人教A版选修2-2 1.6 微积分基本定理 学案 (2)
2020年人教版A版数学选修2-2全册完整讲义学案(教师用书)
第一章导数及其应用§1.1变化率与导数§1.1.1变化率问题§1.1.2导数的概念§1.1.3导数的几何意义§1.2导数的计算§1.2.1几个常用函数的导数§1.2.2基本初等函数的导数公式及导数的运算法则(一) §1.2.2基本初等函数的导数公式及导数的运算法则(二) §1.3导数在研究函数中的应用§1.3.1函数的单调性与导数§1.3.2函数的极值与导数§1.3.3函数的最大(小)值与导数§1.4生活中的优化问题举例§1.5定积分的概念§1.5.1曲边梯形的面积§1.5.2汽车行驶的路程§1.5.3定积分的概念§1.6微积分基本定理§1.7定积分的简单应用§1.7.1定积分在几何中的应用§1.7.2定积分在物理中的应用章末整合提升章末达标测试第二章推理与证明§2.1合情推理与演绎推理§2.1.1合情推理§2.1.2演绎推理§2.2直接证明与间接证明§2.2.1综合法和分析法§2.2.2反证法§2.3数学归纳法章末整合提升章末达标测试第三章数系的扩充与复数的引入§3.1数系的扩充和复数的概念§3.1.1数系的扩充和复数的概念§3.1.2复数的几何意义§3.2复数代数形式的四则运算§3.2.1复数代数形式的加、减运算及其几何意义§3.2.2复数代数形式的乘除运算章末整合提升章末达标测试模块综合检测§1.1 变化率与导数§1.1.1 变化率问题 §1.1.2 导数的概念[课标要求]1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景.(难点) 2.会求函数在某一点附近的平均变化率.(重点)3.会利用导数的定义求函数在某点处的导数.(重点、难点)一、函数平均变化率如果函数关系用y =f (x )表示,那么变化率可用式子f (x 2)-f (x 1)x 2-x 1表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率.习惯上用Δx 表示x 2-x 1,即Δx =x 2-x 1,可把Δx 看作是相对于x 1的一个“增量”,可用x 1+Δx 代替x 2;类似地,Δy =f (x 2)-f (x 1).于是平均变化率可以表示为Δy Δx. 二、导数的有关概念 1.瞬时变化率函数y =f (x )在x =x 0处的瞬时变化率是f (x 0+Δx )-f (x 0)Δx =ΔyΔx. 2.函数y =f (x )在x =x 0处的导数函数y =f (x )在x =x 0处的瞬时变化率称为函数y =f (x )在x =x 0处的导数,记作,即f ′(x 0)=ΔyΔx=f (x 0+Δx )-f (x 0)Δx.知识点一 平均变化率 【问题1】 气球的膨胀率 阅读教材,思考下面的问题.吹一只气球,观察一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度,如何描述这种现象呢?答案 气球的半径r (单位:dm)与体积V (单位:L)之间的函数关系是r (V )=33V4π, (1)当空气容量V 从0增加到1 L 时,气球半径增加了r (1)-r (0)≈0.62(dm), 气球的平均膨胀率为r (1)-r (0)1-0≈0.62(dm/L).(2)当空气容量V 从1 L 增加到2 L 时,气球半径增加了r (2)-r (1)≈0.16(dm), 气球的平均膨胀率为r (2)-r (1)2-1≈0.16(dm/L).可以看出,随着气球体积逐渐变大,它的平均膨胀率逐渐变小了. 【问题2】 高台跳水人们发现,在高台跳水运动中,运动员相对于水面的高度h (单位:m)与起跳后的时间t (单位:s)存在函数关系h (t )=-4.9t 2+6.5t +10.计算运动员在时间段①0≤t ≤0.5,②1≤t ≤2内的平均速度v ,并思考平均速度有什么作用? 答案 (1)在0≤t ≤0.5这段时间里,v =h (0.5)-h (0)0.5-0=4.05(m/s);(2)在1≤t ≤2这段时间里,v =h (2)-h (1)2-1=-8.2(m/s).由以上计算体会到平均速度可以描述运动员在某段时间内运动的快慢. 【问题3】 结合问题1和问题2说出你对平均变化率的理解.答案 (1)如果上述两个问题中的函数关系用y =f (x )表示,那么问题1中的变化率可用式子f (x 2)-f (x 1)x 2-x 1表示,我们把这个式子称为函数y =f (x )从x 1到x 2的平均变化率,平均变化率可以描述一个函数在某个范围内变化的快慢.问题1中的平均变化率表示在空气容量从V 1增加到V 2时,气球半径的平均增长率.问题2中的平均变化率表示在时间从t 1增加到t 2时,高度h 的平均增长率.(2)平均变化率的几何意义就是函数y =f (x )图象上两点P 1(x 1,f (x 1)),P 2(x 2,f (x 2))所在直线的斜率. (3)平均变化率的取值①平均变化率可以表现函数的变化趋势,平均变化率为0,并不一定说明函数f (x )没有发生变化.②自变量的改变量Δx 取值越小,越能准确体现函数的变化规律. (4)平均变化率的物理意义平均变化率的物理意义是把位移s 看成时间t 的函数s =s (t ),在时间段[t 1,t 2]上的平均速度,即v =s (t 2)-s (t 1)t 2-t 1.知识点二 函数在某点处的导数【问题1】 (1)物体的平均速度能否精确反映它的运动状态? (2)什么叫做瞬时速度? (3)它与平均速度有什么关系?答案 (1)物体的平均速度不能精确地反映物体的运动状态,如高台跳水运动员相对于水面的高度h 与起跳时间t 的函数关系h (t )=-4.9t 2+6.5t +10,易知h (6549)=h (0),v =h (6549)-h (0)6546-0=0,而运动员依然是运动状态.(2)设物体运动的路程与时间的关系是s =f (t ),当Δt 趋近于0时,函数f (t )在t 0到t 0+Δt 之间的平均变化率f (t 0+Δt )-f (t 0)Δt趋近于常数,我们把这个常数称为t 0时刻的瞬时速度.(3)平均速度只能粗略地描述物体的运动状态,并不能反映物体在某一时刻的瞬时速度.当时间间隔|Δt |趋近于0时,平均速度v 就无限趋近于t 0时的瞬时速度.【问题2】 平均变化率与瞬时变化率有什么关系?答案 (1)区别:平均变化率不是瞬时变化率.平均变化率刻画函数值在区间[x 1,x 2]上变化的快慢,瞬时变化率刻画函数值在x 0点处变化的快慢.(2)联系:当Δx 趋近于0时,平均变化率ΔyΔx 趋近于一个常数,这个常数即为函数在x 0处的瞬时变化率,它是一个固定值.【问题3】 导数与瞬时变化率有什么关系? 答案 导数与瞬时变化率的关系导数是函数在x 0及其附近函数的改变量Δy 与自变量的改变量Δx 之比在Δx 趋近于0时所趋近的数,它是一个局部性的概念,若ΔyΔx存在,则函数y =f (x )在x 0处有导数,否则不存在导数.可以说导数就是函数在某点处的导数,例如,位移s 关于时间t 的导数就是运动物体在某时刻的瞬时速度.题型一 求函数的平均变化率求函数f (x )=x 2在x 0到x 0+Δx 之间的平均变化率. 【解析】 函数f (x )=x 2在x 0到x 0+Δx 的平均变化率为 f (x 0+Δx )-f (x 0)Δx =(x 0+Δx )2-x 20Δx=x 20+2x 0Δx +(Δx )2-x 2Δx=2x 0·Δx +(Δx )2Δx =2x 0+Δx .●规律方法求函数y =f (x )平均变化率的步骤(1)先计算函数值的改变量Δy =f (x 2)-f (x 1). (2)再计算自变量的改变量Δx =x 2-x 1. (3)得平均变化率Δy Δx =f (x 2)-f (x 1)x 2-x 1.[特别提醒](1)求函数平均变化率时注意Δx ,Δy ,两者都可正、可负,但Δx 的值不能为零,Δy 的值可以为零. (2)求点x 0附近的平均变化率,可用f (x 0+Δx )-f (x 0)Δx的形式.1.若本例中,Δx =13,x 0=1,2,3,比较函数f (x )=x 2在哪一点附近的平均变化率最大?解析 x 0=1到x =1+13=43的平均变化率k 1=f ⎝⎛⎭⎫43-f (1)13=⎝⎛⎭⎫432-1213=73, x 0=2到x =73的平均变化率k 2=f ⎝⎛⎭⎫73-f (2)13=⎝⎛⎭⎫732-2213=133,x 0=3到x =103的平均变化率k 3=f ⎝⎛⎭⎫103-f (3)13=⎝⎛⎭⎫1032-3213=193,由于k 1<k 2<k 3,∴函数f (x )=x 2在x 0=3附近的平均变化率最大. 题型二 物体运动的瞬时速度物体自由落体的运动方程是s =12gt 2(g =9.8 m/s 2),求物体在t =3 s 这一时刻的速度.【解析】 平均速度Δs Δt =12g (3+Δt )2-12g ×32Δt=12g (6+Δt ). 当Δt 趋于0时,Δs Δt =12g (6+Δt )趋于3g ,所以v =3g =29.4(m/s),即物体在t =3 s 时的速度为29.4 m/s.●规律方法求运动物体瞬时速度的步骤(1)求时间改变量Δt 和位置改变量Δs =s (t 0+Δt )-s (t 0). (2)求平均速度v =ΔsΔt.(3)求瞬时速度:当Δt 无限趋近于0,ΔsΔt 无限趋近于的常数v 即为瞬时速度.提示 求ΔyΔx (当Δx 无限趋近于0时)的极限的方法(1)在极限表达式中,可把Δx 作为一个变量来参与运算.(2)求出ΔyΔx的表达式后,Δx 无限趋近于0就是令Δx =0,求出结果即可.2.一辆汽车按规律s =2t 2+3做直线运动,求这辆车在t =2时的瞬时速度(时间单位:s ,位移单位:m). 解析 设这辆车在t =2附近的时间变化量为Δt ,则位移的增量Δs =[2(2+Δt )2+3]-(2×22+3)=8Δt +2(Δt)2,ΔsΔt=8+2Δt,ΔsΔt=(8+2Δt)=8.所以,这辆车在t=2时的瞬时速度为8 m/s.题型三求函数在某点处的导数(6分)求函数y=x-1x在x=1处的导数.【规范解答】因为Δy=(1+Δx)-11+Δx-(1-11)=Δx+Δx1+Δx,(2分)所以ΔyΔx=Δx+Δx1+ΔxΔx=1+11+Δx.(4分)当Δx→0时,f′(1)=ΔyΔx=(1+11+Δx)=2,即函数y=x-1x在x=1处的导数为2.(6分)●规律方法求函数y=f(x)在x=x0处的导数的步骤(1)求函数值的变化量Δy=f(x0+Δx)-f(x0);(2)求平均变化率ΔyΔx=f(x0+Δx)-f(x0)Δx;(3)取极限,得导数f′(x0)=ΔyΔx.3.利用导数的定义求函数f(x)=-x2+3x在x=2处的导数.解析由导数的定义知,函数在x=2处的导数f′(2)=f(2+Δx)-f(2)Δx,而f(2+Δx)-f(2)=-(2+Δx)2+3(2+Δx)-(-22+3×2)=-(Δx)2-Δx,于是f′(2)=-(Δx)2-ΔxΔx=(-Δx-1)=-1.易错误区(一) 对导数的概念理解不清致误若函数f (x )在x =a 的导数为m ,那么 f (a +2Δx )-f (a -2Δx )Δx 的值为________.【解析】f (a +2Δx )-f (a -2Δx )Δx=f (a +2Δx )-f (a )+f (a )-f (a -2Δx )Δx=f (a +2Δx )-f (a )Δx +f (a )-f (a -2Δx )Δx ①=2f (a +2Δx )-f (a )2Δx+2f (a -2Δx )-f (a )-2Δx=2m +2m =4m . 【答案】 4m [易错防范]1.误认为①处两极限值均为m ,即运算结果为2m .2.对平均变化率中自变量的增加量“Δx ”理解不当.在平均变化率f (x 0+Δx )-f (x 0)Δx 中,分子中的“Δx ”与分母中的“Δx ”应取相同值,且可正可负.3.熟记瞬时变化率(即导数)的几种变形形式f (x 0+Δx )-f (x 0)Δx=f (x 0-Δx )-f (x 0)-Δx=f (x 0+n Δx )-f (x 0)n Δx=f (x 0+Δx )-f (x 0-Δx )2Δx=f ′(x 0).若f ′(1)=2 016,则f (1+Δx )-f (1)-2Δx=________.解析f (1+Δx )-f (1)-2Δx=-12f (1+Δx )-f (1)Δx=-12f ′(1)=-12×2 016=-1 008.答案 -1 008[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.质点运动规律s =2t 2+5,则在时间(2,2+Δt )中,相应的平均速度等于 A .8+2Δt B .8+2Δt +4ΔtC .4+ΔtD .8+Δt解析 Δs =s (2+Δt )-s (2)=2(2+Δt )2+5-(2×22+5)=2(Δt )2+8Δt . ∴Δs Δt =2(Δt )2+8Δt Δt =8+2Δt . 答案 A2.函数y =x 2-2x 在x =2附近的平均变化率是 A .2B .ΔxC .Δx +2D .1解析 Δy =f (2+Δx )-f (2) =(2+Δx )2-2(2+Δx )-(4-4) =(Δx )2+2Δx ,∴Δy Δx =(Δx )2+2Δx Δx=Δx +2.答案 C3.设函数y =f (x )可导,则f (1+3Δx )-f (1)Δx 等于 A .f ′(1)B .3f ′(1) C.13f ′(1) D .以上都不对 解析 f (1+3Δx )-f (1)Δx=3f (1+3Δx )-f (1)3Δx =3f ′(1). 答案 B4.一个物体的运动方程为s =(2t +1)2,其中s 的单位是米,t 的单位是秒,那么该物体在1秒末的瞬时速度是A .10米/秒B .8米/秒C .12米/秒D .6米/秒解析 ∵s =4t 2+4t +1,Δs =[4(1+Δt )2+4(1+Δt )+1]-(4×12+4×1+1)=4(Δt )2+12Δt ,Δs Δt =4(Δt )2+12Δt Δt=4Δt +12, ∴v =Δs Δt =(4Δt +12)=12(米/秒). 答案 C5.如果函数y =f (x )=x 在点x =x 0处的瞬时变化率是33,那么x 0的值是 A.34B.12 C .1D .3解析 函数f (x )=x 在x =x 0处的瞬时变化率,f ′(x 0)=x 0+Δx -x 0Δx =Δx Δx (x 0+Δx +x 0)=12x 0=33,答案 A 6.某物体做直线运动,其运动规律是s =t 2+16t(t 的单位是秒,s 的单位是米),则它的瞬时速度为0米/秒的时刻为A .8秒末B .6秒末C .4秒末D .2秒末解析 设当t =t 0时该物体瞬时速度为0米/秒,∵Δs Δt =(t 0+Δt )2+16t 0+Δt -⎝⎛⎭⎫t 20+16t 0Δt =2t 0+Δt -16(t 0+Δt )t 0, ∴Δs Δt=2t 0-16t 20, 由2t 0-16t 20=0得t 0=2. 答案 D二、填空题(每小题5分,共15分)7.函数y =-3x 2+6在区间[1,1+Δx ]内的平均变化率是________.解析 Δy Δx =[-3(1+Δx )2+6]-(-3×12+6)Δx=-6Δx -3(Δx )2Δx=-6-3Δx . 答案 -6-3Δx8.一质点的运动方程为s =1t,则t =3时的瞬时速度为________. 解析 由导数定义及导数的物理意义知s ′=1t +Δt -1t Δt=-Δt (t +Δt )·t ·Δt =-1t 2+t ·Δt =-1t 2, ∴s ′ |t =3=-19,即t =3时的瞬时速度为-19.9.已知曲线y =1x -1上两点A ⎝⎛⎭⎫2,-12、B ⎝⎛⎭⎫2+Δx ,-12+Δy ,当Δx =1时,割线AB 的斜率为________. 解析 Δy =⎝ ⎛⎭⎪⎫12+Δx -1-⎝⎛⎭⎫12-1 =12+Δx -12=2-(2+Δx )2(2+Δx )=-Δx 2(2+Δx ). ∴Δy Δx =-Δx2(2+Δx )Δx =-12(2+Δx ), 即k =Δy Δx =-12(2+Δx ). ∴当Δx =1时,k =-12×(2+1)=-16. 答案 -16三、解答题(本大题共3小题,共35分)10.(10分)一做直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2.(1)求此物体的初速度;(2)求此物体在t =2时的瞬时速度;(3)求t =0到t =2的平均速度.解析 (1)v 0=s (Δt )-s (0)Δt=3Δt -(Δt )2Δt=(3-Δt )=3. (2)v 2=s (2+Δt )-s (2)Δt =(-Δt -1)=-1.(3)v -=s (2)-s (0)2=6-4-02=1. 11.(12分)已知f (x )=x 2,g (x )=x 3,求适合f ′(x 0)+2=g ′(x 0)的x 0值.解析 由导数的定义知,f ′(x 0)=Δf Δx =(x 0+Δx )2-x 20Δx =2x 0,g ′(x 0)=Δg Δx =(x 0+Δx )3-x 30Δx=3x 20. 因为f ′(x 0)+2=g ′(x 0),所以2x 0+2=3x 20,即3x 20-2x 0-2=0,解得x 0=1-73或x 0=1+73.12.(13分)节日期间燃放烟花是中国的传统习惯之一,制造时通常希望它在达到最高点时爆裂.如果烟花距地面的高度h (m)与时间t (s)之间的关系式为h (t )=-4.9t 2+14.7t +18,求烟花在t =2 s 时的瞬时速度,并解释烟花升空后的运动状况.解析 因为Δh Δt =h (t +Δt )-h (t )Δt=-9.8t -4.9Δt +14.7, 所以h ′(t )=Δh Δt =(-9.8t -4.9Δt +14.7)=-9.8t +14.7,所以h ′(2)=-4.9,即在t =2 s 时烟花正以4.9 m/s 的速度下降.由h ′(t )=0得t =1.5,所以在t =1.5 s 附近,烟花运动的瞬时速度几乎为0,此时达到最高点并爆裂,在1.5 s 之前,导数大于0且递减,所以烟花以越来越小的速度上升,在1.5 s 之后,导数小于0且绝对值越来越大,所以烟花以越来越大的速度下降,直至落地.§1.1.3 导数的几何意义[课标要求]1.了解导函数的概念;理解导数的几何意义.(难点)2.会求导函数.(重点)3.根据导数的几何意义,会求曲线上某点处的切线方程.(重点、易错点)一、导数的几何意义1.切线:如图,当点P n (x n ,f (x n ))(n =1,2,3,4…)沿着曲线f (x )趋近于点P (x 0,f (x 0))时,割线PP n 趋近于确定的位置,这个确定位置的直线PT 称为点P 处的切线.显然割线PP n 的斜率是k n =f (x n )-f (x 0)x n -x 0,当点P n 无限趋近于点P 时,k n 无限趋近于切线PT 的斜率.2.几何意义:函数y =f (x )在x =x 0处的导数的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,即曲线y =f (x )在点P (x 0,f (x 0))处的切线斜率k =f (x 0+Δx )-f (x 0)Δx=f ′(x 0).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).二、函数y =f (x )的导函数从求函数f (x )在x =x 0处导数的过程可以看到,当x =x 0时,f ′(x 0)是一个确定的数.这样,当x 变化时, f ′(x )便是x 的一个函数,我们称它为f (x )的导函数(简称导数).y =f (x )的导函数有时也记作y ′,即f ′(x )=y ′=f (x +Δx )-f (x )Δx.知识点一 导数的几何意义【问题1】 曲线的切线是不是一定和曲线只有一个公共点?答案 不一定.曲线的切线和曲线不一定只有一个公共点,和曲线只有一个公共点的直线和曲线也不一定相切.如图,曲线的切线是通过逼近将割线趋于确定位置的直线.【问题2】 曲线f (x )在点(x 0,f (x 0))处的切线与曲线过某点(x 0,y 0)的切线有何不同?答案 曲线f (x )在点(x 0,f (x 0))处的切线,点(x 0,f (x 0))一定是切点,只要求出k =f ′(x 0),利用点斜式写出切线即可;而曲线f (x )过某点(x 0,y 0)的切线,给出的点(x 0,y 0)不一定在曲线上,即使在曲线上也不一定是切点.知识点二 导数与函数的单调性【问题1】 观察下面两个图形,在曲线的切点附近(Δx →0时)曲线与那一小段线段有何关系?答案 能在曲线的切点附近,曲线与切线贴合在一起,可用切线近似代替曲线.【问题2】 按照切线近似代替曲线的思想,切线的单调性能否表示曲线的变化趋势?如上左图,若在某一区间上曲线上各点的切线斜率均为负,则可判定在该区间上曲线的单调性如何?答案 在连续区间上切线斜率的正负,对应了曲线的单调性.【问题3】 如问题1中右图,当t 在(t 0,t 2)上变化时,其对应各点的导数值变化吗?会怎样变化? 答案 会.当t 变化时h ′(t )便是t 的一个函数,我们称它为h (t )的导函数.知识点三 函数y =f (x )的导函数【问题】 函数在某点处的导数与导函数有什么关系?答案 区别:(1)f ′(x )是函数f (x )的导函数,简称导数,是对一个区间而言的,它是一个确定的函数,依赖于函数本身,而与x 0,Δx 无关;(2)f ′(x 0)表示的是函数f (x )在x =x 0处的导数,是对一个点而言的,它是一个确定的值,与给定的函数及x 0的位置有关,而与Δx 无关.联系:在x =x 0处的导数f ′(x 0)是导函数f ′(x )在x =x 0处的函数值,因此求函数在某一点处的导数,一般先求导函数,再计算导函数在这点的函数值.题型一 求曲线的切线方程已知曲线y =13x 3上一点P ⎝⎛⎭⎫2,83,如图,求:(1)点P 处的切线的斜率;(2)点P 处的切线方程.【解析】 (1)∵y =13x 3, ∴y ′=Δy Δx =13(x +Δx )3-13x 3Δx =133x 2Δx +3x (Δx )2+(Δx )3Δx =13[3x 2+3x Δx +(Δx )2]=x 2, y ′|x =2=22=4.∴点P 处的切线的斜率等于4.(2)在点P 处的切线方程是y -83=4(x -2), 即12x -3y -16=0.●规律方法求曲线上某点处的切线方程的步骤(1)求出该点的坐标.(2)求出函数在该点处的导数,即曲线在该点处的切线的斜率.(3)利用点斜式写出切线方程.1.例1中的P 点换为坐标原点(0,0),其他不变,如何解答?解析 由例1知y =13x 3的导函数为y ′=x 2. (1)点P 处的切线斜率k =0.(2)在点P 处的切线方程是y -0=0×(x -0)即y =0.(注意:原点处的切线即x 轴,结合图象理解切线的定义)题型二 求切点坐标过曲线y =x 2上哪一点的切线满足下列条件?(1)平行于直线y =4x -5;(2)垂直于直线2x -6y +5=0;(3)倾斜角为135°.【解析】 f ′(x )=f (x +Δx )-f (x )Δx=(x +Δx )2-x 2Δx=2x , 设P (x 0,y 0)是满足条件的点.(1)∵切线与直线y =4x -5平行,∴2x 0=4,x 0=2,y 0=4,即P (2,4)是满足条件的点.(2)∵切线与直线2x -6y +5=0垂直,∴2x 0·13=-1,得x 0=-32,y 0=94, 即P ⎝⎛⎭⎫-32,94是满足条件的点. (3)∵切线的倾斜角为135°,∴其斜率为-1,即2x 0=-1,得x 0=-12,y 0=14, 即P ⎝⎛⎭⎫-12,14是满足条件的点. ●规律方法求切点坐标的一般步骤(1)先设切点坐标(x 0,y 0).(2)求导函数f ′(x ).(3)求切线的斜率f ′(x 0).(4)由已知条件求出切线的斜率k .由此得到方程f ′(x 0)=k ,解此方程求出x 0.(5)由于点(x 0,y 0)在曲线y =f (x )上,故将x 0代入曲线方程可得y 0,即可写出切点坐标.2.(1)曲线y =x 2-3x 在点P 处的切线平行于x 轴,则点P 的坐标为________.(2)已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________. 解析 (1)根据题意可设切点为P (x 0,y 0),因为Δy =(x +Δx )2-3(x +Δx )-(x 2-3x )=2x Δx +(Δx )2-3Δx , Δy Δx =2x +Δx -3, 所以f ′(x )=Δy Δx =(2x +Δx -3)=2x -3.由f ′(x 0)=0,即2x 0-3=0,得x 0=32, 代入曲线方程得y 0=-94, 所以P ⎝⎛⎭⎫32,-94. (2)由导数的几何意义得f ′(1)=12, 由切线方程得f (1)=12×1+2=52, 所以f (1)+f ′(1)=3.答案 (1)⎝⎛⎭⎫32,-94 (2)3 题型三 导数几何意义的综合应用已知直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 1,l 2的方程;(2)求由直线l 1、l 2和x 轴所围成的三角形的面积.【解析】 (1)f ′(1)=Δy Δx =f (1+Δx )-f (1)Δx=[(1+Δx )2+(1+Δx )-2]-(1+1-2)Δx=(Δx +3)=3, 所以直线l 1的方程为y =3x -3.设直线l 2与曲线y =x 2+x -2相切于点B (b ,b 2+b -2),则可求得切线l 2的斜率为2b +1.因为l 1⊥l 2,则有2b +1=-13,b =-23. 所以直线l 2的方程为y =-13x -229. (2)解方程组⎩⎪⎨⎪⎧y =3x -3,y =-13x -229,得⎩⎨⎧x =16,y =-52.所以直线l 1和l 2的交点坐标为⎝⎛⎭⎫16,-52. l 1、l 2与x 轴交点的坐标分别为(1,0)、⎝⎛⎭⎫-223,0. 所以所求三角形的面积S =12×253×⎪⎪⎪⎪-52=12512. ●规律方法与导数几何意义相关题目的解题策略(1)与导数的几何意义相关的综合问题解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可以求切点,切点的坐标是常设的未知量.(2)与导数的几何意义相关的题目往往涉及解析几何的相关知识,如直线间的位置关系等,因此要综合应用所学知识解题.3.设函数f (x )=x 3+ax 2-9x -1(a <0),若曲线y =f (x )的斜率最小的切线与直线12x +y =6平行,求a 的值. 解析 ∵Δy =f (x 0+Δx )-f (x 0)=(x 0+Δx )3+a (x 0+Δx )2-9(x 0+Δx )-1-(x 30+ax 20-9x 0-1)=(3x 20+2ax 0-9)Δx +(3x 0+a )(Δx )2+(Δx )3, ∴Δy Δx=3x 20+2ax 0-9+(3x 0+a )Δx +(Δx )2.当Δx 无限趋近于零时,Δy Δx 无限趋近于3x 20+2ax 0-9,即f ′(x 0)=3x 20+2ax 0-9. ∴f ′(x 0)=3⎝⎛⎭⎫x 0+a 32-9-a23. 当x 0=-a 3时,f ′(x 0)取最小值-9-a 23.∵斜率最小的切线与12x +y =6平行, ∴该切线斜率为-12. ∴-9-a 23=-12.解得a =±3.又a <0,∴a =-3.规范解答(一) 求曲线过点P (x 1,y 1)的切线方程(12分)已知函数y =f (x )=x 3-3x 及y =f (x )上一点P (1,-2),求过点P 与曲线y =f (x )相切的直线l的方程.[审题指导]【规范解答】 (1)y ′=(x +Δx )3-3(x +Δx )-x 3+3xΔx=3x 2-3.(2分)设切点坐标为(x 0,x 30-3x 0), 则直线l 的斜率k =f ′(x 0)=3x 20-3,所以直线l 的方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0).又因为直线l 过点P (1,-2),所以-2-(x 30-3x 0)=(3x 20-3)(1-x 0), 所以2x 30-3x 20+1=0,即(x 0-1)2(2x 0+1)=0,解得x 0=1或x 0=-12.(6分)故所求直线斜率为k =3x 20-3=0或k =3x 20-3=-94, 于是y -(-2)=0·(x -1)或y -(-2)=-94(x -1),即y =-2或y =-94x +14.(10分)故过点P (1,-2)的切线方程为 y =-2或y =-94x +14.(12分)[题后悟道]1.求过点P (x 1,y 1)的切线方程的步骤: (1)设切点(x 0,f (x 0)).(2)利用所设切点求斜率k =Δy Δx. (3)用(x 0,f (x 0)),P (x 1,y 1)表示斜率(或利用切点和斜率写出切线方程).(4)根据斜率相等求得x 0,然后求得斜率k (或利用已写出的切线过点P (x ,y ),求出x 0,然后求得斜率k ). (5)根据点斜式写出切线方程. 2.注意事项:(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异.过点P 的切线,点P 不一定是切点,也不一定在曲线上;在点P 处的切线,点P 必为切点,且在曲线上.(2)若曲线y =f (x )在点x 0处的导数f ′(x 0)不存在,则切线与y 轴平行或不存在;若f ′(x 0)=0,则切线与x 轴平行.已知曲线y =2x 2-7,求曲线过点P (3,9)的切线方程. 解析 y ′=Δy Δx=[2(x +Δx )2-7]-(2x 2-7)Δx=(4x +2Δx )=4x .由于2×32-7=11≠9,故点P (3,9)不在曲线上.设切点为A (x 0,y 0),则切线的斜率k =4x 0, 故所求切线方程为y -y 0=4x 0(x -x 0). 将P (3,9)及y 0=2x 20-7代入上式,得 9-(2x 20-7)=4x 0(3-x 0).解得x 0=2或x 0=4,所以切点为(2,1)或(4,25). 从而所求切线方程为8x -y -15=0或16x -y -39=0.[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.已知y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定解析 由图可知,曲线在点A 处的切线的斜率比曲线在点B 处的切线的斜率小, 结合导数的几何意义知f ′(x A )<f ′(x B ),选B. 答案 B2.曲线y =12x 2-2在点⎝⎛⎭⎫1,-32处的切线的倾斜角为 A .1 B.π4 C.5π4D .-π4解析 f ′(1)=12(1+Δx )2-2+32Δx=12+Δx +12(Δx )2-2+32Δx=(1+12Δx )=1,即切线的斜率为1,故切线的倾斜角为π4.答案 B3.若曲线y =2x 2-4x +a 与直线y =1相切,则a 等于 A .1 B .2 C .3D .4解析 设切点坐标为(x 0,1), 则f ′(x 0)=[2(x 0+Δx )2-4(x 0+Δx )+a ]-(2x 20-4x 0+a )Δx=(4x 0+2Δx -4)=4x 0-4=0,∴x 0=1,即切点坐标为(1,1). ∴2-4+a =1,即a =3. 答案 C4.设曲线y =x 2+x -2在点M 处的切线斜率为3,则点M 的坐标为 A .(0,-2) B .(1,0) C .(0,0)D .(1,1)解析 设点M (x 0,y 0), ∴k =(x 0+Δx )2+(x 0+Δx )-2-(x 20+x 0-2)Δx=2x 0+1, 令2x 0+1=3,∴x 0=1,则y 0=0.故选B. 答案 B5.曲线y =x 2在点(1,1)处的切线与坐标轴所围三角形的面积为 A.14B.12 C .1D .2 解析 f ′(1)=Δy Δx=(1+Δx )2-1Δx=(2+Δx )=2.则曲线在点(1,1)处的切线方程为y -1=2(x -1), 即y =2x -1.则三角形的面积为S =12×1×12=14.答案 A6.已知点P 在曲线F :y =x 3-x 上,且曲线F 在点P 处的切线与直线x +2y =0垂直,则点P 的坐标为 A .(1,1)B .(-1,0)C .(-1,0)或(1,0)D .(1,0)或(1,1)解析 设点P (x 0,y 0),则f ′(x 0)=ΔyΔx=[(x 0+Δx )3-(x 0+Δx )]-(x 30-x 0)Δx=3x 20-1=2⇒x 0=±1. 答案 C二、填空题(每小题5分,共15分)7.如果函数f (x )在x =x 0处的切线的倾斜角是钝角,那么函数f (x )在x =x 0附近的变化情况是________(填“逐渐上升”或“逐渐下降”).解析 由题意知f ′(x 0)<0,根据导数的几何意义知,f (x )在x =x 0附近的变化情况是“逐渐下降”. 答案 逐渐下降8.已知函数y =ax 2+b 在点(1,3)处的切线斜率为2,则ab =________.解析a (1+Δx )2+b -(a +b )Δx=(a Δx +2a )=2a =2,∴a =1,又3=a ×12+b ,∴b =2, 即a b =12. 答案 129.已知曲线y =x 24的一条切线的斜率为12,则切点的坐标为________.解析 设切点的坐标为(x 0,y 0), 因为Δy Δx =(x 0+Δx )24-x 204Δx =12x 0+14Δx ,当Δx →0时,Δy Δx →12x 0,而切线的斜率为12,所以12x 0=12,所以x 0=1,y 0=14.故切点坐标为⎝⎛⎭⎫1,14. 答案 ⎝⎛⎭⎫1,14 三、解答题(本大题共3小题,共35分) 10.(10分)已知曲线C :y =x 3.求:(1)曲线C 上横坐标为1的点处的切线的方程;(2)第(1)小题中的切线与曲线C 是否还有其他的公共点? 解析 (1)将x =1代入曲线C 的方程得y =1, ∴切点为P (1,1). ∵y ′=ΔyΔx=(x +Δx )3-x 3Δx=3x 2Δx +3x (Δx )2+(Δx )3Δx=[3x 2+3x Δx +(Δx )2]=3x 2,∴y ′|x =1=3.∴点P 处的切线方程为y -1=3(x -1), 即3x -y -2=0.(2)由⎩⎪⎨⎪⎧3x -y -2=0,y =x 3,可得(x -1)(x 2+x -2)=0,解得x 1=1,x 2=-2.从而求得公共点为P (1,1)或P (-2,-8). 故第(1)小题中的切线与曲线C 还有其他的公共点.11.(12分)已知一物体的运动方程是s =⎩⎪⎨⎪⎧3t 2+2,0≤t <3,29+3(t -3)2,t ≥3.求此物体在t =1和t =4时的瞬时速度. 解析 当t =1时,Δs Δt =3(1+Δt )2+2-(3×12+2)Δt =6+3Δt , 所以s ′(1)=ΔsΔt=(6+3Δt )=6.故当t =1时的瞬时速度为6. 当t =4时,Δs Δt =29+3(4+Δt -3)2-[29+3×(4-3)2]Δt =6+3Δt , 所以s ′(4)=ΔsΔt=(6+3Δt )=6,故当t =4时的瞬时速度为6.12.(13分)已知曲线f (x )=x 2的一条在点P (x 0,y 0)处的切线,求: (1)切线平行于直线y =-x +2时切点P 的坐标及切线方程; (2)切线垂直于直线12x -4y +5=0时切点P 的坐标及切线方程;(3)切线的倾斜角为60°时切点P 的坐标及切线方程. 解析 f ′(x 0)=(x 0+Δx )2-x 20Δx=2x 0.(1)因为切线与直线y =-x +2平行, 所以2x 0=-1,x 0=-12,即P ⎝⎛⎭⎫-12,14, 所以切线方程为y -14=-⎝⎛⎭⎫x +12, 即4x +4y +1=0.(2)因为切线与直线12x -4y +5=0垂直,所以2x 0·18=-1,x 0=-4,即P (-4,16).所以切线方程为y -16=-8(x +4), 即8x +y +16=0.(3)因为切线的倾斜角为60°,所以切线的斜率为3,即2x 0=3,x 0=32, 所以P ⎝⎛⎭⎫32,34,所以切线方程为y -34=3⎝⎛⎭⎫x -32, 即43x -4y -3=0.§1.2 导数的计算§1.2.1 几个常用函数的导数§1.2.2 基本初等函数的导数公式及导数的运算法则(一)[课标要求]1.能根据导数的定义求函数y =c ,y =x ,y =x 2,y =x ,y =1x 的导数.(难点)2.掌握基本初等函数的导数公式并能进行简单的应用.(重点、难点)一、常用函数的导数原函数导函数f (x )=c f ′(x )=0 f (x )=x f ′(x )=1 f (x )=x 2 f ′(x )=2x f (x )=1xf ′(x )=-1x 2f (x )=xf ′(x )=12x二、基本初等函数的导数公式原函数导函数①f (x )=c f ′(x )=0 ②f (x )=x n (n ∈Q *) f ′(x )=nx n -1 ③f (x )=sin x f ′(x )=cos_x ④f (x )=cos x f ′(x )=-sin_x ⑤f (x )=a x (a >0) f ′(x )=a x ln_a ⑥f (x )=e xf ′(x )=e x ⑦f (x )=log a x (a >0且a ≠1) f ′(x )=1x ln a⑧f (x )=ln xf ′(x )=1x知识点一 几个常用函数的导数【问题1】 用定义求下列常用函数的导数: ①y =c ;②y =x ;③y =x 2;④y =1x ;⑤y =x .答案 ①y ′=0;②y ′=1;③y ′=2x ;④y ′=Δy Δx=1x +Δx -1xΔx=-1x (x +Δx )=-1x 2(其他类似);⑤y ′=12x.【问题2】 导数的几何意义是曲线在某点处的切线的斜率.物理意义是运动物体在某一时刻的瞬时速度. (1)函数y =f (x )=c (常数)的导数的物理意义是什么? (2)函数y =f (x )=x 的导数的物理意义呢?答案 (1)若y =c 表示路程关于时间的函数,则y ′=0可以解释为某物体的瞬时速度始终为0,即一直处于静止状态.(2)若y =x 表示路程关于时间的函数,则y ′=1可以解释为某物体做瞬时速度为1的匀速运动. 【问题3】 由正比例函数y =kx (k ≠0)的图象及导数可知;|k |越大函数增加(k >0)或减少(k <0)的速度越 快.画出函数y =x 2的图象,结合图象及导数说明函数y =x 2的变化情况.答案 图象如图从导数作为函数在一点的瞬时变化率来看,y ′=2x 表明:当x <0时,随着x 的增加,y =x 2减少得越来越慢;当x >0时,随着x 的增加,y =x 2增加得越来越快.若y =x 2表示路程关于时间的函数,则y ′=2x 可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x .知识点二 基本初等函数的导数公式【问题】 你能说出基本初等函数的导数公式的特点吗? 答案 (1)常数函数的导数为零.(2)有理数幂函数f (x )=x α的导数依然为幂函数,且系数为原函数的次数,幂指数是原函数的幂指数减去1. (3)正弦函数的导数为余弦函数,余弦函数的导数为正弦函数的相反数. (4)指数函数的导数依然为指数函数,且系数为原函数底数的自然对数. (5)公式⑥是公式⑤的特例,公式⑧是公式⑦的特例.题型一 利用公式求导数求下列函数的导数:(1)y =x 7;(2)y =1x 2;(3)y =3x ;(4)y =2sin x 2cos x2;(5)y =log 12x 2-log 12x .【解析】 (1)y ′=7x 7-1=7x 6. (2)∵y =x -2,∴y ′=-2x -2-1=-2x -3. (3)∵y =x 13,∴y ′=13x -23.(4)∵y =2sin x 2cos x2=sin x ,∴y ′=cos x .(5)∵y =log 12x 2-log 12x =log 12x ,∴y ′=(log 12x )′=1x ln 12.●规律方法用公式求函数导数的方法(1)若所求函数符合导数公式,则直接利用公式求解.(2)对于不能直接利用公式的类型,关键是将其合理转化为可以直接应用公式的基本函数的模式,如y =1x 2可以写成y =x -2,y = 3x =x 13等,这样就可以直接使用幂函数的求导公式求导,以免在求导过程中出现指数或系数的运算失误.1.求下列函数的导数:(1)y =lg 4;(2)y =2x;(3)y =x 2x ;(4)y =2cos 2x 2-1. 解析 (1)y ′=(lg 4)′=0;(2)y ′=(2x )′=2x ln 2;(3)∵y =x 2x=x 2-12=x 32,∴y ′=(x 32)′=32x 12; (4)∵y =2cos 2x 2-1=cos x , ∴y ′=(cos x )′=-sin x .题型二 导数公式在解决切线问题中的应用(6分)已知点P (-1,1),点Q (2,4)是曲线y =x 2上的两点,求与直线PQ 平行的曲线y =x 2的切线方程.【规范解答】 y ′=(x 2)′=2x ,设切点为M (x 0,y 0),则y ′0|x x ==2x 0.(2分)∵PQ 的斜率为k =4-12+1=1,而切线平行于PQ , ∴k =2x 0=1,即x 0=12,所以切点为M ⎝⎛⎭⎫12,14.(4分) ∴所求的切线方程为y -14=x -12,(5分) 即4x -4y -1=0.(6分)●规律方法利用导数解决求曲线的切线方程问题的策略求曲线的切线方程主要有两种类型.(1)已知切点型,其步骤为: 求导函数―→求切点处导数,即切线斜率―→写出切线方程 (2)未知切点型,其步骤为:设切点―→求导函数―→求切线斜率k =f ′(x 0) 写出切线的点斜式方程―→列出关于x 0的方程(组)―→求切点―→写出切线方程2.求曲线y =x 过点(3,2)的切线方程.解析 ∵点(3,2)不在曲线y =x 上,∴设过(3,2)与曲线y =x 相切的直线在曲线的切点为(x 0,y 0),则y 0=x 0. ∵y =x ,∴y ′=(x 12)′=12x 12-1=12x. ∴根据导数的几何意义,曲线在点(x 0,y 0)处的切线斜率k =12x 0. ∵切线过点(3,2),∴2-y 03-x 0=12x 0,2-x 03-x 0=12x 0, 整理得(x 0)2-4x 0+3=0,解得x 0=1,x 0=9,∴切点坐标为(1,1)或(9,3).(1)当切点坐标为(1,1)时,切线斜率k =12, ∴切线方程为y -2=12(x -3),即x -2y +1=0. (2)当切点坐标为(9,3)时,切线斜率k =16,∴切线方程为y -2=16(x -3),即x -6y +9=0. 综上可知:曲线y =x 过点(3,2)的切线方程为:x -2y +1=0或x -6y +9=0.易错误区(二) 正确使用求导公式已知直线y =kx 是曲线f (x )=e x 的切线,则k 的值等于________.【解析】 设切点的坐标为(x 0,y 0),由f (x )=e x ,可得y ′=f ′(x )=e x ,又k =y 0x 0,f ′(x 0)=0e x , 所以0e x =y 0x 0且y 0=0e x ①. 解得x 0=1,y 0=e.k =y 0x 0=e. 【答案】 e[易错防范]1.①处一要注意导数0e x ,即切线斜率y 0x 0,二要注意切点在曲线上,即y 0=0e x . 2.导数几何意义的应用本例实质是求过点(0,0)且与曲线y =e x 相切的直线方程的斜率.要把切线的斜率与导数联系起来,要注意切点的坐标既满足切线方程又满足曲线方程.3.牢记导数公式导数公式是函数导数计算的关键,解题时要注意使用.例如,在本例中,要正确应用公式(e x )′=e x .已知曲线y =1x3在点P (-1,-1)处的切线与直线m 平行且距离等于10,求直线m 的方程.解析 因为y ′=-3x 4, 所以曲线在点P (-1,-1)处的切线斜率为k =-3,则切线方程为y +1=-3(x +1),即3x +y +4=0.由题意设直线m 的方程为3x +y +b =0(b ≠4),所以|b -4|32+12=10,所以|b -4|=10, 所以b =14或b =-6,所以直线m 的方程为3x +y +14=0或3x +y -6=0.[限时50分钟,满分80分]一、选择题(每小题5分,共30分)1.下列结论不正确的是A .若y =3,则y ′=0B .若y =1x ,则y ′=-x 2C .若y =x ,则y ′=12x D .若y =x ,则y ′=1解析 对于A ,常数的导数为零,故A 正确;对于B ,y ′=(x -12)′=-12x -32=-12x 3,故B 错误; 对于C ,y ′=(x 12)′=12x -12=12x,故C 正确; 对于D ,y ′=x ′=1,故D 正确.答案 B2.已知曲线f (x )=x 3的切线的斜率等于3,则切线有A .1条B .2条C .3条D .不确定 解析 ∵f ′(x )=3x 2=3,解得x =±1,切点有两个,即可得切线有两条.。
高中数学 1.6微积分基本定理学案 新人教A版选修2-2
1.6微积分基本定理【学习目标】1.理解定积分的概念和定积分的性质,理解微积分基本原理; 2.掌握微积分基本定理,并会求简单的定积分;3.能够运用基本初等函数的求导公式和导数的四则运算法则从反方向上求出,满足()()F x f x '=的函数()F x .【学习重难点】重点:定积分的概念和定积分的性质难点:微积分基本定理,并会求简单的定积分.【学习过程】一、学前准备1:函数33cos y x x =的导数为2:若函数2()cos (3)3f x x π=+,则2()9f π'=二、合作探究:探究一:导数与定积分的联系问题1:一个作变速直线运动的物体的运动规律是()s s t =.由导数的概念可知,它在任意时刻t 的速度()()v t s t '=.设这个物体在时间段[,]a b 内的位移为S ,你能分别用(),()s t v t 表示S 吗?新知:如果函数()F x 是[,]a b 上的连续函数,并且()()F x f x '=,那么()()()ba f x dx Fb F a =-⎰这个结论叫做微积分基本定理,也叫牛顿—莱布尼兹公式为了方便起见,还常用()|b a F x 表示()()F b F a -,即()()|()()bba af x dx F x F b F a ==-⎰ 试试:计算120x dx ⎰反思:计算定积分()ba f x dx ⎰的关键是找到满足()()F x f x '=的函数()F x . 通常我们可以运用基本初等函数的求导公式的四则运算法则从反方向求出()F x .典型例题例1 计算下列定积分:(1)211dx x⎰; (2)3211(2)x dx x -⎰变式:计算0⎰小结:计算定积分()ba f x dx ⎰的关键是找到满足()()F x f x '=的函数()F x .例2. 计算下列定积分:sin xdx π⎰,2sin xdx ππ⎰,20sin xdx π⎰.变式:计算下列定积分,试利用定积分的几何意义做出解释.22cos dx ππ-⎰;0cos dx π⎰;322cos dx ππ-⎰小结:定积分的值可能取正值也可能取负值,还可能是0:(1)当对应的曲边梯形位于x 轴上方时,定积分的值取正值,且等于曲边梯形的面积; (2)当对应的曲边梯形位于x 轴下方时,定积分的值取负值,且等于曲边梯形的面积; (3)当位于x 轴上方的曲边梯形面积等于位于x 轴下方的曲边梯形的面积时,定积分的值为0,且等于位于x 轴上方的曲边梯形面积减去位于x 轴下方的曲边梯形面积.【学习检测】1. (A)设连续函数()0f x >,则当a b <时,定积分()ba f x dx ⎰的符号( ) A .正 B.当0ab <<时为正,当0a b <<时为负 C .负 D .以上结论都不对2.(A) 函数0cos xy xdx =⎰的一阶导数是( ) A .cos x B .sin x - C .cos 1x - D .sin x 3.(A) 与定积分320|sin |x dx π⎰相等的是( ) A .320|sin |xdx π⎰ B .320sin xdx π⎰ C .320sin sin xdx xdx πππ-⎰⎰ D.32202sin sin xdx xdx πππ+⎰⎰4. (B)211)dx ⎰= 5. (B)2211dx x ⎰=6(B)计算定积分:(1)220(42)(4)x x dx --⎰; (2)22123x x dx x--⎰.(3)⎰102dx e x(4)⎰462cos ππxdx(5)⎰312dx x (6)⎰+1021dxx x7(C)计算定积分30sin xdxπ⎰的值,并从几何上解释这个值表示什么. 【学习小结】。
【数学】1.6《微积分基本定理(第2课时)》课件(人教A版选修2-2) (2)
π
πБайду номын сангаас
(cosx-e )dx= cosxdx- exdx (3)-π -π -π
1 =sinx|-π-e |- π= π-1. e
0 x0
0
(2)0 (sinx-cosx)dx=0 sinxdx- 0 cosxdx
π π =(-cosx)|0 -sinx|0 =2. 0 0 x
变式训练 1 计算下列定积分: ∫105x4dx; (1) 2 3 ( x+ 1 )26xdx. (2)1 x
解:(1)∵(x5)′=5x4, ∫105x4dx=x5|10=105-25=99968. ∴ 2 2 3 3 1 2 ( x+ ) 6xdx= (x+1+2)6xdx (2)1 1 x x =1(6x2+6+12x)dx=(2x3+6x+6x2)|3 1 =(54+18+54)-(2+6+6)=112.
0 0
【解】
2
(1)1(x2+2x+3)dx
2 2
2
=1x2dx+12xdx+13dx x 2 25 22 2 = |1+x |1+3x|1= . 3 3
π
3
(2)0 (sinx-cosx)dx=0 sinxdx- 0 cosxdx
π π =(-cosx)|0 -sinx|0 =2. 0 0 x
0 b
3.定积分和曲边梯形面积的关系 设曲边梯形在 x 轴上方的面积为 S 上, x 轴下 在 方的面积为 S 下,则 (1)当曲边梯形在 x 轴上方时,如图①,则 a
b
S上 f(x)dx=_____
(2)当曲边梯形在 x 轴下方时,如图②,则a f(x)dx=______. -S下
b
(3)当曲边梯形在 x 轴上方、x 轴下方均存在时, b S上-S下 如图③,则 f(x)dx=____________.
2018-2019学年人教A版选修2-2 1.6微积分基本定理 学案
第一章导数及其应用1.6微积分基本定理------------ 学 案一、学习目标1.直观了解并掌握微积分基本定理的含义. 2.会利用微积分基本定理求函数的定积分. 二、自主学习1.导数与定积分有怎样的联系?答 导数与定积分都是微积分学中两个最基本、最重要的概念,运用它们之间的联系,我们可以找出求定积分的方法,求导数与定积分是互为逆运算.2.在下面图(1)、图(2)、图(3)中的三个图形阴影部分的面积分别怎样表示?答 根据定积分与曲边梯形的面积的关系知:图(1)中S =⎠⎛a b f (x )d x ,图(2)中S =-⎠⎛a b f (x )d x ,图(3)中S =⎠⎛0b f (x )d x -⎠⎛a0f (x )d x .3.微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ).4.函数f (x )与其一个原函数的关系(1)若f (x )=c (c 为常数),则F (x )=cx ; (2)若f (x )=x n (n ≠-1),则F (x )=1n +1·x n +1;(3)若f (x )=1x ,则F (x )=ln x (x >0); (4)若f (x )=e x ,则F (x )=e x ;(5)若f (x )=a x,则F (x )=a xln a(a >0且a ≠1); (6)若f (x )=sin x ,则F (x )=-cos x ;(7)若f (x )=cos x ,则F (x )=sin x . 三、合作探究要点一 求简单函数的定积分例1 计算下列定积分(1)⎠⎛123d x ; (2)⎠⎛02(2x +3)d x ; (3)⎠⎛3-1(4x -x 2)d x ; (4)⎠⎛12(x -1)5d x .解 (1)因为(3x )′=3,所以⎠⎛123d x =(3x )⎪⎪⎪21=3×2-3×1=3. (2)因为(x 2+3x )′=2x +3,所以⎠⎛02(2x +3)d x =(x 2+3x )⎪⎪⎪2=22+3×2-(02+3×0)=10.(3)因为⎝⎛⎭⎫2x 2-x33′=4x -x 2, 所以⎠⎛3-1(4x -x 2)d x =⎝⎛⎭⎫2x 2-x 33⎪⎪⎪3-1=⎝⎛⎭⎫2×32-333-⎣⎡⎦⎤-2--33=203. (4)因为⎣⎡⎦⎤16x -6′=(x -1)5,所以⎠⎛21(x -1)5d x =16(x -1)6⎪⎪⎪21=16(2-1)6-16(1-1)6=16. 规律方法 (1)用微积分基本定理求定积分的步骤: ①求f (x )的一个原函数F (x );②计算F (b )-F (a ). (2)注意事项:①有时需先化简,再求积分;②f (x )的原函数有无穷多个,如F (x )+c ,计算时,一般只写一个最简单的,不再加任意常数c . 跟踪演练1 求下列定积分: (1)∫π20(3x +sin x )d x ;(2)⎠⎛21⎝⎛⎭⎫e x -1x d x . 解 (1)∵⎝⎛⎭⎫32x 2-cos x ′=3x +sin x ,∴∫π20(3x +sin x )d x =⎝⎛⎭⎫32x 2-cos x ⎪⎪⎪⎪π20=⎣⎡⎦⎤32×⎝⎛⎭⎫π22-cos π2-⎝⎛⎭⎫32×0-cos 0=3π28+1; (2)∵(e x -ln x )′=e x -1x,∴⎠⎛21(e x-1x )d x =()e x -ln x ⎪⎪⎪21=(e 2-ln 2)-(e -0)=e 2-e -ln 2. 要点二 求较复杂函数的定积分例2 求下列定积分:(1)⎠⎛41x (1-x )d x ; (2)∫π202cos 2x 2d x ;(3)⎠⎛41(2x +1x )d x .解 (1)∵x (1-x )=x -x ,又∵⎝⎛⎭⎫23x 32-12x 2′=x -x .∴⎠⎛41x (1-x )d x =⎝⎛⎭⎫23x 32-12x 2⎪⎪⎪41=⎝⎛⎭⎫23×432-12×42-⎝⎛⎭⎫23-12=-176. (2)∵2cos 2x2=1+cos x ,(x +sin x )′=1+cos x ,∴原式=∫π20(1+cos x )d x =(x +sin x )⎪⎪⎪⎪π20=π2+1.(3)∵⎝⎛⎭⎫2xln 2+2x ′=2x +1x, ∴⎠⎛41(2x+1x)d x =⎝⎛⎭⎫2x ln 2+2x ⎪⎪⎪41=⎝⎛⎭⎫24ln 2+24-⎝⎛⎭⎫2ln 2+2=14ln 2+2. 规律方法 求较复杂函数的定积分的方法:(1)掌握基本初等函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后求解,具体方法是能化简的化简,不能化简的变为幂函数、正、余弦函数、指数、对数函数与常数的和与差.(2)确定积分区间,分清积分下限与积分上限. 跟踪演练2 计算下列定积分:(1)∫π30(sin x -sin 2x )d x ; (2)⎠⎛0ln 2e x (1+e x )d x . 解 (1)sin x -sin 2x 的一个原函数是-cos x +12cos 2x ,所以∫π30(sin x -sin 2x )d x =⎝⎛⎭⎫-cos x +12cos 2x ⎪⎪⎪⎪π30=⎝⎛⎭⎫-12-14-⎝⎛⎭⎫-1+12=-14. (2)∵e x (1+e x )=e x +e 2x ,∴⎝⎛⎭⎫e x +12e 2x ′=e x +e 2x , ∴⎠⎛0ln 2e x (1+e x )d x =⎠⎛0ln 2()e x +e 2xd x =⎝⎛⎭⎫e x +12e 2x ⎪⎪⎪ln 20=e ln 2+12e 2ln 2-e 0-12e 0=2+12×4-1-12=52.要点三 定积分的简单应用例3 已知f (a )=⎠⎛10(2ax 2-a 2x )d x ,求f (a )的最大值.解 ∵⎝⎛⎭⎫23ax 3-12a 2x 2′=2ax 2-a 2x ,∴⎠⎛10(2ax 2-a 2x )d x =⎝⎛⎭⎫23ax 3-12a 2x 2⎪⎪⎪10=23a -12a 2, 即f (a )=23a -12a 2=-12⎝⎛⎭⎫a 2-43a +49+29=-12⎝⎛⎭⎫a -232+29, ∴当a =23时,f (a )有最大值29.规律方法 定积分的应用体现了积分与函数的内在联系,可以通过积分构造新的函数,进而对这一函数进行性质、最值等方面的考查,解题过程中注意体会转化思想的应用.跟踪演练3 已知f (x )=ax 2+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,⎠⎛10f (x )d x =-2,求a 、b 、c 的值.解 由f (-1)=2,得a -b +c =2. ① 又f ′(x )=2ax +b ,∴f ′(0)=b =0,②而⎠⎛10f (x )d x =⎠⎛10(ax 2+bx +c )d x =⎝⎛⎭⎫13ax 3+12bx 2+cx ⎪⎪⎪10=13a +12b +c , ∴13a +12b +c =-2, ③由①②③式得a =6,b =0,c =-4.要点四 求分段函数的定积分例4 计算下列定积分:(1)若f (x )=⎩⎪⎨⎪⎧x 2x cos x -1 x,求∫π2-1f (x )d x ;(2)⎠⎛30|x 2-4|d x .解 (1)∫π2-1f (x )d x =⎠⎛0-1x 2d x +∫π20(cos x -1)d x ,又∵⎝⎛⎭⎫13x 3′=x 2,(sin x -x )′=cos x -1 ∴原式=13x 3⎪⎪⎪-1+(sin x -x )⎪⎪⎪⎪π20=⎝⎛⎭⎫0+13+⎝⎛⎭⎫sin π2-π2-(sin 0-0)=43-π2. (2)∵|x 2-4|=⎩⎪⎨⎪⎧x 2-4 x ≥2或x ≤-2,4-x 2-2<x <2,又∵⎝⎛⎭⎫13x 3-4x ′=x 2-4,⎝⎛⎭⎫4x -13x 3′=4-x 2, ∴⎠⎛30|x 2-4|d x =⎠⎛20(4-x 2)d x +⎠⎛32(x 2-4)d x =⎝⎛⎭⎫4x -13x 3⎪⎪⎪20+⎝⎛⎭⎫13x 3-4x ⎪⎪⎪32 =⎝⎛⎭⎫8-83-0+(9-12)-⎝⎛⎭⎫83-8=233. 规律方法 (1)求分段函数的定积分时,可利用积分性质将其表示为几段积分和的形式; (2)带绝对值的解析式,先根据绝对值的意义找到分界点,去掉绝对值号,化为分段函数; (3)含有字母参数的绝对值问题要注意分类讨论. 跟踪演练4 求⎠⎛3-3(|2x +3|+|3-2x |)d x .解 ∵|2x +3|+|3-2x |=⎩⎪⎨⎪⎧-4x ,x <-32,6,-32≤x ≤32,4x ,x >32,∴⎠⎛3-3(|2x +3|+|3-2x |)d x =∫-32-3(-4x )d x +∫32-326d x +∫3324x d x=-2x 2⎪⎪⎪⎪-32-3+6x ⎪⎪⎪32-32+2x 2⎪⎪⎪⎪332=45.四、自主小测1.已知物体做变速直线运动的位移函数s =s (t ),那么下列命题正确的是( ) ①它在时间段[a ,b ]内的位移是s =s (t )⎪⎪ba ; ②它在某一时刻t =t 0时,瞬时速度是v =s ′(t 0); ③它在时间段[a ,b ]内的位移是s =li m n →∞∑i =1n b -a n s ′(ξi );④它在时间段[a ,b ]内的位移是s =⎠⎛ab s ′(t )d t .A .①B .①②C .①②④D .①②③④2.若F ′(x )=x 2,则F (x )的解析式不正确的是( ) A .F (x )=13x 3 B .F (x )=x 3C .F (x )=13x 3+1D .F (x )=13x 3+c (c 为常数)3.⎠⎛01(e x +2x )d x 等于( )A .1B .e -1C .eD .e +14.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则⎠⎛1-1f (x )d x 的值为( )A.32 B .43C .23D .-235.设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为 .6.(2013·湖南)若⎠⎛0T x 2d x =9,则常数T 的值为 .7.已知⎠⎛1-1(x 3+ax +3a -b )d x =2a +6且f (t )=⎠⎛0t (x 3+ax +3a -b )d x 为偶函数,求a ,b 的值.参考答案1答案 D 2答案 B解析 若F (x )=x 3,则F ′(x )=3x 2,这与F ′(x )=x 2不一致,故选B. 3答案 C解析 ⎠⎛01(e x +2x )d x =(e x +x 2)|10=(e 1+12)-(e 0+02)=e.4答案 B解析 ⎠⎛1-1f (x )d x =⎠⎛0-1x 2d x +⎠⎛011d x =⎪⎪x 330-1+1=13+1=43,故选B. 5答案33解析 由已知得13a +c =ax 20+c ,∴x 20=13,又∵0≤x 0≤1,∴x 0=33. 6答案 3解析 ⎠⎛0T x 2d x =⎪⎪13x 3T 0=13T 3=9,即T 3=27,解得T =3. 7解 ∵f (x )=x 3+ax 为奇函数,∴⎠⎛1-1(x 3+ax )d x =0,∴⎠⎛1-1(x 3+ax +3a -b )d x =⎠⎛1-1(x 3+ax )d x +⎠⎛1-1(3a -b )d x =0+(3a -b )[1-(-1)]=6a -2b .∴6a -2b =2a +6,即2a -b =3, ①又f (t )=⎪⎪⎣⎡⎦⎤x 44+a 2x 2+a -b x t0=t 44+at 22+(3a -b )t 为偶函数,∴3a -b =0,②由①②得a =-3,b =-9.。
人教a版数学【选修2-2】1.6《微积分基本定理》ppt课件
①
xf(x)dx= (ax
1 3 1 21 +bx)dx=3ax +2bx 0
1 1 17 =3a+2b= 6 .
a=4 由①②得 b=3
② ,∴f(x)=4x+3.
3.求下列定积分:
1 (1) xdx=________.
0
(2)
1
sinxdx=________.
a
′(x)=
2.用微积分基本定理求定积分,关键是找到满足F ′(x)
原函数 ,利用求导运 =f(x)的函数F(x),即找被积函数的__________
算与求原函数运算互为逆运算的关系,运用基本初等函数求导 公式和导数的四则运算法则从反方向上求出F(x).
3.被积函数的原函数有很多,即若 F(x)是被积函数 f(x)的
1 1 2 2 =ln2-ln1= [解析] (1)因为(lnx)′= x ,所以 d x = ln x 1 x
1
ln2.
1 4 1 4 1 3 1 3 (2)∵ 4x ′=x ,∴ x d x = x 0 4
0
1 =4. 1 =e-e .
1 (9) x2dx=________.
2 1
1 (10) x dx=________. 1 2 [答案] (1)2 (2)1 (3)ln2
e 1
(4)0
(5)2
1 (6)-6
3π2 (7) 8 +
1 (8)24
1 (9)2
(10)1
2 x2 x 1 1 1 [解析] (1)∵( 2 )′=x,∴ xdx= 2 |0=2. 0
e 1
典例探究学案
利用牛顿—莱布尼茨公式求定积分
高中数学人教A版选修2-2(课时训练):1.6微积分基本定理含答案
微积分根本定理[学习目的]1.直观理解并掌握微积分根本定理的含义. 2.会利用微积分根本定理求函数的定积分. [知识链接]1.导数与定积分有怎样的联络?答 导数与定积分都是微积分学中两个最根本、最重要的概念,运用它们之间的联络,我们可以找出求定积分的方法,求导数与定积分是互为逆运算.2.在下面图(1)、图(2)、图(3)中的三个图形阴影部分的面积分别怎样表示?答 根据定积分与曲边梯形的面积的关系知: 图(1)中S =⎠⎛ab f (x )d x ,图(2)中S =-⎠⎛ab f (x )d x ,图(3)中S =⎠⎛0b f (x )d x -⎠⎛a0f (x )d x .[预习导引] 1.微积分根本定理假设f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ).2.函数f (x )与其一个原函数的关系 (1)假设f (x )=c (c 为常数),那么F (x )=cx ; (2)假设f (x )=x n (n ≠-1),那么F (x )=1n +1·x n +1;(3)假设f (x )=1x ,那么F (x )=ln_x (x >0);(4)假设f (x )=e x ,那么F (x )=e x ;(5)假设f (x )=a x,那么F (x )=a xln a(a >0且a ≠1);(6)假设f (x )=sin x ,那么F (x )=-cos_x ; (7)假设f (x )=cos x ,那么F (x )=sin_x .要点一 求简单函数的定积分 例1 计算以下定积分 (1)⎠⎛123d x ; (2)⎠⎛02(2x +3)d x ;(3)⎠⎛3-1(4x -x 2)d x ; (4)⎠⎛12(x -1)5d x .解 (1)因为(3x )′=3,所以⎠⎛123d x =(3x )⎪⎪⎪21=3×2-3×1=3. (2)因为(x 2+3x )′=2x +3, 所以⎠⎛2(2x +3)d x =(x 2+3x )⎪⎪⎪2=22+3×2-(02+3×0)=10. (3)因为⎝⎛⎭⎫2x 2-x33′=4x -x 2, 所以⎠⎛3-1(4x -x 2)d x =⎝⎛⎭⎫2x 2-x 33⎪⎪⎪3-1 =⎝⎛⎭⎫2×32-333-⎣⎡⎦⎤2×(-1)2-(-1)33=203.(4)因为⎣⎡⎦⎤16(x -1)6′=(x -1)5, 所以⎠⎛21(x -1)5d x=16(x -1)6⎪⎪⎪21=16(2-1)6-16(1-1)6 =16. 规律方法 (1)用微积分根本定理求定积分的步骤: ①求f (x )的一个原函数F (x ); ②计算F (b )-F (a ). (2)本卷须知:①有时需先化简,再求积分;②f (x )的原函数有无穷多个,如F (x )+c ,计算时,一般只写一个最简单的,不再加任意常数c .跟踪演练1 求以下定积分: (1)∫π20(3x +sin x )d x ;(2)⎠⎛21⎝⎛⎭⎫e x -1x d x . 解 (1)∵⎝⎛⎭⎫32x 2-cos x ′=3x +sin x , ∴∫π20(3x +sin x )d x =⎝⎛⎭⎫32x 2-cos x ⎪⎪⎪⎪π20=⎣⎡⎦⎤32×⎝⎛⎭⎫π22-cos π2-⎝⎛⎭⎫32×0-cos 0=3π28+1; (2)∵(e x -ln x )′=e x -1x,∴⎠⎛21(e x-1x )d x =()e x -ln x ⎪⎪⎪21=(e 2-ln 2)-(e -0) =e 2-e -ln 2.要点二 求较复杂函数的定积分 例2 求以下定积分:(1)⎠⎛41x (1-x )d x ; (2)∫π202cos 2x2d x ;(3)⎠⎛41(2x +1x)d x . 解 (1)∵x (1-x )=x -x , 又∵⎝⎛⎭⎫23x 32-12x 2′=x -x .∴⎠⎛41x (1-x )d x =⎝⎛⎭⎫23x 32-12x 2⎪⎪⎪41 =⎝⎛⎭⎫23×432-12×42-⎝⎛⎭⎫23-12=-176. (2)∵2cos 2x2=1+cos x ,(x +sin x )′=1+cos x ,∴原式=∫π20(1+cos x )d x =(x +sin x )⎪⎪⎪⎪π20=π2+1.(3)∵⎝⎛⎭⎫2xln 2+2x ′=2x +1x,∴⎠⎛41(2x +1x)d x =⎝⎛⎭⎫2xln 2+2x ⎪⎪⎪41=⎝⎛⎭⎫24ln 2+24-⎝⎛⎭⎫2ln 2+2=14ln 2+2. 规律方法 求较复杂函数的定积分的方法:(1)掌握根本初等函数的导数以及导数的运算法那么,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后求解,详细方法是能化简的化简,不能化简的变为幂函数、正、余弦函数、指数、对数函数与常数的和与差. (2)确定积分区间,分清积分下限与积分上限. 跟踪演练2 计算以下定积分: (1)∫π30(sin x -sin 2x )d x ;(2)⎠⎛0ln 2e x (1+e x )d x .解 (1)sin x -sin 2x 的一个原函数是-cos x + 12cos 2x ,所以∫π30(sin x -sin 2x )d x =⎝⎛⎭⎫-cos x +12cos 2x ⎪⎪⎪⎪π30=⎝⎛⎭⎫-12-14-⎝⎛⎭⎫-1+12=-14. (2)∵e x (1+e x )=e x +e 2x , ∴⎝⎛⎭⎫e x +12e 2x ′=e x +e 2x , ∴⎠⎛0ln 2e x (1+e x )d x =⎠⎛0ln 2()e x +e 2x d x=⎝⎛⎭⎫e x +12e 2x ⎪⎪⎪ln 2=e ln 2+12e 2ln 2-e 0-12e 0=2+12×4-1-12=52.要点三 定积分的简单应用例3 f (a )=⎠⎛10(2ax 2-a 2x )d x ,求f (a )的最大值.解 ∵⎝⎛⎭⎫23ax 3-12a 2x 2′=2ax 2-a 2x ,∴⎠⎛10(2ax 2-a 2x )d x =⎝⎛⎭⎫23ax 3-12a 2x 2⎪⎪⎪10=23a -12a 2, 即f (a )=23a -12a 2=-12⎝⎛⎭⎫a 2-43a +49+29 =-12⎝⎛⎭⎫a -232+29, ∴当a =23时,f (a )有最大值29.规律方法 定积分的应用表达了积分与函数的内在联络,可以通过积分构造新的函数,进而对这一函数进展性质、最值等方面的考察,解题过程中注意体会转化思想的应用. 跟踪演练3 f (x )=ax 2+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,⎠⎛10f (x )d x =-2,求a 、b 、c的值.解 由f (-1)=2,得a -b +c =2. ① 又f ′(x )=2ax +b ,∴f ′(0)=b =0, ②而⎠⎛10f (x )d x =⎠⎛10(ax 2+bx +c )d x =⎝⎛⎭⎫13ax 3+12bx 2+cx ⎪⎪⎪1=13a +12b +c , ∴13a +12b +c =-2, ③由①②③式得a =6,b =0,c =-4. 要点四 求分段函数的定积分 例4 计算以下定积分:(1)假设f (x )=⎩⎪⎨⎪⎧x 2 (x ≤0)cos x -1 (x >0),求∫π2-1f (x )d x ;(2)⎠⎛30|x 2-4|d x .解 (1)∫π2-1f (x )d x =⎠⎛0-1x 2d x +∫π20(cos x -1)d x ,又∵⎝⎛⎭⎫13x 3′=x 2,(sin x -x )′=cos x -1∴原式=13x 3⎪⎪⎪0-1+(sin x -x )⎪⎪⎪⎪π20=⎝⎛⎭⎫0+13+⎝⎛⎭⎫sin π2-π2-(sin 0-0) =43-π2.(2)∵|x 2-4|=⎩⎪⎨⎪⎧x 2-4 (x ≥2或x ≤-2),4-x 2 (-2<x <2),又∵⎝⎛⎭⎫13x 3-4x ′=x 2-4,⎝⎛⎭⎫4x -13x 3′=4-x 2, ∴⎠⎛30|x 2-4|d x =⎠⎛20(4-x 2)d x +⎠⎛32(x 2-4)d x=⎝⎛⎭⎫4x -13x 3⎪⎪⎪20+⎝⎛⎭⎫13x 3-4x ⎪⎪⎪32 =⎝⎛⎭⎫8-83-0+(9-12)-⎝⎛⎭⎫83-8=233. 规律方法 (1)求分段函数的定积分时,可利用积分性质将其表示为几段积分和的形式; (2)带绝对值的解析式,先根据绝对值的意义找到分界点,去掉绝对值号,化为分段函数; (3)含有字母参数的绝对值问题要注意分类讨论. 跟踪演练4 求⎠⎛3-3(|2x +3|+|3-2x |)d x .解 ∵|2x +3|+|3-2x |=⎩⎪⎨⎪⎧-4x ,x <-32,6,-32≤x ≤32,4x ,x >32,∴⎠⎛3-3(|2x +3|+|3-2x |)d x=∫-32-3(-4x )d x +∫32-326d x +∫3324x d x=-2x 2⎪⎪⎪⎪-32-3+6x ⎪⎪⎪32-32+2x 2⎪⎪⎪⎪332=45.1.∫π2-π2(1+cos x )d x 等于( )A .πB .2C .π-2D .π+2答案 D解析 ∵(x +sin x )′=1+cos x , ∴⎪⎪∫π2-π2(1+cos x )d x =(x +sin x )π2-π2=π2+sin π2-⎣⎡⎦⎤-π2+sin ⎝⎛⎭⎫-π2=π+2. 2.假设⎠⎛1a ⎝⎛⎭⎫2x +1x d x =3+ln 2,那么a 的值是( ) A .5 B .4 C .3 D .2答案 D解析 ⎠⎛1a ⎝⎛⎭⎫2x +1x d x =⎠⎛1a 2x d x +⎠⎛1a 1xd x =x 2|a 1+ ln x ⎪⎪a1=a 2-1+ln a =3+ln 2,解得a =2.3.⎠⎛02⎝⎛⎭⎫x 2-23x d x =________. 答案 43解析 ⎠⎛02⎝⎛⎭⎫x 2-23x d x =⎠⎛02x 2d x -⎠⎛0223x d x =x 33⎪⎪⎪⎪20-x 2320=83-43=43. 4.f (x )=⎩⎨⎧4x -2π,0≤x ≤π2,cos x ,π2<x ≤π,计算⎠⎛0πf (x )d x .解 ⎠⎛0πf (x )d x =∫π20f (x )d x +错误!f (x )d x=∫π20(4x -2π)d x +错误!cos x d x ,取F 1(x )=2x 2-2πx ,那么F 1′(x )=4x -2π; 取F 2(x )=sin x ,那么F 2′(x )=cos x .所以∫π20(4x -2π)d x +错误!cos x d x =(2x 2-2πx )错误!+sin x ⎪⎪⎪ππ2=-12π2-1,即⎠⎛0πf (x )d x =-12π2-1.1.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)假设被积函数是分段函数,根据定积分“对区间的可加性〞,分段积分再求和.(3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x 轴下方的图形面积要取定积分的相反数.一、根底达标1.物体做变速直线运动的位移函数s =s (t ),那么以下命题正确的选项是( ) ①它在时间段[a ,b ]内的位移是s =s (t )⎪⎪ba ; ②它在某一时刻t =t 0时,瞬时速度是v =s ′(t 0); ③它在时间段[a ,b ]内的位移是s =li m n →∞∑i =1n b -a n s ′(ξi ); ④它在时间段[a ,b ]内的位移是s =⎠⎛ab s ′(t )d t .A .①B .①②C .①②④D .①②③④答案 D2.假设F ′(x )=x 2,那么F (x )的解析式不正确的选项是( ) A .F (x )=13x 3B .F (x )=x 3C .F (x )=13x 3+1D .F (x )=13x 3+c (c 为常数)答案 B解析 假设F (x )=x 3,那么F ′(x )=3x 2,这与F ′(x )=x 2不一致,应选B. 3.⎠⎛01(e x +2x )d x 等于( )A .1B .e -1C .eD .e +1答案 C解析 ⎠⎛01(e x +2x )d x =(e x +x 2)|10=(e 1+12)-(e 0+02)=e.4.f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,那么⎠⎛1-1f (x )d x 的值为( )A.32 B .43C .23D .-23答案 B解析 ⎠⎛1-1f (x )d x =⎠⎛0-1x 2d x +⎠⎛011d x =⎪⎪x 330-1+1=13+1=43,应选B. 5.设函数f (x )=ax 2+c (a ≠0),假设⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,那么x 0的值为________.答案33解析 由得13a +c =ax 20+c ,∴x 20=13,又∵0≤x 0≤1,∴x 0=33. 6.(20xx·湖南)假设⎠⎛0T x 2d x =9,那么常数T 的值为________.答案 3解析 ⎠⎛0T x 2d x =⎪⎪13x 3T 0=13T 3=9,即T 3=27,解得T =3. 7.⎠⎛1-1(x 3+ax +3a -b )d x =2a +6且f (t )=⎠⎛0t (x 3+ax +3a -b )d x 为偶函数,求a ,b 的值.解 ∵f (x )=x 3+ax 为奇函数, ∴⎠⎛1-1(x 3+ax )d x =0,∴⎠⎛1-1(x 3+ax +3a -b )d x=⎠⎛1-1(x 3+ax )d x +⎠⎛1-1(3a -b )d x=0+(3a -b )[1-(-1)]=6a -2b . ∴6a -2b =2a +6,即2a -b =3, ①又f (t )=⎪⎪⎣⎡⎦⎤x 44+a 2x 2+(3a -b )x t 0 =t 44+at 22+(3a -b )t 为偶函数, ∴3a -b =0,② 由①②得a =-3,b =-9. 二、才能提升8.∫π20sin 2x2d x 等于( )A.π4B .π2-1C .2D .π-24答案 D解析 ∫π20sin 2x 2d x =∫π201-cos x 2d x =⎪⎪12(x -sin x )π20=π-24,应选D. 9.(20xx·江西)假设S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,那么S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D . S 3<S 2<S 1答案 B 解析 S 1=⎠⎛12x 2d x =13x 3⎪⎪21=73,S 2=⎪⎪⎪⎠⎛121x d x =ln x 21=ln 2<1,S 3=⎠⎛12e x d x =e x |21=e 2-e =e(e -1)>73,所以S 2<S 1<S 3,选B.10.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0.假设f [f (1)]=1,那么a =________.答案 1解析 因为x =1>0,所以f (1)=lg 1=0.又x ≤0时,f (x )=x +⎠⎛0a 3t 2d t =x +t 3|a 0=x +a 3,所以f (0)=a 3.因为f [f (1)]=1,所以a 3=1,解得a =1.11.设f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176,求f (x )的解析式.解 ∵f (x )是一次函数,设f (x )=ax +b (a ≠0),那么 ⎠⎛01f (x )d x =⎠⎛01(ax +b )d x =⎠⎛01ax d x +⎠⎛01b d x =12a +b =5, ⎠⎛01xf (x )d x =⎠⎛01x (ax +b )d x =⎠⎛01(ax 2)d x +⎠⎛a1b x d x =13a +12b =176. 由⎩⎨⎧12a +b =513a +12b =176,得⎩⎪⎨⎪⎧a =4b =3.即f (x )=4x +3.12.假设函数f (x )=⎩⎪⎨⎪⎧x 3,x ∈[0,1],x ,x ∈(1,2],2x ,x ∈(2,3].求⎠⎛03f (x )d x 的值.解 由积分的性质,知: ⎠⎛03f (x )d x =⎠⎛01f (x )d x +⎠⎛12f (x )d x +⎠⎛23f (x )d x =⎠⎛01x 3d x +⎠⎛12x d x +⎠⎛232x d x =x 44⎪⎪⎪⎪10+23x 3221⎪⎪+2x ln 232 =14+432-23+8ln 2-4ln 2=-512+432+4ln 2. 三、探究与创新13.求定积分⎠⎛3-4|x +a |d x . 解 (1)当-a ≤-4即a ≥4时,原式=⎠⎛3-4(x +a )d x = ⎪⎪⎝⎛⎭⎫x 22+ax 3-4=7a -72. (2)当-4<-a <3即-3<a <4时, 原式=⎠⎛-4-a [-(x +a )]d x +⎠⎛3-a(x +a )d x =⎝⎛⎭⎫-x 22-ax ⎪⎪-a -4+ ⎪⎪⎝⎛⎭⎫x 22+ax 3-a =a 22-4a +8+⎝⎛⎭⎫a 22+3a +92 =a 2-a +252. (3)当-a ≥3即a ≤-3时,原式=⎠⎛3-4[-(x +a )]d x = ⎪⎪⎝⎛⎭⎫-x 22-ax 3-4= -7a +72. 综上,得⎠⎛3-4|x +a |d x =⎩⎪⎨⎪⎧ 7a -72(a ≥4),a 2-a +252(-3<a <4),-7a +72(a ≤-3).。
人教A版选修2-2 1.6微积分基本定理 学案
1.6 微积分基本定理课时作业新人教版选修2-2明目标、知重点1.直观了解并掌握微积分基本定理的含义.2.会利用微积分基本定理求函数的积分.1.微积分基本定理如果f(x)是区间a,b]上的连续函数,并且F′(x)=f(x),那么ʃb a f(x)d x=F(b)-F(a).2.定积分和曲边梯形面积的关系设曲边梯形在x轴上方的面积为S上,x轴下方的面积为S下,则(1)当曲边梯形的面积在x轴上方时,如图(1),则ʃb a f(x)d x=S上.(2)当曲边梯形的面积在x轴下方时,如图(2),则ʃb a f(x)d x=-S下.(3)当曲边梯形的面积在x轴上方、x轴下方均存在时,如图(3),则ʃb a f(x)d x=S上-S下,若S上=S下,则ʃb a f(x)d x=0.情境导学]从前面的学习中可以发现,虽然被积函数f(x)=x3非常简单,但直接用定积分的定义计算ʃ10 x3d x的值却比较麻烦.有没有更加简便、有效的方法求定积分呢?另外,我们已经学习了两个重要的概念——导数和定积分,这两个概念之间有没有内在的联系呢?我们能否利用这种联系求定积分呢?探究点一微积分基本定理问题 你能用定义计算ʃ211xd x 吗?有没有更加简便、有效的方法求定积分呢?思考1 如下图,一个做变速直线运动的物体的运动规律是y =y (t ),并且y (t )有连续的导数,由导数的概念可知,它在任意时刻t 的速度v (t )=y ′(t ).设这个物体在时间段a ,b ]内的位移为s ,你能分别用y (t ),v (t )表示s 吗?答 由物体的运动规律是y =y (t )知:s =y (b )-y (a ),通过求定积分的几何意义,可得s =ʃb a v (t )d t =ʃba y ′(t )d t , 所以ʃb a v (t )d t =ʃb a y ′(t )d t =y (b )-y (a ).其中v (t )=y ′(t ).小结 (1)一般地,如果f (x )是区间a ,b ]上的连续函数,并且F ′(x )=f (x ),那么ʃb a f (x )d x =F (b )-F (a ).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.(2)运用微积分基本定理求定积分ʃb a f (x )d x 很方便,其关键是准确写出满足F ′(x )=f (x )的F (x ).思考2 对一个连续函数f (x )来说,是否存在唯一的F (x ),使F ′(x )=f (x )?若不唯一,会影响微积分基本定理的唯一性吗?答 不唯一,根据导数的性质,若F ′(x )=f (x ),则对任意实数c ,F (x )+c ]′=F ′(x )+c ′=f (x ). 不影响,因为ʃb a f (x )d x =F (b )+c ]-F (a )+c ]=F (b )-F (a ) 例1 计算下列定积分: (1)ʃ211x d x ;(2)ʃ31(2x -1x2)d x ;(3)ʃ-π(cos x -e x )d x .解 (1)因为(ln x )′=1x,所以ʃ211xd x =ln x |21=ln 2-ln 1=ln 2.(2)因为(x 2)′=2x ,(1x )′=-1x2,所以ʃ31(2x -1x2)d x =ʃ312x d x -ʃ311x2d x=x 2|31+1x|31 =(9-1)+(13-1)=223.(3)ʃ-π(cos x -e x )d x =ʃ0-πcos x d x -ʃ0-πe x d x=sin x |0-π-e x |0-π=1eπ-1.反思与感悟 求简单的定积分关键注意两点:(1)掌握基本函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后再求解;(2)精确定位积分区间,分清积分下限与积分上限.跟踪训练1 若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e x d x ,则S 1,S 2,S 3的大小关系为( ) A .S 1<S 2<S 3 B .S 2<S 1<S 3 C .S 2<S 3<S 1 D .S 3<S 2<S 1答案 B解析 S 1=ʃ21x 2d x =13x 3|21=73,S 2=ʃ211xd x =ln x |21=ln 2<1,S 3=ʃ21e x d x =e x |21=e 2-e =e(e -1)>73.所以S 2<S 1<S 3,选B. 探究点二 分段函数的定积分例2 已知函数f (x )=⎩⎪⎨⎪⎧sin x ,0≤x ≤π2,1,π2≤x ≤2,x -1,2≤x ≤4.先画出函数图象,再求这个函数在0,4]上的定积分. 解 图象如图.ʃ40f (x )d x =π20⎰sin x d x +π20⎰1d x +42⎰(x -1)d x=(-cos x )|+x |+(12x 2-x )|42 =1+(2-π2)+(4-0)=7-π2.反思与感悟 求分段函数的定积分,分段标准是使每一段上的函数表达式确定,按照原分段函数的分段情况即可;对于含绝对值的函数,可转化为分段函数.跟踪训练2 设f (x )=⎩⎨⎧x 2, x ≤0,cos x -1, x >0,求ʃ1-1f (x )d x .解 ʃ1-1f (x )d x =ʃ0-1x 2d x +ʃ10(cos x -1)d x=13x 3|0-1+(sin x -x )|10=sin 1-23. 探究点三 定积分的应用 例3 计算下列定积分: ʃπ0sin x d x ,ʃ2ππsin x d x ,ʃ2π0sin x d x .由计算结果你能发现什么结论?试利用曲边梯形的面积表示所发现的结论. 解 因为(-cos x )′=sin x ,所以ʃπ0sin x d x =(-cos x )|π=(-cos π)-(-cos 0)=2; ʃ2ππsin x d x =(-cos x )|2ππ=(-cos 2π)-(-cos π)=-2; ʃ2π0sin x d x =(-cos x )|2π=(-cos 2π)-(-cos 0)=0.反思与感悟 可以发现,定积分的值可能取正值也可能取负值,还可能是0:定积分的值与曲边梯形面积之间的关系:(1)位于x 轴上方的曲边梯形的面积等于对应区间的积分;(2)位于x 轴下方的曲边梯形的面积等于对应区间的积分的相反数;(3)定积分的值就是位于x 轴上方曲边梯形面积减去位于x 轴下方的曲边梯形面积.跟踪训练3 求曲线y =sin x 与直线x =-π2,x =54π,y =0所围图形的面积(如图所示).解 所求面积为S =5π4π2-⎰-π2|sin x |d x =-0π2-⎰sin x d x +ʃπ0sin x d x -5π4π⎰sin x d x=1+2+(1-22)=4-22.1.π2π2-⎰(1+cos x )d x 等于( )A .πB .2C .π-2D .π+2 答案 D解析 ∵(x +sin x )′=1+cos x , ∴π2π2-⎰(1+cos x )d x =(x +sin x )|π2π2-=π2+sin π2-⎣⎢⎡⎦⎥⎤-π2+sin ⎝ ⎛⎭⎪⎫-π2=π+2. 2.若ʃa 1(2x +1x)d x =3+ln 2,则a 的值是( ) A .5 B .4 C .3 D .2 答案 D解析 ʃa1(2x +1x )d x =ʃa 12x d x +ʃa11xd x=x 2|a 1+ln x |a 1=a 2-1+ln a =3+ln 2,解得a =2.3.ʃ20(x 2-23x )d x =________. 答案43解析 ʃ20(x 2-23x )d x =ʃ20x 2d x -ʃ2023x d x =x 33|2-x 23|20=83-43=43. 4.已知f (x )=⎩⎪⎨⎪⎧4x -2π,0≤x ≤π2,cos x ,π2<x ≤π,计算ʃπ0f (x )d x .解 ʃπf (x )d x =π20⎰f (x )d x +ππ2⎰f (x )d x=π20⎰(4x -2π)d x +ππ2⎰cos x d x ,取F 1(x )=2x 2-2πx ,则F 1′(x )=4x -2π; 取F 2(x )=sin x ,则F 2′(x )=cos x .所以π20⎰(4x -2π)d x +ππ2⎰cos x d x =(2x 2-2πx )|+sin x |=-12π2-1,即ʃπ0f (x )d x =-12π2-1.呈重点、现规律]1.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x 轴下方的图形面积要取定积分的相反数.一、基础过关1.已知物体做变速直线运动的位移函数s =s (t ),那么下列命题正确的是( ) ①它在时间段a ,b ]内的位移是s =s (t )|b a ; ②它在某一时刻t =t 0时,瞬时速度是v =s ′(t 0);③它在时间段a ,b ]内的位移是s =lim n →∞i =1nb -ans ′(ξi ); ④它在时间段a ,b ]内的位移是s =ʃb a s ′(t )d t . A .① B .①② C .①②④ D .①②③④答案 D2.若F ′(x )=x 2,则F (x )的解析式不正确的是( ) A .F (x )=13x 3B .F (x )=x 3C .F (x )=13x 3+1D .F (x )=13x 3+c (c 为常数)答案 B3.ʃ10(e x+2x )d x 等于( )A .1B .e -1C .eD .e +1答案 C解析 ʃ10(e x +2x )d x =(e x +x 2)|10=(e 1+12)-(e 0+02)=e.4.已知f (x )=⎩⎨⎧x 2,-1≤x ≤0,1,0<x ≤1,则ʃ1-1f (x )d x 的值为( )A.32B.43C.23 D .-23 答案 B 解析 ʃ1-1f (x )d x =ʃ0-1x 2d x +ʃ101d x =x 33|0-1+1=13+1=43,故选B.5.π20⎰sin 2x2d x 等于( )A.π4B.π2-1 C .2 D.π-24答案 D 解析π20⎰sin 2x2d x =π20⎰1-cos x 2d x =12(x -sin x )|=π-24,故选D. 6.若ʃ10(2x +k )d x =2,则k =________. 答案 1解析 ∵ʃ10(2x +k )d x =(x 2+kx )|10=1+k =2,∴k =1. 二、能力提升7.设函数f (x )=ax 2+c (a ≠0),若ʃ10f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________. 答案33解析 ʃ10(ax 2+c )d x =ax 20+c ,∴a3=ax 20, ∵a ≠0,∴x 20=13,又0≤x 0≤1,∴x 0=33.8.设f (x )=⎩⎨⎧lg x ,x >0x +a 03t 2d t ,x ≤0, 若ff (1)]=1,则a =________. 答案 1解析 因为x =1>0,所以f (1)=lg 1=0.又x ≤0时,f (x )=x +ʃa 03t 2d t =x +t 3|a 0=x +a 3,所以f (0)=a 3.因为ff (1)]=1,所以a 3=1, 解得a =1.9.设f (x )是一次函数,且ʃ10f (x )d x =5,ʃ10xf (x )d x =176,则f (x )的解析式为________. 答案 f (x )=4x +3解析 ∵f (x )是一次函数,设f (x )=ax +b (a ≠0),则ʃ1f (x )d x =ʃ10(ax +b )d x =ʃ10ax d x +ʃ10b d x =12a +b =5,ʃ10xf (x )d x =ʃ10x (ax +b )d x =ʃ10(ax 2)d x +ʃ1bx d x =13a +12b =176.由⎩⎪⎨⎪⎧12a +b =5,13a +12b =176,得⎩⎨⎧a =4,b =3.10.计算下列定积分: (1)ʃ21(e x+1x)d x ;(2)ʃ91x (1+x )d x ;(3)ʃ200(-0.05e -0.05x +1)d x ;(4)ʃ211x (x +1)d x .解 (1)∵(e x +ln x )′=e x +1x,∴ʃ21(e x +1x)d x =(e x +ln x )|21=e 2+ln 2-e.(2)∵x (1+x )=x +x ,(12x 2+2332x )′=x +x ,∴ʃ91x (1+x )d x =(12x 2+2332x )|91=1723.(3)∵(e -0.05x +1)′=-0.05e -0.05x +1, ∴ʃ20(-0.05e -0.05x +1)d x =e -0.05x +1|200=1-e.(4)∵1x (x +1)=1x -1x +1,(ln x )′=1x ,(ln(x +1))′=1x +1,∴ʃ211x (x +1)d x =ln x |21-ln(x +1)|21=2ln 2-ln 3. 11.若函数f (x )=⎩⎨⎧x 3,x ∈[0,1],x ,x ∈(1,2],2x,x ∈(2,3].求ʃ30f (x )d x 的值.解 由定积分的性质,知:ʃ30f (x )d x =ʃ10f (x )d x +ʃ21f (x )d x +ʃ32f (x )d x =ʃ10x 3d x +ʃ21x d x +ʃ322xd x=x 44|1+23x 32|21+2x ln 2|32=14+432-23+8ln 2-4ln 2 =-512+432+4ln 2.12.已知f (a )=ʃ10(2ax 2-a 2x )d x ,求f (a )的最大值.解 ∵(23ax 3-12a 2x 2)′=2ax 2-a 2x ,∴ʃ10(2ax 2-a 2x )d x =(23ax 3-12a 2x 2)|1=23a -12a 2,即f (a )=23a -12a 2=-12(a 2-43a +49)+29 =-12(a -23)2+29,∴当a =23时,f (a )有最大值29.三、探究与拓展13.求定积分ʃ3-4|x +a |d x . 解 (1)当-a ≤-4即a ≥4时, 原式=ʃ3-4(x +a )d x =(x 22+ax )|3-4=7a -72.(2)当-4<-a <3即-3<a <4时, 原式=ʃ-a -4-(x +a )]d x +ʃ3-a (x +a )d x =(-x 22-ax )|-a -4+(x 22+ax )|3-a=a 22-4a +8+(a 22+3a +92)=a 2-a +252.(3)当-a ≥3即a ≤-3时, 原式=ʃ3-4-(x +a )]d x =(-x 22-ax )|3-4=-7a +72.综上,得ʃ3-4|x +a |d x =⎩⎪⎨⎪⎧ 7a -72 (a ≥4)a 2-a +252(-3<a <4)-7a +72 (a ≤-3).。
人教A版选修2-2 1.6 微积分基本定理 学案 (2)
学习目标 1.直观了解并掌握微积分基本定理的含义.2.会利用微积分基本定理求函数的积分.知识点一 微积分基本定理(牛顿—莱布尼茨公式)思考1 已知函数f (x )=2x +1,F (x )=x 2+x ,则ʃ10(2x +1)d x 与F (1)-F (0)有什么关系? 答 由定积分的几何意义知,ʃ10(2x +1)d x =12×(1+3)×1=2,F (1)-F (0)=2,故ʃ10(2x+1)d x =F (1)-F (0).思考2 对一个连续函数f (x )来说,是否存在唯一的F (x ),使得F ′(x )=f (x )?答 不唯一,根据导数的性质,若F ′(x )=f (x ),则对任意实数c ,都有[F (x )+c ]′=F ′(x )+c ′=f (x ). 1.微积分基本定理(1)条件:f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ); (2)结论:ʃba f (x )d x =F (b )-F (a );(3)符号表示:ʃba f (x )d x =F (x )|ba =F (b )-F (a ). 2.常见的原函数与被积函数关系 (1)ʃba C d x =Cx |b a (C 为常数). (2)ʃb a x n d x =⎪⎪⎪1n +1x n +1ba (n ≠-1). (3)ʃb a sin x d x =-cos x |ba . (4)ʃba cos x d x =sin x |ba . (5)ʃba 1xd x =ln x |ba (b >a >0).(6)ʃb a e xd x =e x |ba .(7)ʃb aa x d x =⎪⎪⎪a x ln a ba (a >0且a ≠1). (8)ʃb a x d x =⎪⎪⎪23x 32ba (b >a >0). 知识点二 定积分和曲边梯形面积的关系 思考 定积分与曲边梯形的面积一定相等吗?答 当被积函数f (x )≥0恒成立时,定积分与曲边梯形的面积相等,若被积函数f (x )≥0不恒成立,则不相等.设曲边梯形在x 轴上方的面积为S 上,在x 轴下方的面积为S 下,则 (1)当曲边梯形在x 轴上方时,如图①,则ʃba f (x )d x =S 上. (2)当曲边梯形在x 轴下方时,如图②,则ʃb a f (x )d x =-S 下.(3)当曲边梯形在x 轴上方、x 轴下方均存在时,如图③,则ʃba f (x )d x =S 上-S 下.特别地,若S 上=S 下,则ʃba f (x )d x =0.类型一 定积分的求法例1 (1)定积分ʃ10(2x +e x)d x 的值为( ) A .e +2 B .e +1 C .eD .e -1(2)ʃ20|1-x 2|d x =________.(3)ʃ21[2x 2+x +1x-cos x ]d x =________.答案 (1)C (2)2 (3)4+ln 2-sin 2+sin 1解析 (1)ʃ10(2x +e x )d x =(x 2+e x )|10=(1+e)-1=e.故选C.(2)|1-x 2|=⎩⎪⎨⎪⎧1-x 2,0≤x ≤1,x 2-1,1<x ≤2.ʃ20|1-x 2|d x =ʃ10(1-x 2)d x +ʃ21(x 2-1)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫x -13x 310+⎪⎪⎪⎝ ⎛⎭⎪⎫13x 3-x 21=23+73-1=2. (3)ʃ21[2x 2+x +1x-cos x ]d x=ʃ21(2x +1+1x-cos x )d x=(x 2+x +ln x -sin x )|21 =6+ln 2-sin 2-(2-sin 1) =4+ln 2-sin 2+sin 1.反思与感悟 1.掌握基本函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后再求解;2.被积函数会有绝对值号,可先求函数的零点,结合积分区间、分段求解. 跟踪训练1 (1)计算定积分ʃ1-1(x 2+sin x )d x =______.答案 23解析 ʃ1-1(x 2+sin x )d x=⎪⎪⎪⎝ ⎛⎭⎪⎫13x 3-cos x 1-1 =(13-cos 1)-(-13-cos 1)=23. (2)f (x )=⎩⎪⎨⎪⎧1+2x ,0≤x ≤1,x 2,1<x ≤2,求ʃ20f (x )d x .解 ʃ20f (x )d x=ʃ10(1+2x )d x +ʃ21x 2d x =(x +x 2)|10+⎪⎪⎪13x 321 =2+73=133.类型二 利用定积分求参数例2 (1)已知2≤ʃ21(kx +1)d x ≤4,则实数k 的取值范围为________.(2)设函数f (x )=ax 2+c (a ≠0).若ʃ10f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________. 答案 (1)[23,2] (2)33解析 (1)ʃ21(kx +1)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫12kx 2+x 21=32k +1.由2≤32k +1≤4得23≤k ≤2.(2)ʃ10f (x )d x =ʃ10(ax 2+c )d x =⎪⎪⎪⎝ ⎛⎭⎪⎫13ax 3+cx 10=a 3+c . f (x 0)=ax 20+c ,∴a 3=ax 20,即x 0=33或-33. ∵0≤x 0≤1,∴x 0=33. 反思与感悟 1.含有参数的定积分可以与方程、函数或不等式综合起来考查,先利用微积分基本定理计算定积分是解决此类综合问题的前提.2.计算含有参数的定积分,必须分清积分变量与被积函数f (x )、积分上限与积分下限、积分区间与函数F (x )等概念.跟踪训练2 (1)已知x ∈(0,1],f (x )=ʃ10(1-2x +2t )d t ,则f (x )的值域是________. 答案 [0,2)解析 f (x )=ʃ10(1-2x +2t )d t=(t -2xt +t 2)|10=-2x +2(x ∈(0,1]). ∴f (x )的值域为[0,2).(2)已知ʃ10[(3ax +1)(x +b )]d x =0,a ,b ∈R ,试求ab 的取值范围. 解 ʃ10[(3ax +1)(x +b )]d x =ʃ10[3ax 2+(3ab +1)x +b ]d x =⎪⎪⎪⎣⎢⎡⎦⎥⎤ax 3+12(3ab +1)x 2+bx 10=a +12(3ab +1)+b =0,即3ab +2(a +b )+1=0.由于(a +b )2=a 2+b 2+2ab ≥4ab ,所以(-3ab +12)2≥4ab ,即9(ab )2-10ab +1≥0,得(ab -1)(9ab -1)≥0,解得ab ≤19或ab ≥1.所以ab 的取值范围是(-∞,19]∪[1,+∞).1.若ʃa1(2x +1x)d x =3+ln 2,则a 的值是( )A .5B .4C .3D .2 答案 D解析 ʃa 1(2x +1x )d x =ʃa 12x d x +ʃa 11xd x=x 2|a 1+ln x |a 1=a 2-1+ln a =3+ln 2, 解得a =2.2.ʃ20(x 2-23x )d x =________.答案 43解析 ʃ20(x 2-23x )d x =ʃ20x 2d x -ʃ2023x d x=⎪⎪⎪x 332-⎪⎪⎪x 2320=83-43=43.3.已知f (x )=ax 2+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,ʃ10f (x )d x =-2.求a ,b ,c 的值.解 ∵f (-1)=2,∴a -b +c =2,①f ′(x )=2ax +b ,f ′(0)=b =0,②ʃ10f (x )d x =ʃ10(ax 2+c )d x =⎪⎪⎪⎝ ⎛⎭⎪⎫13ax 3+cx 10 =13a +c =-2,③ 由①②③可得a =6,b =0,c =-4.4.已知f (x )=⎩⎪⎨⎪⎧4x -2π,0≤x ≤π2,cos x ,π2<x ≤π,计算ʃπ0f (x )d x .解 ʃπf (x )d x =⎠⎜⎛0π2f (x )d x +⎠⎜⎛π2πf (x )d x=⎠⎜⎛0π2 (4x -2π)d x + ⎠⎜⎛π2πʃcos x d x , 取F 1(x )=2x 2-2πx ,则F 1′(x )=4x -2π; 取F 2(x )=sin x ,则F 2′(x )=cos x . 所以⎠⎜⎛0π2 (4x -2π)d x +⎠⎜⎛π2πcos x d x =(2x2-2πx )|2π+sin x |2ππ=-12π2-1, 即ʃπ0f (x )d x =-12π2-1.1.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x 轴下方的图形面积要取定积分的相反数.一、选择题1.若F ′(x )=x 2,则F (x )的解析式不正确的是( ) A .F (x )=13x 3B .F (x )=x 3C .F (x )=13x 3+1D .F (x )=13x 3+c (c 为常数)答案 B 2.ʃ0-4|x +2|d x 等于( ) A .ʃ0-4(x +2)d x B .ʃ0-4(-x -2)d x C .ʃ-2-4(x +2)d x +ʃ0-2(-x -2)d xD .ʃ-2-4(-x -2)d x +ʃ0-2(x +2)d x答案 D解析 ∵|x +2|=⎩⎪⎨⎪⎧x +2,-2≤x ≤0,-x -2,-4≤x <-2,∴ʃ-4|x +2|d x =ʃ-2-4(-x -2)d x +ʃ0-2(x +2)d x .故选D.3.若S 1=ʃ21x 2d x ,S 2=ʃ211xd x ,S 3=ʃ21e xd x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1答案 B解析 S 1=ʃ21x 2d x =⎪⎪⎪13x 321=13×23-13=73, S 2=ʃ211xd x =ln x |21=ln 2,S 3=ʃ21e x d x =e x |21=e 2-e =e(e -1).ln 2<ln e =1,且73<2.5<e(e -1),所以ln 2<73<e(e -1),即S 2<S 1<S 3.4.已知函数f (a )=ʃa0sin x d x ,则f (f (π2))等于( )A .1B .1-cos 1C .0D .cos 1-1答案 B解析 f (π2)=⎠⎜⎛0π2sin x d x =-cos x20π=1,f (f (π2))=f (1)=ʃ10sin x d x =-cos x |10=1-cos 1.5.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则ʃ1-1f (x )d x 的值为( )A.32B.43C.23 D .-23 答案 B 解析 ʃ1-1f (x )d x =ʃ0-1x 2d x +ʃ101d x =⎪⎪⎪x 330-1+1=13+1=43,故选B. 6.已知f (a )=ʃ10(2ax 2-a 2x )d x ,则函数f (a )的最大值为( )A.19B.29 C .-19 D .-29 答案 B解析 f (a )=ʃ10(2ax 2-a 2x )d x =(23ax 3-12a 2x 2)|10=-12a 2+23a ,由二次函数的性质可得f (a )max =-2324×-12=29. 7.若f (x )=x 2+2ʃ10f (x )d x ,则ʃ10f (x )d x 等于( ) A .-1 B .-13C.13 D .1答案 B解析 ∵f (x )=x 2+2ʃ10f (x )d x , ∴ʃ10f (x )d x =(13x 3+2x ʃ10f (x )d x )|1=13+2ʃ10f (x )d x , ∴ʃ10f (x )d x =-13.二、填空题 8.ʃa -a(x cos x -5sin x +2)d x =________.答案 4a9.f (x )=sin x +cos x ,则⎠⎜⎜⎛-π2π2f (x )d x =________.答案 2解析 ʃπ2-π2f (x )d x =⎠⎜⎜⎛-π2π2(sin x +cos x )d x=(-cos x +sin x )22ππ-=(-cos π2+sin π2)-[-cos(-π2)+sin(-π2)]=1+1=2.10.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,x +f a 03t 2d t ,x ≤0,若f [f (1)]=1,则a =____________.答案 1解析 因为x =1>0,所以f (1)=lg 1=0. 又x ≤0时,f (x )=x +ʃa 03t 2d t =x +t 3|a 0=x +a 3, 所以f (0)=a 3.因为f [f (1)]=1,所以a 3=1, 解得a =1.11.设f (x )是一次函数,且ʃ10f (x )d x =5,ʃ10xf (x )d x =176,则f (x )的解析式为________. 答案 f (x )=4x +3解析 ∵f (x )是一次函数,设f (x )=ax +b (a ≠0),则ʃ10f (x )d x =ʃ10(ax +b )d x =ʃ10ax d x +ʃ10b d x =12a +b =5,ʃ10xf (x )d x =ʃ10x (ax +b )d x =ʃ1(ax 2)d x +ʃ10bx d x =13a +12b =176.由⎩⎪⎨⎪⎧12a +b =5,13a +12b =176,得⎩⎪⎨⎪⎧a =4,b =3.12.已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为________.答案 43解析 由图可得f (x )=1-x 2与x 轴所围图形的面积为ʃ1-1(1-x 2)d x =⎪⎪⎪⎝ ⎛⎭⎪⎫x -13x 31-1 =(1-13)-[-1-13(-1)3]=43.三、解答题 13.已知f (x )=ʃx -a (12t +4a )d t ,F (a )=ʃ10[f (x )+3a 2]d x ,求函数F (a )的最小值. 解 因为f (x )=ʃx -a(12t +4a )d t =(6t 2+4at )|x-a=6x 2+4ax -(6a 2-4a 2)=6x 2+4ax -2a 2,F (a )=ʃ10[f (x )+3a 2]d x =ʃ10(6x 2+4ax +a 2)d x=(2x 3+2ax 2+a 2x )|10=2+2a +a 2=a2+2a+2=(a+1)2+1≥1.所以当a=-1时,F(a)的最小值为1.。
人教版高中数学选修2-2学案:1.6微积分的基本定理(2)
1. 6 微积分的基本定理(2)【学习目标】1.理解微积分基本定理;2.应用微积分基本定理解决综合问题;3.认识求定积分的种类及方法.【新知自学】知识回首:1.一般地,假如 f (x)是区间a, b上的连续函数,而且 F (x) f ( x) ,那么bf ( x)dx _______________a.2.计算定积分的重点是找到知足F ( x) f ( x) 的函数________,往常,能够用基本初等函数的求导公式和导数的四则运算法例从_________方向上求出F ( x).新知梳理:1. 定积分的值可能取正当,也可能取负值,还可能是0.(1)当对应的曲边梯形位于x 轴上方时(图1),定积分的值取_______且等于曲边梯形的________;(2) 当对应的曲边梯形位于x 轴下方时(图2),定积分的值取_______且等于曲边梯形______的相反数;(3)当位于x轴上方的曲边梯形的面积等于位于x 轴下方的曲边梯形面积时,定积分的值为 _______( 如图3) 且等于位于x轴 _____的曲边梯形的面积减去位于______ 的曲边梯形的面积.2.活用定积分的三个性质b(1)a kf(x)dx=;b(2)a[ f1(x) ±f2(x)]dx=bb c(3)a f(x)dx=a f(x)dx+c f( x)dx(此中 a<c<b).对点练习:设x2, x 0,1,则 f ( x)dx 等于1. f ( x)2()2x, x1,2345D. 不存在A. B. C.4562.求以下定积分 :(1)求 e 1;dx1 x(2) 2 sin x3e x 2 dx_____________ .0(3)2sin x 2 cosx dx_________ .03.设f ( x)是奇函数,则af (x)dx. aax2 dx .4.求a【合作研究】典例精析:例 1. 计算定积分4(1)dx ;(| x - 1 | | x - 3|)x 2 ,0x 12(2)设函数f ( x),求 f ( x)dx .1,1 x20变式练习:32x 3 32x dx =___________________.31c) 2 dx 最小的c的值.例 2.求使(x2规律总结:会用定积分的几何意义求几种典型的曲边梯形面积(1)由三条直线x= a、 x= b(a< b)、 x 轴、一条曲线y=f(x)[ f(x)≥ 0] 围成的曲边梯形的面积(如图 1):bS=a f (x)dx.(2)由三条直线x= a、x= b(a<b)、 x 轴、一条曲线y= f(x)[ f(x)≤ 0] 围成的曲边梯形的面积(如图 2):b bS= |a f(x)dx|=- a f(x)dx.(3)由两条直线x= a、 x= b(a<b)、两条曲线y= f(x)、 y= g(x)[ f(x)≥ g(x)] 围成的平面图形的面积( 如图 3):bS=a[ f(x)-g(x)]d x.【讲堂小结】【当堂达标】1.曲线y sin x(0 x) 与直线 y 1围成的关闭图形的面积是() 2A.3B. 23C. 2D. 33322)dx =______________.2. (t13.求直线 x=-1,x=1, y=0, 以及 y=|x|-2 所围成的图形的面积.4.如图,求暗影部分的面积.【课时作业】1. 由曲线y x2和直线x 0, x1, y t 2 ,t0,1,所围成的图形(暗影部分)的面积的最小值为A.14B.13C.12D.23124 | dx =________________.2. | x3.设函数f (x) ax21c a0 ,若 f ( x) dx f ( x0 ) ,0x0 1 ,则 x0的值为.4.计算由抛物线y 22x 与直线 y x 4 所围成图形的面积.35.求定积分6x x2 dx .。
人教A版选修2-2§1.6微积分基本定理.docx
§1.6微积分基本定理教学目标:1、能说出微积分基本定理。
2、能运用微积分基本定理计算简单的定积分。
3、能掌握微积分基本定理的应用。
4、会用牛顿-莱布尼兹公式求简单的定积分。
教学重点:通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分;教学难点:微积分基本定理的含义.教学过程设计(一)、复习引入,激发兴趣。
【教师引入】同学们,我们来复习一下上节课的内容,请同学们回答以下几个问题:1. 我们如何确定曲线上一点处切线的斜率呢?2. 如何求曲线下方的面积?3. 用“以直代曲”解决问题的思想和具体操作过程是什么呢?求由连续曲线y=f(x)对应的曲边梯形面积的方法。
我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。
我们必须寻求计算定积分的新方法,也是比较一般的方法。
(二)、探究新知,揭示概念变速直线运动中位置函数与速度函数之间的联系设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥),则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为21()T T v t dt ⎰。
另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即21()T T v t dt ⎰=12()()S T S T -而()()S t v t '=。
对于一般函数()f x ,设()()F x f x '=,是否也有()()()b a f x d x F b F a =-⎰(三)、分析归纳,抽象概括若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。
注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则()()()ba f x dx Fb F a =-⎰证明:因为()x Φ=()xa f t dt ⎰与()F x 都是()f x 的原函数,故()F x -()x Φ=C (a x b ≤≤)其中C 为某一常数。
人教A版选修2-2§1.6微积分基本定理.docx
§1.6微积分基本定理教学目标:1、能说出微积分基本定理。
2、能运用微积分基本定理计算简单的定积分。
3、能掌握微积分基本定理的应用。
4、会用牛顿-莱布尼兹公式求简单的定积分。
教学重点: 通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分;教学难点:微积分基本定理的含义.教学过程设计(一)、复习引入,激发兴趣。
【教师引入】同学们,我们来复习一下上节课的内容,请同学们回答以下几个问题:1. 我们如何确定曲线上一点处切线的斜率呢?2. 如何求曲线下方的面积?3. 用“以直代曲”解决问题的思想和具体操作过程是什么呢?求由连续曲线y=f(x)对应的曲边梯形面积的方法。
我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。
我们必须寻求计算定积分的新方法,也是比较一般的方法。
(二)、探究新知,揭示概念变速直线运动中位置函数与速度函数之间的联系设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥),则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为21()T T v t dt ⎰。
另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 21()T T v t dt ⎰=12()()S T S T -而()()S t v t '=。
对于一般函数()f x ,设()()F x f x '=,是否也有()()()ba f x dx Fb F a =-⎰(三)、分析归纳,抽象概括若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。
注:1:定理 如果函数()F x 是[,]a b 上的连续函数()f x 的任意一个原函数,则()()()ba f x dx Fb F a =-⎰证明:因为()x Φ=()xa f t dt ⎰与()F x 都是()f x 的原函数,故()F x -()x Φ=C (a x b ≤≤)其中C 为某一常数。
人教A版选修2-2§1.6微积分基本定理.docx
高中数学学习材料马鸣风萧萧*整理制作§1.6微积分基本定理教学目标:1、能说出微积分基本定理。
2、能运用微积分基本定理计算简单的定积分。
3、能掌握微积分基本定理的应用。
4、会用牛顿-莱布尼兹公式求简单的定积分。
教学重点: 通过探究变速直线运动物体的速度与位移的关系,使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分;教学难点:微积分基本定理的含义.教学过程设计(一)、复习引入,激发兴趣。
【教师引入】同学们,我们来复习一下上节课的内容,请同学们回答以下几个问题: 1. 我们如何确定曲线上一点处切线的斜率呢?2. 如何求曲线下方的面积?3. 用“以直代曲”解决问题的思想和具体操作过程是什么呢?求由连续曲线y=f(x)对应的曲边梯形面积的方法。
我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。
我们必须寻求计算定积分的新方法,也是比较一般的方法。
(二)、探究新知,揭示概念变速直线运动中位置函数与速度函数之间的联系设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ),则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为21()T T v t dt ⎰。
另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 21()T T v t dt ⎰=12()()S T S T -而()()S t v t '=。
对于一般函数()f x ,设()()F x f x '=,是否也有()()()b a f x d x F b F a =-⎰(三)、分析归纳,抽象概括若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。
人教A版选修2-2 1.6 微积分基本定理 学案
微积分基本定理预习课本P51~54,思考并完成下列问题(1)微积分基本定理的内容是什么?(2)被积函数f(x)的原函数是否是唯一的?[新知初探]1.微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛abf (x )d x =F (b )-F (a ).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.为了方便,我们常常把F (b )-F (a )记为F (x )⎪⎪⎪ b a ,即⎠⎛a bf (x )d x =F (x )⎪⎪⎪b a=F (b )-F (a ).[点睛] 对微积分基本定理的理解(1)微积分基本定理表明,计算定积分⎠⎛abf (x )d x 的关键是找到满足F ′(x )=f (x )的函数F (x ),通常,我们可以运用基本初等函数的求导公式和导数的四则运算法则从反方向上求出F (x ).(2)牛顿-莱布尼茨公式指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数(F (x )叫做f (x )的原函数)的问题,提示了导数和定积分的内在联系,同时也提供计算定积分的一种有效方法.2.定积分和曲边梯形面积的关系设曲边梯形在x 轴上方的面积为S 上,在x 轴下方的面积为S 下.则 (1)当曲边梯形的面积在x 轴上方时,如图①,则⎠⎛a bf (x )d x =S 上.(2)当曲边梯形的面积在x 轴下方时,如图②,则⎠⎛abf (x )d x =-S 下.(3)当曲边梯形的面积在x 轴上方、x 轴下方均存在时,如图③,则⎠⎛abf (x )d x =S上-S 下,若S 上=S 下,则⎠⎛abf (x )d x =0.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)微积分基本定理中,被积函数f (x )是原函数F (x )的导数.( )(2)应用微积分基本定理求定积分的值时,为了计算方便通常取原函数的常数项为0.( )(3)应用微积分基本定理求定积分的值时,被积函数在积分区间上必须是连续函数.( )答案:(1)√ (2)√ (3)√2.⎠⎛241xd x 等于( )A .-2ln 2B .2ln 2C .-ln 2D .ln 2答案:D3.⎠⎛01(e x+2x )d x 等于( )A .1B .e -1C .eD .e +1答案:C4.已知⎠⎛01x 2d x =13,⎠⎛12x 2d x =73,则⎠⎛02(x 2+1)d x =________.答案:143[典例] 求下列定积分:(1)⎠⎛-π0(cos x -e x)d x ;(2)⎠⎛49x (1+x )d x ;(3)⎠⎛04(|x -1|+|x -3|)d x .[解] (1)⎠⎛-π0 (cos x -e x)d x =⎠⎛-π0cos x d x -⎠⎛-π0e x d x =sin x |0-π-e x |0-π=1e π-1.(2)⎠⎛49x (1+x )d x =⎠⎛49(x 12+x )d x=⎝ ⎛⎭⎪⎫23x 32+12x 2⎪⎪⎪94=⎝ ⎛⎭⎪⎫23×932+12×92-⎝ ⎛⎭⎪⎫23×432+12×42=4516.(3)因为y =|x -1|+|x -3|=⎩⎨⎧-2x +4,x ≤1,2,1<x <3,2x -4,x ≥3.所以⎠⎛04(|x -1|+|x -3|)d x=⎠⎛01(-2x +4)d x +⎠⎛132d x +⎠⎛34(2x -4)d x=(-x 2+4x )⎪⎪⎪ 10+2x ⎪⎪⎪ 31+(x 2-4x )⎪⎪⎪43=-1+4+6-2+16-16-9+12 =10.1.由微积分基本定理求定积分的步骤当被积函数为两个函数的乘积时,一般要转化为和的形式,便于求得函数F (x ),再计算定积分,具体步骤如下.第一步:求被积函数f (x )的一个原函数F (x ); 第二步:计算函数的增量F (b )-F (a ). 2.分段函数的定积分的求法(1)由于分段函数在各区间上的函数式不同,所以被积函数是分段函数时,常常利用定积分的性质(3),转化为各区间上定积分的和计算.(2)当被积函数含有绝对值时,常常去掉绝对值号,转化为分段函数的定积分再计算.[活学活用] 计算下列定积分:(1)⎠⎛01(x 3-2x )d x ;(2)∫π20(x +cos x )d x ;(3)⎠⎛121xx +1d x .解:(1)⎠⎛01(x 3-2x )d x =⎝ ⎛⎭⎪⎫14x 4-x 210=-34.(2)∫π20(x +cos x )d x =⎝ ⎛⎭⎪⎫12x 2+sin x π20=π28+1.(3)f (x )=1xx +1=1x -1x +1.取F (x )=ln x -ln(x +1)=ln xx +1,则F ′(x )=1x -1x +1,所以⎠⎛121x x +1d x =⎠⎛12⎝ ⎛⎭⎪⎫1x-1x +1d x =ln x x +121=ln 43.定积分的综合应用[典例] 设函数y =ωsin ⎝ ⎛⎭⎪⎫ωx -π3(ω>0)的最小正周期为T ,若π3<T <π2,且∫π6-π6ωsin ⎝⎛⎭⎪⎫ωx -π3d x =-32,求ω的值.[解] ∵ωsin ⎝⎛⎭⎪⎫ωx -π3d x=-cos ⎝⎛⎭⎪⎫ωx -π3⎪⎪⎪⎪π6-π6=-12cos ωπ6-32sin ωπ6+12cos ωπ6-32sin ωπ6=-3sinωπ6,∴sinωπ6=12,∴ωπ6=π6+2k π或5π6+2k π(k ∈Z). 即ω=1+12k 或5+12k (k ∈Z).① 又∵π3<T <π2,ω=2πT ,∴4<ω<6.② 结合①②可知ω=5.含有参数的定积分问题的处理办法与注意点(1)含有参数的定积分可以与方程、函数或不等式综合起来考查,先利用微积分基本定理计算定积分是解决此类综合问题的前提.(2)计算含有参数的定积分,必须分清积分变量与被积函数f (x )、积分上限与积分下限、积分区间与函数F (x )等概念.[活学活用]已知f (x )=⎠⎛-a x (12t +4a )d t ,F (a )=⎠⎛01[f (x )+3a 2]d x ,求函数F (a )的最小值.解:∵f (x )=⎠⎛x -a (12t +4a )d t =(6t 2+4at )x -a =6x 2+4ax -(6a 2-4a 2) =6x 2+4ax -2a 2,∵F (a )=⎠⎛01[f (x )+3a 2]d x =⎠⎛1(6x 2+4ax +a 2)d x=(2x 3+2ax 2+a 2x )10=a 2+2a +2=(a +1)2+1≥1,∴当a =-1时,F (a )最小值=1.层级一 学业水平达标1.下列各式中,正确的是( )A.⎠⎛a bF ′(x )d x =F ′(b )-F ′(a )B.⎠⎛a bF ′(x )d x =F ′(a )-F ′(b )C.⎠⎛a bF ′(x )d x =F (b )-F (a )D.⎠⎛abF ′(x )d x =F (a )-F (b )解析:选C 由牛顿-莱布尼茨公式知,C 正确.2.⎠⎛0π(cos x +1)d x 等于( )A .1B .0C .π+1D .π解析:选D ⎠⎛0π(cos x +1)d x =(sin x +x )π0=sin π+π-0=π.3.已知⎠⎛01(kx +1)d x =k ,则实数k =( )A .2B .-2C .1D .-1解析:选A 因为⎠⎛01(kx +1)d x =k ,所以⎝ ⎛⎭⎪⎫12kx 2+x 10=k .所以12k +1=k ,所以k =2.4.设函数f (x )=⎩⎨⎧x 2,0≤x ≤1,1,1<x ≤2,则定积分⎠⎛02f (x )d x 等于( )A.83 B .2C.43D.13解析:选C ⎠⎛02f (x )d x =⎠⎛01x 2d x +⎠⎛211d x =13x 3⎪⎪⎪ 10+x ⎪⎪⎪21=13+1=43.故选C. 5.设f (x )=⎩⎨⎧x 2,x ∈[0,1],2-x ,x ∈1,2],则∫20f (x )d x 等于( )A.34 B .45C.56D .不存在解析:选C ∫20f (x )d x =∫10x 2d x +∫21(2-x )d x=13x 31+⎝ ⎛⎭⎪⎫2x -12x 221=56.6.⎠⎛12⎝ ⎛⎭⎪⎫1x+1x 2d x =________.解析:⎠⎛12⎝ ⎛⎭⎪⎫1x +1x 2d x =⎝ ⎛⎭⎪⎫ln x -1x ⎪⎪⎪21=⎝ ⎛⎭⎪⎫ln 2-12-(ln 1-1)=ln 2+12.答案:ln 2+127. 设f (x )=⎩⎨⎧x 2,x ≤0,cos x -1,x >0.则⎠⎛1-1f (x )d x =_________. 解析:⎠⎛1-1f (x )d x =⎠⎛0-1x 2d x +⎠⎛10(cos x -1)d x=13x 30-1+(sin x -x )10 =⎣⎢⎡⎦⎥⎤13×03-13×-13+[(sin 1-1)-(sin 0-0)] =sin 1-23.答案:sin 1-238.已知f (x )=3x 2+2x +1,若⎠⎛-11f (x )d x =2f (a )成立,则a =________.解析:∵⎠⎛-11f (x )d x =⎠⎛-11(3x 2+2x +1)d x =(x 3+x 2+x )⎪⎪⎪1-1=(1+1+1)-(-1+1-1)=4, ∴2f (a )=4,∴f (a )=2,即3a 2+2a +1=2,3a 2+2a -1=0. 解得a =-1或a =13.答案:-1或139.计算下列定积分.(1)⎠⎛25(3x 2-2x +5)d x ;(2)∫2π0(cos x +sin x )d x ;(3)⎠⎛12⎝ ⎛⎭⎪⎫e x -1x d x ;(4)⎠⎛-22|x 2-x |d x .解:(1)⎠⎛25(3x 2-2x +5)d x=⎠⎛253x 2d x -⎠⎛252x d x +⎠⎛255d x=x 3⎪⎪⎪ 52-x 2⎪⎪⎪ 52+5x ⎪⎪⎪52=(53-23)-(52-22)+5(5-2)=111.(2)∫2π0(cos x +sin x )d x =(sin x -cos x )|2π=(sin 2π-cos 2π)-(sin 0-cos 0)=0.(3)⎠⎛12⎝ ⎛⎭⎪⎫e x -1x d x =(e x -ln x )⎪⎪⎪21=(e 2-ln 2)-(e 1-ln 1)=e 2-e -ln 2.(4)⎠⎛-22|x 2-x |d x=⎠⎛-20(x 2-x )d x +⎠⎛01(x -x 2)d x +⎠⎛12(x 2-x )d x=⎝ ⎛⎭⎪⎫13x 3-12x 2⎪⎪⎪0-2+12x 2-13x 3⎪⎪⎪ 10+13x 3-12x 2⎪⎪⎪21=173.10.若f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176,求⎠⎛12f xx d x 的值.解:设f (x )=kx +b (k ≠0),则⎠⎛01(kx +b )d x =⎝ ⎛⎭⎪⎫k 2x 2+bx ⎪⎪⎪1=k2+b =5,① ⎠⎛01xf (x )d x =⎠⎛01(kx 2+bx )d x=⎝ ⎛⎭⎪⎫kx 33+bx 22⎪⎪⎪10=k 3+b 2=176,② 联立①②可得⎩⎨⎧k =4,b =3.所以f (x )=4x +3.则⎠⎛12f x x d x =⎠⎛124x +3x d x=⎠⎛12⎝ ⎛⎭⎪⎫4+3x d x =(4x +3ln x )⎪⎪⎪21=(8+3ln 2)-(4+3ln 1) =4+3ln 2.层级二 应试能力达标1.若函数f (x )=x m +nx 的导函数是f ′(x )=2x +1,则⎠⎛12f (-x )d x =( )A.56 B.12 C.23D.16解析:选A ∵f (x )=x m+nx 的导函数是f ′(x )=2x +1,∴f (x )=x 2+x ,∴⎠⎛12f (-x )d x =⎠⎛12(x 2-x )d x =⎝ ⎛⎭⎪⎫13x 3-12x 221=56.2.已知函数f (a )=⎠⎛0asin x d x ,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π2等于( )A .1B .1-cos 1C .0D .cos 1-1解析:选Bf ⎝ ⎛⎭⎪⎫π2=∫π20sin x d x =-cos x ⎪⎪⎪π20=1.f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫π2=f (1)=⎠⎛01sin x d x =-cos x ⎪⎪⎪10=1-cos 1.3.若⎠⎛1a ⎝ ⎛⎭⎪⎫2x +1x d x =3+ln 2,则a 的值是( )A .6B .4C .3D .2解析:选D ⎠⎛1a ⎝ ⎛⎭⎪⎫2x +1x d x =(x 2+ln x )a 1=(a 2+ln a )-(1+ln 1)=(a 2-1)+ln a =3+ln 2.∴⎩⎨⎧a 2-1=3,a >1,a =2,∴a =2.4.若f (x )=x 2+2⎠⎛01f (x )d x ,则⎠⎛1f (x )d x =( )A .-1B .-13C.13D .1解析:选B 设⎠⎛01f (x )d x =c ,则c =⎠⎛01(x 2+2c )d x =⎝ ⎛⎭⎪⎫13x 3+2cx 10=13+2c ,解得c =-13.5.已知α∈⎣⎢⎡⎦⎥⎤0,π2,则当⎠⎛0α(cos x -sin x )d x 取最大值时,α=________.解析:⎠⎛0α(cos x -sin x )d x =(sin x +cos x )⎪⎪⎪α0=sin α+cos α-1=2sin ⎝ ⎛⎭⎪⎫α+π4-1,当 2 sin ⎝ ⎛⎭⎪⎫α+π4-1取最大值时,sin ⎝ ⎛⎭⎪⎫α+π4=1,∵α∈⎣⎢⎡⎦⎥⎤0,π2,∴α=π4.答案:π46.函数y =x 2与y =kx (k >0)的图象所围成的阴影部分的面积为92,则k =________.解析:由⎩⎨⎧ y =kx ,y =x 2,解得⎩⎨⎧ x =0,y =0或⎩⎨⎧x =k ,y =k 2. 由题意得,⎠⎛0k (kx -x 2)d x =⎝ ⎛⎭⎪⎫12kx 2-13x 3k 0=12k 3-13k 3=16k 3=92,故k =3.答案:37.已知⎠⎛-11(x 3+ax +3a -b )d x =2a +6,且f (t )=⎠⎛0t (x 3+ax +3a -b )d x 为偶函数,求a ,b .解:∵f (x )=x 3+ax 为奇函数,∴⎠⎛-11(x 3+ax )d x =0,∴⎠⎛-11(x 3+ax +3a -b )d x=⎠⎛-11 (x 3+ax )d x +⎠⎛-11 (3a -b )d x=0+(3a -b )[1-(-1)] =6a -2b , ∴6a -2b =2a +6, 即2a -b =3.①又∵f (t )=⎣⎢⎡⎦⎥⎤x 44+a 2x 2+3a -b x ⎪⎪⎪t=t 44+at 22+(3a -b )t 为偶函数,∴3a -b =0.②由①②得a =-3,b =-9.8. 已知S 1为直线x =0,y =4-t 2及y =4-x 2所围成图形的面积,S 2为直线x =2,y =4-t 2及y =4-x 2所围成图形的面积(t 为常数).(1)若t=2时,求S 2.(2)若t ∈(0,2),求S 1+S 2的最小值. 解:(1)当t =2时,(2)t ∈(0,2),S 1=⎠⎛0t[(4-x 2)-(4-t 2)]d x=⎝⎛⎭⎪⎫t 2x -13x 3=23t 3,S 2=⎠⎛t 2[(4-t 2)-(4-x 2)]d x=⎝ ⎛⎭⎪⎫13x 3-t 2x =83-2t 2+23t 3, 令S =S 1+S 2=43t3-2t2+83,S′=4t2-4t=4t(t-1),令S′=0得t=0(舍去)或t=1,当0<t<1时,S′<0,当1<t<2时,S′>0,所以当t=1时,S min=2.。
数学:1.6《微积分基本定理》学案(新人教A版选修2-2)
高二数学理科导学案1.6 微积分基本定理学习目标知识与技能 通过实例直观了解微积分积分定理的含义;熟练地用微积分积分定理计算微积分.过程与方法 从局部到整体,从具体到一般的思想,利用导数的几何意义和定积分的概念,通过寻求导数和定积分之间的内在联系,得到微积分基本定理,进一步得出积分定理。
情感态度与价值观 通过微积分基本定理的学习,体会事物间的相互转化、对立统一的辩证关系,培养学生辩证唯物主义观点,提高理性思维能力。
学习重点 直观了解微积分基本定理的含义,并能用定理计算简单的定积分。
学习难点 了解微积分基本定理的含义学习连接 导数,定积分学习过程 一、【复习回顾】1.基本初等函数地求导公式(1) (2)(3) (4)(5) (6)(7) (8)2.导数运算法则: (1) (2)(3) (4):3.连续函数)(x f 在[]b a ,上的定积分定义:4.定积分的性质:二、引入新课我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。
我们必须寻求计算定积分的新方法,也是比较一般的方法。
变速直线运动中位置函数与速度函数之间的联系设一物体沿直线作变速运动,在时刻t 时物体所在位置为S(t),速度为v(t)(()v t o ≥), 则物体在时间间隔12[,]T T 内经过的路程可用速度函数表示为21()T T v t dt ⎰。
另一方面,这段路程还可以通过位置函数S (t )在12[,]T T 上的增量12()()S T S T -来表达,即 21()T T v t dt ⎰=12()()S T S T -而()()S t v t '=。
对于一般函数()f x ,设()()F x f x '=,是否也有若上式成立,我们就找到了用()f x 的原函数(即满足()()F x f x '=)的数值差()()F b F a -来计算()f x 在[,]a b 上的定积分的方法。
人教A版选修2-2 1.6 微积分基本定理 学案
1.6 微积分基本定理[学习目标]1.直观了解并掌握微积分基本定理的含义. 2.会利用微积分基本定理求函数的定积分. [知识链接]1.导数与定积分有怎样的联系?答 导数与定积分都是微积分学中两个最基本、最重要的概念,运用它们之间的联系,我们可以找出求定积分的方法,求导数与定积分是互为逆运算.2.在下面图(1)、图(2)、图(3)中的三个图形阴影部分的面积分别怎样表示?答 根据定积分与曲边梯形的面积的关系知: 图(1)中S =⎠⎛ab f (x )d x ,图(2)中S =-⎠⎛ab f (x )d x ,图(3)中S =⎠⎛0b f (x )d x -⎠⎛a0f (x )d x .[预习导引] 1.微积分基本定理如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ).2.函数f (x )与其一个原函数的关系 (1)若f (x )=c (c 为常数),则F (x )=cx ; (2)若f (x )=x n(n ≠-1),则F (x )=1n +1·x n +1; (3)若f (x )=1x,则F (x )=ln_x (x >0);(4)若f (x )=e x ,则F (x )=e x;(5)若f (x )=a x,则F (x )=a xln a(a >0且a ≠1); (6)若f (x )=sin x ,则F (x )=-cos_x ; (7)若f (x )=cos x ,则F (x )=sin_x .要点一 求简单函数的定积分 例1 计算下列定积分(1)⎠⎛123d x ; (2)⎠⎛02(2x +3)d x ;(3)⎠⎛3-1(4x -x 2)d x ; (4)⎠⎛12(x -1)5d x .解 (1)因为(3x )′=3,所以⎠⎛123d x =(3x )⎪⎪⎪21=3×2-3×1=3.(2)因为(x 2+3x )′=2x +3,所以⎠⎛02(2x +3)d x =(x 2+3x )⎪⎪⎪2=22+3×2-(02+3×0)=10.(3)因为⎝ ⎛⎭⎪⎫2x 2-x 33′=4x -x 2,所以⎠⎛3-1(4x -x 2)d x =⎝ ⎛⎭⎪⎫2x 2-x 33⎪⎪⎪3-1=⎝ ⎛⎭⎪⎫2×32-333-⎣⎢⎡⎦⎥⎤2×-12--133=203. (4)因为⎣⎢⎡⎦⎥⎤16x -16′=(x -1)5, 所以⎠⎛21(x -1)5d x=16(x -1)6⎪⎪⎪21=16(2-1)6-16(1-1)6 =16. 规律方法 (1)用微积分基本定理求定积分的步骤: ①求f (x )的一个原函数F (x );②计算F (b )-F (a ). (2)注意事项:①有时需先化简,再求积分;②f (x )的原函数有无穷多个,如F (x )+c ,计算时,一般只写一个最简单的,不再加任意常数c .跟踪演练1 求下列定积分: (1)∫π2(3x +sin x )d x ;(2)⎠⎛21⎝⎛⎭⎪⎫e x -1x d x . 解 (1)∵⎝ ⎛⎭⎪⎫32x 2-cos x ′=3x +sin x , ∴∫π20(3x +sin x )d x =⎝ ⎛⎭⎪⎫32x 2-cos x ⎪⎪⎪⎪π20=⎣⎢⎡⎦⎥⎤32×⎝ ⎛⎭⎪⎫π22-cos π2-⎝ ⎛⎭⎪⎫32×0-cos 0=3π28+1; (2)∵(e x -ln x )′=e x-1x,∴⎠⎛21(e x-1x)d x =()e x-ln x ⎪⎪⎪21=(e 2-ln 2)-(e -0)=e 2-e -ln 2.要点二 求较复杂函数的定积分 例2 求下列定积分: (1)⎠⎛41x (1-x )d x ; (2)∫π202cos 2x2d x ; (3)⎠⎛41(2x+1x)d x .解 (1)∵x (1-x )=x -x ,又∵⎝ ⎛⎭⎪⎫23x 32-12x 2′=x -x .∴⎠⎛41x (1-x )d x =⎝ ⎛⎭⎪⎫23x 32-12x 2⎪⎪⎪41=⎝ ⎛⎭⎪⎫23×432-12×42-⎝ ⎛⎭⎪⎫23-12=-176.(2)∵2cos 2x2=1+cos x ,(x +sin x )′=1+cos x ,∴原式=∫π20(1+cos x )d x =(x +sin x )⎪⎪⎪⎪π2=π2+1. (3)∵⎝ ⎛⎭⎪⎫2x ln 2+2x ′=2x+1x, ∴⎠⎛41(2x+1x)d x =⎝ ⎛⎭⎪⎫2xln 2+2x ⎪⎪⎪41=⎝ ⎛⎭⎪⎫24ln 2+24-⎝ ⎛⎭⎪⎫2ln 2+2=14ln 2+2.规律方法 求较复杂函数的定积分的方法:(1)掌握基本初等函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后求解,具体方法是能化简的化简,不能化简的变为幂函数、正、余弦函数、指数、对数函数与常数的和与差. (2)确定积分区间,分清积分下限与积分上限. 跟踪演练2 计算下列定积分: (1)∫π3(sin x -sin 2x )d x ;(2)⎠⎛0ln 2e x(1+e x)d x .解 (1)sin x -sin 2x 的一个原函数是-cos x + 12cos 2x ,所以∫π30(sin x -sin 2x )d x =⎝ ⎛⎭⎪⎫-cos x +12cos 2x ⎪⎪⎪⎪π30=⎝ ⎛⎭⎪⎫-12-14-⎝⎛⎭⎪⎫-1+12=-14.(2)∵e x(1+e x)=e x+e 2x,∴⎝⎛⎭⎪⎫e x +12e 2x ′=e x +e 2x,∴⎠⎛0ln 2e x(1+e x)d x =⎠⎛0ln 2()e x+e2xd x=⎝⎛⎭⎪⎫e x +12e 2x ⎪⎪⎪ln 2=eln 2+12e 2ln 2-e 0-12e 0 =2+12×4-1-12=52.要点三 定积分的简单应用例3 已知f (a )=⎠⎛10(2ax 2-a 2x )d x ,求f (a )的最大值.解 ∵⎝ ⎛⎭⎪⎫23ax 3-12a 2x 2′=2ax 2-a 2x ,∴⎠⎛10(2ax 2-a 2x )d x =⎝ ⎛⎭⎪⎫23ax 3-12a 2x 2⎪⎪⎪10=23a -12a 2, 即f (a )=23a -12a 2=-12⎝ ⎛⎭⎪⎫a 2-43a +49+29=-12⎝ ⎛⎭⎪⎫a -232+29,∴当a =23时,f (a )有最大值29.规律方法 定积分的应用体现了积分与函数的内在联系,可以通过积分构造新的函数,进而对这一函数进行性质、最值等方面的考查,解题过程中注意体会转化思想的应用. 跟踪演练3 已知f (x )=ax 2+bx +c (a ≠0),且f (-1)=2,f ′(0)=0,⎠⎛10f (x )d x =-2,求a 、b 、c 的值.解 由f (-1)=2,得a -b +c =2. ① 又f ′(x )=2ax +b ,∴f ′(0)=b =0, ②而⎠⎛10f (x )d x =⎠⎛10(ax 2+bx +c )d x =⎝ ⎛⎭⎪⎫13ax 3+12bx 2+cx ⎪⎪⎪1=13a +12b +c , ∴13a +12b +c =-2, ③由①②③式得a =6,b =0,c =-4. 要点四 求分段函数的定积分 例4 计算下列定积分:(1)若f (x )=⎩⎪⎨⎪⎧x 2x ≤0cos x -1 x >0,求∫π2-1f (x )d x ;(2)⎠⎛30|x 2-4|d x .解 (1)∫π2-1f (x )d x =⎠⎛0-1x 2d x +∫π20(cos x -1)d x ,又∵⎝ ⎛⎭⎪⎫13x 3′=x 2,(sin x -x )′=cos x -1∴原式=13x 3⎪⎪⎪-1+(sin x -x )⎪⎪⎪⎪π2=⎝ ⎛⎭⎪⎫0+13+⎝⎛⎭⎪⎫sin π2-π2-(sin 0-0)=43-π2. (2)∵|x 2-4|=⎩⎪⎨⎪⎧x 2-4 x ≥2或x ≤-2,4-x 2-2<x <2,又∵⎝ ⎛⎭⎪⎫13x 3-4x ′=x 2-4,⎝ ⎛⎭⎪⎫4x -13x 3′=4-x 2,∴⎠⎛30|x 2-4|d x =⎠⎛20(4-x 2)d x +⎠⎛32(x 2-4)d x=⎝⎛⎭⎪⎫4x -13x 3⎪⎪⎪20+⎝ ⎛⎭⎪⎫13x 3-4x ⎪⎪⎪32=⎝ ⎛⎭⎪⎫8-83-0+(9-12)-⎝ ⎛⎭⎪⎫83-8=233. 规律方法 (1)求分段函数的定积分时,可利用积分性质将其表示为几段积分和的形式; (2)带绝对值的解析式,先根据绝对值的意义找到分界点,去掉绝对值号,化为分段函数; (3)含有字母参数的绝对值问题要注意分类讨论. 跟踪演练4 求⎠⎛3-3(|2x +3|+|3-2x |)d x .解 ∵|2x +3|+|3-2x |=⎩⎪⎨⎪⎧-4x ,x <-32,6,-32≤x ≤32,4x ,x >32,∴⎠⎛3-3(|2x +3|+|3-2x |)d x=∫-32-3(-4x )d x +∫32-326d x +∫3324x d x=-2x 2⎪⎪⎪⎪-32-3+6x⎪⎪⎪⎪32-32+2x 2⎪⎪⎪⎪332=45.1.∫π2-π2(1+cos x )d x 等于( )A .πB .2C .π-2D .π+2答案 D解析 ∵(x +sin x )′=1+cos x , ∴⎪⎪⎪∫π2-π21+cos x d x =x +sin x π2-π2=π2+sin π2-⎣⎢⎡⎦⎥⎤-π2+sin ⎝ ⎛⎭⎪⎫-π2=π+2. 2.若⎠⎛1a ⎝⎛⎭⎪⎫2x +1x d x =3+ln 2,则a 的值是( )A .5B .4C .3D .2答案 D解析 ⎠⎛1a ⎝ ⎛⎭⎪⎫2x +1x d x =⎠⎛1a 2x d x +⎠⎛1a 1xd x =x 2|a1+ln x ⎪⎪ a1=a 2-1+ln a =3+ln 2,解得a =2.3.⎠⎛02⎝⎛⎭⎪⎫x 2-23x d x =________. 答案 43解析 ⎠⎛02⎝ ⎛⎭⎪⎫x 2-23x d x =⎠⎛02x 2d x -⎠⎛0223x d x=x 33⎪⎪⎪⎪⎪⎪20-x 2320=83-43=43.4.已知f (x )=⎩⎪⎨⎪⎧4x -2π,0≤x ≤π2,cos x ,π2<x ≤π,计算⎠⎛0πf (x )d x .解 ⎠⎛0πf (x )d x =∫π20f (x )d x +错误!f (x )d x =∫π2(4x -2π)d x +错误!cos x d x ,取F 1(x )=2x 2-2πx ,则F 1′(x )=4x -2π; 取F 2(x )=sin x ,则F 2′(x )=cos x . 所以∫π2(4x -2π)d x +错误!cos x d x =(2x 2-2πx )错误!+sin x ⎪⎪⎪ππ2=-12π2-1,即⎠⎛0πf (x )d x =-12π2-1.1.求定积分的一些常用技巧(1)对被积函数,要先化简,再求积分.(2)若被积函数是分段函数,依据定积分“对区间的可加性”,分段积分再求和. (3)对于含有绝对值符号的被积函数,要去掉绝对值符号才能积分.2.由于定积分的值可取正值,也可取负值,还可以取0,而面积是正值,因此不要把面积理解为被积函数对应图形在某几个区间上的定积分之和,而是在x 轴下方的图形面积要取定积分的相反数.一、基础达标1.已知物体做变速直线运动的位移函数s =s (t ),那么下列命题正确的是( ) ①它在时间段[a ,b ]内的位移是s =s (t )⎪⎪ ba;②它在某一时刻t =t 0时,瞬时速度是v =s ′(t 0);③它在时间段[a ,b ]内的位移是s =li m n →∞∑i =1nb -ans ′(ξi ); ④它在时间段[a ,b ]内的位移是s =⎠⎛ab s ′(t )d t .A .①B .①②C .①②④D .①②③④答案 D2.若F ′(x )=x 2,则F (x )的解析式不正确的是( ) A .F (x )=13x 3B .F (x )=x 3C .F (x )=13x 3+1D .F (x )=13x 3+c (c 为常数)答案 B解析 若F (x )=x 3,则F ′(x )=3x 2,这与F ′(x )=x 2不一致,故选B. 3.⎠⎛01(e x+2x )d x 等于( )A .1B .e -1C .eD .e +1答案 C解析 ⎠⎛01(e x+2x )d x =(e x+x 2)|10=(e 1+12)-(e 0+02)=e.4.已知f (x )=⎩⎪⎨⎪⎧x 2,-1≤x ≤0,1,0<x ≤1,则⎠⎛1-1f (x )d x 的值为( )A.32 B .43 C .23 D .-23答案 B解析 ⎠⎛1-1f (x )d x =⎠⎛0-1x 2d x +⎠⎛011d x =⎪⎪⎪x 330-1+1=13+1=43,故选B. 5.设函数f (x )=ax 2+c (a ≠0),若⎠⎛01f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________.答案33解析 由已知得13a +c =ax 20+c ,∴x 20=13,又∵0≤x 0≤1,∴x 0=33.6.(2013·湖南)若⎠⎛0T x 2d x =9,则常数T 的值为________.答案 3解析 ⎠⎛0T x 2d x =⎪⎪⎪13x 3T 0=13T 3=9,即T 3=27,解得T =3. 7.已知⎠⎛1-1(x 3+ax +3a -b )d x =2a +6且f (t )=⎠⎛0t (x 3+ax +3a -b )d x 为偶函数,求a ,b 的值.解 ∵f (x )=x 3+ax 为奇函数, ∴⎠⎛1-1(x 3+ax )d x =0,∴⎠⎛1-1(x 3+ax +3a -b )d x=⎠⎛1-1(x 3+ax )d x +⎠⎛1-1(3a -b )d x=0+(3a -b )[1-(-1)]=6a -2b . ∴6a -2b =2a +6,即2a -b =3, ①又f (t )=⎪⎪⎪⎣⎢⎡⎦⎥⎤x 44+a 2x 2+3a -b x t 0 =t 44+at 22+(3a -b )t 为偶函数,∴3a -b =0,②由①②得a =-3,b =-9. 二、能力提升 8.∫π20sin 2x2d x 等于( ) A.π4 B .π2-1C .2D .π-24答案 D 解析 ∫π20sin 2x 2d x =∫π201-cos x2d x =⎪⎪⎪12x -sin x π20=π-24,故选D. 9.(2013·江西)若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121xd x ,S 3=⎠⎛12e xd x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D . S 3<S 2<S 1答案 B解析 S 1=⎠⎛12x 2d x =13x 3⎪⎪⎪ 21=73,S 2=⎪⎪⎪⎠⎛121x d x =ln x 21=ln 2<1,S 3=⎠⎛12e xd x =e x |21=e 2-e =e(e -1)>73,所以S 2<S 1<S 3,选B. 10.设f (x )=⎩⎪⎨⎪⎧ lg x ,x >0,x +⎠⎛0a 3t 2d t ,x ≤0.若f [f (1)]=1,则a =________.答案 1解析 因为x =1>0,所以f (1)=lg 1=0.又x ≤0时,f (x )=x +⎠⎛0a 3t 2d t =x +t 3|a 0=x +a 3, 所以f (0)=a 3.因为f [f (1)]=1,所以a 3=1,解得a =1.11.设f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176,求f (x )的解析式. 解 ∵f (x )是一次函数,设f (x )=ax +b (a ≠0),则⎠⎛01f (x )d x =⎠⎛01(ax +b )d x =⎠⎛01ax d x +⎠⎛01b d x =12a +b =5, ⎠⎛01xf (x )d x =⎠⎛01x (ax +b )d x =⎠⎛01(ax 2)d x +⎠⎛a1b x d x =13a +12b =176. 由⎩⎪⎨⎪⎧ 12a +b =513a +12b =176,得⎩⎪⎨⎪⎧ a =4b =3.即f (x )=4x +3.12.若函数f (x )=⎩⎨⎧ x 3,x ∈[0,1],x ,x ∈1,2],2x ,x ∈2,3].求⎠⎛03f (x )d x 的值. 解 由积分的性质,知:⎠⎛03f (x )d x =⎠⎛01f (x )d x +⎠⎛12f (x )d x +⎠⎛23f (x )d x =⎠⎛01x 3d x +⎠⎛12x d x +⎠⎛232xd x =x 44⎪⎪⎪⎪⎪⎪10+23x 3221 ⎪⎪⎪+2x ln 232 =14+432-23+8ln 2-4ln 2=-512+432+4ln 2.三、探究与创新13.求定积分⎠⎛3-4|x +a |d x .解 (1)当-a ≤-4即a ≥4时,原式=⎠⎛3-4(x +a )d x = ⎪⎪⎪⎝ ⎛⎭⎪⎫x 22+ax 3-4=7a -72.(2)当-4<-a <3即-3<a <4时,原式=⎠⎛-4-a[-(x +a )]d x +⎠⎛3-a(x +a )d x=⎝ ⎛⎭⎪⎫-x 22-ax ⎪⎪⎪ -a-4+ ⎪⎪⎪⎝ ⎛⎭⎪⎫x 22+ax 3-a=a 22-4a +8+⎝ ⎛⎭⎪⎫a 22+3a +92=a 2-a +252.(3)当-a ≥3即a ≤-3时,原式=⎠⎛3-4[-(x +a )]d x = ⎪⎪⎪⎝ ⎛⎭⎪⎫-x22-ax 3-4=-7a +72.综上,得⎠⎛3-4|x +a |d x =⎩⎪⎨⎪⎧ 7a -72a ≥4,a 2-a +252-3<a <4,-7a +72a ≤-3.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习目标 1.直观了解并掌握微积分基本定理的含义.2.会利用微积分基本定理求函数的积分.
知识点一 微积分基本定理(牛顿—莱布尼茨公式)
思考1 已知函数f (x )=2x +1,F (x )=x 2+x ,则ʃ10(2x +1)d x 与F (1)-F (0)有什么关系?
答 由定积分的几何意义知,ʃ10(2x +1)d x =12
×(1+3)×1=2,F (1)-F (0)=2,故ʃ10(2x +1)d x =F (1)-F (0).
思考2 对一个连续函数f (x )来说,是否存在唯一的F (x ),使得F ′(x )=f (x )?
答 不唯一,根据导数的性质,若F ′(x )=f (x ),则对任意实数c ,都有[F (x )+c ]′=F ′
(x )+c ′=f (x ).
1.微积分基本定理
(1)条件:f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x );
(2)结论:ʃb a f (x )d x =F (b )-F (a );
(3)符号表示:ʃb a f (x )d x =F (x )|b a =F (b )-F (a ).
2.常见的原函数与被积函数关系
(1)ʃb a C d x =Cx |b a (C 为常数).
(2)ʃb a x n d x =
⎪⎪⎪1n +1x n +1b a (n ≠-1). (3)ʃb a sin x d x =-cos x |b a .
(4)ʃb a cos x d x =sin x |b a .
(5)ʃb
a 1x d x =ln x |
b a (b >a >0).
(6)ʃb a e x
d x =
e x |b a .
(7)ʃb a a x
d x = ⎪
⎪⎪a x ln a b a (a >0且a ≠1). (8)ʃb
a x d x =
⎪⎪⎪23x 32b a (b >a >0). 知识点二 定积分和曲边梯形面积的关系
思考 定积分与曲边梯形的面积一定相等吗?
答 当被积函数f (x )≥0恒成立时,定积分与曲边梯形的面积相等,若被积函数f (x )≥0不恒成立,则不相等.
设曲边梯形在x 轴上方的面积为S 上,在x 轴下方的面积为S 下,则
(1)当曲边梯形在x 轴上方时,如图①,则ʃb
a f (x )d x =S 上.
(2)当曲边梯形在x 轴下方时,如图②,则ʃb a f (x )d x =-S 下.
(3)当曲边梯形在x 轴上方、x 轴下方均存在时,如图③,则ʃb
a f (x )d x =S 上-S 下.特别地,若S 上=S 下,则ʃ
b a f (x )d x =0.
类型一 定积分的求法
例1 (1)定积分ʃ10(2x +e x )d x 的值为( )
A .e +2
B .e +1
C .e
D .e -1 (2)ʃ20|1-x 2|d x =________.
(3)ʃ2
1[2x 2+x +1x
-cos x ]d x =________. 答案 (1)C (2)2 (3)4+ln 2-sin 2+sin 1
解析 (1)ʃ10(2x +e x )d x =(x 2+e x )|10=(1+e)-1=e.故选C.
(2)|1-x 2|=⎩
⎪⎨⎪⎧ 1-x 2,0≤x ≤1,x 2-1,1<x ≤2. ʃ20|1-x 2|d x =ʃ10(1-x 2)d x +ʃ21(x 2-1)d x
= ⎪⎪⎪⎝ ⎛⎭⎪⎫x -13x 310+ ⎪
⎪⎪⎝ ⎛⎭⎪⎫13x 3-x 21
=23+73
-1=2. (3)ʃ2
1[2x 2+x +1x
-cos x ]d x =ʃ21(2x +1+1x
-cos x )d x =(x 2+x +ln x -sin x )|21
=6+ln 2-sin 2-(2-sin 1)
=4+ln 2-sin 2+sin 1.
反思与感悟 1.掌握基本函数的导数以及导数的运算法则,正确求解被积函数的原函数,当原函数不易求时,可将被积函数适当变形后再求解;
2.被积函数会有绝对值号,可先求函数的零点,结合积分区间、分段求解.
跟踪训练1 (1)计算定积分ʃ
1-1(x 2+sin x )d x =______. 答案 23
解析 ʃ
1-1(x 2+sin x )d x = ⎪
⎪⎪⎝ ⎛⎭⎪⎫13x 3-cos x 1-1 =(13-cos 1)-(-13-cos 1)=23
. (2)f (x )=⎩⎪⎨⎪⎧ 1+2x ,0≤x ≤1,x 2,1<x ≤2,求ʃ2
0f (x )d x . 解 ʃ20f (x )d x
=ʃ10(1+2x )d x +ʃ21x 2d x
=(x +x 2)|10+
⎪⎪⎪13x 321 =2+73=133
. 类型二 利用定积分求参数
例2 (1)已知2≤ʃ21(kx +1)d x ≤4,则实数k 的取值范围为________.
(2)设函数f (x )=ax 2+c (a ≠0).若ʃ10f (x )d x =f (x 0),0≤x 0≤1,则x 0的值为________.
答案 (1)[23,2] (2)33
解析 (1)ʃ21(kx +1)d x = ⎪
⎪⎪⎝ ⎛⎭⎪⎫12kx 2+x 21=32k +1.
由2≤32k +1≤4得23
≤k ≤2. (2)ʃ10f (x )d x =ʃ10(ax 2+c )d x
= ⎪
⎪⎪⎝ ⎛⎭⎪⎫13ax 3+cx 10=a 3+c . f (x 0)=ax 2
0+c ,
∴a 3=ax 20,即x 0=33或-33
. ∵0≤x 0≤1,∴x 0=33
. 反思与感悟 1.含有参数的定积分可以与方程、函数或不等式综合起来考查,先利用微积分基本定理计算定积分是解决此类综合问题的前提.
2.计算含有参数的定积分,必须分清积分变量与被积函数f (x )、积分上限与积分下限、积分区间与函数F (x )等概念.
跟踪训练2 (1)已知x ∈(0,1],f (x )=ʃ10(1-2x +2t )d t ,则f (x )的值域是________. 答案 [0,2)
解析 f (x )=ʃ10(1-2x +2t )d t
=(t -2xt +t 2)|10=-2x +2(x ∈(0,1]).
∴f (x )的值域为[0,2).
(2)已知ʃ10[(3ax +1)(x +b )]d x =0,a ,b ∈R ,试求ab 的取值范围.
解 ʃ10[(3ax +1)(x +b )]d x
=ʃ10[3ax 2+(3ab +1)x +b ]d x
= ⎪
⎪⎪⎣⎢⎡⎦⎥⎤ax 3+12(3ab +1)x 2+bx 10 =a +12
(3ab +1)+b =0, 即3ab +2(a +b )+1=0.
由于(a +b )2=a 2+b 2
+2ab ≥4ab ,
所以(-3ab +12
)2≥4ab ,即9(ab )2-10ab +1≥0, 得(ab -1)(9ab -1)≥0,解得ab ≤19
或ab ≥1. 所以ab 的取值范围是(-∞,19]∪[1,+∞).。