那坡县三中2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

那坡县三中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 如图,四面体D ﹣ABC 的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D ﹣ABC 中最长
棱的长度为( )
A .
B .2
C .
D .3
2. 曲线y=在点(1,﹣1)处的切线方程为( )
A .y=x ﹣2
B .y=﹣3x+2
C .y=2x ﹣3
D .y=﹣2x+1
3. 已知集合{2,1,0,1,2,3}A =--,{|||3,}B y y x x A ==-∈,则A B =( )
A .{2,1,0}--
B .{1,0,1,2}-
C .{2,1,0}--
D .{1,,0,1}-
【命题意图】本题考查集合的交集运算,意在考查计算能力.
4. 设双曲线焦点在y 轴上,两条渐近线为,则该双曲线离心率e=( )
A .5
B .
C .
D .
5. 若动点),(),(2211y x B y x A 、分别在直线: 011=-+y x 和2l :01=-+y x 上移动,则AB 中点M 所在直线方程为( )
A .06=--y x
B .06=++y x
C .06=+-y x
D .06=-+y x
6. 已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )
A . =1.23x+4
B . =1.23x ﹣0.08
C . =1.23x+0.8
D . =1.23x+0.08
7. 设a ,b 为正实数,11a b
+≤23
()4()a b ab -=,则log a b =( )
A.0
B.1-
C.1 D .1-或0
【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力.
8.函数f(x)=()x2﹣9的单调递减区间为()
A.(﹣∞,0)B.(0,+∞)C.(﹣9,+∞)D.(﹣∞,﹣9)
9.函数g(x)是偶函数,函数f(x)=g(x﹣m),若存在φ∈(,),使f(sinφ)=f(cosφ),则实数m的取值范围是()
A.()B.(,] C.()D.(]
10.某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有()A.36种B.38种C.108种D.114种
11.ABC
∆中,“A B
>”是“cos2cos2
B A
>”的()
A. 充分必要条件
B. 充分不必要条件
C. 必要不充分条件
D. 既不充分也不必要条件
【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 12.已知三棱锥S ABC
-外接球的表面积为32π,0
90
ABC
∠=,三棱锥S ABC
-的三视图如图
所示,则其侧视图的面积的最大值为()
A.4 B.C.8 D.
二、填空题
13.在△ABC中,点D在边AB上,CD⊥BC,AC=5,CD=5,BD=2AD,则AD的长为.
14.已知直线:0
4
3=
+
+m
y
x(0
>
m)被圆C:0
6
2
2
2
2=
-
-
+
+y
x
y
x所截的弦长是圆心C到直线的
m.
距离的2倍,则=
15.命题:“∀x∈R,都有x3≥1”的否定形式为.
16.已知函数f(x)=cosxsinx,给出下列四个结论:
①若f(x1)=﹣f(x2),则x1=﹣x2;
②f(x)的最小正周期是2π;
③f(x)在区间[﹣,]上是增函数;
④f(x)的图象关于直线x=对称.
其中正确的结论是.
17.抽样调查表明,某校高三学生成绩(总分750分)X近似服从正态分布,平均成绩为500分.已知P(400<X<450)=0.3,则P(550<X<600)=.
-的体积为2
18.已知正四棱锥O ABCD
则该正四棱锥的外接球的半径为_________
三、解答题
19.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b2+c2=a2+bc.
(Ⅰ)求A的大小;
(Ⅱ)如果cosB=,b=2,求a的值.
20.已知矩阵M=的一个属于特质值3的特征向量=,正方形区域OABC 在矩阵N 应对的变换作
用下得到矩形区域OA ′B ′C ′,如图所示. (1)求矩阵M ;
(2)求矩阵N 及矩阵(MN )﹣1

21.已知定义在[]3,2-的一次函数()f x 为单调增函数,且值域为[]2,7. (1)求()f x 的解析式;
(2)求函数[()]f f x 的解析式并确定其定义域.
22.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2
ln f x ax x =+,
()21145ln 639f x x x x =
++,()221
22
f x x ax =+,a R ∈ (1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当2
3
a =
时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)
23.已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.
(I)求证:EF⊥平面PAD;
(II)求平面EFG与平面ABCD所成锐二面角的大小.
24.已知函数f(x)=x2﹣(2a+1)x+alnx,a∈R
(1)当a=1,求f(x)的单调区间;(4分)
(2)a>1时,求f(x)在区间[1,e]上的最小值;(5分)
(3)g(x)=(1﹣a)x,若使得f(x0)≥g(x0)成立,求a的范围.
那坡县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1. 【答案】 B
【解析】解:因为AD •(BC •AC •sin60°)≥V D ﹣ABC =,BC=1,
即AD •
≥1,
因为2=AD+≥2
=2,
当且仅当AD==1时,等号成立,
这时AC=,AD=1,且AD ⊥面ABC ,所以CD=2,AB=

得BD=,故最长棱的长为2.
故选B .
【点评】本题考查四面体中最长的棱长,考查棱锥的体积公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题.
2. 【答案】D
【解析】解:y ′=()′=

∴k=y ′|x=1=﹣2.
l :y+1=﹣2(x ﹣1),则y=﹣2x+1. 故选:D
3. 【答案】C
【解析】当{2,1,0,1,2,3}x ∈--时,||3{3,2,1,0}y x =-∈---,所以A B ={2,1,0}--,故选C .
4. 【答案】C
【解析】解:∵双曲线焦点在y 轴上,故两条渐近线为 y=±x ,
又已知渐近线为,∴ =,b=2a ,
故双曲线离心率e===
=

故选C .
【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,判断渐近线的斜率=,是解题的关键.
5. 【答案】D 【解析】

点:直线方程 6. 【答案】D
【解析】解:设回归直线方程为=1.23x+a
∵样本点的中心为(4,5),
∴5=1.23×4+a
∴a=0.08
∴回归直线方程为=1.23x+0.08
故选D .
【点评】本题考查线性回归方程,考查学生的计算能力,属于基础题.
7. 【答案】B.
【解析】2
3
2
3
()4()()44()a b ab a b ab ab -=⇒+=+,故
11a b a b ab
++≤⇒≤
2322()44()11
84()82
()()a b ab ab ab ab ab ab ab ab
++⇒≤⇒=+≤⇒+≤,而事实上12ab ab +≥=, ∴1ab =,∴log 1a b =-,故选B.
8. 【答案】B
【解析】解:原函数是由t=x 2
与y=(
)t
﹣9复合而成,
∵t=x 2在(﹣∞,0)上是减函数,在(0,+∞)为增函数; 又y=(
)t
﹣9其定义域上为减函数,
∴f (x )=()x2
﹣9在(﹣∞,0)上是增函数,在(0,+∞)为减函数,
∴函数ff (x )=()x2
﹣9的单调递减区间是(0,+∞).
故选:B .
【点评】本题考查复合函数的单调性,讨论内层函数和外层函数的单调性,根据“同増异减”再来判断是关键.
9. 【答案】A
【解析】解:∵函数g (x )是偶函数,函数f (x )=g (x ﹣m ), ∴函数f (x )关于x=m 对称,
若φ∈(

),
则sin φ>cos φ,
则由f (sin φ)=f (cos φ), 则=m ,
即m==
(sin φ×
+cos αφ)=sin (φ+

当φ∈(,
),则φ+
∈(,
),
则<
sin (φ+
)<

则<m <,
故选:A
【点评】本题主要考查函数奇偶性和对称性之间的应用以及三角函数的图象和性质,利用辅助角公式是解决本题的关键.
10.【答案】A
【解析】解:由题意可得,有2种分配方案:①甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法. 根据分步计数原理,共有3×2×3=18种分配方案.
②甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共3×2×3=18种分配方案. 由分类计数原理,可得不同的分配方案共有18+18=36种, 故选A .
【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法.
11.【答案】A.
【解析】在ABC ∆中2
2
2
2
cos 2cos 212sin 12sin sin sin sin sin B A B A A B A B >⇒->-⇔>⇔>
A B ⇔>,故是充分必要条件,故选A.
12.【答案】A
【解析】
考点:三视图.
【方法点睛】本题主要考查几何体的三视图,空间想象能力.空间几何体的三视图是分别从空间几何体的正面,左面,上面用平行投影的方法得到的三个平面投影图.因此在分析空间几何体的三视图时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱,面的位置,再确定几何体的形状,即可得到结果. 要能够牢记常见几何体的三视图.
二、填空题
13.【答案】5.
【解析】解:如图所示:延长BC,过A做AE⊥BC,垂足为E,
∵CD⊥BC,∴CD∥AE,
∵CD=5,BD=2AD,∴,解得AE=,
在RT△ACE,CE===,
由得BC=2CE=5,
在RT△BCD中,BD===10,
则AD=5,
故答案为:5.
【点评】本题考查平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题.
14.【答案】9 【解析】
考点:直线与圆的位置关系
【方法点睛】本题考查了直线与圆的位置关系,属于基础题型,涉及一些最值问题,当点在圆的外部时,圆上的点到定点距离的最小值是圆心到直线的距离减半径,当点在圆外,可做两条直线与圆相切,当点在圆上,可做一条直线与圆相切,当点在圆内,过定点做圆的弦时,过圆心即直径最长,当定点是弦的中点时,弦最短,并且弦长公式是222d R l -=,R 是圆的半径,d 是圆心到直线的距离.
15.【答案】 ∃x 0∈R ,都有x 03<1 .
【解析】解:因为全称命题的否定是特称命题.所以,命题:“∀x ∈R ,都有x 3
≥1”的否定形式为:命题:“∃x 0∈R ,都有x 03
<1”.
故答案为:∃x 0∈R ,都有x 03
<1.
【点评】本题考查全称命题与特称命题的否定关系,基本知识的考查.
16.【答案】 ③④ .
【解析】解:函数f (x )=cosxsinx=sin2x ,
对于①,当f (x 1)=﹣f (x 2)时,sin2x 1=﹣sin2x 2=sin (﹣2x 2) ∴2x 1=﹣2x 2+2k π,即x 1+x 2=k π,k ∈Z ,故①错误;
对于②,由函数f (x )=sin2x 知最小正周期T=π,故②错误;
对于③,令﹣
+2π≤2x ≤
+2k π,k ∈Z 得﹣
+k π≤x ≤
+k π,k ∈Z
当k=0时,x ∈[﹣,
],f (x )是增函数,故③正确;
对于④,将x=
代入函数f (x )得,f (
)=﹣为最小值,
故f (x )的图象关于直线x=对称,④正确.
综上,正确的命题是③④. 故答案为:③④.
17.【答案】 0.3 .
【解析】离散型随机变量的期望与方差. 【专题】计算题;概率与统计.
【分析】确定正态分布曲线的对称轴为x=500,根据对称性,可得P (550<ξ<600).
【解答】解:∵某校高三学生成绩(总分750分)ξ近似服从正态分布,平均成绩为500分,
∴正态分布曲线的对称轴为x=500, ∵P (400<ξ<450)=0.3, ∴根据对称性,可得P (550<ξ<600)=0.3.
故答案为:0.3.
【点评】本题考查正态分布曲线的特点及曲线所表示的意义,正确运用正态分布曲线的对称性是关键. 18.【答案】
118
【解析】因为正四棱锥O ABCD -的体积为22,设外接球的半径为R ,依轴
截面的图形可知:22211(2)8
R R R =-+∴= 三、解答题
19.【答案】
【解析】解:(Ⅰ)∵b 2+c 2=a 2+bc ,即b 2+c 2﹣a 2
=bc ,
∴cosA=
=,
又∵A ∈(0,π),
∴A=

(Ⅱ)∵cosB=,B ∈(0,π),
∴sinB=
=

由正弦定理=,得a===3.
【点评】此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.
20.【答案】
【解析】解:(1)根据题意,可得,

,解得
所以矩阵M=

(2)矩阵N 所对应的变换为

故N=,
MN=

∵det (MN )=,

=.
【点评】本题考查矩阵与变换、矩阵的特征值、特征向量等基础知识,考查运算求解能力,考查函数与方程的思想.
21.【答案】(1)()5f x x =+,[]3,2x ∈-;(2)[]()10f f x x =+,{}3x ∈-. 【




题解析:
(1)设()(0)f x kx b k =+>,111] 由题意有:32,27,k b k b -+=⎧⎨
+=⎩解得1,
5,k b =⎧⎨=⎩
∴()5f x x =+,[]3,2x ∈-. (2)(())(5)10f f x f x x =+=+,{}3x ∈-.
考点:待定系数法.
22.【答案】(1)切线恒过定点1,22e ⎛⎫
⎪⎝⎭
.(2) a 的范围是11,22⎡⎤
-⎢⎥⎣⎦ (3) 在区间()1,+∞上,满足
()()()12f x g x f x <<恒成立函数()g x 有无穷多个
【解析】试题分析:(1)根据导数的几何意义求得切线方程为11222e y ae x e ⎛⎫⎛⎫-
=+- ⎪⎪⎝⎭⎝⎭,故过定点1,22e ⎛⎫ ⎪⎝⎭

试题解析:
(1)因为()12f x ax x '=+
,所以()f x 在点()(),e f e 处的切线的斜率为1
2k ae e
=+, 所以()f x 在点()(),e f e 处的切线方程为()2121y ae x e ae e ⎛
⎫=+-++ ⎪⎝
⎭,
整理得11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,所以切线恒过定点1,22e ⎛⎫
⎪⎝⎭

(2)令()()()2p x f x f x =-=212ln 02a x ax x ⎛
⎫--+< ⎪⎝
⎭,对()1,x ∈+∞恒成立,
因为()()1212p x a x a x =--+'()2
2121a x ax x --+=()()()
1211*x a x x
⎡⎤---⎣⎦=
令()0p x '=,得极值点11x =,21
21
x a =
-, ①当112a <<时,有211x x >=,即1
12
a <<时,在()2,x +∞上有()0p x '>,
此时()p x 在区间()2,x +∞上是增函数,并且在该区间上有()()()2,p x p x ∈+∞,不合题意;
②当1a ≥时,有211x x <=,同理可知,()p x 在区间()1,+∞上,有()()()
1,p x p ∈+∞,也不合题意; ③当1
2
a ≤
时,有210a -≤,此时在区间()1,+∞上恒有()0p x '<, 从而()p x 在区间()1,+∞上是减函数;
要使()0p x <在此区间上恒成立,只须满足()111022
p a a =--≤⇒≥-, 所以11
22
a -
≤≤. 综上可知a 的范围是11,22⎡⎤
-
⎢⎥⎣⎦
. (利用参数分离得正确答案扣2分)
(3)当23a =
时,()21145ln 639f x x x x =++,()221423
f x x x =+ 记()()22115
ln 39
y f x f x x x =-=-,()1,x ∈+∞.
因为22565399x x y x x
='-=-,
令0y '=,得x =
所以()()21y f x f x =-在⎛ ⎝为减函数,在⎫+∞⎪⎪⎭上为增函数,
所以当x =
时,min 59
180y =
设()()()159
01180
R x f x λλ=+<<,则()()()12f x R x f x <<, 所以在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个
23.【答案】
【解析】解:(I )证明:∵平面PAD ⊥平面ABCD ,AB ⊥AD , ∴AB ⊥平面PAD , ∵E 、F 为PA 、PB 的中点,
∴EF∥AB,
∴EF⊥平面PAD;
(II)解:过P作AD的垂线,垂足为O,
∵平面PAD⊥平面ABCD,则PO⊥平面ABCD.
取AO中点M,连OG,EO,EM,
∵EF∥AB∥OG,
∴OG即为面EFG与面ABCD的交线
又EM∥OP,则EM⊥平面ABCD.且OG⊥AO,
故OG⊥EO
∴∠EOM 即为所求
在RT△EOM中,EM=OM=1
∴tan∠EOM=,故∠EOM=60°
∴平面EFG与平面ABCD所成锐二面角的大小是60°.
【点评】本题主要考察直线与平面垂直的判定以及二面角的求法.解决第二问的难点在于找到两半平面的交线,进而求出二面角的平面角.
24.【答案】解:(1)当a=1,f(x)=x2﹣3x+lnx,定义域(0,+∞),
∴…(2分)
,解得x=1或x=,x∈,(1,+∞),f′(x)>0,f(x)是增函数,x∈(,1),
函数是减函数.…(4分)
(2)∴,∴,
当1<a<e时,
∴f(x)min=f(a)=a(lna﹣a﹣1)
当a≥e时,f(x)在[1,a)减函数,(a,+∞)函数是增函数,

综上…(9分)
(3)由题意不等式f(x)≥g(x)在区间上有解
即x2﹣2x+a(lnx﹣x)≥0在上有解,
∵当时,lnx≤0<x,
当x∈(1,e]时,lnx≤1<x,∴lnx﹣x<0,
∴在区间上有解.
令…(10分)
∵,∴x+2>2≥2lnx∴时,h′(x)<0,h(x)是减函数,x∈(1,e],h(x)是增函数,
∴,
∴时,,∴
∴a的取值范围为…(14分)。

相关文档
最新文档