鄢陵县一中2018-2019学年上学期高三数学10月月考试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鄢陵县一中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 已知等差数列{}n a 中,7916a a +=,41a =,则12a 的值是( )
A .15
B .30
C .31
D .64
2. 已知函数,则
=( )
A .
B .
C .
D .
3. 拋物线E :y 2=2px (p >0)的焦点与双曲线C :x 2-y 2=2的焦点重合,C 的渐近线与拋物线E 交于非原点的P 点,则点P 到E 的准线的距离为( ) A .4 B .6 C .8
D .10
4. 已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件
【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 5. 下列给出的几个关系中:①{}{},a b ∅⊆;②(){}{},,a b a b =;③{}{},,a b b a ⊆;
④{}0∅⊆,正确的有( )个
A.个
B.个
C.个
D.个
6. 设a ,b 为正实数,11a b
+≤23
()4()a b ab -=,则log a b =( )
A.0
B.1-
C.1 D .1-或0
【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力.
7. 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若
﹣
+1=0,则角B 的度数是( )
A .60°
B .120°
C .150°
D .60°或120°
8. 我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a =6 102,b =2 016时,输出的a 为( )
A .6
B .9
C .12
D .18
9. 已知复合命题p ∧(¬q )是真命题,则下列命题中也是真命题的是( )
A .(¬p )∨q
B .p ∨q
C .p ∧q
D .(¬p )∧(¬q )
10.已知等差数列{}n a 的前项和为n S ,且120a =-,在区间()3,5内任取一个实数作为数列{}n a 的公差,则n S 的最小值仅为6S 的概率为( )
A .
15 B .16 C .314 D .13
11.在ABC ∆中,b =3c =,30B =,则等于( )
A B . C D .2 12.已知三棱锥S ABC -外接球的表面积为32π,0
90ABC ∠=,三棱锥S ABC -的三视图如图 所示,则其侧视图的面积的最大值为( )
A .4
B .
C .8
D .
二、填空题
13.函数()x f x xe =在点()()
1,1f 处的切线的斜率是 .
14.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:
①若点P 总保持PA ⊥BD 1,则动点P 的轨迹所在曲线是直线;
②若点P 到点A 的距离为
,则动点P 的轨迹所在曲线是圆;
③若P 满足∠MAP=∠MAC 1,则动点P 的轨迹所在曲线是椭圆;
④若P 到直线BC 与直线C 1D 1的距离比为1:2,则动点P 的轨迹所在曲线是双曲线; ⑤若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹所在曲线是抛物丝. 其中真命题是 (写出所有真命题的序号)
15.已知n S 是数列1{}2n n -的前n 项和,若不等式1
|12n n n S λ-+<+|对一切n N *
∈恒成立,则λ的取值范围是___________.
【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力.
16.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测1564
的线性回归方程为
附:回归直线的斜率和截距的最小二乘估计公式分别为: =, =﹣.
17.一个圆柱和一个圆锥的母线相等,底面半径也相等,则侧面积之比是 .
三、解答题
18.如图,在三棱锥 P ABC -中,,,,E F G H 分别是,,,AB AC PC BC 的中点,且
,PA PB AC BC ==.
(1)证明: AB PC ⊥; (2)证明:平面 PAB 平面 FGH .
19.设极坐标与直角坐标系xOy 有相同的长度单位,原点O 为极点,x 轴坐标轴为极轴,曲线C 1的极坐标方
程为ρ2
cos2θ+3=0,曲线C 2的参数方程为
(t 是参数,m 是常数).
(Ⅰ)求C 1的直角坐标方程和C 2的普通方程;
(Ⅱ)若C 1与C 2有两个不同的公共点,求m 的取值范围.
20.已知曲线C 1:ρ=1,曲线C 2:(t 为参数)
(1)求C 1与C 2交点的坐标;
(2)若把C 1,C 2上各点的纵坐标都压缩为原来的一半,分别得到曲线C 1′与C 2′,写出C 1′与C 2′的参数方程,C 1与C 2公共点的个数和C 1′与C 2′公共点的个数是否相同,说明你的理由.
2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)
21.(本题12分)如图,D 是Rt BAC ∆斜边BC 上一点,AC . (1)若22BD DC ==,求AD ; (2)若AB AD =,求角B .
22.(本小题满分12分)某旅行社组织了100人旅游散团,其年龄均在[10,60]岁间,旅游途中导游发现该旅游散团人人都会使用微信,所有团员的年龄结构按[10,20),[20,30),[30,40),[40,50),[50,60]分成5组,分
A B C D E,其频率分布直方图如下图所示.
别记为,,,,
(Ⅰ)根据频率分布直方图,估计该旅游散团团员的平均年龄;
C D E三组中用分层抽样的方法抽取了6名团员负责全团协调,然后从这6名团员中(Ⅱ)该团导游首先在,,
随机选出2名团员为主要协调负责人,求选出的2名团员均来自C组的概率.
23.已知数列{a n}满足a1=,a n+1=a n+(n∈N*).证明:对一切n∈N*,有
(Ⅰ)<;
(Ⅱ)0<a n<1.
24.如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,BC⊥CF,,EF=2,BE=3,CF=4.(Ⅰ)求证:EF⊥平面DCE;
(Ⅱ)当AB的长为何值时,二面角A﹣EF﹣C的大小为60°.
鄢陵县一中2018-2019学年上学期高三数学10月月考试题(参考答案)
一、选择题
1. 【答案】A 【解析】
2. 【答案】B
【解析】解:因为>0,所以f ()==﹣2,又﹣2<0,所以f (﹣2)=2﹣2=;
故选:B .
【点评】本题考查了分段函数的函数值求法;关键是明确自变量所属的范围,代入对应的解析式计算即可.
3. 【答案】
【解析】解析:选D.双曲线C 的方程为x 22-y 22=1,其焦点为(±2,0),由题意得p
2=2,
∴p =4,即拋物线方程为y 2=8x , 双曲线C 的渐近线方程为y =±x ,
由⎩
⎪⎨⎪⎧y 2
=8x y =±x ,解得 x =0(舍去)或x =8,则P 到E 的准线的距离为8+2=10,故选D.
4. 【答案】A.
【解析】||||cos cos ||cos ||cos αβαβααββ->-⇔->-,设()||cos f x x x =-,[,]x ππ∈-, 显然()f x 是偶函数,且在[0,]π上单调递增,故()f x 在[,0]π-上单调递减,∴()()||||f f αβαβ>⇔>,故是充分必要条件,故选A. 5. 【答案】C 【解析】
试题分析:由题意得,根据集合之间的关系可知:{}{},,a b b a ⊆和{}0∅⊆是正确的,故选C. 考点:集合间的关系. 6. 【答案】B.
【解析】2
3
2
3
()4()()44()a b ab a b ab ab -=⇒+=+,故
11a b
a b ab
++≤⇒≤
2322()44()11
84()82
()()a b ab ab ab ab ab ab ab ab
++⇒≤⇒=+≤⇒+≤,而事实上12ab ab +≥=, ∴1ab =,∴log 1a b =-,故选B.
7. 【答案】A
【解析】解:根据正弦定理有: =,
代入已知等式得:﹣+1=0,
即
﹣1=
,
整理得:2sinAcosB ﹣cosBsinC=sinBcosC , 即2sinAcosB=sinBcosC+cosBsinC=sin (B+C ), 又∵A+B+C=180°, ∴sin (B+C )=sinA , 可得2sinAcosB=sinA , ∵sinA ≠0,
∴2cosB=1,即cosB=, 则B=60°. 故选:A .
【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
8. 【答案】
【解析】选D.法一:6 102=2 016×3+54,2 016=54×37+18,54=18×3,18是54和18的最大公约数,∴输出的a =18,选D.
法二:a =6 102,b =2 016,r =54, a =2 016,b =54,r =18, a =54,b =18,r =0. ∴输出a =18,故选D. 9. 【答案】B
【解析】解:命题p ∧(¬q )是真命题,则p 为真命题,¬q 也为真命题, 可推出¬p 为假命题,q 为假命题, 故为真命题的是p ∨q , 故选:B .
【点评】本题考查复合命题的真假判断,注意p ∨q 全假时假,p ∧q 全真时真.
10.【答案】D 【解析】
考
点:等差数列. 11.【答案】C 【解析】
考
点:余弦定理. 12.【答案】A 【解析】
考
点:三视图.
【方法点睛】本题主要考查几何体的三视图,空间想象能力.空间几何体的三视图是分别从空间几何体的正面,左面,上面用平行投影的方法得到的三个平面投影图.因此在分析空间几何体的三视图时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱,面的位置,再确定几何体的形状,即可得到结果. 要能够牢记常见几何体的三视图.
二、填空题
13.【答案】2e 【解析】 试题分析:
()(),'x x x f x xe f x e xe =∴=+,则()'12f e =,故答案为2e .
考点:利用导数求曲线上某点切线斜率.
14.【答案】 ①②④
【解析】解:对于①,∵BD 1⊥面AB 1C ,∴动点P 的轨迹所在曲线是直线B 1C ,①正确;
对于②,满足到点A 的距离为的点集是球,∴点P 应为平面截球体所得截痕,即轨迹所在曲线为圆,
②正确;
对于③,满足条件∠MAP=∠MAC 1 的点P 应为以AM 为轴,以AC 1 为母线的圆锥,平面BB 1C 1C 是一个与轴AM 平行的平面,
又点P 在BB 1C 1C 所在的平面上,故P 点轨迹所在曲线是双曲线一支,③错误; 对于④,P 到直线C 1D 1 的距离,即到点C 1的距离与到直线BC 的距离比为2:1, ∴动点P 的轨迹所在曲线是以C 1 为焦点,以直线BC 为准线的双曲线,④正确; 对于⑤,如图建立空间直角坐标系,作PE ⊥BC ,EF ⊥AD ,PG ⊥CC 1,连接PF ,
设点P 坐标为(x ,y ,0),由|PF|=|PG|,得,即x 2﹣y 2
=1,
∴P 点轨迹所在曲线是双曲线,⑤错误. 故答案为:①②④.
【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题.
15.【答案】31λ-<<
【解析】由221111
1123(1)22
22n n n S n n
--=+⨯
+⨯++-⋅
+,2
111
12222n
S =⨯+⨯+…111(1)22n n n n -+-⋅+⋅,两式相减,得2111111212222222n n n n n S n -+=++++-⋅=-,所以12
42
n n n S -+=-,
于是由不等式12
|1
42
n λ-+<-|对一切N n *∈恒成立,得|12λ+<|,解得31λ-<<. 16.【答案】 y=﹣1.7t+68.7
【解析】解: =
, =
=63.6.
=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.=4+1+0+1+2=10.
∴=﹣=﹣1.7.=63.6+1.7×3=68.7.
∴y关于t的线性回归方程为y=﹣1.7t+68.7.
故答案为y=﹣1.7t+68.7.
【点评】本题考查了线性回归方程的解法,属于基础题.
17.【答案】2:1.
【解析】解:设圆锥、圆柱的母线为l,底面半径为r,
所以圆锥的侧面积为:=πrl
圆柱的侧面积为:2πrl
所以圆柱和圆锥的侧面积的比为:2:1
故答案为:2:1
三、解答题
18.【答案】(1)证明见解析;(2)证明见解析.
【解析】
考点:平面与平面平行的判定;空间中直线与直线的位置关系.
19.【答案】
【解析】解:(I)曲线C1的极坐标方程为ρ2cos2θ+3=0,即ρ2(cos2θ﹣sin2θ)+3=0,可得直角坐标方程:x2﹣y2+3=0.
曲线C2的参数方程为(t是参数,m是常数),消去参数t可得普通方程:x﹣2y﹣m=0.
(II)把x=2y+m代入双曲线方程可得:3y2+4my+m2+3=0,由于C1与C2有两个不同的公共点,
∴△=16m2﹣12(m2+3)>0,解得m<﹣3或m>3,
∴m<﹣3或m>3.
【点评】本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与双曲线的位置关系,考查了推理能力与计算能力,属于中档题.
20.【答案】
【解析】解:(1)∵曲线C1:ρ=1,∴C1的直角坐标方程为x2+y2=1,
∴C 1是以原点为圆心,以1为半径的圆,
∵曲线C 2:(t 为参数),∴C 2的普通方程为x ﹣y+=0,是直线,
联立,解得x=﹣,y=.
∴C 2与C 1只有一个公共点:(﹣,
).
(2)压缩后的参数方程分别为
:
(θ为参数)
:
(t 为参数),
化为普通方程为::x 2+4y 2
=1,
:y=
,
联立消元得,
其判别式,
∴压缩后的直线
与椭圆
仍然只有一个公共点,和C 1与C 2公共点个数相同.
【点评】本题考查两曲线的交点坐标的求法,考查压缩后的直线与椭圆的公共点个数的判断,是基础题,解题时要认真审题,注意一元二次方程的根的判别式的合理运用.
21.【答案】(1)2=AD ;(2)3
π
=
B .
【
解
析
】
考点:正余弦定理的综合应用,二次方程,三角方程.
【方法点晴】本题主要考查三角形中的解三角形问题,解题的关键是合理选择正、余弦定理..当有三边或两边及其夹角时适合选择余弦定理,当有一角及其对边时适合选择正弦定理求解,解此类题要特别注意,在没有明确的边角等量关系时,要研究三角形的已知条件,组建等量关系,再就是根据角的正弦值确定角时要结合边长关系进行取舍,这是学生们尤其要关注的地方.
22.【答案】
【解析】【命题意图】本题考查频率分布直方图与平均数、分层抽样、古典概型等基础知识,意在考查审读能力、识图能力、获取数据信息的能力.
23.【答案】
【解析】证明:(Ⅰ)∵数列{a n}满足a1=,a n+1=a n+(n∈N*),
∴a n>0,a n+1=a n+>0(n∈N*),a n+1﹣a n=>0,
∴,
∴对一切n∈N*,<.
(Ⅱ)由(Ⅰ)知,对一切k∈N*,<,
∴,
∴当n≥2时,
=
>3﹣[1+]
=3﹣[1+]
=3﹣(1+1﹣)
=,
∴a n<1,又,
∴对一切n∈N*,0<a n<1.
【点评】本题考查不等式的证明,是中档题,解题时要注意裂项求和法和放缩法的合理运用,注意不等式性质的灵活运用.
24.【答案】
【解析】证明:(Ⅰ)在△BCE中,BC⊥CF,BC=AD=,BE=3,∴EC=,
∵在△FCE中,CF2=EF2+CE2,∴EF⊥CE由已知条件知,DC⊥平面EFCB,
∴DC⊥EF,又DC与EC相交于C,∴EF⊥平面DCE
解:(Ⅱ)
方法一:过点B作BH⊥EF交FE的延长线于H,连接AH.
由平面ABCD⊥平面BEFC,平面ABCD∩平面BEFC=BC,
AB⊥BC,得AB⊥平面BEFC,从而AH⊥EF.
所以∠AHB为二面角A﹣EF﹣C的平面角.
在Rt△CEF中,因为EF=2,CF=4.EC=
∴∠CEF=90°,由CE∥BH,得∠BHE=90°,又在Rt△BHE中,BE=3,
∴
由二面角A﹣EF﹣C的平面角∠AHB=60°,在Rt△AHB中,解得,
所以当时,二面角A﹣EF﹣C的大小为60°
方法二:如图,以点C为坐标原点,以CB,CF和CD分别作为x轴,y轴和z轴,建立空间直角坐标系C﹣xyz.
设AB=a(a>0),则C(0,0,0),A(,0,a),B(,0,0),E(,3,0),F(0,4,0).
从而,
设平面AEF的法向量为,由得,,取x=1,
则,即,
不妨设平面EFCB的法向量为,
由条件,得
解得.所以当时,二面角A﹣EF﹣C的大小为60°.
【点评】本题考查的知识点是用空间向量求平面间的夹角,其中(I)的关键是熟练掌握线线垂直、线面垂直与面面垂直的之间的相互转化,(II)的关键是建立空间坐标系,将二面角问题,转化为向量的夹角问题.。