高考数学压轴专题2020-2021备战高考《函数与导数》易错题汇编及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新《函数与导数》专题解析
一、选择题
1.函数()3ln x
f x x
=
的部分图象是( ) A . B .
C .
D .
【答案】A 【解析】 【分析】
根据奇偶性排除B ,当1x >时,()3ln 0x
f x x
=>,排除CD ,得到答案. 【详解】
()()()33ln ln ,x x
f x f x f x x x
=
-==--, ()f x 为奇函数,排除B 当1x >时,()3
ln 0x
f x x =>恒成立,排除CD 故答案选A 【点睛】
本题考查了函数图像的判断,通过奇偶性,特殊值法排除选项是解题的关键.
2.设()f x 为R 上的奇函数,满足(2)(2)f x f x -=+,且当02x ≤≤时,()x f x xe =,则(1)(2)(3)(100)f f f f ++++=L ( ) A .222e e + B .25050e e + C .2100100e e + D .222e e --
【答案】A
【解析】 【分析】
由()()22f x f x -=+可得对称轴,结合奇偶性可知()f x 周期为8;可将所求式子通过周期化为()()()()1234f f f f +++,结合解析式可求得函数值. 【详解】
由()()22f x f x -=+得:()f x 关于2x =对称
又()f x Q 为R 上的奇函数 ()f x ∴是以8为周期的周期函数
()()()()()()()()()1281241240
f f f f f f f f f ++⋅⋅⋅+=++⋅⋅⋅++-+-+⋅⋅⋅+-=Q 且()()()()2
123422f f f f e e +++=+
()()()()()()()()()()12100121281234f f f f f f f f f f ∴++⋅⋅⋅+=++⋅⋅⋅+++++⎡⎤⎡⎤⎣⎦⎣⎦222e e =+
故选:A 【点睛】
本题考查利用函数的奇偶性、对称性和周期性求解函数值的问题,关键是能够利用奇偶性和对称轴得到函数的周期,并求得基础区间内的函数值.
3.函数2
2()41
x x x f x ⋅=-的图像大致为( )
A .
B .
C .
D .
【答案】A 【解析】
∵函数()2
2?41x x x f x =-的定义域为(,0)(0,)-∞+∞U
∴22
2()2()()4114
x x x x
x x f x f x --⋅-⋅-===---
∴函数()f x 为奇函数,故排除B ,C. ∵2
(1)03
f =>,故排除D. 故选A.
点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.
4.已知奇函数()f x 在R 上是增函数,若2
1log 5a f ⎛⎫
=- ⎪⎝⎭
,()2log 4.1b f =,()
0.82c f =,则,,a b c 的大小关系为( )
A .a b c <<
B .b a c <<
C .c b a <<
D .c a b <<
【答案】C 【解析】
由题意:()221log log 55a f f ⎛
⎫=-= ⎪⎝
⎭, 且:0.8
22log 5log 4.12,122>><<,
据此:0.8
22log 5log 4.12
>>,
结合函数的单调性有:()()()0.8
22log 5log 4.12f f f >>,
即,a b c c b a >><<. 本题选择C 选项.
【考点】 指数、对数、函数的单调性
【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.
5.已知()ln x
f x x
=
,则下列结论中错误的是( ) A .()f x 在()0,e 上单调递增 B .()()24f f = C .当01a b <<<时,b a a b < D .20192020
log 20202019
>
【答案】D 【解析】 【分析】
根据2
1ln (),(0,)x
f x x x
-'=
∈+∞,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,进而判断得出结论. 【详解】
2
1ln (),(0,)x
f x x x -'=
∈+∞Q ∴对于选项A ,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,故A 正确;
对于选项B ,()2ln 4ln 2ln 2
4(2)442
f f ====,故B 正确;
对于选项C ,由选项A 知()f x 在()0,1上也是单调递增的,01a b <<<Q ,
ln ln a b
a b

<,可得b a a b <,故选项C 正确; 对于选项D ,由选项A 知()f x 在(),e +∞上单调递减,
(2019)(2020)f f ∴>,即
ln 2019ln 202022019020>⇒20192020ln 2020
log 2020ln 02019
219>=, 故选项D 不正确. 故选:D 【点睛】
本题考查导数与函数单调性、极值与最值的应用及方程与不等式的解法,考查了理解辨析能力与运算求解能力,属于中档题.
6.已知函数f (x )=(k +4k )lnx +2
4x x
-,k ∈[4,+∞),曲线y =f (x )上总存在两
点M (x 1,y 1),N (x 2,y 2),使曲线y =f (x )在M ,N 两点处的切线互相平行,则x 1+x 2的取值范围为
A .(8
5,+∞) B .(
16
5
,+∞) C .[
8
5
,+∞) D .[
16
5
,+∞) 【答案】B 【解析】 【分析】
利用过M 、N 点处的切线互相平行,建立方程,结合基本不等式,再求最值,即可求x 1+x 2
的取值范围. 【详解】 由题得f′(x )=4k k x +
﹣24x ﹣1=﹣2244x k x k x ⎛⎫-++ ⎪⎝⎭=﹣()2
4x k x k x ⎛
⎫-- ⎪⎝
⎭,(x >0,k >0)
由题意,可得f′(x 1)=f′(x 2)(x 1,x 2>0,且x 1≠x 2),
即2
1144k k x x +
-﹣1=2
4
k k x +
﹣224x ﹣1,
化简得4(x 1+x 2)=(k+4
k
)x 1x 2, 而x 1x 2<2
12(
)2
x x +, 4(x 1+x 2)<(k+
4
k )21
2()2
x x +, 即x 1+x 2>
16
4k k
+
对k ∈[4,+∞)恒成立, 令g (k )=k+
4k
, 则g′(k )=1﹣
24k =()()2
22k k k +->0对k ∈[4,+∞)恒成立, ∴g (k )≥g (4)=5, ∴
16
4k k
+≤16
5
, ∴x 1+x 2>
165
, 故x 1+x 2的取值范围为(16
5
,+∞). 故答案为B 【点睛】
本题运用导数可以解决曲线的切线问题,函数的单调性、极值与最值,正确求导是我们解题
的关键,属于中档题.
7.曲线2y x =与直线y x =所围成的封闭图形的面积为( ) A .
16
B .
13
C .
12
D .
56
【答案】A 【解析】
曲线2
y x =与直线y x =的交点坐标为()()0,0,1,1 ,由定积分的几何意义可得曲线2
y x
=与直线y x =所围成的封闭图形的面积为
()1
2
2
3100
1
11
|2
36
x x dx x x ⎛⎫-=-= ⎪⎝⎭⎰ ,故选A.
8
.3
ax ⎛ ⎝⎭
的展开式中,第三项的系数为1,则11a dx x =⎰( ) A .2ln 2 B .ln 2 C .2 D .1
【答案】A 【解析】 【分析】
首先根据二项式定理求出a ,把a 的值带入1
1
a
dx x

即可求出结果. 【详解】
解题分析
根据二项式3
6ax ⎛- ⎝⎭
的展开式的通项公式得2
21
213()4a T C ax x +⎛== ⎝⎭. Q 第三项的系数为1,1,44
a
a ∴=∴=,
则4
4
111
11d d ln 2ln 2a x x x x x ===⎰⎰.
故选:A 【点睛】
本题考查二项式定理及定积分. 需要记住二项式定理展开公式:1C k n k k
k n T a b -+=.属于中等
题.
9.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,2()4f x x x =-,则不等式
(2)5f x +<的解集为( )
A .(3,7)-
B .()4,5-
C .(7,3)-
D .()2,6-
【答案】C 【解析】 【分析】
首先求出当0x ≥时不等式的解集,在根据偶函数的对称性求出当0x <时不等式的解集,从而求出()5f x <的解集,则525x -<+<,即可得解. 【详解】
当0x ≥时,2
()45f x x x =-<的解为05x <≤;
当0x <时,根据偶函数图像的对称性知不等式()5f x <的解为5x 0-<<, 所以不等式()5f x <的解集为{}
55x x -<<,
所以不等式(2)5f x +<的解集为{}{}
52573x x x x -<+<=-<<. 故选:C 【点睛】
本题考查偶函数的性质,涉及一元二次不等式,属于基础题.
10.若关于x 的不等式220x ax -+>在区间[1,5]上有解,则a 的取值范围是( ) A .(22,)+∞ B .(,22)-∞
C .(,3)-∞
D .27(,
)5
-∞ 【答案】D 【解析】 【分析】
把220x ax -+>在区间[]1,5上有解,转化为存在一个[]
1,5x ∈使得
22
x 2ax x a x
+>⇒+
>,解出()f x 的最大值. 【详解】
220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得
22x 2ax x a x +>⇒+>,设()2
f x x x
=+,即是()f x 的最大值a >,()f x 的最大值27
5=
,当5x =时取得,故选D 【点睛】
11.函数(
)
3
2x
y x x =-⋅的图象大致是( )
A .
B .
C .
D .
【答案】C 【解析】 【分析】
排除法:根据函数(
)
3
2x
y x x =-⋅为奇函数,故图象关于原点对称;函数有1-,0,1三个零点;当2x =时,函数值为正数,进行选项排除即可.
【详解】
函数(
)
3
2x
y x x =-⋅为奇函数,故图象关于原点对称,故排除D ; 函数有1-,0,1三个零点,故排除A ; 当2x =时,函数值为正数,故排除B . 故选:C . 【点睛】
本题考查函数的图象,根据解析式求图像通常利用排除法,依据有函数奇偶性、单调性、零点、定义域、值域、特殊值等,属于中等题.
12.已知函数()ln x
f x x
=,则使ln ()()()f x g x a f x =-有2个零点的a 的取值范围( ) A .(0,1) B .10,e ⎛⎫
⎪⎝⎭
C .1,1e ⎛⎫ ⎪⎝⎭
D .1,e ⎛⎫-∞ ⎪⎝

【答案】B 【解析】 【分析】 令()ln x
t f x x
==,利用导数研究其图象和值域,再将ln ()()()f x g x a f x =
-有2个零点,转化为ln t
a t
=在[),e +∞上只有一解求解. 【详解】 令()ln x t f x x ==
,当01x <<时,()0ln x
t f x x
==
<, 当1x >时,()
2
ln 1
()ln x t f x x -''==

当1x e <<时,0t '<,当x e >时,0t '>,
所以当x e =时,t 取得最小值e ,所以t e ≥, 如图所示:
所以ln ()()()f x g x a f x =
-有2个零点,转化为ln t
a t
=在[),e +∞上只有一解,
令ln t m t =
,2
1ln 0t m t -'=≤,所以ln t
m t
=在[),e +∞上递减, 所以1
0m e
<≤, 所以10a e <≤,当1
a e
=时,x e =,只有一个零点,不合题意, 所以10a e
<< 故选:B 【点睛】
本题主要考查导数与函数的零点,还考查了数形结合的思想和运算求解的能力,属于中档题.
13.已知函数()
()2f x x +∈R 为奇函数,且函数()y f x =的图象关于直线1x =对
称,当[]0,1x ∈时,()2020x
f x =,则()2020f =( ) A .2020 B .12020
C .11010
D .0
【答案】D 【解析】 【分析】
根据题意,由函数()f x 的对称性可得()()42f x f x +=-+,即()()2f x f x +=-,进而可得()()4f x f x +=,即函数()f x 是周期为4的周期函数,据此可得
()()20200f f =,由函数的解析式计算可得答案.
【详解】
解:根据题意,函数()2f x +为奇函数,即函数()f x 的图象关于点()2,0对称,则有
()()4f x f x -=-+,
函数()y f x =的图象关于直线1x =对称,则()()2f x f x -=+, 变形可得:()()42f x f x +=-+,即()()2f x f x +=-, 则有()()4f x f x +=,即函数()f x 是周期为4的周期函数,
()()()20200505400f f f ∴=+⨯==;
故选:D . 【点睛】
本题考查函数的奇偶性、对称性、周期性的综合应用,难度一般.一般地,若一个奇函数有对称轴(或一个偶函数有对称中心),可分析出函数具有周期性.
14.已知函数()f x 的导函数为()f x '且满足()()21ln f x x f x '=⋅+,则1f e ⎛⎫'= ⎪⎝⎭
( ) A .
12e
- B .2e - C .1-
D .e
【答案】B 【解析】 【分析】
对函数求导得到导函数,代入1x =可求得()11f '=-,从而得到()f x ',代入1
x e
=求得结果. 【详解】
由题意得:()()121f x f x
''=+
令1x =得:()()1211f f ''=+,解得:()11f '=-
()12f x x '∴=-+
12f e e ⎛⎫
'∴=- ⎪⎝⎭
本题正确选项:B 【点睛】
本题考查导数值的求解,关键是能够通过赋值的方式求得()1f ',易错点是忽略()1f '为常数,导致求导错误.
15.已知函数()2
cos f x x x =-,若15log 3a f ⎛⎫= ⎪⎝⎭,31log 5b f ⎛⎫= ⎪⎝⎭,3
15c f ⎛⎫⎛⎫ ⎪ ⎪ ⎝⎭⎝⎭
=⎪,
则( ) A .a b c >> B .b a c >>
C .c b a >>
D .c a b >>
【答案】B 【解析】 【分析】
判断()f x 为偶函数,利用导数得出()f x 在()0,π上单调递增,由对数函数的性质,结合函数()f x 的单调性和奇偶性,即可得出答案. 【详解】
()()()()2
2cos cos f x x x x x f x -=---=-=,故()f x 为偶函数
故只需考虑()0,x ∈+∞的单调性即可.
()'2sin f x x x =+,当()0,x π∈时,易得()'0f x >
故()f x 在()0,π上单调递增,()155
log 3log 3a f f ⎛⎫== ⎪⎝


()331log log 55b f f ⎛
⎫== ⎪⎝
⎭,
由函数单调性可知()()3531log 3log 55f f f ⎛⎫
⎛⎫<< ⎪ ⎪ ⎪
⎝⎭⎝⎭
,即c a b << 故选:B 【点睛】
本题主要考查了利用函数的奇偶性以及单调性比较大小,属于中档题.
16.函数()3ln 2x
f x x x
=+的图象在点()()1,1f 处的切线方程为( ) A .64y x =- B .75y x =- C .63=-y x D .74y x =-
【答案】B 【解析】 【分析】
首先求得切线的斜率,然后求解切线方程即可. 【详解】
由函数的解析式可得:()22
1ln '6x
f x x x
-=+, 则所求切线的斜率()22
1ln1
'16171
k f -==+⨯=, 且:()0
12121
f =
+⨯=,即切点坐标为()1,2, 由点斜式方程可得切线方程为:()271y x -=-,即75y x =-. 本题选择B 选项. 【点睛】
导数运算及切线的理解应注意的问题
一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆. 二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.
三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积.
17.若定义在R 上的偶函数()f x 满足()()20f x f x +-=.当[]0,1x ∈,
()21f x x =-,则( )
A .()123
5log 2log 32f f f ⎛⎫⎛⎫
>> ⎪
⎪⎝⎭


B .()1235log 2log 32f f f ⎛⎫⎛⎫
>> ⎪
⎪⎝⎭⎝⎭
C .()1235log 2log 32f f f ⎛⎫⎛⎫
>> ⎪ ⎪⎝⎭⎝⎭
D .()2135log 3log 22f f f ⎛⎫⎛⎫
>> ⎪ ⎪⎝⎭⎝⎭
【答案】A 【解析】 【分析】
推导出函数()y f x =的周期为4,根据题意计算出51022f f ⎛⎫
⎛⎫
=-<
⎪ ⎪⎝⎭⎝⎭
,()22
4log 3log 03f f ⎛

=-< ⎪⎝⎭
,()133log 2log 20f f ⎛⎫
=> ⎪⎝⎭
,再利用函数()y f x =在区间[]0,1上的单调性可得出结论. 【详解】
因为定义在R 上的偶函数()y f x =满足()()20f x f x +-=,即
()()20f x f x +-=,
即()()2f x f x =--,()()()24f x f x f x ∴=--=-, 所以,函数()y f x =的周期为4,
因为当[]0,1x ∈时,()2
1f x x =-单调递减,
因为5110222f f f ⎛⎫
⎛⎫
⎛⎫
=--=-<
⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()224log 3log 03f f ⎛⎫
=-< ⎪⎝⎭
, ()()1333log 2log 2log 20f f f ⎛⎫
=-=> ⎪⎝⎭
, 因为2
41
0log 132<<<,所以241log 32f f ⎛⎫
⎛⎫-<- ⎪ ⎪⎝

⎝⎭
, 所以,1
2314log 2log 23f f f ⎛⎫
⎛⎫
⎛⎫>->- ⎪ ⎪ ⎪⎝⎭


⎝⎭
,即()1235log 2log 32f f f ⎛⎫⎛⎫
>> ⎪ ⎪⎝⎭⎝⎭

故选:A . 【点睛】
本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键,属于中等题.
18.如图,记图中正方形介于两平行线x y a +=与1x y a +=+之间的部分的面积为
()S S a =,则()S a 的图象大致为( )
A .
B .
C .
D .
【答案】D 【解析】 【分析】
根据函数的部分特征,利用排除法,即可得到本题答案. 【详解】
①当011a ≤+<时,即10a -≤<,21
()(1)2
S a a =
+;
②当11a +=时,即0a =,1()2
S a =
. 由此可知,当10a -≤<时,21()(1)2S a a =+且1
(0)2
S =,所以,,A B C 选项不正确. 故选:D 【点睛】
本题主要考查根据函数的性质选择图象,排除法是解决此题的关键.
19.曲线3πcos 02y x x ⎛⎫=≤≤ ⎪⎝⎭与x 轴以及直线3π
2
x =所围图形的面积为( ) A .4 B .2
C .
5
2
D .3
【答案】B 【解析】 【分析】 【详解】
试题分析:()332
22
2
(0cos )sin 2S x dx x π
π
ππ
=
-=-=⎰,选B.
考点:定积分的几何意义
20.函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数,则a 的取值范围是( ) A .5,3⎛⎫+∞ ⎪⎝⎭
B .1,15⎛⎫ ⎪⎝⎭
C .51,3⎛⎫ ⎪⎝⎭
D .51,3
⎛⎤ ⎥⎝⎦
【答案】D 【解析】 【分析】
根据0a >可知5y ax =-在定义域内单调递减,若使得函数
()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数,则需1
530
a a >⎧⎨-≥⎩,解不等式即可.
【详解】
0a >Q
5y ax ∴=-在定义域内单调递减
若使得函数()()()log 5,0,1a f x ax a a =->≠在()1,3上是减函数
则需1530
a a >⎧⎨-≥⎩,解得513a <≤
故选:D 【点睛】
本题考查对数函数的单调性,属于中档题.。

相关文档
最新文档