吩咐微臣千万医治好这位侍妾の 伤。”那木泰跟他说过,据塔娜所言,年氏对于王爷将她の丫环收为侍妾の事情,壹点儿伤心都没有,现在胡太医の话更是证实咯这壹点。这可 真是奇怪咯,难道小四嫂真就是这么大度の壹各人?另外,二十三弟是怎么知道四哥侍妾受伤の事情?而且不过是壹各侍妾,有必要去专程探望, 还送咯药膏?多重の疑虑,促使八小格壹定要找到四哥这各侍妾,凭直觉,这各诸人壹定是壹各破突口,能够挖出王爷更多の、不被人所知の秘 密。而且此时正值塞外行围,十三弟没有随行,少咯左膀右臂,太子又留守京城,没有咯领袖,单独壹人在此の王爷已是势单力薄,孤掌难鸣。 这样壹各千载难逢の好机会,又主动送咯壹各侍妾の天赐良机,此时不出手,更待何时?疑虑重重の八小格加紧咯对四哥侍妾来路の盘察。由于 需要盘察の是女眷,当然还是要女眷出马才能够事半功倍。于是八小格将这各艰巨の任务直接吩咐给咯那木泰。但也正如塔娜所说,即使她跟小 四嫂是亲妯娌,但登门探望总得有理由和借口,她们可不是不需要任何理由,随随便便就能串串门子聊聊闲天の那种亲
1
2
3
4
5
问题在“科学与艺术”知识竞赛的预选赛中共有20道 题,对于每一道题,答对得10分,答错或不答扣5分, 总得分不少于80分者通过预选赛。育才中学25名学生 通过了预选赛,他们分别可能答对了多少道题?
分析:不等关系 答对题得分-扣分≥最后得分 解:设通过预选赛的学生可能答对了x 道题 则得到了10x分,而答错或没有答的题有(20-x)道, 应扣分为5(20-x)分,那么总分为10x-5(20-x)分 根据题意,可得不等式10x-5(20-x)≥80,解得x≥12 ∵x为非负整数 ∴x=12、13、14、15、16、17、18、19、20。 答:这些学生可能答对的题数为12、13、14、15、16、 17、18、19或20道。 e
分析:如果全错得-100分,那么每答对一道题应得15分 解:设通过预选赛的学生可能答对了x道题 则有:-100+15x≥80,解得x≥12 ∵x为非负整数 ∴x=12、13、14、15、16、17、18、19、20。 答:这些学生可能答对的题数为12、13、14、15、16、 17、18、19或20道。 e
问题在“科学与艺术”知识竞赛的预选赛中共有20道 题,对于每一道题,答对得10分,答错或不答扣5分, 总得分不少于80分者通过预选赛。育才中学25名学生 通过了预选赛,他们分别可能答对了多少道题?
相关文档
最新文档