工程热力学期末总结
工程热力学-复习总结
1.试述理论循环与实际循环的差异1).理论循环中假设工质比热容是定值,而实际气体比热容是随温度上升而增大的。
2).实际循环中为了使循环重复进行,必须更换工质存在换气损失。
3).实际循环中燃料燃烧需要一定的时间,所以喷油或点火在上止点前,并且燃烧还会延续到膨胀行程,由此形成非瞬时损失和补燃损失,实际循环中总会有部分燃料由于缺氧产生不完全燃烧损失4).实际循环中,汽缸壁和工质间自始至终存在着热交换,使压缩、膨胀线均脱离理论循环的绝热压缩、膨胀线,造成传热损失。
2.发动机的机械损失包括哪几个部分?各占比例如何?常用哪几种方法测量发动机机械损失?机械损失:发动机内部运动零件的摩擦损失(62~75%),驱动附属机构的损失(10~20%)和泵气损失(10~20)带动机械增压器损失(6~10%)。
测定方法:倒拖法、灭缸法(仅适用于多缸发动机)、油耗线法(负荷特性法)。
3.试分析转速和负荷对机械效率的影响。
转速n上升,各摩擦副之间相对速度增加,摩擦损失增加。
曲柄连杆机构的惯性力加大,活塞侧压力和轴承负荷均增高,摩擦损失增加;泵气损失加大。
驱动附件消耗的功多。
因此,机械损失功率增加,机械效率下降。
转速一定时,负荷减小,平均指示压力pmi随之下降,而平均机械损失压力pmm变化很小,因为pmm的大小主要取决于摩擦副的相对速度和惯性力的大小,根据ηm=1-(pmm/pmi)知,随着负荷减小,机械效率ηm下降。
5.试分析影响充气效率的各个因素。
影响充气效率ηv的因素:进气的状态、进气终了的气缸压力和温度、残余废气系数、压缩比及配气定时等。
1.进气终了的压力pa对ηv有重要影响,pa愈高ηv值越大。
2.进气终了的温度Ta:Ta值越高,充入气缸的工质密度越小,可使ηv降低。
3.残余废气系数:汽缸中残余废气增多,不仅使ηv下降,而且使燃烧恶化。
4.配气定时:由于进气迟闭而ζ<1,新鲜充量的容积减小,但pa值却可能拥有气流惯性而使进气有所增加,合适的配气定时应考虑ζpa具有最大值。
《工程热力学》知识点复习总结
第一部分 (第一章~第五章)一、概念(一)基本概念、基本术语1、工程热力学:工程热力学是从工程的观点出发,研究物质的热力性质、能量转换以及热能的直接利用等问题。
2、热力系统:通常根据所研究问题的需要,人为地划定一个或多个任意几何面所围成的空间作为热力学研究对象。
这种空间内的物质的总和称为热力系统,简称系统。
3、闭口系统:没有物质穿过边界的系统称为闭口系统。
系统内包含的物质质量为一不变的常量,所以有时又称为控制质量系统。
4、开口系统:有物质流穿过边界的系统称为开口系统。
开口系统总是一种相对固定的空间,故又称开口系统为控制体积系统,简称控制体。
5、绝热系统:系统与外界之间没有热量传递的系统,称为绝热系统。
6、孤立系统:系统与外界之间不发生任何能量传递和物质交换的系统,称为孤立系统。
7、热力状态:我们把系统中某瞬间表现的工质热力性质的总状况,称为工质的热力状态,简称为状态。
8、状态参数:我们把描述工质状态特性的各种物理量称为工质的状态参数。
9、强度性状态参数:在给定的状态下,凡系统中单元体的参数值与整个系统的参数值相同,与质量多少无关,没有可加性的状态参数称为强度性参数。
10、广延性状态参数:在给定的状态下,凡与系统内所含物质的数量有关的状态参数称为广延性参数。
11、平衡状态:在不受外界影响(重力场除外)的条件下,如果系统的状态参数不随时间变化,则该系统所处的状态称为平衡状态。
12、热力过程:把工质从某一状态过渡到另一状态所经历的全部状态变化称为热力过程。
13、准静态过程:理论研究可以设想一种过程,这种过程进行得非常缓慢,使过程中系统内部被破坏了的平衡有足够的时间恢复到新的平衡态,从而使过程的每一瞬间系统内部的状态都非常接近平衡状态,于是整个过程就可看作是由一系列非常接近平衡态的状态所组成,并称之为准静态过程。
14、可逆过程:当系统进行正、反两个过程后,系统与外界均能完全回复到初始状态,而不留下任何痕迹,这样的过程称为可逆过程。
工程热力学总结
闭口系统能量方程
一般式
Q
W
Q = dU + W
Q = U + W
q = du + w q = u + w
单位工质
适用条件: 1)任何工质 2) 任何过程
4
准静态和可逆闭口系能量方程
简单可压缩系准静态过程
w = pdv
q = du + pdv
q = u + pdv
简单可压缩系可逆过程
q = Tds
cn
n n
-k 1
cv
(1) 当 n = 0 p v 0 co n st p C
v
1- k
cn
n 1 1
cv
n
cn kcv cp p
(2) 当 n = 1 p v1 co n st T C cn
T
(3) 当 n = k p v k co n st s C cn 0
s
1
(4) 当 n = p n v const18 v C
热二律的表述与实质
热功转换
传热
1851年 开尔文-普朗克表述
热功转换的角度
1850年 克劳修斯表述
热量传递的角度
23
卡诺循环— 理想可逆热机循环
1-2定温吸热过程, q1 = T1(s2-s1) 2-3绝热膨胀过程,对外作功 3-4定温放热过程, q2 = T2(s2-s1) 4-1绝热压缩过程,对内作功
Tds = du + pdv
热力学恒等式
Tds = u + pdv 5
稳定流动能量方程
q
h
1 2
c2
gz
ws
适用条件: 任何流动工质 任何稳定流动过程
热工基础的期末总结
热工基础的期末总结一、热力学部分1. 热力学基础知识的学习热力学是研究热能与其他形式能量之间相互转化和传递的一门学科。
在学习过程中,我通过课堂的学习、书籍和网上资料的查阅,对热力学的基本概念、热力学系统和热力学性质等方面有了初步的了解。
2. 热力学基本定律热力学基本定律是热力学的核心内容,也是热工基础的重点。
本课程主要学习了热力学的三大基本定律:热力学第一定律、热力学第二定律和热力学第三定律。
通过对这些定律的学习和应用,我能够分析和计算热力学系统的能量转移和能量转化过程。
3. 热力学过程和热力学循环热力学过程是指系统在一定条件下发生的能量传递和物理性质发生变化的过程。
热力学循环是指系统在一定路径下变化,最终回到初始状态的过程。
通过学习这些内容,我能够对热力学过程和热力学循环进行分析和计算,从而了解能量转移和物理性质变化的规律。
4. 热力学性质的计算热力学性质是指描述系统热力学状态和性质的量,如温度、压力、体积等。
在学习过程中,我学习了热力学性质的计算方法,如状态方程、热容、焓、熵等。
通过对热力学性质的计算,我能够确定系统的热力学状态和性质。
二、传热学部分1. 传热学的基本概念和模型传热学是研究热量如何从高温区向低温区传递的学科。
在学习过程中,我学习了传热学的基本概念和模型,如传热方式、传热模型和传热原理等。
2. 传热方式和传热模型传热方式是指热量传递的途径,主要包括传导、对流和辐射。
传热模型是指用来描述传热过程的数学模型,如传热定律和传热方程等。
在学习过程中,我对这些内容进行了深入的学习和了解。
3. 传热计算方法在传热学中,计算方法是非常重要的,主要包括传热计算和传热换热器的计算。
传热计算是指通过传热方程和传热模型对传热过程进行计算和分析。
传热换热器的计算是指对传热器的传热性能和换热器的几何参数进行计算和设计。
通过学习和掌握这些计算方法,我能够对传热系统进行分析和设计。
三、实践操作在本学期的热工基础课程中,我还进行了一些实践操作和实验课程。
工程热力学总结
工程热力学总结第一章,基本概念工质: 实现热能和机械能相互转化的媒介物质。
热源(高温热源) :工质从中吸取热能的物系。
冷源(低温热源) :接受工质排出热能的物系。
热力系统(热力系):人为分割出来作为热力学分析对象的有限物质系统。
系统选择有任意性,可以是物质(气体,也可以是气缸(工具))。
外界:热力系统以外的部分。
边界:系统与外界之间的分。
系统分类(按能量物质交换分类)闭口系统:系统与外界无物质交换,系统内质量(关键看质量,只要质量不变,即使气体空间位置发生变化,仍为闭口系,漏气问题常用)恒定不变,也称控制质量开口系统:系统与外界有物质交换,系统被划定在一定容积范围内,也称控制容积 绝热系统:系统与外界无热量交换孤立系统:系统与外界既无能量交换,也无物质交换简单可压缩系统:系统与外界只有热量与容积功交换(现如今均为简单可压缩)。
热力学状态:工质在热力变化过程中某一瞬间呈现出来的宏观物理状况,简称状态(了解即可)状态参数:描述工质所处状态的宏观物理量。
如温度、压力体积、焓(H )、熵(S)、热力学能(u )等。
状态参数其值只取决于初终态,与过程无关。
常用的状态参数有: 压力P 、温度T 、体积V 、热力学能U 、焓H 和熵S.其中压力P 、温度T 和体积V 可直接用仪器测量,称为基本状态参数。
其余状态参数可根据基本状态参数间接算得。
5)(了解即可)状态参数有强度量与广延量之分: 强度量:与系统质量无关,如P 、T 。
强度量不具有可加性。
广延量:与系统质量成正比,如V 、U 、H 、S 。
广延量具有可加性。
广延量的比参数(单位质量工质的体积、热力学能等)具有强度量的性质,不具有可加性。
基本状态函数温度(t ) t(℃)=T(K)-273.15压强:绝对压力p 、表压力P g 、真空度p v 及大气压力之间的关系 比体积:单位质量物质所占的体积 单位:m3/kgv 与ρ互成倒数,即:v ρ=1平衡态:不受外界影响的情况下,系统宏观状态量量保持不变 实现平衡的充要条件:两个平衡热平衡:组成热力系统的各部分之间没有热量的传递 力平衡:组成热力系统的各部分之间没有相对位移状态参数坐标图:对于简单可压系统,由于独立参数只有两个,可用两个独立状态参数组成二维平面坐标系,坐标图中任意一点代表系统某一确定的平衡状态,任意一平衡状态也对应图上一个点,这种图称状态参数坐标图。
热工学基础期末总结
热工学基础期末总结一、引言热工学是工程热力学的基础学科,主要研究能量的转化与传递规律,涉及到热能的产生、利用和转换。
通过本学期的学习,我对热工学的基本概念和原理有了更深入的理解,并且掌握了一些基本的计算方法和实际应用技能。
在此总结中,我将对本学期学习的内容进行回顾和总结,以加深对热工学的理解。
二、热力学基本概念与原理1. 热力学系统:热力学系统是指一个物体或一组物体,通过边界与外界分隔开来,系统内部可以发生能量和物质的相互作用。
2. 热力学性质:包括压力、温度、体积、质量等,是描述系统状态的物理量。
3. 状态方程:描述热力学系统各状态参数之间的关系,例如理想气体状态方程和柯西状态方程等。
4. 热力学过程:系统从一个状态到另一个状态的变化过程,包括等温过程、等容过程、绝热过程等。
5. 热力学第一定律:能量守恒定律,系统的内能变化等于吸收的热量减去对外界做的功。
6. 热力学第二定律:能量的不可逆流动定律,热量只能从高温物体传向低温物体,不可逆过程总是产生熵增。
7. 热通量:单位时间内通过某个表面的热量。
8. 热工作:系统通过吸收的热量产生的对外界做的功。
三、热力学计算方法与工程应用1. 热力学图表:利用热力学图表可以根据系统参数的变化情况,直观地了解系统的状态变化和各个热力学性质的数值。
2. 热力学计算方法:可以根据系统参数和热力学性质的关系方程,计算系统的内能、熵、功、热量等。
3. 热力学循环:基于热力学的概念和原理,可以设计各种热力学循环来实现能源的转化和利用,例如卡诺循环、斯特林循环等。
4. 热力学工程应用:热力学的基本概念和原理在各个工程领域都有广泛的应用,例如燃烧工程、制冷工程、发动机等。
四、实例分析在本学期的实践教学环节中,我们开展了一系列的实验和工程应用案例分析,以加深对热工学的理解和应用。
例如,在燃烧工程实验中,我们通过控制不同燃料和氧气的比例,调整燃烧室内的温度和压力,从而改变燃烧过程的效果。
工程热力学考试总复习总结知识点
第六章
• 压缩因子 • 范德瓦尔方程 • 对应态原理
第七章教学大纲要求
熟练掌握
• 有关蒸汽的各种术语及其意义。介绍蒸汽 表和图(以h-s图为主)及其运用。
正确理解
工质为蒸汽时定温过程的多变指数不等于1, 定熵过程多变指数不等Cp/Cv,而是一个由实 验确定的数值。
第七章
• 饱和温度和饱和压力;定压加热、汽化过 程;水和水蒸汽状态参数;水蒸汽表和图; 水蒸汽热力过程
– 两个基本定律是热力学第一定律和第二定律,包括了 定律的定性和定量表达及有关应用等;
– 三个守恒方程是指质量守恒方程、能量守恒方程和 熵守恒方程等,这是热工分析计算的基础;
– 四个热力过程指的是定温、定压、定容和绝热等四 个基本热力过程。包括过程的特点、过程中状态参 数的变化、热量和功量(机械功)的转化情况等;
解题思路
• 1)取好热力系 • 2)计算初、终态 • 3)两种解题思路
从已知条件逐步推向目标 从目标反过来缺什么补什么
4)不可逆过程的功可尝试从外部参数着手
第二章
稳定流动的能量方程
q
u
1 2
c
2 f
gz
( pv)
wi
q
h
1 2
c
2 f
gz
wi
一真空容器,因密封不严外界空气逐渐渗漏入容器 内,最终使容器内的温度、压力和外界环境相同, 并分别为27 ℃及101 325 Pa。设容器的容积为0.1 m3,且容器中温度始终保持不变,试求过程中容器
0 绪论
熟练掌握: • 能量有效利用的基本途径和方法。 • 热功转换装置的工作原理及其共性。 • 各物理量的单位及国际单位制与公制间换算
工程热力学 期末复习考点归纳
一、填空选择1、做功和传热的异同:相同点:①通过边界传递的能量;②过程量;不同点:①功传递由压力差推动,比体积变化是作功标志;热量传递由温差推动,比熵变化是传热的标志;②功是物系间通过宏观运动发生相互作用传递的能量;热是物系间通过杂乱的微粒运动发生相互作用而传递的能量。
③传热仅是热能的传递过程,而做功过程一般伴随能量形态的转化。
④功转化为热是无条件的,而热转化为功是有条件、有限度的。
2、某过程可在p-v图中用实线表示,则必为准静态过程3、某过程可在p-v图中用实线表示,则不一定为可逆过程。
4、系统处于平衡状态时,绝对压力不变。
5、不计恒力场作用,平衡态单相系统内各点的状态参数,如密度必定是均匀一致的。
6、经过一个不可逆循环,工质不能恢复原来状态,这种说法是错的。
7、无任何耗散效应的准平衡过程是可逆过程。
8、平衡状态:平衡必稳定,稳定未必平衡,平衡未必均匀。
9、热力学第一定律用于任意系统、任意工质、任意过程。
10、功不是状态参数,热力学能与推动功之和是状态参数。
11、①当n = 0→定压过程②当n = 1→定温过程③当n = k→定熵(绝热)过程④当n = ∞→定容过程12、实际气体的压缩因子,可大于、小于或等于113、气体的临界压缩因子小于114、物质的比定压热容大于或等于比定容热容15、某个管道是喷管还是扩压管,不取决于管道形状,而取于管道内流体流速和压力16、对一定大小气缸的活塞式压气机,因余隙容积的存在,生产1kg气体的理论消耗功不变,实际耗功增大,压气机生产量下降17、循环增压比越大,则实际循环的热效率越高18、工程上尚无进行卡诺循环的蒸汽动力装置的原因是湿饱和区温限太小且压缩两相介质困难19、实现再热循环是为了提高蒸汽膨胀终了的干度20、抽汽回热循环中,抽汽级数越多,循环效率越高,因为抽汽级数越多,平均放热温度不变,平均吸热温度越高21、在压缩气体制冷循环中,随循环增压比提高,制冷系数下降,循环制冷量下降22、与采用可逆膨胀机相比,压缩蒸汽制冷循环中采用节流阀简化了设备降低了制冷量,降低了制冷系数23、工程上,压缩蒸汽制冷装置中常采用使制冷工质在冷凝器中冷凝后继续降温,即所谓的过冷工艺,以达到增加制冷量,提高制冷系数24、①吸收热量温度升高,焓值上升,相对湿度减小,吸湿能力增大②放出热量温度降低,焓值降低,相对湿度增大,吸湿能力减弱25、秋天白天秋高气爽气温较高,此时的空气为未饱和空气26、能够直接确定湿空气是否饱和的物理量是相对湿度27、湿空气的相对湿度增大,含湿量的变化不确定二、计算参考题型课后题1-12、1-16例2-1、课后题2-3例3-2、课后题3-5例4-7、课后题4-10,4-13例5-3、课后题5-1,5-7。
工程热力学总结范文
工程热力学总结范文第一,工程热力学研究了能量的守恒和能量传递的规律。
能量是物质具有的“做功”的能力,在工程系统中,能量的转化和传递对于系统的性能和效率至关重要。
通过热力学的研究,我们能够对能源的转化过程进行分析,发现能量的流动规律,并制定相应的措施提高系统的能量利用效率。
第二,工程热力学研究了热力学循环和热力学工质的特性。
热力学循环是一种能源的转化方式,通过热力学循环的分析,我们可以明确能源的输入和输出,为循环的性能评估和优化提供基础。
而热力学工质的特性则直接影响热力学循环的性能,如压缩因子、比热容等参数的不同会导致循环的性能差异,因此研究工质特性对于工程热力学的应用是至关重要的。
第三,工程热力学研究了热力学过程中的熵变和熵增方向。
熵是衡量系统无序程度的物理量,熵增原理指出在自然界中,熵总是增加的,这也是自然法则的一部分。
在工程热力学中,熵增原理可以用来分析工程系统的能量转化过程和能源流动过程,指导系统设计和优化,提高系统的能量利用效率。
第四,工程热力学研究了热力学第一定律和热力学第二定律。
热力学第一定律是能量守恒的基本原理,它指出能量既不能创造也不能消灭,只能从一种形式转化为另一种形式。
热力学第二定律则是能量转化过程中存在的限制,它指出热量不能自发地从低温物体传递给高温物体,能量转化总是伴随着能量的不可逆流失。
第五,工程热力学研究了工程系统的能量平衡和能量转化效率。
能量平衡是指工程系统中能量的输入和输出要平衡,不能存在能量的损失。
在能量转化过程中,能量的损失是不可避免的,而能量转化效率则是评估能源利用情况的重要指标。
通过工程热力学的分析与计算,我们可以确定能量利用的效率,从而制定相应的措施提高系统的效率。
综上所述,工程热力学研究了能量的转化和传递规律,研究了热力学循环和工质特性,研究了熵变和熵增方向,研究了热力学第一定律和热力学第二定律,研究了能量平衡和能量转化效率。
它为能源的利用和系统的设计提供了科学的基础和方法。
热工个人期末总结
热工个人期末总结在热工学的学习过程中,我深刻感受到了这门课程的重要性和应用广泛性。
在这个学期的学习中,我学到了很多基本原理和方法,并且在实践中获得实际操作经验。
下面是我对这门课程的总结和体会。
首先,热工学是工程热物理学科的基础,是研究热量传递、热力学过程以及能源转换过程等工程问题的学科。
热工学的基本内容包括热力学、传热学和传质学三个方面。
在学习热力学的过程中,我了解了能量、热力学系统和热平衡等基本概念,学会了运用热力学定律解决问题,并掌握了热力学循环分析和热力学性能计算的方法。
在传热学的学习中,我熟悉了传热的基本模式和传热机理,学会了传热计算的方法,并了解了不同传热方式的特点与应用。
在传质学的学习中,我了解了传质的基本概念和传质的基本过程,学会了传质计算的方法,并了解了传质现象在工程领域中的应用。
其次,在学习热工学的过程中,我从多个方面感受到了该学科的实际应用性。
首先,在工程设计中,热工学的知识是不可或缺的。
只有充分了解和掌握了热工学的基本原理和方法,才能准确地进行热力学计算、传热计算和传质计算,为工程设计提供科学依据。
其次,热工学的知识也在工业生产中发挥着重要作用。
比如,在能源行业中,热工学的知识可以帮助优化能源转换过程,提高能源利用效率,从而实现节能减排的目标。
再如,在化工行业中,热工学的知识可以帮助改善生产过程,提高产品质量,降低生产成本。
总之,热工学的应用范围非常广泛,几乎涉及到所有与热相关的工程领域。
最后,在热工学的学习过程中,我也遇到了一些困难和挑战。
首先,热工学的理论知识比较抽象和复杂,需要理清思路和逐步推导。
在学习过程中,我需要反复阅读和练习,提高自己的理解和运用能力。
其次,热工学的计算过程需要掌握一定的数学和物理知识,而这方面对我来说是一个相对薄弱的环节。
为了克服这个困难,我积极找寻相关的学习资料,加强理论学习,并与同学进行讨论和交流,共同解决难题。
最后,热工学的学习也需要不断进行实践和实验。
工程热力学本科生期末复习总结题2答案
一判断题1.均匀则一定平衡。
反之平衡也一定均匀;(×)2.稳定状态一定是平衡状态;(×)3.判断一个热力过程是否可逆的条件是准平衡过程且无耗散效应;(√)4.焓只有在流动工质中才存在;(×)5.对于定压过程热力学第一定律的表达式可写为h=;(√)q∆6.闭口热力系吸收一定热量后,其熵一定增大;(√)7.用压力表可以直接读出绝对压力值;(×)8.自发过程为不可逆过程,非自发过程必为可逆过程;(×)9.⎰=v pdw可用于准平衡过程求功量;(×)10.热力系没有通过边界与外界交换能量,系统的热力状态也可能变化;(×)11.初、终态相同的热力过程,不可逆过程的熵变大于可逆过程的熵变;(×)12.任意可逆循环的热效率都是ηt=1-T2/T1;(×)13.经不可逆循环,系统和外界均无法完全恢复原态;(×)14.理想气体的C p,C v值与气体的温度有关,则它们的差值也与温度有关;(×)15.气体的比热可以从-∞变化到+∞的任何值;(×)16.理想气体的比热容与工质、温度和过程有关;(√)17.理想气体任意两个状态参数确定后,气体的状态就一定确定了;(×)18.理想气体的的焓只和温度有关,是状态参数,而实际气体的焓不是状态参数;(×)19.工质稳定流经热力设备时,所做的技术功等于膨胀功减去流动功;(√)20.多变过程即任意过程;(×)21.工质进行了一个吸热、升温、压力下降的多变过程,则多变指数n满足0<n<1 ;(√)22.定温压缩是压气机最理想的工作模式;(√)23.余隙容积的存在是耗功量增大;(×) 24.制冷系统的制冷系数肯定大于1;(×)25.三种动力系统中蒸汽动力系统的效率是最高的,因为其最接近卡诺循环;(×)26.绝热节流的温度效应可用一个偏导数来表征,这个量称为焦耳-汤姆逊系数。
热工基础期末总结
热工基础期末总结一、热力学热力学是研究能量转换和能量传递规律的科学,通过对宏观系统的研究,揭示了能量转化过程中的一些基本规律和定律。
在热工基础课程中,我们主要学习了热力学的基本概念、基本定律和热力学循环等内容。
1. 热力学基本概念热力学是研究宏观物质之间相互作用规律的科学,通过对热、功和能量的研究,揭示了物质的宏观性质和行为。
在热力学中,我们将研究物质的状态、过程和平衡等概念。
- 状态:一个物质的状态由其压力、温度和摩尔数来确定,常用状态方程来描述。
- 过程:物质从一个状态变到另一个状态所经历的路径,可以分为定压过程、定容过程、等温过程、绝热过程等。
- 平衡:当系统处于平衡状态时,各个宏观性质不随时间而变化,在热力学中有热平衡和力学平衡等概念。
2. 热力学基本定律热力学基本定律是热力学的基石,揭示了能量转化的基本规律和限制条件。
热力学基本定律包括零th、第一定律和第二定律等。
- 零th定律:若两个物体分别与第三个物体处于热平衡,那么这两个物体之间也处于热平衡。
- 第一定律:能量守恒定律,能量既不能创造也不能消失,只能从一种形式转化为另一种形式。
可以用热量和功来表示能量转化。
- 第二定律:热力学不可逆性定律,自然界中存在一种趋势,即能量自发地由集中和有序转为分散和无序,表现为热量自然地从高温物体传递到低温物体。
3. 热力学循环热力学循环是指一系列流程,在这些流程中,热量和功的转化形式呈现出一定的周期性。
常见的热力学循环有卡诺循环、斯特林循环和布雷顿循环等。
- 卡诺循环:理论上最高效的热力学循环,由等温过程和绝热过程组成。
- 斯特林循环:利用气体的等温膨胀和绝热膨胀特性,通过循环过程实现能量转化。
- 布雷顿循环:用于蒸汽动力机械中,包括蒸汽压缩、燃烧和膨胀等过程。
传热学研究能量由高温物体传递到低温物体的规律,通过对传热的研究,我们可以了解传热过程的性质和机制,并能设计有效的传热设备。
1. 传热机制传热机制是指热量通过传导、对流和辐射而传递的过程。
工程热力学复习总结
工程热力学复习总结熵的定义式TQ S revδ=d (1-8-1)式中,下标rev 是reversible 的缩写,表示可逆。
熵的单位是J/K 。
热力学第一定律表达式W U Q +∆= (2-3-1)式(2-3-1)中规定,系统对外作功,W 为正值,反之,W 为负值。
对于微元过程,则W U Q δδ+=d (2-3-2)式(2-3-1)和(2-3-2)是热力学第一定律的解析式,称为闭口系统能量方程(Energy equation of closed system)。
它们说明,加给闭口系统的热,一部分用以增加系统的内能,一部分以功的方式传递给外界。
或者说,系统在任一过程中所吸收的热量等于系统内能的增量和系统对外作功之和。
简单可压缩系统的可逆过程的容积功为V p x pA W d d ==δ在这种情况下,热力学第一定律解析式可写成V p U Q d d +=δ (2-3-3)⎰+∆=21d V p U Q (2-3-4)焓的定义为pv u h += (2-4-3)或pV U H += (2-4-4)在定压可逆过程中,有12)(H H H pV U V p U Q p -=∆=+∆=∆+∆=上式表明,在定压可逆过程中,系统所吸收的热量等于系统的焓的变化量。
这是焓的最重要的特性。
技术功表达式为s t W z mg c m W +∆+∆=221利用技术功将稳定流动能量方程写成下列形式t w h q +∆= (2-5-6) t w h q δδ+=d (2-5-7) p v h q d d -=δ (2-5-13) t W H Q +∆= (2-5-8) t W H Q δδ+=d (2-5-9)热力学第一定律两种表现形式pv h p v pv u pv pv u v p u q d d d )d(d d d d d -=-+=-+=+=δ准静态条件下的技术功⎰⎰⎰⎰-=-=--=212121112221d )d(d )(d pv pv v p v p v p v p w t (2-5-10)理想气体状态方程RT pv = (对1 kg 气体) (3-1-1)对于不同种类的气体,克拉贝龙状态方程还有下面不同的形式T R pV m m = (对1 kmol 气体) (3-1-2)T nR mRT pV m == (对m kg 或n kmol 气体) (3-1-3) 通用气体常数与气体常数的关系==⨯⨯=MR R m 15.273414.221001325.158314.3±0.003J/(kmol ·K)理想气体定容比热容与定压比热容的关系R c c V p =- (3-3-5) 比热比或绝热指数,用k 表示,即mV m p V p C C c c k ,,== (3-3-7)理想气体定压比热、定容比热与比热比和气体常数的关系R k k c p 1-= (3-3-8)R k c V 11-= (3-3-9)理想气体熵的变化量,可根据状态方程和比热进行计算。
热工 期末复习总结
第一章1. 工程热力学主要研究热能和机械能及其他形式的能量之间相互转换的规律。
2. 传热学主要研究热量传递的规律。
3. 凡是能将热能转换为机械能的机器统称为热力发动机,简称热机。
4. 热能和机械能之间的转换是通过媒介物质在热机中的一系列状态变化过程来实现的,这种媒介物质称为工质。
5. 工程热力学中,把热容量很大,并且在吸收或放出有限热量时自身温度及其他热力学参数没有明显改变的物体称为热源。
6. 工程热力学通常选取一定的工质或空间作为研究对象,称之为热力系统,简称系统。
系统以外的物体称为外界或环境。
系统与外界之间的分界面称为边界。
边界可以是真实的也可以是假想的,可以是固定的,也可以是移动的。
7. 按照系统与外界之间相互作用的具体情况,系统可分以下几类:1闭口系统:与外界无物质交换的系统。
2开口系统:与外界有物质交换的系统。
3绝热系统与外界无热量交换的系统4孤立系统与外界既无能量(功。
热量)交换又无物质交换的系统。
8. 工质在某一瞬间所呈现的宏观物理状况称为工质的热力状态简称状态。
9. 用于描述工质所处状态的宏观物理量称为状态参数。
如温度压力比体积等10. 在不受外界的影响{重力场除外}的条件下,工质(或系统)的状态参数不随时间而变化的状态称为平衡状态。
11. 在工程热力学中,常用的状态参数有压力,温度,比体积,热力学能,焓,熵等,其中压力,温度,比体积可以直接测量,称为基本状态参数。
12. 热力学第零定律表述为;如果两个物体中的每一个都分别与第三个物体处于热平衡,则这两个物体彼此也必处于热平衡。
13. 系统由一个状态到达另一个状态的变化过程称为热力过程,简称过程。
14. 如果在热力过程中系统所经历的每一个状态都无限地接近平衡态,这种过程称为准平衡过程,又称为准静态过程。
在状态参数坐标图上可以用连续的实线表示。
15. 如果系统完成了某一过程之后,再沿着原路径逆行而回到原来的状态,外界也随之回复到原来的状态而不留下任何变化,这一过程称为可逆过程,否则这一过程称为不可逆过程。
2023大学工程热力学期末考试重点整理(最新版)
2023大学工程热力学期末考试重点整理系统:在工程热力学中,通常选取一定的工质或者空间作为研究的对象,称之为热力系统,简称系统。
外界:系统以外的物体称为边界,也可表述为与系统发生质、能交换的物质系统。
边界:系统与外界之间的分界面称为边界。
闭口系统:与外界无物质交换的系统。
系统的质量始终保持恒定。
也称为控制质量系统。
开口系统:与外界有物质交换的系统。
由于开口系统是一个划定的空间范围,也称为控制容积系统。
绝热系统:与外界没有热量交换的系统。
孤立系统:与外界既无能量交换又无物质交换的系统。
与外界无任何形式的质能交换。
是热力学中抽象出来的概念。
平衡过程与可逆过程的关系:可逆过程一定是准平衡过程;但是准平衡过程不一定是可逆过程。
真空度:真空度是指处于真空状态下的气体稀薄程度。
比体积的定义:单位质量的物质所占有的体积称为比体积,也称为比容,用符号v表示,单位为 m3/kg 。
比体积与密度互为倒数。
功、热量正负的判断:吸热为正,放热为负。
系统储能包括哪几部分:热力学能(内部储存能)、宏观动能、宏观位能(外部储存能)闭口系统的热力学第一定律表达式:Q=ΔU+W开口系统的稳定流动能量方程式:q=Δh+w膨胀功:δw=pdv,即 w=∫pdv ,故膨胀功就是过程曲线与 v 轴投影所围成的面积;技术功:δwt=-vdp ,故wf=-∫vdp ,故技术功是过程曲线与 p 轴投影所围成的面积的负值;可逆过程技术功的计算式:技术功是哪几项之和:动能差、位能差及轴功三者之和,记作Wt。
自由膨胀问题QWU的变化:自由膨胀,W=0,因为不做体积功。
若为理想气体,则Q,△U=0,若非理想气体,则吸热,△U>0.热容:物体温度升高1K(或1℃)所需要的热量称为该物体的热容量,简称热容。
比热容:单位质量物质的热容,c,J/(kg*K)摩尔热容:1mol物质的热容,Cm,J/(mol*K)理想气体热力学能和焓与温度的关系:理想气体的热力学能与焓都是温度的单值函数。
工程热力学期末总结
《工程热力学》期末总结一、闭口系能量方程的表达式有以下几种形式:1kg 工质经过有限过程:wuq(2-1)1kg 工质经过微元过程:wdu q (2-2)mkg 工质经过有限过程:WU Q (2-3)mkg工质经过微元过程:WdUQ (2-4)以上各式,对闭口系各种过程(可逆过程或不可逆过程)及各种工质都适用。
在应用以上各式时,如果是可逆过程的话,体积功可以表达为:pdvw(2-5)21pdvw(2-6)pdVW(2-7)21pdVW (2-8)闭口系经历一个循环时,由于U 是状态参数,0dU,所以W Q(2-9)式(2-9)是闭口系统经历循环时的能量方程,即任意一循环的净吸热量与净功量相等。
二、稳定流动能量方程tsw h w zg ch q221(2-10)(适用于稳定流动系的任何工质、任何过程)21vdphq (2-11)(适用于稳定流动系的任何工质、可逆过程)三、几种功及相互之间的关系(见表一)表一几种功及相互之间的关系名称含义说明体积功(或膨胀功)W系统体积发生变化所完成的功。
①当过程可逆时,21pdV W。
②膨胀功往往对应闭口系所求的功。
轴功sW 系统通过轴与外界交换的功。
①开口系,系统与外界交换的功为轴功s W 。
②当工质的进出口间的动位能差被忽略时,s tW W ,所以此时开口系所求的轴功也是技术功。
推动功pushW开口系因工质流动而传递的功。
①相当于一假想的活塞把前方的工质推进(或推出)系统所做的功,pV Wpush。
②推动功只有在工质流动时才有,当工质不流动时,虽然也有p 和V ,但其乘积并不代表推动功。
流动功fW工质流动时,总是从后面获得推动功,而对前面作出推动功,进出质量的推动功之差,称为流动功。
1122V p V p Wf技术功tW 技术上可资利用的功。
①stW z mg cm W 221②当过程可逆时,21VdpW t四、比热容1、比热容的种类(见表二)表二比热容的种类名称质量比热容c体积比热容'c 摩尔比热容cM三者之间的关系单位J/(kg ·K )J/(m 3·K )J/(kmol ·K )。
工程热力学课程总结
1).工质经历一热力循环,吸热过程吸热40kJ,膨胀过程对外作功80kJ,放热过程对外放热20kJ,压缩过程外界对工质作功50kJ;该循环不违背热力学基本定律,可以实现。
()2).有一制冷循环,工质从温度为-20℃的恒温冷物体吸热180kJ,向温度为20℃的环境放热200kJ,该循环违背热力学基本定律,不能实现。
()3).对于开口系统,引起系统熵增的因素是系统吸热和过程的不可逆性二项。
()4).水蒸气的焓熵图上,湿蒸气区的等温线既为等压线,是一组斜率相同的倾斜直线。
()5).压缩比相同时,活塞式内燃机定容加热循环的热效率比定压加热循环的热效率高。
()6).mkg理想气体从压力P1(bar),容积V1(m3),以可逆定温过程膨胀到V2(m3),过程的容积功为:W=102mP1V1 n VV21kJ。
()7).不可逆过程无法在T-s图上表示,也无法计算其熵的变化。
()8).定比热理想气体CO2(绝热指数K=1.29)进行n=1.35的膨胀过程时,吸热,熵增加。
()9)理想气体的定压比热C P和定容比热C V的差值和比值在任何温度下都是常数。
()10).因为实际滞止过程是不可逆绝热过程,实际滞止温度一定高于定熵滞止温度。
()11).某制冷机消耗功率为5kw,每分钟可从0℃的恒温冷库中取出3600kJ的热量排给30℃的恒温环境。
()12)空气进行一多变过程,当多变指数n=1.2时,空气的比热为负值。
()13).在给定的初终态之间有一热力过程,过程中工质与环境发生热交换。
已知一切过程均为可逆时耗功400kJ,若实际过程耗功380kJ,则依热力学知识可判明该实际过程可以实现。
()14).水蒸气h-s图(焓熵图)上湿蒸气区域的等压线为倾斜直线,压力越高,斜率越大。
()15)若物体吸热,则该物体熵一定增加;反之,一物体放热,则该物体熵一定减少。
()16).理想气体从同一初态绝热滞止,一为可逆,一为不可逆,则不可逆滞止温度要比可逆高些。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《工程热力学》期末总结
一、闭口系能量方程的表达式有以下几种形式:
1kg 工质经过有限过程:w u q +∆= (2-1) 1kg 工质经过微元过程:w du q δδ+= (2-2) mkg 工质经过有限过程:W U Q +∆= (2-3) mkg 工质经过微元过程:W dU Q δδ+= (2-4)
以上各式,对闭口系各种过程(可逆过程或不可逆过程)及各种工质都适用。
在应用以上各式时,如果是可逆过程的话,体积功可以表达为: pdv w
=δ (2-5) ⎰=2
1pdv w (2-6)
pdV W =δ (2-7) ⎰=2
1pdV W (2-8)
闭口系经历一个循环时,由于U 是状态参数,⎰
=0dU ,所以
W Q ⎰⎰=δδ (2-9)
式(2-9)是闭口系统经历循环时的能量方程,即任意一循环的净吸热量与净功量相等。
二、稳定流动能量方程
t
s
w h w z g c h q +∆=+∆+∆+∆=2
2
1 (2-10) (适用于稳定流动系的任何工质、任何过程)
⎰-∆=2
1
vdp h q (2-11)
(适用于稳定流动系的任何工质、可逆过程)
三、几种功及相互之间的关系(见表一)
表一 几种功及相互之间的关系
四、比热容
1、比热容的种类(见表二)。
)/3kg m 2、平均比热容:1
21122
1
2
00t t t t c t t c
t t c
--= (2-12)
3、利用平均比热容计算热量:1122
0t t
c t t c
q -= (2-13) 4、理想气体的定值比热容(见表三)
其中:M
M R R g 8314
0=
=
[J/(kg ·K)] M —气体的摩尔质量,如空气的摩尔质量为28.96kg/kmol 。
空气的kmol
/kg 96.28K)kmol /(J 83140⋅==
M R R g =287[J/(kg ·K)],最好记住空气的气体常数。
引入比热容比k 后,结合梅耶公式,又可得:
g p R k k c 1-=
(2-14) g V R k c 1
1-= (2-15) 五、理想气体的热力学能、焓、熵(见表四)
(焓的定义:pv u h += kJ/kg , 焓是状态参数)
六、气体主要热力过程的基本计算公式(见表五)
表五气体主要热力过程的基本计算公式
七、压气机工作原理及轴功的计算 1、压气机的工作原理
2、基本计算公式:⎰-===2
1
vdp w w w s t C
○
T :1
2
112
1
,ln
p p v p vdp w T s -=-=⎰
○
S :)(1
21,T T k kR
w s s --= ○
n :)(1
21,T T n nR
w n s --= 3、压气机升压比12/p p ↑,压缩终温会升高,容积效率v λ下降。
4、采用多级压缩的优点是:降低排气温度,节省功的消耗。
5、当压气机采用两级压缩时,升压比1
3
p p =
β,最有力的级间压力:312p p p =,
多级(Z 级)压缩时:z
z p p 1
1
+=β。
八、热力学第二定律:
1、热力学第二定律的实质、表述:克劳修斯说法、开尔文-浦朗克说法。
2、热力学第二定律的数学表达式,会利用这些表达式判断过程或循环是否能够实现。
⑴克劳修斯积分不等式:
等号对可逆循环而言,不等号对不可逆循环成立。
⎰
≥
∆2
1
T
q
s δ
等号对可逆过程而言,不等号对不可逆过程成立。
⑵0≥∆iso s
熵增原理:孤立系统的熵只能增加(不可逆过程)或保持不变(可逆过程),而绝不能减少。
任何实际过程都是不可逆过程,只能沿着使孤立系统熵增加的方向进行。
注意:
① 克劳修斯积分不等式适用于循环,即针对工质,所以热量、功的正和负都以工质作为对
象考虑。
② 熵增原理表达式适用于孤立系统,热量的方向以构成孤立系统的有关物体为对象,它们
吸热为正,放热为负。
3、卡诺循环及卡诺定理是重点。
九、水蒸气
1、基本概念:三相点、临界点、饱和状态、s p ,s t ,湿蒸汽、干饱和蒸汽等。
2、水蒸气的定压发生过程:三个阶段。
3、水蒸气的v p -图与s T -图特点:一点、两线、三区、五态的含义。
4、会查水蒸气表,会查s h -图。
5、水蒸气的四个基本热力过程○p 、○T 、○v 、○S 在s h -图上的表示和热量及功量的计算。
十、湿空气
1、定义,v a p p p +=
2、饱和空气、未饱和空气、绝对湿度、相对湿度、含湿量、焓、干球温度、湿球温度、露点温度的含义,湿空气的分子量和气体常数的计算;湿空气的比体积等。
3、重点掌握以下计算公式:
4、掌握湿空气焓-湿图的结构及其应用。
已知某状态点,会在焓-湿图上表示这个状态点,并会查出此状态点的其余参数,确定此状态点所对应的湿球温度、露点温度(参看教材p151:例8-3)。
4、会用湿空气焓-湿图表示湿空气的基本热力过程:加热、等湿冷却、去湿冷却、绝热加湿(等焓过程)、定温加湿、湿空气的混合。
会计算过程中吸收或放出的热量、加湿量、去湿量、混合后的状态点的位置等。
十一、气体和蒸汽的流动: 1、基本方程:
常数
=
=
v
cf
m
常数=k pv
022
=+c d dh 常数
=+=+222
2
2211c h c h
2、理想气体定熵流动:kRT a =
3、a
c
M =
M>1 超音速流动 M=1 临界音速流动 M<1 亚音速流动
4、喷管的作用:降压增速。
5、喷管的计算 (1)滞止参数
(2)喷管出口流速:)(2)(221212T T c h h c p -=-=[注意:h 的单位是J/(kg.K)]
(3)临界压力比:1
112-⎪⎭
⎫ ⎝⎛+==
k k c k p p β
特别是:对双原子气体,如空气:528.0=β,记住这个数据。
(4)临界温度:1
21
+=
k T T c (5)临界流速:c c kRT c =
(6)喷管出口压力2p 要根据背压b p 确定。
为使气流充分膨胀,对渐缩喷管:
0=+v dv k p dp
(7)最大流量
c
c
v c f m
min max = (8)喷管形式的选择:
渐缩喷管
渐缩渐扩喷管
十二、动力循环
1、 蒸汽动力基本循环—朗肯循环是重点,应切实掌握。
(1) 会画其流程图及T-s 图。
(2) 会能量分析及热效率的计算。
(3) 提高朗肯循环热效率的基本途径。
2、 掌握抽汽回热循环、再热循环的工作原理。
3、 掌握背压式、调解抽汽式热电循环的工作原理。
4、 理解内燃机循环的工作原理及相应的三种理论循环。
5、 掌握燃气轮机循环的工作原理及分析计算是重点,应切实掌握。
十三、制冷循环
1、 空气压缩制冷循环的组成,工作原理及v p -图、s T -图。
2、 蒸汽压缩制冷循环的组成,工作原理,s T -图。
3、 什么是h p -lg 图,图中有哪些线族?蒸汽压缩式制冷循环如何在h p -lg 图上表示,
并利用h p -lg 图进行能量分析及制冷系数的计算。
4、 热泵的工作原理及供热系数的计算。
c b p p >b p
p =2c b p
p ≤c p
p =2,c
b p p ≥,
c
b p p <。