基于复杂网络的多层时序网络模型构建及关键节点识别方法[发明专利]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(19)中华人民共和国国家知识产权局
(12)发明专利申请
(10)申请公布号 (43)申请公布日 (21)申请号 202010316894.0
(22)申请日 2020.04.21
(71)申请人 太原理工大学
地址 030024 山西省太原市迎泽西大街79
号
(72)发明人 杨云云 付艳君 谢珺 赵文晶
赵明明
(74)专利代理机构 太原科卫专利事务所(普通
合伙) 14100
代理人 朱源 武建云
(51)Int.Cl.
H04L 12/24(2006.01)
G06K 9/62(2006.01)
(54)发明名称
基于复杂网络的多层时序网络模型构建及
关键节点识别方法
(57)摘要
本发明公开了基于复杂网络的多层时序网
络模型构建和关键节点识别方法,包括:获取一
段时间T 内N 个节点之间的交互关系随时间变化
的情况,得到时序网络,根据预置的时间窗口大
小对时间T 进行有效切分,得到多层时序网络的
层数;在相邻两层网络中的对应节点之间按时间
顺序建立一条有向连边,构建层间链接。
计算节
点相似性矩阵,将其作为PageRank跳转偏差获取
第一层中节点的中心性,接着在PageRank跳转中
进一步添加上一层节点中心性的影响,递归计算
其它层的节点中心性。
本发明结合多层网络分析
法,构建多层时序网络模型,完整揭示时序网络
的结构演变及动力学过程。
权利要求书2页 说明书10页 附图8页CN 111431755 A 2020.07.17
C N 111431755
A
1.一种基于复杂网络的多层时序网络模型构建方法,其特征在于:包括如下步骤:
(1)、获取一段时间T内N个节点之间的交互关系随时间变化的情况,得到时序网络,该时序网络中包括N个节点以及节点之间随时间变化间断性出现或消失的连边,其中N为大于或等于2的正整数;
(2)、根据预置的时间窗口大小对时间T进行有效切分,得到多层时序网络的层数为:L =T/l,其中L表示多层时序网络的层数,l表示每一层网络所经历的时间;多层时序网络的各层分别对应于L个时间窗口中的网络,其中,每一层中包括N个节点以及各层所对应的时刻内节点间的链接关系;
(3)、使用邻接矩阵Aα表示多层时序网络各个层内的网络结构和链接关系;如果在层α中
节点i和节点j连接,则对应的邻接矩阵元素否则
(4)、在相邻的两层网络中构建由上一层指向下一层的层间单向链接,即在相邻层中的对应节点之间按时间顺序建立层间一条有向连边,构建多层时序网络中的层间链接;
(5)、多层时序网络表示为G=(N,E,P),其中N为多层网络中的节点个数,E为多层网络边集,P=(P1,P2,...,P L)是一系列子网Pα=(N,Eα),α={1,2,...,L}的集合,其中Pα=(N,E α)表示多层时序网络第α层所对应的网络结构,N为节点个数,在各个层内均相同,Eα为第α层中节点间的连边所构成的集合,该集合在每一层中各有不同;各层间有向链接为
其中,β=α+1。
2.根据权利要求1所述的基于复杂网络的多层时序网络构建方法,其特征在于:时序网
络表示为代表N个节点间的连边的情况在整个T时间内随时间变化的情况;具体为
是一组(M(1),M(2),...,M(T))的集合,其中M(t)=(N,E(t))表示各个时刻均相同的N个节点在时刻t所对应的网络结构,E(t)表示时刻t时节点间的连边所构成的集合,该集合随时间发生变化。
3.一种基于复杂网络的多层时序网络模型的关键节点识别方法,其特征在于:包括如下步骤:
(1)、根据每一层α={1,2,...,L}中的邻接矩阵Aα计算每个节点i的邻居节点集合Q(i),其中i∈N;
(2)、计算每一层α={1,2,...,L}中节点相似性矩阵Sα,各层中节点i与其邻居节点j的相似性为:
(3)、将节点相似性引入随机游走过程,计算基于节点相似性有偏随机游走的跳转概率为:表示某一时刻层α中节点j上的游走者向其邻居节点i移动的概率取决于目标节点与源节点的相似程度;
(4)、将有偏随机游走应用于PageRank,根据节点间的相似程度在随机游走者选择邻居节点跳转时添加偏差,得到基于相似性的有偏PageRank(SBPR);首先计算层α=1中节点i的SBPR中心性的方程如下:
其中σ是阻尼系数;
(5)、指数η取值为0或1,当η=0时,有偏PageRank恢复为无偏PageRank(CPR),即节点i 的CPR中心性为:
(6)、根据同一层内节点间相似程度会对节点重要性产生影响,同时,相邻层间上一时刻节点的中心性会对下一时刻该节点的中心性产生影响,以递归的方式获取层α=2, 3,...,L中节点i的多层时序有偏PageRank(MTB-PR)值为:
其中,δ(a,b)是克罗内克函数;和
分别表示上层中同一节点中心性和层内相邻节点间的相似性的幂次方;指数a和b
是偏差参数,用来调整节点对于层内及层间因素的依赖程度,并且指数a和b都取大于零的值,即a>0,b>0;
(7)、η=0时,多层时序有偏PageRank(MTB-PR)恢复为多层时序无偏PageRank(MTU-PR):
其中,δ(a,b)是克罗内克函数;
(8)、利用步骤(6)中公式的递归计算所得的节点i在最后一层中的中心性为节点在多层时序网络中的最终中心性值。
4.根据权利要求3所述的基于复杂网络的多层时序网络模型的关键节点识别方法,其特征在于:步骤(4)中,取σ=0.85。
基于复杂网络的多层时序网络模型构建及关键节点识别方法
技术领域
[0001]本发明属于复杂网络分析技术领域,具体为一种基于复杂网络的多层时序网络的构建方法及基于该模型的关键节点识别方法。
背景技术
[0002]现实世界中许多重要现象依赖于网络,疾病通过人口网络进行传播,互联网由页面彼此连接构成全球网络,人们的日常信息交互构成社交网络等等。
复杂网络将这些实际复杂系统通过网络建模分析,客观展现了实际系统中实体间的关联互动,并能够进一步深入分析和理解复杂系统的结构特征和行为变化。
现如今,复杂网络已经广泛应用于电力、医学、交通、金融等诸多领域。
[0003]复杂网络具有非同质的拓扑结构,其中不同节点在网络结构和功能上发挥的作用存在差异。
识别网络中的关键节点已成为分析和理解网络系统的重要组成部分并应用于广泛的领域,包括用于识别社交网络中最有影响力的用户,控制流行病的爆发,防止电网发生灾难性中断等。
[0004]在许多实际系统的研究过程中,传统的网络分析方法就是将原始数据建模为静态网络,通常用图形形式表示为由边连接的多个节点。
因此,在此基础上用于研究真实复杂系统的现有节点中心性度量指标大都基于静态网络模型,如基于网络拓扑结构的度中心性、半局部中心性、紧密度中心性、PageRank和HITS算法;基于节点移除和收缩建立的节点删除的最短距离法等。
实际上,针对静态网络中关键节点的研究已经取得了一系列可观的成果。
然而,实际生活中节点间的联系并非持续存在,而是表现为时序相关性,即节点间的连边随时间会间断性地出现和消失,例如:生态食物链在不同季节会发生一定的变化,例如食物网和其他物种网络会随着环境条件的变化而发展,这些环境条件在某种程度上是物种得以存在的条件,疾病传播网络会随着人类的接触和离开而发生变化。
基于静态网络的研究将忽略时间变化的信息。
随着时间维度的引入,时序网络必然具有不同于静态网络的拓扑结构,因此,如何恰当地对带有时间属性的网络建模并定义节点的中心性度量是一项挑战。
[0005]由于时序网络的普遍存在和重要意义,近些年来研究者们对时序网络中关键节点识别展开了一系列的研究工作。
近些年来研究者们对时序网络展开了一系列的研究工作。
Ke等人将网络中随时间变化的边聚合成单个静态图形;Kempe等人提出了一个时序网络模型作为静态图,其中每条边都用交互发生的时间进行标记;Kim和Anderson在构建时序网络时规定每条边上发生的事件仅有一次,并将各个小网络用有向边连接,仍然转化为静态图研究,从而定义了有向时序图的度中心性、介数中心性和紧密度中心性。
Tang提出了基于时间路径的时间度量方法(如,时序紧密度和介数中心性)以识别网络中的重要节点。
上述研究或者将边的变化聚合到静态网络而忽略了时间属性,或者仅仅考虑时间窗口中网络结构的时间演变,但缺乏随时间变化不同时间窗口间的联系,这些方法都未能涵盖时间属性的所有方面。
由于时序网络中节点间相互作用随时间发生变化并共同实现完整的系统功能,因此同一节点在上一时刻的重要程度必然会对下一时刻造成影响,忽略层间的必要联系将
割裂节点随时间变化的情况。
通过上述的分析可知,现有技术中针对时序网络的建模一定程度上无法和实际的真实网络很好的拟合,进而将影响关键节点识别的准确性和科学性。
[0006]针对这一问题,本发明将时序网络与多层网络分析法相结合,提出了一种多层时序网络模型构建方法。
同时,在关键节点识别的问题上,随机游走是描述复杂实体上发生扩散过程的基本模型之一。
在经典扩散过程中,随机游走者通常以相等概率随机跳转到相邻节点,一定程度忽略了节点的异质性。
Ding在传统的扩散过程中引入了有偏游走的思想,使得某一时刻的随机游走者强制性的偏向于跳转到具有某些特殊属性(例如度、强度或聚类)的邻居节点。
然而这些算法大多强调节点局部或全局的拓扑属性,忽略了节点间相互作用对整个网络的影响,即随机游走在跳转到邻居节点的过程中应充分考虑目标节点和源节点间相互作用的影响,否则常常会导致结果不可靠的问题,所得关键节点不一定准确。
[0007]因此,提出一种完整揭示时序网络的结构演变及其动力学过程的多层时序网络模型并在充分考虑层内相邻节点间相互作用及其层间影响的双重因素的基础上建立基于此模型的关键节点识别方法是十分有必要的。
发明内容
[0008]本发明目的是解决目前现有的基于时序网络的建模分析以及关键节点识别方法中存在忽略时间信息或未考虑时间切片间的交互关系以及随机游走算法忽略了网络中节点的重要性存在异质性,从而易导致结果不可靠的问题,提供一种多层时序网络模型构建方法及基于此模型的关键节点识别方法,用于对时序网络中节点的重要性做出精确评估。
[0009]本发明是采用如下技术方案实现的:
[0010]1、一种基于复杂网络的多层时序网络模型构建方法,包括如下步骤:
[0011](1)、获取一段时间T内N个节点之间的交互关系随时间变化的情况,得到时序网络,该时序网络中包括N个节点以及节点之间随时间变化间断性出现或消失的连边,其中N 为大于或等于2的正整数;
[0012](2)、根据预置的时间窗口大小对时间T进行有效切分,得到多层时序网络的层数为:L=T/l,其中L表示多层时序网络的层数,l表示每一层网络所经历的时间;多层时序网络的各层分别对应于L个时间窗口中的网络,其中,每一层中包括N个节点以及各层所对应的时刻内节点间的链接关系;
[0013](3)、使用邻接矩阵Aα表示多层时序网络各个层内的网络结构和链接关系;如果在
层α中节点i和节点j连接,则对应的邻接矩阵元素否则
[0014](4)、在相邻的两层网络中构建由上一层指向下一层的层间单向链接,即在相邻层中的对应节点之间按时间顺序建立层间一条有向连边,构建多层时序网络中的层间链接;[0015](5)、多层时序网络表示为G=(N,E,P),其中N为多层网络中的节点个数,E为多层网络边集,P=(P1,P2,...,P L)是一系列子网Pα=(N,Eα),α={1,2,...,L}的集合,其中Pα=(N,Eα)表示多层时序网络第α层所对应的网络结构,N为节点个数,在各个层内均相同,Eα为第α层中节点间的连边所构成的集合,该集合在每一层中各有不同;各层间有向链接为
其中,β=α+1。
[0016]2、一种基于复杂网络的多层时序网络模型的关键节点识别方法,该方法在上述构
建的模型中实现,包括如下步骤:
[0017](1)、根据每一层α={1,2,...,L}中的邻接矩阵Aα计算每个节点i的邻居节点集合Q(i),其中i∈N;
[0018](2)、计算每一层α={1,2,...,L}中节点相似性矩阵Sα,各层中节点i与其邻居节点j的相似性为:j∈α(i);
[0019](3)、将节点相似性引入随机游走过程,计算基于节点相似性有偏随机游走的跳转概率为:表示某一时刻层α中节点j上的游走者向其邻居节点i移动的概率取决于目标节点与源节点的相似程度;
[0020](4)、将有偏随机游走应用于PageRank,根据节点间的相似程度在随机游走者选择邻居节点跳转时添加偏差,得到基于相似性的有偏PageRank(SBPR);首先计算层α=1中节点i的SBPR中心性的方程如下:
[0021]
[0022]其中σ是阻尼系数;
[0023](5)、指数η取值为0或1,当η=0时,有偏PageRank恢复为无偏PageRank(CPR),即节点i的CPR中心性为:
[0024]
[0025](6)、根据同一层内节点间相似程度会对节点重要性产生影响,同时,相邻层间上一时刻节点的中心性会对下一时刻该节点的中心性产生影响,以递归的方式获取层α=2, 3,...,L中节点i的多层时序有偏PageRank(MTB-PR)值为:
[0026]
[0027]其中,δ(a,b)是克罗内克函数;和
分别表示上层中同一节点中心性和层内相邻节点间的相似性的幂次方;指数a和b
是偏差参数,用来调整节点对于层内及层间因素的依赖程度,并且指数a和b都取大于零的值,即a>0,b>0;
[0028](7)、η=0时,多层时序有偏PageRank(MTB-PR)恢复为多层时序无偏PageRank (MTU-PR):
[0029]
[0030]其中δ(a,b)是克罗内克函数;
[0031](8)、利用步骤(6)中公式的递归计算所得的节点i在最后一层中的中心性为节
点在多层时序网络中的最终中心性值。
[0032]本发明方法与现有技术相比具有以下优点:
[0033]1、本发明的多层时序网络模型构建步骤考虑了时序网络所具有的时间属性,即网络中节点间连边随时间间断性的存在或消失,在建模过程中,将不同时刻节点间不同的链接关系构建为多层网络的每一层,客观真实的再现网络的时变性,克服了经典聚合网络中忽略时变性进而容易改变时序网络拓扑结构的问题。
[0034]2、由于不同时刻节点间通过不同的相互作用彼此联系共同实现实际时序网络的系统功能,因此,本发明的多层时序网络模型构建步骤进一步考虑了各层间的联系,即同一节点在前一时刻的重要性会对其在后一时刻的重要性造成影响,克服了以往研究中忽略不同时刻节点间的联系进而割裂节点随时间变化的问题。
[0035]3、本发明的关键节点识别步骤引入了节点相似性指标作为衡量节点局部重要性的标志,提出了基于节点相似性的有偏游走,考虑了节点间相互作用对网络的影响。
[0036]4、本发明结合了多层时序网络的拓扑结构,将有偏随机游走应用于PageRank,根据层内节点的有偏跳转以及上层中节点对下层中副本节点的单向作用,提出了一种集合层内及层间双重因素的节点排序算法MTB-PR,可以获取节点重要性随时间变化的轨迹,进而改进了现有算法平均分配链接权重所导致的排序结果不可靠的问题。
[0037]5、本发明引入偏差参数来调整节点对层内及层间因素的依赖性,进一步可以根据两者影响权重的大小有针对性地挖掘有重要影响的节点。
附图说明
[0038]图1表示时序网络到多层时序网络的映射示意图。
[0039]图2表示多层时序网络构建流程图。
[0040]图3表示基于多层时序网络模型的关键节点识别方法流程图。
[0041]图4表示利用SBPR所得节点排名与CPR所得节点排名的对比结果。
[0042]图5a表示通过CPR所得第一层中节点排名与MTU-PR所得节点排名的对比结果。
[0043]图5b表示通过CPR所得第二层中节点排名与MTU-PR所得节点排名的对比结果。
[0044]图5c表示通过SBPR所得第一层中节点排名与MTB-PR所得节点排名的对比结果。
[0045]图5d表示通过SBPR所得第二层中节点排名与MTB-PR所得节点排名的对比结果。
[0046]图6a表示参数a=1;b=1、3、5时节点的排序结果。
[0047]图6b表示参数a=1、3、5;b=1时节点的排序结果。
具体实施方式
[0048]下面对本发明的具体实施例进行详细说明。
[0049]一种基于复杂网络的多层时序网络模型的构建方法,包括如下步骤:
[0050](1)、获取一段时间T内N个节点之间的交互关系随时间变化的情况,得到时序网络,该时序网络中包括N个节点以及节点之间随时间变化间断性出现或消失的连边,其中N 为大于或等于2的正整数;
[0051]其中,时序网络可以表示为代表N个节点间的连边的情况在整个T时间内
随时间变化的情况。
具体地,是一组(M(1),M(2),...,M(T))的集合,其中M(t)=(N, E(t))表示各个时刻均相同的N个节点在时刻t所对应的网络结构,E(t)表示时刻t时节点间的连边所构成的集合,该集合随时间发生变化。
[0052](2)、根据预置的时间窗口大小对时间T进行有效切分,得到多层时序网络的层数为:L=T/l,其中L表示多层时序网络的层数,l表示每一层网络所经历的时间。
多层时序网络的各层分别对应于L个时间窗口中的网络,其中,每一层中包括N个节点以及各层所对应的时刻内节点间的链接关系。
[0053](3)、使用邻接矩阵Aα表示多层时序网络各个层内的网络结构和链接关系;如果在
层α中节点i和节点j连接,则对应的邻接矩阵元素否则
[0054](4)、时序网络中节点间相互作用随时间发生变化并共同实现完整的系统功能,同一节点在前一时刻的重要性会对其在后一时刻的重要性造成影响。
因此在相邻的两层网络中构建由上一层指向下一层的层间单向链接,即在相邻层中的对应节点之间按时间顺序建立层间一条有向连边,构建多层时序网络中的层间链接。
[0055](5)、多层时序网络表示为G=(N,E,P),其中N为多层网络中的节点个数,E为多层网络边集,P=(P1,P2,...,P L)是一系列子网Pα=(N,Eα),α={1,2,...,L}的集合,其中Pα=(N,Eα)表示多层时序网络第α层所对应的网络结构,N为节点个数,在各个层内均相同,Eα为第α层中节点间的连边所构成的集合,该集合在每一层中各有不同;各层间有向链接为其中,β=α+1。
[0056]一种基于复杂网络的多层时序网络模型的关键节点识别方法,包括如下步骤:[0057](1)、根据每一层α={1,2,...,L}中的邻接矩阵Aα计算每个节点i的邻居节点集合Q(i),其中i∈N。
[0058](2)、计算每一层α={1,2,...,L}中节点相似性矩阵Sα,各层中节点i与其邻居节点j的相似性为:j∈α(i)。
[0059]步骤(2)中的基本思路基于两个方面:①两个节点之间拥有的共同邻居数越多,则彼此之间越相似,这与现实世界相符合,拥有很多共同朋友的两个人彼此之间成为朋友的概率更大;生物网中,物种之间生态需求越是一致则他们的形态越相似;②相邻节点之间的相似性存在差异,即节点i对节点j的相似度不同于节点j对节点i的相似度,邻居节点数量较多的一方对另一方的影响力更大。
这与直观判断相符,以生态竞争网络为例,食物相似的物种为争夺食物,竞争会相对更加激烈,而这个过程中,食物种类较多的物种由于存在较多选择,因而受到来自食物种类较少的物种的竞争压力远远低于其本身对后者带来的竞争压力。
[0060](3)、将节点相似性引入随机游走过程,计算基于节点相似性有偏随机游走的跳转概率为:表示某一时刻层α中节点j上的游走者向其邻居节点i移动的概率取决于目标节点与源节点的相似程度。
[0061](4)、将有偏随机游走应用于PageRank,根据节点间的相似程度在随机游走者选择邻居节点跳转时添加偏差,得到基于相似性的有偏PageRank(SBPR)。
首先计算层α=1中节
点i的SBPR中心性的方程如下:
[0062]
[0063]其中,σ是阻尼系数,根据经验研究,取σ=0.85。
[0064]步骤(4)中节点的有偏PageRank计算公式表明节点j上的漫游者遵循两种策略:以概率σ跳转到节点j的某一邻居节点或者以概率1-σ随机选择网络中的任一节点跳转。
假设节点i为节点j的邻居之一,则跳转到节点i的概率取决于节点i与节点j的相似程度
相似程度越高,选择该节点跳转的概率越大。
[0065](5)、指数η取值为0或1,当η=0时,有偏PageRank恢复为无偏PageRank(CPR),即节点i的CPR中心性为:
[0066]
[0067](6)、根据同一层内节点间相似程度会对节点重要性产生影响,同时,相邻层间上一时刻节点的中心性会对下一时刻该节点的中心性产生影响,以递归的方式获取层α=2, 3,...,L中节点i的多层时序有偏PageRank(MTB-PR)值为:
[0068]
[0069]其中,δ(a,b)是克罗内克函数。
和
分别表示上层中同一节点中心性和层内相邻节点间的相似性的幂次方。
指数a和b
是偏差参数,用来调整节点对于层内及层间因素的依赖程度,并且指数a和b都取大于零的值,即a>0,b>0。
[0070]步骤(6)的基本思路为多层时序网络中层间链接呈现为时序相继性的有向连边,节点在上一时刻的状态必然会影响其在下一时刻的重要性且这种影响只能通过时刻t影响时刻t+1的状态,呈现单向性。
另外,节点的多层时序有偏PageRank(MTB-PR)计算公式表明
节点i的中心性可同时受到α中节点i互为邻居的节点j的中心性以及α-1层中中心性为
的节点的影响。
这与假设相一致,即上一时刻中节点的重要性会对下一时刻该节点的重要性造成影响。
[0071](7)、η=0时,多层时序有偏PageRank(MTB-PR)恢复为多层时序无偏PageRank (MTU-PR):
[0072]
[0073]其中,δ(a,b)是克罗内克函数。
[0074](8)、利用步骤(6)中公式的递归计算所得的节点i在最后一层中的中心性为节
点在多层时序网络中的最终中心性值。
[0075]总之,本发明所述的复杂网络的多层时序网络模型构建和关键节点识别方法,包括:获取一段时间T内N个节点之间的交互关系随时间变化的情况,得到时序网络,根据预置的时间窗口大小对时间T进行有效切分,得到多层时序网络的层数;在相邻两层网络中的对应节点之间按时间顺序建立一条有向连边,构建层间链接。
计算节点相似性矩阵,将其作为PageRank跳转偏差获取第一层中节点的中心性,接着在PageRank跳转中进一步添加上一层节点中心性的影响,递归计算其它层的节点中心性。
[0076]具体实施例如下:
[0077]实施例1
[0078]结合图1和图2,以ACM Hypertext 2009会议期间大约2天内111名与会人员面对面交互的动态过程的数据为例,构建多层时序网络模型。
[0079]一种多层时序网络模型的构建方法,具体步骤如下:
[0080](1)、获取2009.06.29-2009.06.30期间参加ACM Hypertext 2009会议的111名与会人员之间的交互关系随时间变化的情况,得到时序网络,该时序网络中包括111个节点以及节点之间随时间变化间断性出现或消失的连边。
[0081](2)、按时间相继性将数据按天切分,得到多层时序网络的层数为2,其中各层分别对应于6月29日和6月30日全天中与会人员的交互情况所构成的网络。
每一层中包括111个节点以及各层所对应的时刻内节点间的链接关系。
[0082](3)、使用邻接矩阵Aα表示多层时序网络各个层内的网络结构和链接关系;如果在
层α中节点i和节点j连接,则对应的邻接矩阵元素否则
[0083](4)、相邻的两层网络中构建由上一层指向下一层的层间单向链接,即在相邻层中的对应节点之间按时间顺序建立层间一条有向连边,构建多层时序网络中的层间链接。
[0084](5)、网络基本统计特性如下表所示,其中N表示节点总数,E1和E2分别表示各层中的连边数,T为网络总层数,During为数据记录的时段。
构建为两层的多层时序网络,层间相同节点创建时序相继性的有向边。
[0085]
[0086]实施例2
[0087]下面结合图3及相应的计算公式,在实施例1中的网络模型中进行应用,获取节点的重要性排名。
[0088]一种基于复杂网络的多层时序网络模型的关键节点识别方法,具体步骤如下:[0089](1)、根据每一层α={1,2}中的邻接矩阵Aα计算每个节点i的邻居节点集合Q(i),其中i∈N。
[0090](2)、计算每一层α={1,2}中节点相似性矩阵Sα,各层中节点i与其邻居节点j的相似性为:j∈α(i)。
[0091](3)、将节点相似性引入随机游走过程,计算基于节点相似性有偏随机游走的跳转。