人教版数学高二选修2-1测试题组 第二章 圆锥曲线B组

合集下载

选修2-1数学第2章_圆锥曲线与方程单元练习题含答案

选修2-1数学第2章_圆锥曲线与方程单元练习题含答案

选修2-1数学第2章圆锥曲线与方程单元练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 某几何体是由直三棱柱与圆锥的组合体,起直观图和三视图如图所示,正视图为正方形,其中俯视图中椭圆的离心率为()A.√2B.12C.√24D.√222. 如图,已知双曲线E:x2a2−y2b2=1(a>0,b>0),长方形ABCD的顶点A,B分别为双曲线E的左、右焦点,且点C,D在双曲线E上,若|AB|=6,|BC|=52,则此双曲线的离心率为()A.√2B.32C.52D.√53. 设椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,上顶点为B.若|BF2|=|F1F2|=2,则该椭圆的标准方程为()A.x24+y23=1 B.x23+y2=1 C.x22+y2=1 D.x24+y2=14. 已知双曲线C:x2a2−y2b2=1(a>0,b>0)的顶点和焦点到C的同一条渐近线的距离之比为12,则双曲线C的离心率是()A.√2B.2C.√3D.35. 已知点A(0,1),抛物线C:y2=ax(a>0)的焦点为F,射线FA与抛物线相交于M,与其准线相交于点N,若|FM|:|MN|=2:√5,则a=()A.2B.4C.6D.86. 焦点为(0,2)的抛物线的标准方程是()A.x2=8yB.x2=4yC.y2=4xD.y2=8x7. 椭圆x2+4y2=1的离心率为()A.√32B.34C.√22D.238. 若双曲线x24−m +y2m−2=1的渐近线方程为y=±13x,则m的值为()A.1B.74C.114D.59. 抛物线y=2x2的通径长为( )A.2B.1C.12D.1410. 已知双曲线C:x24−y2=1,则C的渐近线方程为 ( )A.y=±14x B.y=±13x C.y=±12x D.y=±x11. 椭圆x24+y25=1的离心率是()A.3 5B.√55C.25D.1512. 已知双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点为F,过F作直线l与两条渐近线交于A,B两点.若△OAB为等腰直角三角形(O为坐标原点)则△OAB的面积为( )A.a2B.2a3C.2a2或a2D.2a2或12a213. 已知椭圆x29+y25=1的左焦点为F,点P在椭圆上且在x轴的上方,若线段PF的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是________.14. 若直线y=x+b与曲线x=√1−y2恰有一个公共点,则b的取值范围是________.15. 与椭圆x25+y23=1共焦点的等轴双曲线的方程为________.16. 已知双曲线x2−y28=1上有三个点A,B,C,且AB,BC,AC的中点分别为D,E,F,用字母k表示斜率,若k OD+k OE+k OF=−8(点O为坐标原点,且k OD,k OE,k OF均不为零),则1k AB +1k BC+1k AC=________.17. 设命题p:方程x2a+6+y2a−7=1表示中心在原点,焦点在坐标轴上的双曲线;命题q:存在x∈R,使得x2−4x+a<0.若“p∧(¬q)”为真,求实数a的取值范围.18. 回答下列问题:(1)求过点(2,−2)且与双曲线x 22−y2=1有公共渐近线的双曲线的方程;(2)求双曲线x 24−y25=1的焦点到其渐近线的距离.19. 如图,已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点A为椭圆C上任意一点,A关于原点O的对称点为B,有|AF1|+|BF1|=4,且∠F1AF2的最大值为π3.(1)求椭圆C的标准方程;(2)若A′是A关于x轴的对称点,设点N(4,0),连接NA与椭圆C相交于点E,问直线A′E与x轴是否交于一定点,如果是,求出该定点坐标;如果不是,说明理由.20. 已知椭圆的焦点在α轴上,一个顶点为(0,1),离心率为e=√5,过椭圆的右焦点F的直线1与坐标轴不垂直,且交椭圆于A,B两点.(1)求椭圆的方程.(2)设点C是点A关于x轴的对称点,在α轴上是否存在一个定点N,使得C,B,N三点共线?若存在,求出定点N的坐标;若不存在,说明理由.21. 已知直线l:x−y+1=0与焦点为F的抛物线C:y2=2px(p>0)相切.(1)求抛物线C的方程;(2)过点F的直线m与抛物线C交于A,B两点,求A,B两点到直线l的距离之和的最小值.22. 已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右顶点分别为A,B,离心率为12,点P(1, 32)为椭圆上一点.(Ⅰ)求椭圆C的标准方程;(Ⅱ)如图,过点C(0, 1)且斜率大于1的直线l与椭圆交于M,N两点,记直线AM,BN的斜率分别为k1,k2,若k1=2k2,求直线l斜率的值.参考答案与试题解析选修2-1数学第2章 圆锥曲线与方程单元练习题含答案一、 选择题 (本题共计 12 小题 ,每题 5 分 ,共计60分 ) 1.【答案】 D【考点】 椭圆的定义 【解析】根据三视图的性质得到俯视图中椭圆的短轴长和长周长,再根据椭圆的性质a 2−b 2=c 2,和离心率公式e =ca ,计算即可.【解答】解:设正视图正方形的边长为2,根据正视图与俯视图的长相等,得到俯视图中椭圆的短轴长2b =2,俯视图的宽就是圆锥底面圆的直径2√2,得到俯视图中椭圆的长轴长2a =2√2, 则椭圆的半焦距c =√a 2−b 2=1, 根据离心率公式得,e =c a =√2=√22; 故选D . 2. 【答案】 B【考点】双曲线的标准方程 【解析】本题主要考查双曲线的几何性质. 【解答】解:因为2c =|AB|=6,所以c =3. 因为b 2a =|BC|=52,所以5a =2b 2. 又c 2=a 2+b 2,所以9=a 2+5a 2,解得a =2或a =−92(舍去),故该双曲线的离心率e =c a=32.故选B . 3. 【答案】 A【考点】椭圆的标准方程 【解析】由|BF 2|=|F 1F 2|=2,可得a =2c =2,即可求出a ,b ,从而可得椭圆的方程. 【解答】解:∵ |BF 2|=|F 1F 2|=2,∴a=2c=2,∴a=2,c=1,∴b=√3,∴椭圆的方程为x24+y23=1.故选A.4.【答案】B【考点】双曲线的离心率【解析】【解答】解:∵双曲线C的顶点和焦点到同一条渐近线的距离之比为12,由三角形相似得ac =12,∴e=ca=2.故选B.5.【答案】D【考点】斜率的计算公式抛物线的性质【解析】无【解答】解:依题意F点的坐标为(a4,0),作MK垂直于准线,垂足为K,由抛物线的定义知|MF|=|MK|,因为|FM|:|MN|=2:√5,则|KN|:|KM|=1:2.k FN =0−1a4−0=−4a ,k FN =−|KN||KM|=−12,所以−4a =−12,求得a =8. 故选D . 6. 【答案】 A【考点】抛物线的标准方程 【解析】 此题暂无解析 【解答】解:由题意得,抛物线的焦点为(0,2), 可得p =4.又抛物线的焦点在y 轴的正半轴, 所以抛物线的标准方程为x 2=8y . 故选A. 7. 【答案】 A【考点】 椭圆的离心率 【解析】 此题暂无解析 【解答】 此题暂无解答 8.【答案】 B【考点】 双曲线的定义 【解析】 此题暂无解析 【解答】 此题暂无解答 9.【答案】 C【考点】 抛物线的定义 抛物线的性质 【解析】抛物线y =−2x 2,即x 2=−12y ,可得2p .解:抛物线y=2x2,化为标准方程为x2=12y,可得2p=12,因此通径长为12.故选C.10.【答案】C【考点】双曲线的渐近线【解析】根据双曲线的方程求出双曲线的渐近线即可. 【解答】解:由题意可得,a=2,b=1,则双曲线的渐近线方程为y=±ba x=±12x.故选C.11.【答案】B【考点】椭圆的离心率椭圆的标准方程【解析】根据椭圆的标准方程求出a,b的值,根据椭圆中c2=a2−b2就可求出c,再利用离心率e=ca得到离心率.【解答】解:由椭圆方程为x 24+y25=1可知,a2=5,b2=4,∴c2=a2−b2=1,a=√5,∴c=1,∴椭圆的离心率e=ca =√55.故选B.12.【答案】D【考点】双曲线的简单几何性质双曲线中的平面几何问题本题主要考查双曲线的性质以及直线和双曲线的关系,联立方程组,求出点的坐标,再求出面积即可.【解答】解:①若∠AOB=90∘,则∠AOF=45∘,∴ba=1故c=√a2+b2=√2a,∴S△OAB=12⋅2c⋅c=c2=2a2;②若∠BAO=90∘,则l与y=bax垂直且过F点,垂足为A,∴ l的斜率为−ab,则直线l的方程为y=−ab(x−c),联立{y=−ab⋅(x−c),y=bax,解得x=a 2c ,y=abc,则点A为(a 2c ,ab c)∴ △OAB为等腰直角三角形,OB为斜边,∴ OA=AB,OA2=(a2c )2+(abc)2=a2,∴S△OAB=12OA⋅AB=12OA2=12a2.综上所述S△OAB=2a2或12a2.故选D.二、填空题(本题共计 4 小题,每题 5 分,共计20分)13.【答案】√15【考点】与椭圆有关的中点弦及弦长问题【解析】此题暂无解析【解答】解:由椭圆方程可知a=3,c=2,∴F(−2, 0),根据题意,画出图形:设线段PF中点为M,椭圆右焦点为F1,∵M在以O为圆心,|OF|为半径的圆上,∴F1也在圆上,连接OM, PF1, MF1,则∠FMF1=90∘,OM是△FPF1的中位线,∴|PF1|=2|OM|=2|OF|=2×2=4,由椭圆定义|PF|+|PF1|=2a=6,得|PF|=2,|MF|=|PF|2=1,又∵∠FMF1为直角,|MF1|2=|FF1|2−|MF|2=15,∴tan∠MFF1=|MF1||MF|=√151=√15,∴直线PF的斜率是√15.故答案为:√15.14.【答案】(−1,1]∪{−√2}【考点】曲线与方程直线与圆的位置关系【解析】此题暂无解析【解答】x=√1−y2⇔x2+y2=1(x≥0)方程x2+y2=1(x≥0)所表示的曲线为半圆(如图)当直线与圆相切时或在l2与l3之间时,适合题意.此时−1<b≤1或b=−√2,所以b的取值范围是(−1,1]∪{−√2}.15.【答案】x2−y2=1【考点】双曲线的标准方程圆锥曲线的共同特征【解析】利用椭圆的三参数的关系求出双曲线的焦点坐标;利用等轴双曲线的定义设出双曲线的方程,据双曲线中三参数的关系求出双曲线的方程.【解答】解:对于x 25+y23=1知半焦距为c=√5−3=√2所以双曲线的焦点为(±√2,0)设等轴双曲线的方程为x 2a2−y2a2=1据双曲线的三参数的关系得到2a2=2所以a2=1所以双曲线的方程为x2−y2=1.故答案为:x2−y2=116.【答案】−1【考点】斜率的计算公式中点坐标公式与双曲线有关的中点弦及弦长问题【解析】【解答】解:设A(x1,y1),B(x2,y2),D(x0,y0),则x1+x2=2x0,y1+y2=2y0,x12−y128=1,x22−y228=1,两式相减得(x1−x2)(x1+x2)=(y1+y2)(y1−y2)8,整理可得x1−x2y1−y2=y08x0,即1k AB=k OD8,同理得1k BC =k OE8,1k AC=k OF8.因为k OD+k OE+k OF=−8,所以1k AB +1k BC+1k AC=−1.故答案为:−1.三、解答题(本题共计 6 小题,每题 11 分,共计66分)17.【答案】解:命题p :(a +6)(a −7)<0,解得−6<a <7; 命题q :Δ=(−4)2−4a >0,解得a <4. ∴ ¬q :a ≥4.∵ “p ∧(¬q)”为真, ∴ p 为真且¬q 为真, ∴ 4≤a <7. 【考点】逻辑联结词“或”“且”“非” 双曲线的标准方程 一元二次不等式的解法【解析】 此题暂无解析 【解答】解:命题p :(a +6)(a −7)<0,解得−6<a <7; 命题q :Δ=(−4)2−4a >0,解得a <4. ∴ ¬q :a ≥4.∵ “p ∧(¬q)”为真, ∴ p 为真且¬q 为真, ∴ 4≤a <7. 18. 【答案】解:(1)因为所求双曲线与双曲线x 22−y 2=1有公共渐近线, 所以可设所求双曲线的方程为x 22−y 2=λ(λ≠0).因为所求双曲线过点(2,−2), 所以222−(−2)2=λ,得λ=−2,所以所求双曲线的方程为y 22−x 24=1. (2)因为双曲线的方程为x 24−y 25=1,所以双曲线的一条渐近线方程为y =√52x , 即√5x −2y =0.因为双曲线的左、右焦点到渐近线的距离相等, 且(3,0)为双曲线的一个焦点, 所以双曲线x 24−y 25=1的焦点到其渐近线的距离为|3√5−0|3=√5.【考点】双曲线的离心率 【解析】 此题暂无解析 【解答】解:(1)因为所求双曲线与双曲线x 22−y 2=1有公共渐近线,所以可设所求双曲线的方程为x 22−y 2=λ(λ≠0).因为所求双曲线过点(2,−2), 所以222−(−2)2=λ,得λ=−2, 所以所求双曲线的方程为y 22−x 24=1. (2)因为双曲线的方程为x 24−y 25=1,所以双曲线的一条渐近线方程为y =√52x , 即√5x −2y =0.因为双曲线的左、右焦点到渐近线的距离相等, 且(3,0)为双曲线的一个焦点, 所以双曲线x 24−y 25=1的焦点到其渐近线的距离为|3√5−0|3=√5.19.【答案】解:(1)点A 为椭圆C 上任意一点, A 关于原点O 的对称点为B , 由|AF 1|+|BF 1|=4知 2a =4, 得a =2.又∠F 1AF 2的最大值为π3,知当A 为上顶点时,∠F 1AF 2最大, 所以a =2c , 得c =1,所以b 2=a 2−c 2=3. 所以椭圆C 的标准方程为x 24+y 23=1.(2)由题知NA 的斜率存在,设NA 方程为 y =k(x −4),与椭圆联立,得(4k 2+3)x 2−32k 2x +64k 2−12=0.① 设点A (x 1,y 1),E (x 2,y 2), 则A ′(x 1,−y 1).直线A ′E 方程为y −y 2=y 2+y1x 2−x 1(x −x 2).令y =0得x =x 2+y 2(x 1−x 2)y 1+y 2,将y1=k(x1−4),y2=k(x2−4)代入,整理得,x=2x1x2−4(x1+x2)x1+x2−8.②x1+x2=32k24k2+3,x1x2=64k2−124k2+3.代入②整理,得x=1.所以直线A′E与x轴交于定点Q(1,0). 【考点】圆锥曲线中的定点与定值问题与直线关于点、直线对称的直线方程直线与椭圆结合的最值问题椭圆的标准方程椭圆的定义【解析】此题暂无解析【解答】解:(1)点A为椭圆C上任意一点,A关于原点O的对称点为B,由|AF1|+|BF1|=4知2a=4,得a=2.又∠F1AF2的最大值为π3,知当A为上顶点时,∠F1AF2最大,所以a=2c,得c=1,所以b2=a2−c2=3.所以椭圆C的标准方程为x 24+y23=1.(2)由题知NA的斜率存在,设NA方程为y=k(x−4),与椭圆联立,得(4k2+3)x2−32k2x+64k2−12=0.①设点A(x1,y1),E(x2,y2),则A′(x1,−y1).直线A′E方程为y−y2=y2+y1x2−x1(x−x2).令y =0得x =x 2+y 2(x 1−x 2)y 1+y 2,将y 1=k (x 1−4),y 2=k (x 2−4)代入, 整理得,x =2x 1x 2−4(x 1+x 2)x 1+x 2−8.②x 1+x 2=32k 24k 2+3, x 1x 2=64k 2−124k 2+3.代入②整理,得x =1.所以直线A ′E 与x 轴交于定点Q(1,0). 20. 【答案】(1)椭圆C 的标准方程为x 25+y 2=1.(2)存在定点N (52,0),使得C .B .N 三点共线. 【考点】直线与椭圆结合的最值问题 椭圆的标准方程【解析】 此题暂无解析 【解答】 解:(1)由椭圆的焦点在x 轴上, 设椭圆C 的方程为x 2a2+y 2b 2=1(ab >0),椭圆C 的一个顶点为(0,1),即b =1, 由e =ac √1−b 2a 2=√5解得a 2=5,∴ 椭圆C 的标准方程为x 25+y 2=1.(2)由得F (2,0),设A (x 1,y 1),B (x 2,y 2)设直线l 的方程为y =k (x −2)(k ≠0),代入椭圆方程,消去y 可得 (5k 2+1)x 2−20k 2x +20k 2−5=0, 则x 1+x 2=20k 25k 2+1,x 1x 2=20k 2−55k 2+1.∵ 点C 与点A 关于x 轴对称, ∴ C (x 1,−y 1) .假设存在N (t,0),使得C ,B ,N 三点共线, 则BN →=(t −x 2,−y 2),CN →=(t −x 1,y 1). ∵ C ,B ,N 三点共线,∴ BN →//CN →,∴ (t −x 2)y 1+(t −x 1)y 2=0, 即(y 1+y 2)t =x 2y 1+x 1y 2 ∴ t =k (x 1−2)x 2+k (x 2−2)x 1k (x 1−2)+k (x 2−2) =2⋅20k 2−55k 2+1−2⋅20k 25k 2+120k 25k 2+1−4=52∴ 存在定点N (52,0),使得C .B .N 三点共线.21.【答案】解:(1)∵ 直线l :x −y +1=0与抛物线C 相切. 由{x −y +1=0,y 2=2px ,得y 2−2py +2p =0,从而Δ=4p 2−8p =0, 解得p =2.∴ 抛物线C 的方程为y 2=4x . (2)由于直线m 的斜率不为0,所以可设直线m 的方程为ty =x −1,A(x 1,y 1),B(x 2,y 2), 由{ty =x −1,y 2=4x ,消去x 得y 2−4ty −4=0,∴ y 1+y 2=4t ,从而x 1+x 2=4t 2+2, ∴ 线段AB 的中点M 的坐标为(2t 2+1,2t). 设点A 到直线l 的距离为d A , 点B 到直线l 的距离为d B , 点M 到直线l 的距离为d , 则d A +d B =2d =2⋅2√2=2√2|t 2−t +1| =2√2|(t −12)2+34|,∴ 当t =12时,A ,B 两点到直线l 的距离之和最小,最小值为3√22. 【考点】直线与抛物线结合的最值问题 二次函数在闭区间上的最值 抛物线的标准方程 直线与圆的位置关系【解析】 此题暂无解析 【解答】解:(1)∵ 直线l :x −y +1=0与抛物线C 相切. 由{x −y +1=0,y 2=2px ,得y 2−2py +2p =0,从而Δ=4p 2−8p =0, 解得p =2.∴ 抛物线C 的方程为y 2=4x . (2)由于直线m 的斜率不为0,所以可设直线m 的方程为ty =x −1,A(x 1,y 1),B(x 2,y 2), 由{ty =x −1,y 2=4x ,消去x 得y 2−4ty −4=0,∴ y 1+y 2=4t ,从而x 1+x 2=4t 2+2, ∴ 线段AB 的中点M 的坐标为(2t 2+1,2t). 设点A 到直线l 的距离为d A , 点B 到直线l 的距离为d B , 点M 到直线l 的距离为d , 则d A +d B =2d =2⋅2√2=2√2|t 2−t +1| =2√2|(t −12)2+34|,∴ 当t =12时,A ,B 两点到直线l 的距离之和最小,最小值为3√22. 22. 【答案】(1)根据题意,椭圆的离心率为12,即e =ca =2,则a =2c . 又∵ a 2=b 2+c 2,∴ b =√3c . ∴ 椭圆的标准方程为:x 24c 2+y 23c 2=1. 又∵ 点P(1, 32)为椭圆上一点,∴ 14c 2+943c 2=1,解得:c =1.∴ 椭圆的标准方程为:x 24+y 23=1.(2)由椭圆的对称性可知直线l 的斜率一定存在,设其方程为y =kx +1. 设M(x 1, y 1),N(x 2, y 2).联列方程组:{x 24+y 23=1y =kx +1 ,消去y 可得:(3+4k 2)x 2+8kx −8=0. ∴ 由韦达定理可知:x 1+x 2=−8k 3+4k2,x 1x 2=−83+4k 2.∵ k 1=y 1x 1+2,k 2=y 2x 1−2,且k 1=2k 2,∴y 1x 1+2=2y 2x 2−2,即y 12(x 1+2)2=4y 22(x 2−2)2.①又∵ M(x 1, y 1),N(x 2, y 2)在椭圆上, ∴ y 12=34(4−x 12),y 22=34(4−x 22).② 将②代入①可得:2−x 12+x 1=4(2+x 2)2−x 2,即3x 1x 2+10(x 1+x 2)+12=0.∴ 3(−83+4k 2)+10(−8k3+4k 2)+12=0,即12k 2−20k +3=0. 解得:k =16或k =32. 又由k >1,则k =32. 【考点】 椭圆的离心率 【解析】(1)根据题意,由椭圆离心率可得a =2c ,进而可得b =√3c ,则椭圆的标准方程为x 24c 2+y 23c 2=1,将P 的坐标代入计算可得c 的值,即可得答案; (2)根据题意,设直线l 的方程为y =kx +1,设M(x 1, y 1),N(x 2, y 2),将直线的方程与椭圆联立,可得(3+4k 2)x 2+8kx −8=0,由根与系数的关系分析,:x 1+x 2=−8k 3+4k 2,x 1x 2=−83+4k 2,结合椭圆的方程与直线的斜率公式可得3(−83+4k 2)+10(−8k3+4k 2)+12=0,即12k 2−20k +3=0,解可得k 的值,即可得答案. 【解答】(1)根据题意,椭圆的离心率为12,即e =c a=2,则a =2c .又∵ a 2=b 2+c 2,∴ b =√3c . ∴ 椭圆的标准方程为:x 24c 2+y 23c 2=1. 又∵ 点P(1, 32)为椭圆上一点,∴ 14c 2+943c 2=1,解得:c =1.∴ 椭圆的标准方程为:x 24+y 23=1.(2)由椭圆的对称性可知直线l 的斜率一定存在,设其方程为y =kx +1. 设M(x 1, y 1),N(x 2, y 2).联列方程组:{x 24+y 23=1y =kx +1 ,消去y 可得:(3+4k 2)x 2+8kx −8=0.∴ 由韦达定理可知:x 1+x 2=−8k 3+4k 2,x 1x 2=−83+4k 2.∵ k 1=y 1x1+2,k 2=y 2x 1−2,且k 1=2k 2,∴ y 1x 1+2=2y 2x 2−2,即y 12(x 1+2)2=4y 22(x 2−2)2.①又∵ M(x 1, y 1),N(x 2, y 2)在椭圆上, ∴ y 12=34(4−x 12),y 22=34(4−x 22).② 将②代入①可得:2−x12+x 1=4(2+x 2)2−x 2,即3x 1x 2+10(x 1+x 2)+12=0.∴ 3(−83+4k 2)+10(−8k 3+4k 2)+12=0,即12k 2−20k +3=0.解得:k =16或k =32. 又由k >1,则k =32.。

人教新课标版数学高二B版选修2-1 第二章 圆锥曲线与方程 综合检测

人教新课标版数学高二B版选修2-1 第二章 圆锥曲线与方程 综合检测

综合检测(二)第二章圆锥曲线与方程(时间:90分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2013·西安高二检测)双曲线3x2-y2=9的焦距为()A.6B.26C.23D.4 3【解析】方程化为标准方程为x23-y29=1,∴a2=3,b2=9.∴c2=a2+b2=12,∴c=23,∴2c=4 3.【答案】 D2.(2013·荆州高二检测)对抛物线y=4x2,下列描述正确的是() A.开口向上,焦点为(0,1)B.开口向上,焦点为(0,1 16)C.开口向右,焦点为(1,0)D.开口向右,焦点为(0,1 16)【解析】抛物线可化为x2=14y,故开口向上,焦点为(0,116).【答案】 B3.若焦点在x轴上的椭圆x22+y2n=1的离心率为12,则n=()A. 3B.3 2C.23 D.83【解析】 依题意,a =2,b =n , ∴c 2=a 2-b 2=2-n , 又e =12,∴c 2a 2=2-n 2=14,∴n =32. 【答案】 B4.(2013·石家庄高二检测)设定点F 1(0,-3),F 2(0,3),动点P 满足条件|PF 1|+|PF 2|=a +9a (a >0),则点P 的轨迹是( )A .椭圆B .线段C .椭圆或线段D .不存在【解析】 ∵a +9a ≥2a ·9a =6,故当|PF 1|+|PF 2|=6时,动点P 表示线段F 1F 2,当|PF 1|+|PF 2|>6时,动点P 表示以F 1、F 2为焦点的椭圆.【答案】 C5.(2013·长沙高二检测)已知抛物线C 1:y =2x 2的图象与抛物线C 2的图象关于直线y =-x 对称,则抛物线C 2的准线方程是( )A .x =-18B .x =12 C .x =18D .x =-12【解析】 抛物线C 1:y =2x 2关于直线y =-x 对称的C 2的表达式为-x =2(-y )2,即y 2=-12x ,其准线方程为x =18.【答案】 C6.已知点F ,A 分别为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左焦点、右顶点,点B (0,b )满足FB →·AB→=0,则双曲线的离心率为( )A. 2B. 3C.1+32D.1+52【解析】 ∵FB →·AB →=0,∴FB ⊥AB ,∴b 2=ac ,又b 2=c 2-a 2,∴c 2-a 2-ac=0,两边同除以a 2得,e 2-1-e =0,∴e =1+52.【答案】 D7.已知直线y =kx +1和椭圆x 2+2y 2=1有公共点,则k 的取值范围是( ) A .k <-22或k >22 B .-22<k <22 C .k ≤-22或k ≥22D .-22≤k ≤22【解析】 由⎩⎪⎨⎪⎧y =kx +1x 2+2y 2=1得(2k 2+1)x 2+4kx +1=0,因为直线与椭圆有公共点,故Δ=16k 2-4(2k 2+1)≥0,∴k ≥22或k ≤-22.【答案】 C8.若AB 为过椭圆x 225+y 216=1中心的弦,F 1为椭圆的焦点,则△F 1AB 面积的最大值为( )A .6B .12C .24D .48【解析】 如图S △F 1AB =12|OF 1|·|y A -y B |≤12c ·2b =12×3×2×4=12. 【答案】 B9.(2013·临沂高二检测)若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8【解析】 设椭圆上任意一点P (x 0,y 0),则有x 204+y 23=1,即y 20=3-34x 20,O (0,0),F (-1,0),则OP →·FP →=x 0(x 0+1)+y 20=14x 20+x 0+3 =14(x 0+2)2+2.∵|x 0|≤2,∴当x 0=2时,OP →·FP →取得最大值为6.【答案】 C10.已知双曲线中心在原点,且一个焦点为F (7,0),直线y =x -1与双曲线交于M ,N 两点,且MN 中点的横坐标为-23,则此双曲线的方程为( )A.x 23-y 24=1 B.x 24-y 23=1 C.x 25-y 22=1D.x 22-y 25=1【解析】 由c =7,得a 2+b 2=7. ∵焦点为F (7,0),∴可设双曲线方程为x 2a 2-y 27-a 2=1, ①并设M (x 1,y 1)、N (x 2,y 2). 将y =x -1代入①并整理得 (7-2a 2)x 2+2a 2x -a 2(8-a 2)=0, ∴x 1+x 2=-2a 27-2a2, 由已知得-2a 27-2a2=-43,解得a 2=2,得双曲线方程为x 22-y 25=1. 【答案】 D二、填空题(本大题共4小题,每小题5分,共20分.)11.已知圆x 2+y 2=1,从这个圆上任意一点P 向x 轴作垂线段PP ′,则线段PP ′的中点M 的轨迹方程是________.【解析】 设M (x ,y ),P (x 1,y 1),则有⎩⎪⎨⎪⎧x 1=x y 1=2y ,将x 1,y 1代入到x 21+y 21=1,有x 2+4y 2=1.【答案】 x 2+4y 2=112.椭圆x 24+y 2=1的两个焦点F 1,F 2,过点F 1作垂直于x 轴的直线与椭圆相交,其中一个交点为P ,则|PF 2|=________.【解析】 不妨设F 1(-3,0),则|PF 1|=|y P |=12. 又∵|PF 1|+|PF 2|=2a =4,∴|PF 2|=4-12=72. 【答案】 7213.(2013·安徽高考)已知直线y =a 交抛物线y =x 2于A ,B 两点,若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为________.【解析】 设C (x ,x 2),由题意可取A (-a ,a ),B (a ,a ), 则CA→=(-a -x ,a -x 2),CB →=(a -x ,a -x 2), 由于∠ACB =π2,所以CA →·CB→=(-a -x )(a -x )+(a -x 2)2=0, 整理得x 4+(1-2a )x 2+a 2-a =0, 即y 2+(1-2a )y +a 2-a =0,所以⎩⎪⎨⎪⎧-(1-2a )≥0,a 2-a ≥0,(1-2a )2-4(a 2-a )>0,解得a ≥1.【答案】 -43,43hslx3y3h ,所以符合题意的直线l 不存在. 18.(本小题满分14分)(2012·江西高考)已知三点O (0,0),A (-2,1),B (2,1),曲线C 上任意一点M (x ,y ),满足|MA →+MB →|=OM →·(OA→+OB →)+2.(1)求曲线C 的方程;(2)点Q (x 0,y 0)(-2<x 0<2)是曲线C 上的动点,曲线C 在点Q 处的切线为l ,点P 的坐标是(0,-1),l 与P A ,PB 分别交于点D ,E ,求△QAB 与△PDE 的面积之比.【解】 (1)由MA →=(-2-x,1-y ),MB →=(2-x,1-y ),得 |MA→+MB →|=(-2x )2+(2-2y )2,OM →·(OA →+OB →)=(x ,y )·(0,2)=2y . 由已知得(-2x )2+(2-2y )2=2y +2,化简得曲线C 的方程是x 2=4y .(2)直线P A ,PB 的方程分别是y =-x -1,y =x -1,曲线C 在Q 处的切线l 的方程是y =x 02x -x 204,且与y 轴的交点为F (0,-x 204),分别联立方程组⎩⎨⎧ y =-x -1,y =x 02x -x 204,⎩⎨⎧y =x -1,y =x 02x -x 204,解得D ,E 的横坐标分别是x D =x 0-22,x E =x 0+22,则x E-x D=2,|FP|=1-x204,故S△PDE=12|FP|·|x E-x D|=12×(1-x204)×2=4-x204,而S△QAB=12×4×(1-x204)=4-x20 2.则S△QABS△PDE=2,即△QAB与△PDE的面积之比为2.。

选修2-1第二章圆锥曲线与方程测试(含解析答案)

选修2-1第二章圆锥曲线与方程测试(含解析答案)

第二章圆锥曲线与方程单元综合测试班别: 姓名: 成绩:一、选择题(每小题5分,共60分) 1.椭圆x 2+4y 2=1的离心率为( )A.32B.34C.22D.232.双曲线3mx 2-my 2=3的一个焦点是(0,2),则m 的值是( )A .-1B .1C .-1020D.1023.双曲线x 24+y 2k =1的离心率e ∈(1,2),则k 的取值范围是( )A .(-∞,0)B .(-12,0)C .(-3,0)D .(-60,-12)4.若点P 到直线x =-1的距离比它到点(2,0)的距离小1,则点P 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线5.已知两定点F 1(-1,0),F 2(1,0),且12|F 1F 2|是|PF 1|与|PF 2|的等差中项,则动点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .线段6.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A ,B 两点,|AB | 为C 的实轴长的2倍,则C 的离心率为( )A. 2B. 3 C .2 D .37.过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( )A .有且仅有一条B .有且仅有两条C .有无穷多条D .不存在 8.已知(4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则l 的方程是( )A .x -2y =0B .x +2y -4=0C .2x +3y +4=0D .x +2y -8=0 9.过椭圆x 24+y 22=1的右焦点作x 轴的垂线交椭圆于A 、B 两点,已知双曲线的焦点在x 轴 上,对称中心在坐标原点且两条渐近线分别过A 、B 两点,则双曲线的离心率e 为( )A.12B.22C.62D.3210.双曲线x 2m -y 2n =1(mn ≠0)有一个焦点与抛物线y 2=4x 的焦点重合,则m +n 的值为( )A .3B .2C .1D .以上都不对11.设F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b <0)的左、右焦点,点P 在双曲线上,若 PF 1→·PF 2→=0,且|PF 1→|·|PF 2→|=2ac (c =a 2+b 2),则双曲线的离心率为( ) A.1+52 B.1+32 C .2 D.1+2212.已知F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线右支上的任意 一点,若|PF 1|2|PF 2|的最小值为8a ,则双曲线的离心率e 的取值范围是( )A .(1,+∞)B .(1,2]C .(1,3]D .(1,3] 二、填空题(每小题5分,共20分)13.若双曲线的渐近线方程为y =±13x ,它的一个焦点是(10,0),则双曲线的标准方程是.14.椭圆x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则|PF 2|=__________, ∠F 1PF 2的大小为________.15.已知F 1、F 2是椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 是椭圆上任意一点,从F 1引∠F 1PF 2的外角平分线的垂线,交F 2P 的延长线于M ,则点M 的轨迹方程是 . 16.过抛物线y 2=4x 的焦点,作倾斜角为3π4的直线交抛物线于P ,Q 两点,O 为坐标原点,则△POQ 的面积等于__________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共60分)17.(10分)求与椭圆x 29+y 24=1有公共焦点,并且离心率为52的双曲线方程.18、(12分)知抛物线xy42 ,焦点为F,顶点为O,点P在抛物线上移动,Q是OP的中点,M是FQ的中点,求点M的轨迹方程.19.(12分)已知双曲线中心在原点,且一个焦点为(7,0),直线y=x-1与其相交于M,N两点,MN的中点的横坐标为-23,求此双曲线的方程.20.(12分)已知A (2,0)、B (-2,0)两点,动点P 在y 轴上的射影为Q ,P A →·PB→=2PQ →2.(1)求动点P 的轨迹E 的方程;(2)设直线m 过点A ,斜率为k ,当0<k <1时,曲线E 的上支上有且仅有一点C 到直线m 的距离为2,试求k 的值及此时点C 的坐标.21.(14分)已知动点P 与双曲线x 2-y 2=1的两个焦点F 1,F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-13. (1)求动点P 的轨迹方程;(2)设M (0,-1),若斜率为k (k ≠0)的直线l 与P 点的轨迹交于不同的两点A 、B ,若要使|MA |=|MB |,试求k 的取值范围.第二章圆锥曲线与方程单元综合测试参考答案一、选择题(每小题5分,共60分)1.A 解析:∵a =1,b =12,∴c =a 2-b 2=32,∴e =c a =32,故选A.2.A 解析 把方程化为标准形式-x 2-1m +y 2-3m=1,则a 2=-3m ,b 2=-1m ,∴c 2=a 2+b 2=-4m =4,∴m =-1.3.B 解析:∵a 2=4,b 2=-k ,∴c 2=4-k .∵e ∈(1,2),∴c 2a 2=4-k4∈(1,4),k ∈(-12,0).4.D 解析:设M (2,0),由题设可知,把直线x =-1向左平移一个单位即为直线x =-2, 则点P 到直线x =-2的距离等于|PM |,所以动点P 的轨迹为抛物线,故选D. 5.D 解析:依题意知|PF 1|+|PF 2|=|F 1F 2|=2,作图可知点P 的轨迹为线段,故选D. 6.B 解析:不妨设双曲线C 为x 2a 2-y 2b 2=1(a >0,b >0),并设l 过F 2(c,0)且垂直于x 轴,则 易求得|AB |=2b 2a ,∴2b 2a =2×2a ,b 2=2a 2,∴离心率e =ca =1+b 2a 2=3,故选B.7.B 解析:由定义|AB |=5+2=7,∵|AB |min =4,∴这样的直线有且仅有两条.8.D 解析:设l 与椭圆的两交点分别为(x 1,y 1)、(x 2,y 2),则得y 21-y 22x 21-x 22=-936,所以y 1-y 2x 1-x 2=-12.故方程为y -2=-12(x -4),即x +2y -8=0.9.C 解析:A (2,1),B (2,-1),设双曲线为x 2a 2-y 2b 2=1(a >0,b >0),渐近线方程为y =±b a x ,因为A 、B 在渐近线上,所以1=b a ·2,b a =22,e =ca =a 2+b 2a 2=62.10.C 解析:抛物线y 2=4x 的焦点为F (1,0),故双曲线x 2m -y 2n =1中m >0,n >0,且m +n =c 2=1.11.A 解析:由PF 1→·PF 2→=0可知△PF 1F 2为直角三角形,则由勾股定理,得 |PF 1→|2+|PF 2→|2=4c 2,① 由双曲线的定义,得(|PF 1→|-|PF 2→|)2=4a 2,② 又|PF 1→|·|PF 2→|=2ac ,③ 由①②③得c 2-ac -a 2=0,即e 2-e -1=0, 解得e =1+52或e =1-52(舍去). 12.D 解析:|PF 1|2|PF 2|=2a +|PF 2|2|PF 2|=4a 2|PF 2|+|PF 2|+4a ≥4a +4a =8a ,当且仅当4a 2|PF 2|=|PF 2|,即|PF 2|=2a 时取等号.这时|PF 1|=4a .由|PF 1|+|PF 2|≥|F 1F 2|,得6a ≥2c ,即e =ca ≤3, 得e ∈(1,3],故选D. 二、填空题(每小题5分,共20分)13.x 29-y 2=1 解析:由双曲线的渐近线方程为y =±13x ,知b a =13,它的一个焦点是 (10,0),知a 2+b 2=10,因此a =3,b =1,故双曲线的方程是x 29-y 2=1.14.2;120° 解析:由椭圆的定义知|PF 1|+|PF 2|=2a =2×3=6,因为|PF 1|=4,所以|PF 2|=2.在△PF 1F 2中,cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=-12.∴∠F 1PF 2=120°.15.(x -a 2-b 2)2+y 2=4a 2 解析:由题意知|MP |=|F 1P |,∴|PF 1|+|PF 2|=|MF 2|=2a .∴点M 到点F 2的距离为定值2a .∴点M 的轨迹是以点F 2为圆心,以2a 为半径的圆,其方程为(x -a 2-b 2)2+y 2=4a 2.16.2 2 解析 设P (x 1,y 1),Q (x 2,y 2),F 为抛物线焦点,由2(1)4y x y x=--⎧⎨=⎩,得y 2+4y -4=0,∴|y 1-y 2|=()()221212444442y y y y +-=-+⨯=∴S △POQ =12|OF ||y 1-y 2|=2 2. 三、解答题17.解:由椭圆方程x 29+y 24=1,知长半轴a 1=3,短半轴b 1=2,焦距的一半c 1=a 21-b 21=5,∴焦点是F 1(-5,0),F 2(5,0),因此双曲线的焦点也是F 1(-5,0),F 2(5,0),设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),由题设条件及双曲线的性质,得⎩⎪⎨⎪⎧c =5,c 2=a 2+b 2,c a =52,解得⎩⎨⎧a =2,b =1.故所求双曲线的方程为x 24-y 2=1. (10分)18. [解析]:设M (y x ,),P (11,y x ),Q (22,y x ),易求x y 42=的焦点F 的坐标为(1,0)∵M 是FQ 的中点,∴⎪⎪⎩⎪⎪⎨⎧=+=22122y y x x ⇒⎩⎨⎧=-=y y x x 21222,又Q 是OP 的中点 ∴ ⎪⎪⎩⎪⎪⎨⎧==221212y y x x ⇒⎩⎨⎧==-==yy y x x x 422422121,∵P 在抛物线x y 42=上,∴)24(4)4(2-=x y ,所以M 点的轨迹方程为212-=x y . (12分)19.解:设双曲线方程为x 2a 2-y2b 2=1(a >0,b >0),依题意c =7,∴方程可以化为x 2a 2-y 27-a 2=1,由⎩⎪⎨⎪⎧x2a 2-y 27-a 2=1,y =x -1,得(7-2a 2)x 2+2a 2x -8a 2+a 4=0.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-2a 27-2a 2,∵x 1+x 22=-23,∴-a 27-2a 2=-23,解得a 2=2. ∴双曲线的方程为x 22-y 25=1. (12分)20.解:(1)设动点P 的坐标为(x ,y ),则点Q (0,y ),PQ →=(-x,0),P A →=(2-x ,-y ), PB →=(-2-x ,-y ),P A →·PB→=x 2-2+y 2.① ②∵P A →·PB →=2PQ →2,∴x 2-2+y 2=2x 2, 即动点P 的轨迹方程为y 2-x 2=2. (2)设直线m :y =k (x -2)(0<k <1),依题意,点C 在与直线m 平行且与m 之间的距离为2的直线上,设此直线为 m 1:y =kx +b . 由|2k +b |k 2+1=2,即b 2+22kb =2.① 把y =kx +b 代入y 2-x 2=2,整理,得(k 2-1)x 2+2kbx +(b 2-2)=0, 则Δ=4k 2b 2-4(k 2-1)(b 2-2)=0,即b 2+2k 2=2.② 由①②,得k =255,b =105. 此时,由方程组⎩⎨⎧y =255x +105,y 2-x 2=2,解得⎩⎨⎧x =22,y =10,即C (22,10).(12分)21. [解析]:(1)∵x 2-y 2=1,∴c = 2.设|PF 1|+|PF 2|=2a (常数a >0), 2a >2c =22,∴a > 2由余弦定理有cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=(|PF 1|+|PF 2|)2-2|PF 1||PF 2|-|F 1F 2|22|PF 1||PF 2|=2a 2-4|PF 1||PF 2|-1∵|PF 1||PF 2|≤(|PF 1|+|PF 2|2)2=a 2,∴当且仅当|PF 1|=|PF 2|时,|PF 1||PF 2|取得最大值a 2. 此时cos ∠F 1PF 2取得最小值2a 2-4a 2-1,由题意2a 2-4a 2-1=-13,解得a 2=3,123222=-=-=∴c a b∴P 点的轨迹方程为x 23+y 2=1.(2)设l :y =kx +m (k ≠0),则由 ⎪⎩⎪⎨⎧+==+m kx y y x 1322 将②代入①得:(1+3k 2)x 2+6kmx +3(m 2-1)=0 (*)设A (x 1,y 1),B (x 2,y 2),则AB 中点Q (x 0,y 0)的坐标满足:x 0=x 1+x 22=-3km 1+3k 2,y 0=kx 0+m =m1+3k 2 即Q (-3km 1+3k 2,m1+3k 2) ∵|MA |=|MB |,∴M 在AB 的中垂线上,∴k l k AB =k ·m1+3k 2+1-3km 1+3k 2=-1 ,解得m =1+3k 22 …③又由于(*)式有两个实数根,知△>0,即 (6km )2-4(1+3k 2)[3(m 2-1)]=12(1+3k 2-m 2)>0 ④ ,将③代入④得12[1+3k 2-(1+3k 22)2]>0,解得-1<k <1,由k ≠0, ∴k 的取值范围是k ∈(-1,0)∪(0,1). (14分)。

人教版高中数学选修2-1第二章单元测试(二)及参考答案

人教版高中数学选修2-1第二章单元测试(二)及参考答案

2018-2019学年选修2-1第二章训练卷圆锥曲线与方程(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若椭圆2221(0)4x y m m+=>的一个焦点坐标为()1,0,则m 的值为( )A.5B.3C.5D.32.抛物线28=y x 的焦点到直线3=0x y -的距离是( ) A.23B.2C.3D.13.已知椭圆2221(5)25x ya a +=>的两个焦点为1F 、2F ,且12||8F F =,弦AB 经过焦点1F ,则2ABF △的周长为( ) A.10B.20C.241D.4414.椭圆22213x ym m+=-的一个焦点为()0,1,则m =( ) A.1B.1172-± C.-2或1D.-2或1或1172-±5.设双曲线22221(0,0)x y a b a b-=>>的虚轴长为2,焦距为23,则双曲线的渐近线方程为( ) A.2y x =±B.2y x =±C.22y x =±D.12y x =±6.如图所示,汽车前反光镜与轴截面的交线是抛物线的一部分,灯口所在的圆面与反光镜的轴垂直,灯泡位于抛物线的焦点处,已知灯口的直径是24cm ,灯深10cm .那么灯泡与反光镜的顶点(即截得抛物线的顶点)距离为( )A.10cmB.7.2cmC.3.6cmD.2.4cm7.经过点2(2,)P -且与双曲线C :2212x y -=有相同渐近线的双曲线方程是( )A.22=142x y - B.22=124y x -C.22=124x y -D.22=142y x - 8.已知0a b >>,1e 、2e 分别为圆锥曲线2222=1x y a b +和2222=1x y a b -的离心率,则12lg lg e e +( ) A.大于0且小于1B.大于1C.小于0D.等于19.经过双曲线2222=1(0,0)x y a b a b ->>的右焦点,倾斜角为60︒的直线与双曲线的右支有且只有一个交点,则此双曲线的离心率为( )A.2B.3C.2D.510.已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线过点(2,3),且双曲线的一个焦点在抛物线247y x =的准线上,则双曲线的方程为( )A.221x -228y =1B.228x -221y =1C.23x -24y =1D.24x -23y =1 此卷只装订不密封班级 姓名 准考证号 考场号 座位号11.设P 为椭圆29x +24y =1上的一点,F 1、F 2分别为椭圆的左、右焦点,且1260F PF ∠=︒,则12·PF PF 等于( ) A.83 B.16312.设双曲线22221(0,0)x y a b a b -=>>的右焦点是F ,左、右顶点分别是A 1、A 2,过F 作12A A 的垂线与双曲线交于B 、C 两点.若12A B A C ⊥,则该双曲线的渐近线的斜率为( )A.12±B.C.1±D.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.若抛物线()220y px p >=的准线经过双曲线221x y -=的一个焦点,则p =_________. 14.已知椭圆22x a +22y b =1()0a b >>,则双曲线22x a -22yb =1的离心率为_________.15.已知方程为4x 2+ky 2=1的曲线是焦点在y 轴上的椭圆,则实数k 的取值范围是_________.16.方程24x t -+21y t -=1表示曲线C ,给出以下命题:①曲线C 不可能为圆; ②若1<t <4,则曲线C 为椭圆; ③若曲线C 为双曲线,则t <1或t >4;④若曲线C 为焦点在x 轴上的椭圆,则1<t <52.其中真命题的序号是__________________(写出所有正确命题的序号).三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知线段AB 的端点B 的坐标是(4,3),端点A 在圆(x +1)2+y 2=4上运动,求线段AB 的中点M 的轨迹.18.(12分)设F 1、F 2分别是椭圆E :x 2+22y b =1(0<b <1)的左、右焦点,过F 1的直线l 与E 相交于A 、B 两点,且|AF 2|、|AB |、|BF 2|成等差数列. (1)求|AB |;(2)若直线l 的斜率为1,求b 的值.19.(12分)已知抛物线y 2=2px (p >0)的焦点为F ,点M 在抛物线上,且点M 的横坐标为4,|MF |=5.(1)求抛物线的方程;(2)设l为过点(4,0)的任意一条直线,若l交抛物线于A、B两点,求证:以AB为直径的圆必过原点.20.(12分)设F1、F2分别是椭圆E:22221(0,0)x ya ba b+=>>的左、右焦点,过点F1的直线交椭圆E于A、B两点,|AF1|=3|F1B|. (1)若|AB|=4,△ABF2的周长为16,求|AF2|;(2)若23cos5AF B∠=,求椭圆E的离心率.21.(12分)已知抛物线C1:x2=4y的焦点F也是椭圆C2:22221(0,0)x ya ba b+=>>的一个焦点,C1与C2的公共弦的长为2 6.过点F的直线l与C1相交于A、B两点,与C2相交于C、D两点,且AC与BD同向.(1)求C2的方程;(2)若|AC|=|BD|,求直线l的斜率.22.(12分)已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.(1)求椭圆C的方程;(2)是否存在平行于OA的直线l,使得直线l与椭圆C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,请说明理由.2018-2019学年选修2-1第二章训练卷圆锥曲线与方程(二)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】D【解析】∵椭圆2221(0)4x y m m+=>的一个焦点坐标为()1,0,∴241m -=,∴23m =,又0m >,∴m .故选D. 2.【答案】D【解析】由28=y x 可得其焦点坐标()2,0,根据点到直线的距离公式可得d =.故选D.3.【答案】D【解析】由椭圆定义可知,有122AF AF a +=,122BF BF a +=,∴2ABF △的周长221212224L AB AF BF AF AF BF BF a a a ++=+++==+=. 由题意可知225b =,28c =,∴216c =,225141a +==,∴a =,∴L =故选D.4.【答案】C【解析】∵焦点在y 轴上,∴23m m >-,由231m m --=得1m =或2-,选C. 5.【答案】C【解析】∵22b =,2c =∴1b =,c ∴222312a c b =-=-=,∴a =故渐近线方程为y =.故选C.6.【答案】C【解析】设抛物线的方程为22y px =,由题意知,点()10,12在抛物线上,∴21220p =,∴7.2p =.∴灯泡与反光镜的顶点距离为 3.6cm 2p=.故选C.7.【答案】B【解析】设所求双曲线方程为22(0)2x y λλ-=≠,又∵点2(2,)P -在双曲线上,∴442λ-=,∴2λ=-.所求双曲线的方程为22=124y x -.故选B.8.【答案】C【解析】∵2122lg lg lg =lg1=0a e e a++<,∴12lg lg 0e e +<.故选C. 9.【答案】A【解析】由条件知,双曲线的渐近线与此直线平行,∴tan 60ba=︒=∴b =,代入222a b c +=中得224a c =,∴24e =,∵1e >,∴2e =,故选A. 10.【答案】D【解析】双曲线22221(0,0)x y a b a b -=>>的渐近线方程为by x a =±,由点在渐近线上,所以b a=双曲线的一个焦点在抛物线2y=准线方程x =,所以c =由此可解得2a =,b =所以双曲线方程为24x -23y =1,故选D.11.【答案】B【解析】∵29a =,24b =,∴25c =.由椭圆定义知1226PF PF a +==, ∴221212236PF FP PF PF ++⋅=.在12F PF △中,由余弦定理得2221212122cos60||20PF PF PF PF F F ︒=+-⋅=,∴221212·20PF PF PF PF +=+,∴12316PF PF ⋅=,∴12163PF PF ⋅=.故选B. 12.【答案】C【解析】由已知得右焦点(),0F c (其中222c a b =+,0c >),1,()0A a -、()2,0A a ;2(,)b B c a -、2(,)b C c a ;从而21,b A B c a a ⎛⎫=+- ⎪⎝⎭,22,b A C c a a ⎛⎫=- ⎪⎝⎭,又因为12A B A C ⊥,所以120A B A C ⋅=,即22()()()()0b b c a c a a a -⋅++-⋅=;化简得到22b a =1,即双曲线的渐进线的斜率为1±;故选C.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】【解析】由题意可知,抛物线的准线方程为2px =-,因为0p >,所以该准线过双曲线的左焦点,由双曲线的方程可知,左焦点坐标为(;故由2p=-可解得p =.14.【解析】在椭圆中a 2-b 2=c 2,c a,∴2a b =,在双曲线中,a 2+b 2=c 2,且2a b=∴a 2+214a =c 2,∴22c a =54,∴e =c a. 15.【答案】(0,4) 【解析】方程4x 2+ky 2=1可化为214x +21y k=1,由题意得1k >14,∴0<k <4.16.【答案】③④ 【解析】显然当t =52时,曲线为x 2+y 2=32,方程表示一个圆;而当1<t <4,且t ≠52时,方程表示椭圆;当t <1或t >4时,方程表示双曲线;而当1<t <52时,4-t >t -1>0,方程表示焦点在x 轴上的椭圆,故③④为真命题.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.【答案】见解析.【解析】设点M 的坐标为(x ,y )、点A 的坐标为(x 0,y 0).由题意得004232x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,∴002423x x y y =-⎧⎨=-⎩,又∵点A (x 0,y 0)在圆(x +1)2+y 2=4上, ∴(2x -3)2+(2y -3)2=4,即(x -32)2+(y -32)2=1. 故线段AB 的中点M 的轨迹是以点(32,32)为圆心,以1为半径的圆. 18.【答案】(1)43;.【解析】(1)求椭圆定义知|AF 2|+|AB |+|BF 2|=4, 又2|AB |=|AF 2|+|BF 2|,得|AB |=43. (2)l 的方程式为y =x +c ,其中c =1-b 2,设A (x 1,y 1)、B (x 1,y 1),则A 、B 两点坐标满足方程组2221y x c y x b =+⎧⎪⎨+=⎪⎩,消去y 化简得(1+b 2)x 2+2cx +1-2b 2=0.则x 1+x 2=221cb-+,x 1x 2=22121b b -+. 因为直线AB 的斜率为1,所以|AB |=2|x 2-x 1|,即43=2|x 2-x 1|. 则()()()2242222121224141288()91114x x x b b b b b b x --=+-=-=+++,解得b. 19.【答案】(1)y 2=4x ;(2)见解析. 【解析】(1)由题意得|MF |=4+2p=5,∴p =2,故抛物线方程为y 2=4x . (2)当直线l 的斜率不存在时,其方程为x =4.由244x y x =⎧⎨=⎩,得y =±4.∴|AB |=8,∴||2AB =4,∴以AB 为直径的圆过原点. 当直线l 的斜率存在时,设其方程为y =k (x -4)(k ≠0).设A (x 1,y 1)、B (x 2,y 2),由()244y k x y x ⎧=-⎪⎨=⎪⎩,得k 2x 2-(4+8k 2)x +16k 2=0,∴x 1+x 2=2248k k +,x 1x 2=16.2212121212()()[()]44416y y k x x k x x x x =--=-++222222481632[16416](32)16k k k k k k +-=-⨯+=-=-,∴12120x x y y +=.又12120OA OB x x y y ⋅=+=,∴OA ⊥OB ,∴以AB 为直径的圆必过原点. 综上可知,以AB 为直径的圆必过原点. 20.【答案】(1)5;(2)22. 【解析】(1)由|AF 1|=3|F 1B |及|AB |=4得|AF 1|=3,|F 1B |=1,又∵2ABF △的周长为16,∴由椭圆定义可得4a =16,|AF 1|+|AF 2|=2a =8. ∴|AF 2|=2a -|AF 1|=8-3=5.(2)设|F 1B |=k ,则k >0且|AF 1|=3k ,|AB |=4k , 由椭圆定义知:|AF 2|=2a -3k ,|BF 2|=2a -k ,在△ABF 2中,由余弦定理得,|AB |2=|AF 2|2+|BF 2|2-2|AF 2||BF 2|cos ∠AF 2B , 即(4k )2=(2a -3k )2+(2a -k )2-65(2a -3k )(2a -k ), ∴(a +k )(a -3k )=0,而a +k >0,∴a =3k , 于是有|AF 2|=3k =|AF 1|,|BF 2|=5k ,∴|BF 2|2=|F 2A |2+|AB |2,∴F 2A ⊥AB ,F 2A ⊥AF 1, ∴△AF 1F 2是等腰直角三角形,从而c =22a , 所以椭圆离心率为e =c a =22.21.【答案】(1)29y +28x=1;(2)64±.【解析】(1)由C 1:x 2=4y 知其焦点F 的坐标为(0,1),因为F 也是椭圆C 2的一个焦点,所以221a b -= ①;又C 1与C 2的公共弦长为26,C 1与C 2都关于y 轴对称,且C 1的方程为:x 2=4y , 由此易知C 1与C 2的公共点的坐标为(6±,32),∴294a+26b =1 ②; 联立①②得a 2=9,b 2=8,故C 2的方程为29y +28x =1.(2)如图,设A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3)、D (x 4,y 4),因AC 与BD 同向,且|AC |=|BD |,所以AC =BD ,从而x 3-x 1=x 4-x 2,即x 3-x 4=x 1-x 2, 于是2234341212()(4)4x x x x x x x x +-=+- ③设直线l 的斜率为k ,则l 的方程为y =kx +1,由214y kx x y=+⎧⎨=⎩,得x 2-4kx -4=0,由x 1、x 2是这个方程的两根,∴x 1+x 2=4k ,124x x =- ④由221189y kx x y =+⎧⎪⎨+=⎪⎩,得(9+8k 2)x 2+16kx -64=0,而x 3、x 4是这个方程的两根,x 3+x 4=21698k k -+, 3426498x x k +=-⑤ 将④、⑤代入③,得16(k 2+1)=()226498k ++246498k ⨯+.即16(k 2+1)=()()2222169198k k ⨯++,所以(9+8k 2)2=16×9,解得k =6, 即直线l 的斜率为6. 22.【答案】(1)216x +212y =1;(2)不存在,见解析.【解析】(1)设椭圆的方程22221(0,0)x y a b a b+=>>,∵F (2,0)是椭圆的右焦点,且椭圆过点A (2,3),∴22358c a =⎧⎨=+=⎩,∴24c a =⎧⎨=⎩,∵a 2=b 2+c 2,∴b 2=12,故椭圆方程为216x +212y =1.(2)假设存在符合题意的直线l ,其方程y =32x +t . 由223211612y x t x y ⎧=+⎪⎪⎨⎪+=⎪⎩,消去y ,得3x 2+3tx +t 2-12=0. ∵直线l 与椭圆有公共点,∴()22(312120)t t ∆=-≥-,解得-43≤t ≤4 3. 另一方面,由直线OA 与l 的距离等于4,可得=4,∴t =±213.由于⎡±-⎣,故符合题意的直线l 不存在.。

高二数学选修2-1第二章圆锥曲线知识点+习题+答案

高二数学选修2-1第二章圆锥曲线知识点+习题+答案

第二章圆锥曲线与方程1、平面内与两个定点F i , F2的距离之和等于常数(大于| F,F2| )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.2、椭圆的几何性质:3、设是椭圆上任一点,点到F,对应准线的距离为d,,点到F2对应准线的距离为d2,则丄丄d i d24、平面内与两个定点F i , F2的距离之差的绝对值等于常数(小于|F i F2 )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.5、双曲线的几何性质:b 6实轴和虚轴等长的双曲线称为等轴双曲线.7、设 是双曲线上任一点,点 到F i 对应准线的距离为d i ,点 到F 2对应准线的距离为8、平面内与一个定点F 和一条定直线丨的距离相等的点的轨迹称为抛物线.定点 F 称为抛物线的焦点,定直线I 称为抛物线的准线. 9、 过抛物线的焦点作垂直于对称轴且交抛物线于 、两点的线段,称为抛物线的“通径”即|| 2p .10、 焦半径公式: 若点 x °,y 。

在抛物线 2y 2px p 0上,焦点为F ,则 Fx 卫 X 。

27若点 x °,y ° 在抛物线 2y2px p 0上,焦点为F ,贝H Fp 7;若点 x °,y 。

在抛物线 2X 2py p 0上,焦点为F ,则 F y0号若点 X o ,y o 在抛物线 2X2py p0上,焦点为F ,贝 JI Fy 。

p2 .11、抛物线的几何性质:d 2,则F iF2d 1d 2圆锥曲线测试题一、选择题:1 •已知动点M的坐标满足方程13「x2—y2|12x 5y 12|,则动点M的轨迹是()A.抛物线B. 双曲线C. 椭圆D. 以上都不对2 22•设P是双曲线笃L 1上一点,双曲线的一条渐近线方程为3x 2y 0, R、F2分别a 9是双曲线的左、右焦点,若IPFJ 5,则|PF2 | ()A. 1 或5B. 1 或9C. 1D. 93. 设椭圆的两个焦点分别为只、、F2,过F2作椭圆长轴的垂线交椭圆于点巳若厶F1PF2为等腰直角三角形,则椭圆的离心率是()•A. B. 辽1C. 2 ,2 D. .2 12 24. 过点(2,-1)引直线与抛物线y x2只有一个公共点,这样的直线共有()条A. 1 C. 35. 已知点A( 2,0)、B(3,0),动点P(x,y)满足PA PB y2,则点P的轨迹是()A.圆 B .椭圆 C.双曲线 D.抛物线2 26. 如果椭圆——1的弦被点(4,2)平分,则这条弦所在的直线方程是()36 9A x 2y 0B x 2y 4 0C ■ 2x 3y 12 0D x 2y 8 0214x7、无论 为何值,方程x 2 2sin y 21所表示的曲线必不是( )二、填空题:22 2 29、 对于椭圆— ' 1和双曲线— ' 1有下列命题:16979①椭圆的焦点恰好是双曲线的顶点;②双曲线的焦点恰好是椭圆的顶点; ③双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同•其中正确命题的序号是10、 若直线(1 a)x y 1 0与圆x 2 y 2 2x 0相切,贝U a 的值为 _______________________ 11、 抛物线y x 2上的点到直线4x 3y 8 0的距离的最小值是 _______________12、 抛物线 C: y 2=4x 上一点Q 到点B(4,1)与到焦点 F 的距离和最小,则点Q 的坐 标 。

数学选修2-1第二章 圆锤曲线 单元检测(B卷)

数学选修2-1第二章 圆锤曲线 单元检测(B卷)

第二章圆锥曲线与方程(B)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( )x2y2x2y2=1 1 817281922xyx2y2=1 =1 814581362.平面内有定点A、B及动点P,设命题甲是“|PA|+|PB|是定值”,命题乙是“点P的轨迹是以A、B为焦点的椭圆”,那么甲是乙的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.设a≠0,a∈R,则抛物线y=ax2的焦点坐标为( )a?10 B.?0,? A.??2??2a?a?10 D.?0,? C.??4??4a?4.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程是( )A.x2+y2=2 B.x2+y2=4C.x2+y2=2(x≠±2) D.x2+y2=4(x≠±2) 22xy5.已知椭圆1 (a&gt;b&gt;0)有两个顶点在直线x+2y=2上,则此椭圆的焦点坐标是ab( )A.3,0) B.(0,3)C.5,0) D.(0,5)x2y26.设椭圆+=1 (m&gt;1)上一点P到其左焦点的距离为3,到右焦点的距离为1,mm-1则椭圆的离心率为( ) 2-1213 B. D.222422xy7-1,点A,B在双曲线的右支上,线段AB经过双曲线ab的右焦点F2,|AB|=m,F1为另一焦点,则△ABF1的周长为( )A.2a+2m B.4a+2mC.a+m D.2a+4m 8.已知抛物线y2=4x上的点P到抛物线的准线的距离为d1,到直线3x-4y+9=0的距离为d2,则d1+d2的最小值是( )1265 B. C.2 D. 55529.设点A为抛物线y=4x上一点,点B(1,0),且|AB|=1,则A的横坐标的值为( )A.-2 B.0C.-2或0 D.-2或2。

人教版 数学选修2-1第二章 圆锥曲线与方程 附答案

人教版 数学选修2-1第二章 圆锥曲线与方程 附答案

选修2-1第二章 圆锥曲线与方程 附答案一、选择题1.若平面内一条直线l 与曲线C 有且仅有一个公共点,则下列命题:(1)若C 是圆,则l 与C 一定相切;(2)若C 是抛物线,则l 与C 一定相切;(3)若C 是椭圆,则l 与C 一定相切;(4)若C 是双曲线,则l 与C 一定相切.其中正确的有( ).A .1 个B .2个C .3个D .4个2.过抛物线x 2=4y 的焦点且与其对称轴垂直的弦AB 的长度是( ). A .1B .2C .4D .83.双曲线1 = 4-922y x 与直线m x -y + 32=(m ∈R )的公共点的个数为( ).A .0B .1C .0或1D .0或1或24.在直角坐标平面内,已知点F 1(-4,0),F 2(4,0),动点M 满足条件:|MF 1|+|MF 2|=8,则点M 的轨迹方程是( ).A .1 = 9+1622y xB .x =0C .y =0(-4≤x ≤4)D .1= 16+1622 y x 5.已知经过椭圆1 = +522y x 的焦点且与其对称轴成45º的直线与椭圆交于A ,B 两点,则|AB |=( ).A .352 B .310C .25D .106.已知点A (3,0)、B (-3,0),|AC |-|BC |=4,则点C 轨迹方程是( ). A .1 = 5422y -xB .1 = 5422y -x (x <0)C .1 = 5422y -x (x >0)D .0 = 5422y -x (x <0)7.方程mx 2+(m +1)y 2=m (m +1),m ∈R 表示的曲线不可能是( ). A .直线B .椭圆C .双曲线D .抛物线8.若椭圆1 =9+ 1622x y 上的点到直线y =x +m 的最短距离是2,则m 最小值为( ).A .-1B .3-C . 7-D .19.直线y =x -k 与抛物线x 2=y 相交于A ,B 两点,若线段AB 中点的纵坐标为1,则k 的值为( ).A .-21 B .21C .-41D .-110.设椭圆22+10y x =1和双曲线22-8y x =1的公共焦点分别为F 1,F 2,P 是这两曲线的交点,则△PF 1F 2的外接圆半径为( ).A .1B .2C .22D .3二、填空题11.直线m y 2 = 与曲线 222218= + 9m y x m (m ∈R ,m ≠0)有 个公共点. 12.到点(-4,0)与到直线x =-425的距离之比为54的动点的轨迹方程是 .13.与14922=-y x 有相同渐近线且实轴长为10的双曲线方程是 . 14.已知△ABC 的两个顶点为A (0,0)、B (6,0),顶点C 在曲线1 = 91622y -x 上运动,则△ABC 的重心的轨迹方程是 .15.若点P ,Q 在抛物线y 2=4x 上,O 是坐标原点,且OP ·=0,则直线PQ 恒过的定点的坐标是 .16.已知正三角形ABC ,若M ,N 分别是AB ,AC 的中点,则以B ,C 为焦点,且过M ,N 的椭圆与双曲线的离心率之积为 .三、解答题 17.若过椭圆1 = +2222by ax (a >b >0)左焦点的直线与它的两个交点及其右焦点构成周长为16的三角形,此椭圆的离心率为0.5,求这个椭圆方程.18.已知直线1+ =x y k 与双曲线x 2-y 2=1的左支相交于不同的两点A ,B ,线段AB 的中点为点M ,定点C (-2,0).(1)求实数k 的取值范围;(2)求直线MC 在y 轴上的截距的取值范围.19.若点P 在抛物线y 2=2x 上,A (a ,0), (1)请你完成下表:(2)若a ∈R ,求||PA 的最小值及相应的点P 坐标20.若点P 在以F 为焦点的抛物线y 2=2px (p >0)上,且PF ⊥FO ,|PF |=2,O 为原点.(1)求抛物线的方程;(2)若直线x -2y =1与此抛物线相交于A ,B 两点,点N 是抛物线弧AOB 上的动点,求△ABN 面积的最大值.参考答案一、选择题 1.B 2.C3.C解析:双曲线1 = 4-922y x 的渐近线方程为y =±32x 与已知直线平行或重合,而当m =0时,重合;此时,公共点个数为0;m ≠0时,公共点个数为1.4.C 5.A 6. B 7.D 8.C 9.A10.D解析:由椭圆与双曲线的定义可得1||PF 与2||PF 的方程组,进一步可知△PF 1F 2为直角三角形.二、填空题 11.2.12.1 = 9+2522y x .13.1 = 9-2522y x 或1 = 4225-2522x y . 14.1 = 162 922y --x )((y ≠0). 15.(4,0). 16.2. 三、解答题 17.1 = 12+1622y x .解:如图,由椭圆定义可知|BF 1|+|BF 2|=2a ,|AF 1|+|AF 2|=2a .△ABF 2的周长=|AB |+|BF 2|+|AF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =16.∴a =4, 又∵ e =ac=0.5,(第17题)∴ c =2,∴ b =3= 222-c a . 椭圆方程为1 = 12+1622y x .18.(1)1<k <2.解:把直线y =k x +1代入双曲线x 2-y 2=1整理有 (1-k 2)x 2-2k x -2=0,∵设A (x 1,y 1),B (x 2,y 2), 由韦达定理可知x 1+x 2=2-12k k <0, ① x 1·x 2=2-12k->0. ②且 ∆=(-2k )2-4(1-k 2)·(-2)=4k 2-8 k 2+8>0得 -2<k <2.③ ∴ 1<k <2.(2)∵ M ⎪⎭⎫ ⎝⎛2+ 2+2121y y ,x x , M ⎪⎪⎭⎫ ⎝⎛1+-1 -1222k k k k ,,即M ⎪⎭⎫ ⎝⎛22-11 -1k k k ,. ∴MC :y =2++212k k -x +2++222k k -.在y 轴线截距为y m =2++222k k -,当k ∈(1,2),有y m >2或y m <-2-2. 19.(1)(2)当a ≤1时,|P A |的最小值=|a |,相应的点P (0,0);当a >1时,|P A |的最小值=12-a ,相应的点P (a -1,±22-a ). 20.(1)x y 4=2;(第18题)O解:由PF ⊥FO ,|PF |=2可知当x =2p时,y =2. 即2p ·2p=4,∴ p =2. ∴抛物线方程为y 2=4x . (2)510.解:由(1)可知,直线AB 过焦点F (1,0). 把直线x -2y =1代入抛物线y 2=4x . 有x 2-18 x +1=0. 设A (x 1,y 1),B (x 2,y 2). |AB |=21-41+1x x =2058 25=-4+ 41+ 121221= ·)( ·x x x x . 设N (x 0,20x ),点N 到AB 的距离h =51400-x -x .S △ABN =21·|AB |·h =21·20·51400-x -x .当0x =2时,S △ABN 取得最大值,此时S △ABN =105.(第20题)。

高中数学选修2-1 第二章 圆锥曲线(B卷)

高中数学选修2-1 第二章 圆锥曲线(B卷)

高中数学选修2-1 第二章圆锥曲线(B卷)试卷一、选择题(共16题;共48分)1.若曲线上C的点的坐标满足方程f(x,y)=0,则下列说法正确的是()A.曲线C的方程是f(x,y)=0B.方程f(x,y)=0的曲线是CC.坐标不满足方程f(x,y)=0的点都不在曲线C上D.坐标满足方程f(x,y)=0的点都在曲线C上【答案】C【考点】曲线方程【解析】利用逆否命题我们可以判定选项C是已知的逆否命题,真值相同.2.与点A(-1,0)和点B(1,0)连线的斜率之和为-1的动点P的轨迹方程是()A.x2+y2=3B.x2+2xy=1(x≠±1)C.y=D.x2+y2=9(x≠0)【答案】B【考点】曲线方程【解析】设P(x,y),∵,∴,整理得x2+2xy=1(x≠±1).3.椭圆的两焦点为F1(-4,0)、F2(4,0),点P在椭圆上,若△PF1F2的面积最大为12,则椭圆方程为() A.B.C.D.【答案】B【考点】椭圆的定义,椭圆的方程【解析】=×8b=12,∴b=3,又∵c=4,∴a2=b2+c2=25,∴椭圆的标准方程为.4.若方程表示焦点在y轴上的椭圆,则实数m的取值范围是()A.-9<m<25B.8<m<25C.16<m<25D.m>8【答案】B【考点】椭圆的方程【解析】依题意有解得8<m<25,即实数m的取值范围是8<m<25,故选B.5.椭圆与双曲线有相同的焦点,则a的值是()A.B.1或-2C.1或D.1【答案】D【考点】双曲线的方程【解析】由于a>0,0<a2<4,且4-a2=a+2,所以可解得a=1,故选D.6.设点A是抛物线y2=4x上一点,点B(1,0),点M是线段AB中点.若|AB|=3,则点M到直线x=-1的距离为()A.5B.C.2D.【答案】D【考点】抛物线的定义,抛物线的方程,抛物线的性质【解析】如下图,过A、M、B分别作l:x=-1的垂线,垂足分别为P,N,Q,则MN=(AP+BQ)=×(3+2)=.故选D.7.抛物线y=x2上到直线2x-y=4距离最近的点的坐标是()A.B.(1,1)C.D.(2,4)【答案】B【考点】抛物线的方程【解析】设P(x,y)为抛物线y=x2上任一点,则P到直线2x-y=4的距离d===.∴当x=1时,d有最小值,此时,P(1,1).8.直线y=kx-k+1与椭圆的位置关系为()A.相切B.相交C.相离D.不确定【答案】B【考点】直线与椭圆位置关系【解析】直线y=kx-k+1恒过定点(1,1).又∵<1,∴点(1,1)在椭圆内部.∴直线y=kx-k+1与椭圆相交.故选B.9.已知椭圆x2+my2=1的离心率e∈,则实数m的取值范围是()A.B.C.∪D.∪【答案】C【考点】椭圆的性质【解析】椭圆标准方程为.当m>1时,e2=1-∈,解得m>;当0<m<1时,e2==1-m∈,解得0<m<,故实数m的取值范围是∪.10.已知双曲线方程为过P(1,0)的直线l与双曲线只有一个公共点,则l的条数为()A.4B.3C.2D.1【答案】B【考点】直线与双曲线的位置关系【解析】数形结合知,过点P(1,0)有一条直线l与双曲线相切,有两条直线与渐近线平行,这三条直线与双曲线只有一个公共点.11.已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是()A.2B.3C.D.【答案】A【考点】抛物线的定义,抛物线的方程,抛物线的性质【解析】直线l2:x=-1为抛物线y2=4x的准线,由抛物线的定义知,P到l2的距离等于P到抛物线的焦点F(1,0)的距离,故本题化为在抛物线上找一个点P使得P到点F(1,0)和直线l1的距离之和最小,最小值为F(1,0)到直线l1:4x-3y+6=0的距离,即d min==2,故选择A.12.已知椭圆(a>b>0),M,N是椭圆上关于原点对称的两点,P是椭圆上任意一点,且直线PM,PN的斜率分别为k1,k2,若,则椭圆的离心率e为()A.B.C.D.【答案】C【考点】直线与椭圆位置关系【解析】设P(x,y),M(x0,y0),N(-x0,-y0),则,,依题意有.又因为点P,M,N在椭圆上,所以,,两式相减,得,即,所以,即,解得.13.椭圆的焦距是2,则m的值是()A.5B.3或8C.3或5D.20【答案】C【考点】椭圆的方程,椭圆的性质【解析】2c=2,c=1,故有m-4=12或4-m=12,∴m=5或m=3且同时都大于0,故答案为C.14.直线y=x+1被椭圆所截得的弦的中点坐标是()A.B.C.D.【答案】C【考点】直线与椭圆位置关系【解析】把y=x+1代入椭圆方程,整理得3x2+4x-2=0,所以弦的中点坐标(x0,y0)满足x0==-,y0=x0+1=-+1=.15.等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于、两点,=,则的实轴长为()A.B.C.4D.8【答案】C【考点】直线与双曲线的位置关系【解析】由题设知抛物线的准线为:,设等轴双曲线方程为:,将代入等轴双曲线方程解得,∵=,∴,解得a=2,∴的实轴长为4,故选C.16.如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点.若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是()A.3B.2C.D.【答案】B【考点】定点、定值与探索问题【解析】椭圆的长轴为2a,双曲线的长轴为,由M,O,N将椭圆长轴四等分,则,即,又因为双曲线与椭圆有公共焦点,设焦距均为c,则双曲线的离心率为,,.故选B.二、解答题(共6题;共52分)17.已知F1,F2为椭圆(0<b<10)的左、右焦点,P是椭圆上一点.(1).|PF1|·|PF2|的最大值()A.10B.40C.100D.400【答案】C【考点】椭圆的定义【解析】由题意得|PF1|+|PF2|=20,则|PF1|·|PF2|≤=100,当且仅当|PF1|=|PF2|时,等号成立,故(|PF1|·|PF2|)max=100.(2).若∠F1PF2=60°且△F1PF2的面积为,则b的值为()A.4B.8C.16D.1【答案】B【考点】椭圆的定义【解析】∵=|PF1|·|PF2|sin 60°=,∴|P F1|·|PF2|=.①又②由①②得c=6,则b==8.18.已知双曲线的两焦点为F1、F2.(1).若点M在双曲线上,且则M点到x轴的距离( )A.B.C.3D.2【答案】A【考点】双曲线的定义【解析】不妨设M在双曲线的右支上,M点到x轴的距离为h,则MF1⊥MF2,设|MF1|=m,|MF2|=n,由双曲线定义知,m-n=2a=8,①又m2+n2=(2c)2=80,②由①②得m·n=8,∴mn=4=|F1F2|·h,∴h=.(2).若双曲线C与已知双曲线有相同焦点,且过点(,2),则双曲线C的方程( ) A.B.C.D.【答案】D【考点】双曲线的方程【解析】设所求双曲线C的方程为=1(-4<λ<16),由于双曲线C过点(,2),所以,解得λ=4或λ=-14(舍去).∴所求双曲线C的方程为19.如下图,已知椭圆(a>b>0),F1,F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.(1).若∠F1AB=90°,则椭圆的离心率()A.B.C.D.【答案】D【考点】椭圆的性质【解析】由∠F1AB=90°及椭圆的对称性知b=c,则e===.(2).若椭圆的焦距为2,且=2,则椭圆的方程()A.B.C.D.【答案】A【考点】椭圆的方程【解析】由已知a2-b2=1,设B(x,y),A(0,b),则=(1,-b),=(x-1,y),由=2,即(1,-b)=2(x-1,y),解得x=,y=-,则,得a2=3,因此b2=2,方程为.20.如下图所示,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1,y1),B(x2,y2)均在抛物线上.(1).则该抛物线的方程( )A.y2=xB.y2=4xC.y2=8xD.y2=16x【答案】B【考点】抛物线的方程【解析】由已知条件,可设抛物线的方程为y2=2px(p>0).∵点P(1,2)在抛物线上,∴22=2p×1,解得p=2.故所求抛物线的方程是y2=4x.(2).当PA与PB的斜率存在且倾斜角互补时,则y1+y2的值为( )A.-2B.-4C.-8D.2【答案】B【考点】抛物线的方程【解析】设直线PA的斜率为k PA,直线PB的斜率为k PB,则,,∵PA与PB的斜率存在且倾斜角互补,∴由A(x1,y1),B(x2,y2)均在抛物线上,得∴,∴y1+2=-(y2+2).∴y1+y2=-4.21.已知直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A、B两点.(1).若|AF|=4,点A的坐标( )A.(3,2)B.(3,-2)C.(3,2)或(3,-2)D.(2,2)或(2,-2)【答案】C【考点】抛物线的定义,抛物线的方程【解析】由y2=4x,得p=2,其准线方程为x=-1,焦点F(1,0).设A(x1,y1),B(x2,y2).由抛物线的定义可知,从而x1=4-1=3.代入y2=4x,解得y1=±2.∴点A的坐标为(3,2)或(3,-2).(2).线段AB的长的最小值( )A.2B.4C.6D.8【答案】B【考点】抛物线的定义,抛物线的方程,抛物线的性质,直线与抛物线的位置关系【解析】当直线l的斜率存在时,设直线l的方程为y=k(x-1).与抛物线方程联立,得消去y,整理得k2x2-(2k2+4)x+k2=0,∵直线与抛物线相交于A、B两点,则k≠0,并设其两根为x1,x2,∴x1+x2=2+.由抛物线的定义可知,|AB|=x1+x2+p=4+>4.当直线l的斜率不存在时,直线l的方程为x=1,与抛物线相交于A(1,2),B(1,-2),此时|AB|=4,∴|AB|≥4,即线段AB的长的最小值为4.22.椭圆C:(a>b>0)的左、右焦点分别是F1、F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(1).椭圆C的方程( )A.B.C.+y2=1D.【答案】C【考点】椭圆的方程【解析】由已知得e==,+=1,又c2=a2-b2,所以a2=4,b2=1.故椭圆C的方程为:+y2=1.(2).点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),则m的取值范围( )A.(-1,1)B.(-2,2)C.(-3,3)D.【答案】D【考点】椭圆的定义,椭圆的方程【解析】方法一如下图,由题意知=即==,整理得:m=(|PF1|-2).又a-c<|PF1|<a+c,即2-<|PF1|<2+.∴-<m<.故m的取值范围为m∈.方法二由题意知:=,即=.设其中≠4,将向量坐标化得:m(4-16)=3-12x0.所以m=x0,而x0∈(-2,2),所以m∈.(3).在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1、PF2的斜率分别为k1、k2,若k≠0,则+的值为()A.-2B.-4C.-8D.2【答案】C【考点】椭圆的方程,直线与椭圆位置关系【解析】设P(x0,y0)(y0≠0),则直线l的方程为y-y0=k(x-x0).2-1)=0.所以Δ=64(ky0-k2x0)2-16(1+4k2)(-2kx0y0+k2-1)=0.即(4-)k2+2x0y0k+1-=0.又+=1,所以16k2+8x0y0k+=0.故k=-,又+=+=. 所以==·=-8. 所以为定值,这个定值为-8.。

高中数学选修2-1 第二章《圆锥曲线与方程》单元测试题(含答案)

高中数学选修2-1 第二章《圆锥曲线与方程》单元测试题(含答案)

12PF F S =解析:设P (x 0,y 0),PF 的中点为(x ,y ),则y 0=14x 20,又F (0,1),∴⎩⎪⎨⎪⎧x =x 02y =y 0+12,∴⎩⎨⎧x 0=2xy 0=2y -1,代入y 0=14x 20得2y -1=14(2x )2,化简得x 2=2y -1,故选A. 答案:A7.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )A.12B.32C .1 D. 3 解析:由已知解出抛物线的焦点坐标和双曲线的渐近线方程,利用点到直线的距离公式求解.由题意可得抛物线的焦点坐标为(1,0),双曲线的渐近线方程为3x -y =0或3x +y =0, 则焦点到渐近线的距离d 1=|3×1-0|32+-12=32或d 2=|3×1+0|32+12=32. 答案:B8.直线y =x +b 与抛物线x 2=2y 交于A 、B 两点,O 为坐标原点,且OA ⊥OB ,则b =( )A .2B .-2C .1D .-1解析:设A (x 1,y 1),B (x 2,y 2), 联立方程组⎩⎨⎧y =x +b ,x 2=2y ,消去y ,得x 2-2x -2b =0,所以x 1+x 2=2,x 1x 2=-2b ,y 1y 2=(x 1+b )(x 2+b )=x 1x 2+b (x 1+x 2)+b 2=b 2,∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线, ∴所求轨迹的方程为x 2=4y . (2)由题意易知直线l 2的斜率存在,又抛物线方程为x 2=4y ,当直线AB 斜率为0时|PQ |=4 2.当直线AB 斜率k 不为0时,设中点坐标为(t,2),P (x 1,y 1),Q (x 2,y 2),则有x 21=4y 1,x 22=4y 2,两式作差得x 21-x 22=4(y 1-y 2),即得k =x 1+x 24=t 2,则直线方程为y -2=t2(x -t ),与x 2=4y 联立得x 2-2tx +2t 2-8=0.由根与系数的关系得x 1+x 2=2t ,x 1x 2=2t 2-8, |PQ |=x 1-x 22+y 1-y 22=1+k 2[x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+t 24[4t 2-42t 2-8]=8-t 24+t 2≤6,即|PQ |的最大值为6.19.(本小题满分12分)已知双曲线的焦点在x 轴上,离心率为2,F 1,F 2为左、右焦点,P 为双曲线上一点,且∠F 1PF 2=60°,12PF F S =123,求双曲线的标准方程.解析:如图所示,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).∴所求k 的值为2.21.(本小题满分12分)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (0,1),离心率为22,过点B (0,-2)及左焦点F 1的直线交椭圆于C ,D 两点,右焦点设为F 2.(1)求椭圆的方程; (2)求△CDF 2的面积. 解析:(1)由题意知b =1,c a =22,且c 2=a 2+b 2,解得a =2,c =1. 易得椭圆方程为x 22+y 2=1.(2)∵F 1(-1,0),∴直线BF 1的方程为y =-2x -2,由⎩⎨⎧y =-2x -2x22+y 2=1得9x 2+16x +6=0.∵Δ=162-4×9×6=40>0, 所以直线与椭圆有两个公共点,设为C (x 1,y 1),D (x 2,y 2),则⎩⎪⎨⎪⎧x 1+x 2=-169x 1·x 2=23∴|CD |=1+-22|x 1-x 2|=5·x 1+x 22-4x 1x 2=5·⎝ ⎛⎭⎪⎫-1692-4×23=1092,又点F 2到直线BF 1的距离d =455, 故CDF S2=12|CD |·d =4910. 22.(本小题满分12分)过点C (0,1)的椭圆x 2a 2+y 2b2=1(a >b >0)的离心率为。

高中数学选修2-1第二章第13课时同步练习 第二章 圆锥曲线与方程(复习)(B)

高中数学选修2-1第二章第13课时同步练习 第二章 圆锥曲线与方程(复习)(B)

第二章 圆锥曲线与方程(复习)(B )1、已知抛物线x y 42=,过焦点F 的弦AB 被焦点分成长为m 与n 的两部分,求n m 11+ 等于( )A 、1B 、2C 、3D 、42、直线2-=kx y 交抛物线x y 82=于A 、B 两点,若AB 的中点横坐标为2,则AB 为( )A 、 15B 、 154C 、 152D 、 423、过双曲线068222=+--x y x 的右焦点作直线l 交双曲线于A 、B 两点,若4=AB ,则这样的直线有( )A 、4条B 、3条C 、2条D 、1条、4、抛物线)0(22>=p px y 的焦点弦AB 的倾斜角为α,则弦长AB 为( )A 、α2sin 2pB 、α2cos 2p C 、αsin p D 、αcos p 5、曲线122--=x x y 与x 轴相交,则两交点间的距离为( )A 、8B 、0C 、7D 、16、过椭圆)0(12222>>=+b a by a x 中心的直线与椭圆交于A 、B 两点,右焦点为F 2(c,0),则△ABF 2的最大面积为( )A 、b 2B 、abC 、acD 、bc7、双曲线1322=-y x 的左右焦点分别为F 1、F 2,过F 2作倾斜角为1500的直线交双曲线于A 、B 两点,则△ABF 1的周长为( )A 、6B 、5C 、333+D 、3+233 8、已知抛物线)0(22>=p px y 的动弦AB 长为a(a ≥2p),则弦AB 中点M 到y 轴的最短距离为 .9、过双曲线116922=-y x 的右焦点F 作倾斜角为4π的弦,则|AB|=10、抛物线y 2=x 上到直线x-2y+4=0的距离最小的点是11、已知双曲线的中心在原点,右顶点为A (1,0)点P 、Q 在双曲线的右支上,点M (m,0)到直线AP 的距离为1.(Ⅰ)若直线AP 的斜率为k ,且]3,33[∈k ,求实数m 的取值范围; (Ⅱ)当12+=m 时,ΔAPQ 的内心恰好是点M ,求此双曲线的方程.12、 设椭圆1122=++y m x 的两个焦点是)0,(1c F -与)0)(0,(2>c c F ,且椭圆上存在点P ,使得直线PF 1与直线PF 2垂直.(Ⅰ)求实数m 的取值范围;(Ⅱ)设L 是相应于焦点F 2的准线,直线PF 2与L 相交于点Q. 若32||||22-=PF QF ,求直线PF 2的方程.参考答案1、A (利用特值法)2、C (根据韦达定理和弦长公式)3、B (利用数形结合法)4、A (利用焦点弦长公式和韦达定理)5、A (利用数形结合)6、D7、C 6、2p a - 9、7192 10、(1,1) 11、 解: (Ⅰ)由条件得直线AP 的方程),1(-=x k y 即.0=--k y kx 因为点M 到直线AP 的距离为1,∵,112=+-k kmk 即221111k k k m +=+=-.∵],3,33[∈k ∴,21332≤-≤m 解得332+1≤m ≤3或--1≤m ≤1--332. ∴m 的取值范围是].3,3321[]3321,1[+-- (Ⅱ)可设双曲线方程为),0(1222≠=-b b y x 由),0,1(),0,12(A M +得2=AM .又因为M 是ΔAPQ 的内心,M 到AP 的距离为1,所以∠MAP=45º,直线AM 是∠PAQ 的角平分线,且M 到AQ 、PQ 的距离均为1。

人教版数学高二-人教B版选修2-1练习 第二章 圆锥曲线与方程

人教版数学高二-人教B版选修2-1练习 第二章 圆锥曲线与方程

阶段水平测试(二)一、选择题:本大题共12小题,每小题5分,共60分. 1. 已知θ∈R ,则方程x 2+y 2cos θ=4表示的曲线不可能是( )A. 圆B. 椭圆C. 双曲线D. 抛物线解析:本题主要考查cos θ的取值范围和各种圆锥曲线的标准方程.因为θ∈R ,所以若cos θ=1,方程表示圆;若cos θ>0且不等于1,方程表示椭圆;若cos θ<0,方程表示双曲线,所以方程表示的曲线不可能是抛物线,故选D.答案:D2. 如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是( )A. (3,+∞)B. (-∞,-2)C. (3,+∞)∪(-∞,-2)D. (3,+∞)∪(-6,-2)解析:本题考查焦点在不同坐标轴上的椭圆方程的特征.由于椭圆的焦点在x 轴上,所以⎩⎨⎧a 2>a +6,a +6>0,即⎩⎨⎧(a +2)(a -3)>0,a >-6.解得a >3或-6<a <-2,故选D.答案:D3. 以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1D.x 24+y 216=1解析:方程可化为y 212-x 24=1,∴焦点为(0,±4),顶点为(0,±23).从而椭圆方程中,a =4,c =23,∴b =2.∵焦点在y 轴上,∴椭圆方程为x 24+y 216=1. 答案:D4. 斜率为3的直线与双曲线x 2a 2-y 2b 2=1(a >0,b >0)恒有两个公共点,则双曲线离心率的取值范围是( )A. 2014·四川省成都七中期中考试2014·课标全国卷Ⅰ2014·山东济南三模2014·河北省衡水中学月考2014·安徽师大附中月考2014·江苏高考hslx3y3h 如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为(43,13),且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.解:设椭圆的焦距为2c ,则F 1(-c,0),F 2(c,0). (1)因为B (0,b ),所以BF 2=b 2+c 2=a .又BF 2=2,故a = 2.因为点C (43,13)在椭圆上,所以169a 2+19b 2=1. 解得b 2=1.故所求椭圆的方程为x 22+y 2=1. (2)因为B (0,b ),F 2(c,0)在直线AB 上, 所以直线AB 的方程为x c +yb =1. 解方程组⎩⎪⎨⎪⎧x c +y b =1,x 2a 2+y 2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=b (c 2-a 2)a 2+c2,⎩⎨⎧x 2=0,y 2=b .所以点A 的坐标为(2a 2c a 2+c 2,b (c 2-a 2)a 2+c2).又AC 垂直于x 轴,由椭圆的对称性,可得点C 的坐标为(2a 2ca 2+c2,b (a 2-c 2)a 2+c2). 因为直线F 1C 的斜率为b (a 2-c 2)a 2+c 2-02a 2c a 2+c 2-(-c )=b (a 2-c 2)3a 2c +c 3,直线AB 的斜率为-bc ,且F 1C ⊥AB ,所以b (a 2-c 2)3a 2c +c3·(-b c )=-1. 又b 2=a 2-c 2,整理得a 2=5c 2.故e 2=15. 因此e =55.。

(数学选修2-1)第二章圆锥曲线(3组测试)

(数学选修2-1)第二章圆锥曲线(3组测试)

(数学选修2-1)第二章 圆锥曲线[基础训练A 组] 一、选择题1. 已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3, 则P 到另一焦点距离为( ) A .2 B .3 C .5 D .7 2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为( )A .116922=+y x B .1162522=+y x C .1162522=+y x 或1251622=+y x D .以上都不对 3.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是( )A .双曲线B .双曲线的一支C .两条射线D .一条射线 4.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =, 那么双曲线的离心率e 等于( )A .2B .3C .2D .3 5.抛物线x y 102=的焦点到准线的距离是( )A .25 B .5 C .215 D .10 6.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为( )。

A .(7,B .(14,C .(7,±D .(7,-±二、填空题1.若椭圆221x my +=_______________. 2.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_______________。

3.若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是 。

4.抛物线x y 62=的准线方程为_____.5.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。

三、解答题1.k 为何值时,直线2y kx =+和曲线22236x y +=有两个公共点?有一个公共点?没有公共点?2.在抛物线24y x =上求一点,使这点到直线45y x =-的距离最短。

3.双曲线与椭圆有共同的焦点12(0,5),(0,5)F F -,点(3,4)P 是双曲线的渐近线与椭圆的一个交点,求渐近线与椭圆的方程。

高二数学选修2-1第二章《圆锥曲线》测试题

高二数学选修2-1第二章《圆锥曲线》测试题

高二数学选修2-1第二章《圆锥曲线》测试题 班级: 姓名: 座号:评分:一.选择题:本大题共8题,每小题5分,共40分。

请将答案写在括号里。

1、已知方程11222=-+-k y k x 的图象是双曲线,那么k 的取值范围是( )A.k <1 B.k >2 C.k <1或k >2 D.1<k <2 2、已知方程0,,0(022>≠≠=++=+c b a ab c by ax ab by ax 其中和),它们所表示的曲线可能是( )A B CD3、设椭圆22221(0)x y a b a b +=>>的离心率为1e 2=,右焦点为(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,()A.必在圆222x y +=内B.必在圆222x y +=上C.必在圆222x y +=外D.以上三种情形都有可能4、椭圆13610022=+y x上的点P 到它的左准线的距离是10,那么P 点到椭圆的右焦点的距离是 ( )5、双曲线1322=-y x 的两条渐近线所成的锐角是 ( )° ° ° ° 6、已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且2132xx x =+, 则有()A.123FP FPFP += B.222123FP FP FP +=C.2132FPFP FP =+ D.2213FPFP FP =·7、双曲线22ax -22by =1的两条渐近线互相垂直,那么它的离心率为( )A.2 B.3C. 2D. 238、过抛物线y x 42=的焦点F 作直线交抛物线于()()222111,,,y xP y x P 两点,若621=+y y,则21P P 的值为 ( )A .5B .6C .8D .10 二、选择题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9、设中心在原点的椭圆与双曲线2 x 2-2y 2=1有公共的焦点,且它们的离心互为倒数,则该椭圆的方程是 。

2021学年高二数学选修2-1第02章 圆锥曲线与方程(B卷提高篇)同步双测人教A(解析版)

2021学年高二数学选修2-1第02章 圆锥曲线与方程(B卷提高篇)同步双测人教A(解析版)

『高二教材·同步双测』『A卷基础篇』『B卷提升篇』试题汇编前言:本试题选于近一年的期中、期末、中考真题以及经典题型,精选精解精析,旨在抛砖引玉,举一反三,突出培养能力,体现研究性学习的新课改要求,实现学生巩固基础知识与提高解题能力的双基目的。

(1)A卷注重基础,强调基础知识的识记和运用;(2)B卷强调能力,注重解题能力的培养和提高;(3)单元测试AB卷,期中、期末测试。

构成立体网络,多层次多角度为考生提供检测,查缺补漏,便于寻找知识盲点或误区,不断提升。

祝大家掌握更加牢靠的知识点,胸有成竹从容考试!第二章 圆锥曲线与方程B (提高卷)参考答案与试题解析一.选择题(共8小题) 1.(2020•6月份模拟)已知双曲线x 2a 2−y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,实轴的两个端点分别为A 1、A 2,虚轴的两个端点分别为B 1、B 2.以坐标原点O 为圆心,|B 1B 2|为直径的圆O (b >a )与双曲线交于点M (位于第二象限),若过点M 作圆的切线恰过左焦点F 1,则双曲线的离心率是( ) A .√3B .2C .√62D .√72【解答】解:设M (x ,y ),由题意可得x 2+y 2=b 2,又M 在双曲线上,M 在第二象限,所以x 2a 2−y 2b 2=1,两式联立求出x =−√2abc ,y =b √b 2−a 2c, 所以F 1M →=(c −√2abc ,b√b 2−a 2c),OM →=(−√2abc ,b√b 2−a 2c),因为F 1M 与圆O 相切,所以F 1M →⋅OM →=0,即(c −√2abc )•(−√2abc )+(b√b 2−a 2c)2=0,即−√2ab +2a 2b 2c 2+b 2(b 2−a 2)c 2=0,所以√2ab =2a 2b 2c 2+b 2(c 2−2a 2)c 2=b 2c 2c2=b 2, 所以b =√2a ,b 2=2a 2,即c 2﹣a 2=2a 2, 即c 2=3a 2解得:e =√3 故选:A .2.(2020•珠海三模)已知椭圆C :x 216+3y 216=1,M 为椭圆C 上的一个动点,以M 为圆心,2为半径作圆M ,OP ,OQ 为圆M 的两条切线,P ,Q 为切点,则∠POQ 的取值范围是( ) A .[π3,π2]B .[π4,π2]C .[π6,π2]D .[π3,2π3]【解答】解:由椭圆方程可得a 2=16,b 2=163,则a =4,b =4√33,如图,设锐角∠POM =α,在Rt △POM 中,sin α=PMOM =2OM , 因为OM ∈[4√33,4],即sin α=2OM ∈[12,√32], 故α∈[π6,π3],所以∠POQ =2α∈[π3,2π3],故选:D .3.(2020•陕西模拟)已知双曲线E :x 2a −y 2b =1(a >0,b >0)的左、右焦点分别为F 1、F 2,点M 在双曲线E 的右支上,若∠F 1MF 2∈[π4,π3],则MF 1→⋅MF 2→的取值范围是( ) A .[√2b 2,2b 2] B .[2b 2,2(√2+1)b 2] C .[(√2−1)b 2,b 2]D .[b 2,(√2+1)b 2]【解答】解:设:|MF 1|=m ,|MF 2|=n ,∠F 1MF 2=θ, 则由余弦定理可得:4c 2=m 2+n 2﹣2mn cos ∠F 1MF 2. 又m ﹣n =2a ,则m 2+n 2﹣2mn =4a 2,解得mn =2b21−cosθ,所以MF 1→⋅MF 2→=|MF 1→|⋅|MF 2→|cos ∠F 1MF 2=mn cos θ=2b 2cosθ1−cosθ=2b21cosθ−1.因为:θ∈[π4,π3],所以12≤cosθ≤√22,则√2≤1cosθ≤2√2−1≤1cosθ−1≤1,所以2b 2≤2b 21cosθ−1≤2b 22−1=2(√2+1)b 2,所以MF 1→⋅MF 2→的取值范围是:[2b 2,2(√2+1)b 2],故选:B .4.(2020•湖北模拟)已知P 是双曲线E :y 24−x 2m=1上任意一点,M ,N 是双曲线上关于坐标原点对称的两点,且直线PM ,PN 的斜率分别为k 1,k 2(k 1k 2≠0),若|k 1|+|k 2|的最小值为1,则实数m 的值为( ) A .16B .2C .1或16D .2或8【解答】解:设P (x ,y ),M (s ,t ),则N (﹣s ,﹣t ),所以{y 24−x 2m=1t 24−s 2m =1两式相减可得:y 2−t 24=x 2−s 2m ,所以y 2−t 2x −s =4m,所以k 1k 2=y−t x−s ⋅y+t x+s =y 2−t 2x 2−s 2=4m,在双曲线的方程中,m >0,所以|k 1|+|k 2|≥2√|k 1|⋅|k 2|=2√4m =4√m ,由题意可得√m=1,解得m =16,故选:A .5.(2020•西安二模)点P 是抛物线y 2=4x 上一动点,则点P 到点A (0,﹣1)的距离与点P 到直线x =﹣2的距离和的最小值是( ) A .√5B .√2C .√2−1D .√2+1【解答】解:由题可知,焦点F (1,0),准线为x =﹣1,过P 作PN ⊥准线于N ,连接PF 、AF ,由抛物线的定义可知,|PN |=|PF |,|F A |≤|P A |+|PF |,所以当P 为AF 与抛物线的交点时,点P 到点A 的距离与点P 到直线x =﹣1的距离之和的最小值为|F A |=√2,所以点P 到点A 的距离与P 到直线x =﹣2的距离和的最小值是√2+1. 故选:D .6.(2020•昆明一模)已知F 为抛物线y 2=2px (p >0)的焦点,准线为l ,过焦点F 的直线与抛物线交于。

人教新课标版数学高二-数学选修2-1综合素质检测 第二章 圆锥曲线与方程

人教新课标版数学高二-数学选修2-1综合素质检测 第二章 圆锥曲线与方程

第二章综合素质检测时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2013·四川文,5)抛物线y2=8x的焦点到直线x-3y=0的距离是()A.23B.2C. 3 D.1[答案] D[解析]由y2=8x可得其焦点坐标(2,0),根据点到直线的距离公式可得d=|2-3×0|12+(-3)2=1.2.已知椭圆x2a2+y225=1(a>5)的两个焦点为F1、F2,且|F1F2|=8,弦AB经过焦点F1,则△ABF2的周长为()A.10 B.20C.241 D.441[答案] D[解析]由椭圆定义可知,有|AF1|+|AF2|=2a,|BF1|+|BF2|=2a,∴△ABF2的周长L=|AB|+|AF2|+|BF2|=|AF1|+|AF2|+|BF1|+|BF2|=2a+2a=4a.由题意可知b2=25,2c=8,∴c2=16a 2=25+16=41,∴a =41,∴L =441,故选D. 3.椭圆x 2m 2+y 23-m =1的一个焦点为(0,1),则m =( )A .1 B.-1±172C .-2或1D .-2或1或-1±172[答案] C[解析] ∵焦点在y 轴上,∴3-m >m 2. 由3-m -m 2=1得m =1或-2,∴选C.4.设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为( )A .y =±2xB .y =±2xC .y =±22x D .y =±12x[答案] C[解析] ∵2b =2,2c =23,∴b =1,c =3,∴a 2=c 2-b 2=3-1=2,∴a =2,故渐近方程为y =±b a x =±22x .5.(2013·天津理,5)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( )A .1 B.32 C .2D .3[答案] C[解析] ∵e =2,∴b 2=3a 2,双曲线的两条渐近线方程为y =±3x ,不妨设A =(-p 2,3p 2),B (-p 2,-3p2),则AB =3p ,又三角形的高为p 2,则S △AOB =12×p2×3p =3,即p 2=4,又p >0,∴p =2.6.已知a >b >0,e 1,e 2分别为圆锥曲线x 2a 2+y 2b 2=1和x 2a 2-y 2b 2=1的离心率,则lg e 1+lg e 2( )A .大于0且小于1B .大于1C .小于0D .等于1[答案] C[解析] ∵lg e 1+lg e 2=lga 2-b 2a+lg a 2+b 2a =lga 4-b 4a 2<lg a 2a 2=lg1=0,∴lg e 1+lg e 2<0.7.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( )A.x 24-y 24=1 B.y 24-x 24=1 C.y 24-x 28=1 D.x 28-y 24=1[答案] B[解析] 依题意有⎩⎪⎨⎪⎧a =22a +2b =2·2ca 2+b 2=c2,解得a =2,b =2.又焦点在y 轴上,∴双曲线的标准方程为y 24-x 24=1.8.已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点.如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A .圆B .椭圆C .双曲线的一支D .抛物线[答案] A[解析] 由题意知,|QF 1|=|QP |+|PF 1|=|PF 2|+|PF 1|=2a .(2a 为椭圆长轴长),∴Q 点轨迹是以F 1为圆心,2a 为半径的圆.9.(2013·新课标Ⅱ理,11)设抛物线C :y 2=3px (p >0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16x[答案] C[解析] 由已知F (34p,0),A (0,2),M (y 23p ,y 0),∵AF ⊥AM ,∴k AF ·k AM =-1, 即2-34p ×2-y 0-y 203p=-1,∴y 20-8y 0+16=0,∴y 0=4,∴M (163p ,4),∵|MF |=5,∴5=(34p -163p )2+16,∴(34p -163p )2=9.∴3p 4-163p =3或3p 4-163p =-3, ∴9p 2-36p -64=0,① 或9p 2+36p -64=0, 由①得∴p =-43(舍),p =163. 由②得p =43(p =-163舍), ∴c 的方程为y 2=4x 或y 2=16x .10.已知θ∈R ,则方程x 2+y 2cos θ=4表示的曲线不可能是( ) A .抛物线 B .双曲线 C .椭圆 D .圆[答案] A[解析] 当θ=0时,cos θ=1,方程表示圆; 当θ=π3时,cos θ=12,方程表示椭圆;当θ=2π3时,cos θ=-12,方程表示双曲线,故选A.11.探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处,已知灯口的直径为60 cm ,灯深40 cm ,则抛物线的标准方程可能是( )A .y 2=254x B .y 2=454x C .x 2=-452yD .x 2=-454y[答案] C[解析] 如果设抛物线的方程为y 2=2px (p >0),则抛物线过点(40,30),302=2p ×40,2p =452,所以抛物线的方程应为y 2=452x ,所给选项中没有y 2=452x ,但方程x 2=-452y 中的“2p ”的值为452,所以选项C 符合题意.12.(2013·新课标Ⅰ理,10)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1 B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1[答案] D[解析] 设A 点坐标的(x 1,y 1),B 点坐标为(x 2,y 2),∴⎩⎪⎨⎪⎧x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1.两式相减得,x 21-x 22a 2=y 22-y 21b 2,即(x 1-x 2)(x 1+x 2)a 2=(y 2-y 1)(y 2+y 1)b 2, ∵x 1+x 2=2,y 1+y 2=-2,∴k =y 2-y 1x 2-x 1=b 2a 2,又∵k =-1-01-3=12,∴b 2a 2=12,又∵c 2=a 2-b 2=2b 2-b 2=b 2,c 2=9, ∴b 2=9,a 2=18,即标准方程为x 218+y 29=1,故选D.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.椭圆x 24+y 23=1的两焦点为F 1、F 2点P 在椭圆上,使∠F 1PF 2=90°的点P 有________个.[答案] 0[解析] 设a >b >0,c =a 2-b 2,以O 为圆心,以c 为半径画圆;当c <b 时,圆与椭圆无公共点,此时椭圆上无满足要求的点;当c =b 时,圆与椭圆切于短轴的两个端点,此时满足要求的点有两个,即椭圆短轴两个端点;当c >b 时,椭圆与圆有四个交点,此时满足条件的点有这四个点,这里a 2=4,b 2=3,∴c =1,b =3,因此这样的点P 不存在.14.已知双曲线x 2-y 2b 2=1(b >0)的一条渐近线的方程为y =2x ,则b =________.[答案] 2[解析] ∵双曲线的焦点在x 轴上,∴ba =2, ∴b 2a 2=4,∴b 2=4,又∵b >0,∴b =2.15.(2013·辽宁理,15)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|AF |=6,cos ∠ABF =45,则C 的离心率e =________.[答案] 57[解析] 本题考查椭圆的几何性质,解三角形问题. 在△ABF 中,由余弦定理得,cos ∠ABF =|AB |2+|BF |2-|AF |22|AB |·|BF |,∴|BF |2-16|BF |+64=0,∴|BF |=8,设右焦点为F 1,因为直线过原点,∴|BF 1|=|AF |=6, ∴2a =|BF |+|BF 1|=14,∴a =7, ∵O 为Rt △ABF 斜边AB 的中点, ∴|OF |=12|AB |=5,∴c =5,∴e =57.16.方程x 24-t +y 2t -1=1表示曲线C ,给出以下命题:①曲线C 不可能为圆; ②若1<t <4,则曲线C 为椭圆; ③若曲线C 为双曲线,则t <1或t >4; ④若曲线C 为焦点在x 轴上的椭圆,则1<t <52.其中真命题的序号是________(写出所有正确命题的序号). [答案] ③④[解析] 显然当t =52时,曲线为x 2+y 2=32,方程表示一个圆;而当1<t <4,且t ≠52时,方程表示椭圆;当t <1或t >4时,方程表示双曲线;而当1<t <52时,4-t >t -1>0,方程表示焦点在x 轴上的椭圆,故③④为真命题.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)若已知椭圆x 210+y 2m =1与双曲线x 2-y2b =1有相同的焦点,又椭圆与双曲线交于点P (103,y ),求椭圆及双曲线的方程.[解析] 由椭圆与双曲线有相同的焦点得 10-m =1+b ,即m =9-b ① 又点P (103,y )在椭圆、双曲线上,得 y 2=89m ,②y 2=b 9.③解由①、②、③组成的方程组得m =1,b =8,∴椭圆方程为x 210+y 2=1,双曲线方程为x 2-y28=1.18.(本小题满分12分)求以直线x +2y =0为渐近线,且截直线x -y -3=0所得弦长为833的双曲线的标准方程.[解析] 由于双曲线渐近线方程为x +2y =0,故可设双曲线方程为x 2-4y 2=λ(λ≠0).设直线x -y -3=0与双曲线的交点为A (x 1,y 1),B (x 2,y 2).联立方程组⎩⎨⎧x -y -3=0,x 2-4y 2=λ.消去y ,整理得3x 2-24x +36+λ=0. 由Δ=242-12(36+λ)>0,解得λ<12. 由根与系数关系可得⎩⎪⎨⎪⎧x 1+x 2=8,x 1·x 2=36+λ3.代入弦长公式中,|AB |=2|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2 =2·82-4×36+λ3=8(12-λ)3, 于是8(12-λ)3=833,解得λ=4(与λ<12符合). 故所求的双曲线方程为x 24-y 2=1.19.(本小题满分12分)已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.[解析] (1)直线AB 的方程是y =22(x -p 2),与y 2=2px 联立,从而有4x 2-5px +p 2=0,所以x 1+x 2=5p 4, 由抛物线定义得|AB |=x 1+x 2+p =9,所以p =4,从而抛物线方程是y 2=8x .(2)由p =4,方程4x 2-5px +p 2=0可化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-22,y 2=42,从而A (1,-22),B (4,42).设OC →=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22),又y 23=8x 3,即[22(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,解得λ=0或λ=2.20.(本小题满分12分)(2013·新课标Ⅰ文,21)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求|AB |.[解析] (1)因为圆P 与圆M 外切并且与圆N 内切,所以|PM |+|PN |=(R +r 1)+(r 2-R )=r 1+r 2=4.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程式为x 24+y 23=1(x ≠-2).(2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4.若l 的倾斜角为90°,则l 与y 轴重合,可得|AB |=2 3.若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,设l 与x 轴的交点为Q ,则|QP ||QM |=R r 1,可求出Q (-4,0),所以可设l :y =k (x +4),由l 与圆M 相切得|3k |1+k2=1,解得k =±24. 当k =24时,将y =24x +2代入x 24+y 23=1并整理得,7x 2+8x-8=0,解得x 1,2=-4±627. 所以|AB |=1+k 2|x 2-x 1|=187. 当k =-24时,由图形的对称性可知|AB |=187.综上,|AB |=23或|AB |=187.21.(本小题满分12分)已知双曲线的中心在原点,焦点F 1、F 2在坐标轴上,一条渐近线方程为y =x ,且过点(4,-10).(1)求双曲线方程;(2)若点M (3,m )在此双曲线上,求MF 1→·MF 2→.[解析] (1)由题意知双曲线的方程是标准方程.∵双曲线的一条渐近线方程为y =x ,∴设双曲线方程为x 2-y 2=λ.把点(4,-10)代入双曲线方程得,λ=6.∴所求双曲线方程为x 2-y 2=6.(2)双曲线的焦点为F 1(-23,0)、F 2(23,0).∵M 点在双曲线上,∴32-m 2=6,m 2=3.∴MF 1→·MF 2→=(-23-3,-m )·(23-3,-m )=(-3)2-(23)2+m 2=0.22.(本小题满分14分)已知中心在坐标原点O 的椭圆C 经过点A (2,3),且点F (2,0)为其右焦点.(1)求椭圆C 的方程;(2)是否存在平行于OA 的直线l ,使得直线l 与椭圆C 有公共点,且直线OA 与l 的距离等于4?若存在,求出直线l 的方程;若不存在,请说明理由.[解析] (1)设椭圆的方程x 2a 2+y 2b 2=1(a >b >0),∵F (2,0)是椭圆的右焦点,且椭圆过点A (2,3),∴⎩⎨⎧ c =2,2a =3+5=8,∴⎩⎨⎧ c =2,a =4.∵a 2=b 2+c 2,∴b 2=12,故椭圆方程为x 216+y 212=1.(2)假设存在符合题意的直线l ,其方程y =32x +t .由⎩⎪⎨⎪⎧ y =32x +t ,x 216+y 212=1.消去y ,得3x 2+3tx +t 2-12=0. ∵直线l 与椭圆有公共点,∴Δ=(3t )2-12(t 2-12)≥0,解得-43≤t ≤4 3. 另一方面,由直线OA 与l 的距离等于4, 可得,|t |94+1=4,∴t =±213. 由于±213∉[-43,43],故符合题意的直线l 不存在.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(数学选修2-1)第二章 圆锥曲线 [综合训练B 组]
一、选择题
1.如果22
2
=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )
A .()+∞,0
B .()2,0
C .()+∞,1
D .()1,0
2.以椭圆
116
252
2=+y x 的顶点为顶点,离心率为2的双曲线方程( ) A .
1481622=-y x B .12792
2=-y x C .
1481622=-y x 或127
92
2=-y x D .以上都不对 3.过双曲线的一个焦点2F 作垂直于实轴的弦PQ ,1F 是另一焦点,若∠2

=
Q PF ,
则双曲线的离心率e 等于( )
A .12-
B .2
C .12+
D .22+
4.21,F F 是椭圆17
92
2=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则 Δ12AF F 的面积为( )
A .7
B .
47 C .2
7
D .257
5.以坐标轴为对称轴,以原点为顶点且过圆09622
2
=++-+y x y x 的圆心的抛物线的方程是( )
A .2
3x y =或2
3x y -= B .2
3x y =
C .x y 92
-=或2
3x y = D .2
3x y -=或x y 92
=
6.设AB 为过抛物线)0(22
>=p px y 的焦点的弦,则AB 的最小值为( )
A .
2
p
B .p
C .p 2
D .无法确定
二、填空题
1.椭圆
22189x y k +=+的离心率为1
2
,则k 的值为______________。

2.双曲线2
2
88kx ky -=的一个焦点为(0,3),则k 的值为______________。

3.若直线2=-y x 与抛物线x y 42
=交于A 、B 两点,则线段AB 的中点坐标是______。

4.对于抛物线2
4y x =上任意一点Q ,点(,0)P a 都满足PQ a ≥,则a 的取值范围是____。

5.若双曲线142
2=-m
y x 的渐近线方程为x y 23±=,则双曲线的焦点坐标是_________. 6.设AB 是椭圆22
221x y a b
+=的不垂直于对称轴的弦,M 为AB 的中点,O 为坐标原点,
则AB OM k k ⋅=____________。

三、解答题
1.已知定点(A -,F 是椭圆
22
11612
x y +=的右焦点,在椭圆上求一点M , 使2AM MF +取得最小值。

2.k 代表实数,讨论方程2
2
280kx y +-=所表示的曲线
3.双曲线与椭圆
136
272
2=+y x 有相同焦点,且经过点4),求其方程。

4. 已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15, 求抛物线的方程。

(数学选修2-1) 第二章 圆锥曲线 [综合训练B 组]
一、选择题
1.D 焦点在y 轴上,则2221,20122y x k k k +=>⇒<< 2.C 当顶点为(4,0)±
时,22
4,8,11648x y a c b ===-=; 当顶点为(0,3)±
时,22
3,6,1927
y x a c b ===-= 3.C Δ12PF F
是等腰直角三角形,21212,PF F F c PF ===
122,22,1c PF PF a c a e a -=-==
== 4.
C 1212216,6F F AF AF AF AF =+==-
22202
2112112112cos 4548AF AF F F AF F F AF AF =+-⋅=-+
2211117
(6)48,,2
AF AF AF AF -=-+=
177222
S =⨯⨯=
5.D 圆心为(1,3)-,设2
2
1
1
2,,6
3
x py p x y ==-=-; 设22
92,,92
y px p y x ==
= 6.C 垂直于对称轴的通径时最短,即当,,2
p
x y p ==±min 2AB p =
二、填空题
1.54,4
-或 当89k +>时,22
2891,484c k e k a k +-==
==+; 当89k +<时,22
29815
,944
c k e k a --==
==- 2.1- 焦点在y 轴上,则22811,()9,181y x k k k k k
-=-+-==--- 3.(4,2) 22
1212124,840,8,442
y x x x x x y y x x y x ⎧=-+=+=+=+-=⎨
=-⎩
中点坐标为1212
(
,)(4,2)22
x x y y ++= 4.(],2-∞ 设2(,)4t Q t ,由PQ a ≥得222222
(),(168)0,4
t a t a t t a -+≥+-≥
2
2
1680,816t a t a +-≥≥-恒成立,则8160,2a a -≤≤
5.
(
渐近线方程为y x =
,得3,m c ==x 轴上 6. 22b a - 设1122(,),(,)A x y B x y ,则中点1212
(,)22
x x y y M ++,得2121,AB y y k x x -=-
2121OM
y y k x x +=+,222122
21
AB OM y y k k x x -⋅=-,222222
11,b x a y a b += 2
2
2
2
22
22,b x a y a b +=得2
2
2
2
2
221
21
()()0,b x x a y y -+-=即222
2122
221y y b x x a
-=-- 三、解答题
1.解:显然椭圆
2211612x y +=的1
4,2,2
a c e ===,记点M 到右准线的距离为MN 则
1
,22
MF e MN MF MN ===,即2AM MF AM MN +=+ 当,,A M N 同时在垂直于右准线的一条直线上时,2AM MF +取得最小值,
此时y y M A ==22
11612
x y +=
得x M =±而点M
在第一象限,M ∴
2.解:当0k <时,曲线
22
184y x k
-=-为焦点在y 轴的双曲线; 当0k =时,曲线2
280y -=为两条平行的垂直于y 轴的直线;
当02k <<时,曲线22
184x y k
+=为焦点在x 轴的椭圆; 当2k =时,曲线2
2
4x y +=为一个圆;
当2k >时,曲线
22
18
4y x k
+=为焦点在y 轴的椭圆。

3.解:椭圆2213627y x +=的焦点为(0,3),3c ±=,设双曲线方程为22
2219y x a a
-=-
过点4),则
221615
19a a
-=-,得24,36a =或,而29a <, 2
4a ∴=,双曲线方程为22
145
y x -=。

4.解:设抛物线的方程为2
2y px =,则22,21y px
y x ⎧=⎨=+⎩
消去y 得
21212214(24)10,,24
p x p x x x x x ---+=+=
=
12AB x =-=
==,
24120,2,6p p p =--==-或 22412y x y x ∴=-=,或。

相关文档
最新文档