河北省辛集中学下册期末精选检测题(Word版 含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省辛集中学下册期末精选检测题(Word 版 含答案)
一、第五章 抛体运动易错题培优(难)
1.如图所示,一小球从一半圆轨道左端A 点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B 点。
O 为半圆轨道圆心,半圆轨道半径为R ,OB 与水平方向夹角为30°,重力加速度为g ,不计空气阻力,则小球抛出时的初速度大小为( )
A (323)6gR +
B 332
gR
C (13)3
gR +D 33
gR
【答案】A 【解析】 【分析】
根据题意,小球在飞行过程中恰好与半圆轨道相切于B 点,可知速度的方向与水平方向成600
角,根据速度方向得到平抛运动的初速度与时间的关系,再根据水平位移与初速度及时间的关系,联立即可求得初速度。
【详解】
小球在飞行过程中恰好与半圆轨道相切于B 点,可知速度的方向与水平方向成60°角,则有
0tan60y v v =
竖直方向
y gt =v
水平方向小球做匀速直线运动,则有
0cos30R R v t +=
联立解得
0(323)6
gR
v +=
故A 正确,BCD 错误。
故选A 。
【点睛】
解决本题的关键是掌握平抛运动在水平方向和竖直方向上的运动规律,抓住速度方向,结合位移关系、速度关系进行求解。
2.如图所示,用一根长杆和两个定滑轮的组合装置来提升重物M ,长杆的一端放在地上通过铰链连接形成转轴,其端点恰好处于左侧滑轮正下方O 点处,在杆的中点C 处拴一细绳,绕过两个滑轮后挂上重物M ,C 点与O 点距离为L ,现在杆的另一端用力,使其逆时针匀速转动,由竖直位置以角速度ω缓缓转至水平位置(转过了90︒角),此过程中下述说法中正确的是( )
A .重物M 做匀速直线运动
B .重物M 先超重后失重
C .重物M 的最大速度是L ω,此时杆水平
D .重物M 的速度先减小后增大 【答案】B 【解析】 【分析】 【详解】
ACD .设C 点线速度方向与绳子沿线的夹角为θ(锐角),由题知C 点的线速度为
c v L ω=
该线速度在绳子方向上的分速度为1v
1cos v L ωθ=
θ的变化规律是从开始最大(90°)然后逐渐变小,所以1v 逐渐变大,直至绳子和杆垂直,θ变为零度,绳子的速度变为最大,为ωL ;然后,θ又逐渐增大,1v 逐渐变小,绳子的速度变慢。
所以知重物的速度先增大后减小,且最大速度为ωL ,此时杆是与绳垂直,而不是水平的,故ACD 错误;
B .上面的分析得出,重物的速度先增大后减小,所以重物M 先向上加速后向上减速,即先超重后失重,故B 正确。
故选B 。
【点睛】
解决本题的关键在于掌握运动的合成与分解,把C 点的速度分解为沿绳方向和垂直于绳的方向,沿绳方向的分速度等于重物的速度。
3.物体A 做平抛运动,以抛出点O 为坐标原点,以初速度v 0的方向为x 轴的正方向、竖直向下的方向为y 轴的正方向,建立平面直角坐标系。
如图所示,两束光分别沿着与坐标轴平行的方向照射物体A ,在坐标轴上留下两个“影子”,则两个“影子”的位移x 、y 和速度v x 、v y 描述了物体在x 、y 两个方向上的运动。
若从物体自O 点抛出时开始计时,下列
图像中正确的是( )
A .
B .
C .
D .
【答案】B 【解析】 【分析】 【详解】
AC .“影子”在x 轴方向做匀速运动,因此在x v x — 图象中是一条平行于x 轴的直线,根据
0x v t =
可知在—x t 图象中是一条过坐标原点的直线,AC 错误; BD .物体在竖直方向上做自由落体运动,根据
212
y gt =
可知在y t —图象中是一条开口向上的抛物线,根据
22y v gy =
可知在y v y — 图象是是一条开口向右的抛物理线,B 正确,D 错误。
故选B 。
4.某人划船横渡一条河流,已知船在静水中的速率恒为v 1,水流速率恒为v 2,且v 1>v 2.他以最短时间方式过河用时T 1,以最短位移方式过河用时T 2.则T 1与T 2的比值为( )
A .1
2
v v
B .21
v v
C 1
22
12
v v -D 22
12
1
v v -【答案】D 【解析】
【分析】【详解】
河水流速处处相同大小为v2,船速大小恒为v1,且v1>v2。
设河宽为d,以最短位移过河时,所用时间为T2,则有
22
12
2
d
v v
T
=-
以最短时间T1过河时,有
1
1
d
v
T
=
联立解得
22
12
1
21
v v
T
T
-
=
选项D正确,ABC错误。
故选D。
5.如图所示,在不计滑轮摩擦和绳子质量的前提下,当小车匀速向右运动时,绳中拉力().
A.大于A所受的重力
B.等于A所受的重力
C.小于A所受的重力
D.先大于A所受的重力,后等于A所受的重力
【答案】A
【解析】
【详解】
绳与小车的结点向右匀速运动,此为合运动,可把它按如图所示进行分解.
其中v1为绳被拉伸的速度,
v1=v cos θ
A 上升的速度v A 与v 1大小相等,即
v A =v 1=v cos θ
随着车往右运动,θ角减小,故v A 增大,即A 物体加速上升,加速度竖直向上,由牛顿第二定律得,绳中拉力
T =mg +ma >mg
故A 正确,BCD 错误。
故选A .
6.2019年女排世界杯,中国女排以十一连胜夺冠。
如图为排球比赛场地示意图,其长度为L ,宽度s ,球网高度为h 。
现女排队员在底线中点正上方沿水平方向发球,发球点高度为1.5h ,排球做平抛运动(排球可看做质点,忽略空气阻力),重力加速度为g ,则排球( )
A 23L g
h
B 22
4
s L +C 2234g s L h ⎛⎫
+ ⎪⎝⎭
D 22
()224
g s L gh h ++
【答案】C 【解析】 【分析】 【详解】
根据平抛运动的两分运动规律
0x v t =
2
12y gt =
联立可得
2
20
2g y x v =
A .刚能过网的条件为
2
L x =
1.50.5y h h h =-=
带入轨迹方程可得最小初速度为
02L g v h
=
故A 错误;
B .能落在界内的最大位移是落在斜对角上,构成的直角三角形,由几何关系有
222max (1.5)()2
s
s h L =++
故B 错误;
C .能过网而不出界是落在斜对角上,条件为
22()2s
x L =+
1.5y h =
带入轨迹方程可得最大初速度为
2
2
220max
()()2334
s g g s v L L h h =+⋅=+
故C 正确;
D .根据末速度的合成规律可知,能落在界内的最大末速度为
2
2
2max
0max 2 1.5()334
g s v v g h L gh h =+⋅=++
故D 错误。
故选C 。
7.里约奥运会我国女排获得世界冠军,女排队员“重炮手”朱婷某次发球如图所示,朱婷站在底线的中点外侧,球离开手时正好在底线中点正上空3.04m 处,速度方向水平且在水平方向可任意调整.已知每边球场的长和宽均为9m ,球网高2.24m ,不计空气阻力,重力加速度2
10g m s =.为了使球能落到对方场地,下列发球速度大小可行的是
A .22m/s
B .23m/s
C .25m/s
D .28m/s
【答案】B
【解析】
恰好能过网时,根据2112H h gt -=
得,12()2(3.04 2.24)0.4s 10
H h t g -⨯-=== ,则击球的最小初速度11922.5m/s 0.4
s v t =
==, 球恰好不出线时,根据2212H gt =
,得222 3.040.78s 10
H t g ⨯==≈ 则击球的最大初速度:2222240.25 4.2581
23.8m/s 0.78
s l l v t t +⨯===≈',注意运动距离
最远是到对方球场的的角落点,所以22.5m/s 23.8m/s v ,故B 项正确. 综上所述本题正确答案为B .
8.如图所示,一光滑宽阔的斜面,倾角为θ,高为h ,重力加速度为g 。
现有一小球在A 处贴着斜面以水平速度v 0射出,最后从B 处离开斜面,下列说法中正确的是( )
A .小球的运动轨迹为抛物线
B .小球的加速度为g tan θ
C .小球到达B 12sin h g
θD .小球到达B 02sin v h g
θ【答案】AC 【解析】 【分析】 【详解】
A .小球受重力和支持力两个力作用,合力沿斜面向下,与初速度垂直,做类平抛运动,轨迹为抛物线,A 正确;
B .小球所受合力为重力沿斜面向下的分力,根据牛顿第二定律
sin mg ma θ=
因此加速度
sin a g θ=
B 错误;
小球沿斜面方向做匀加速运动
21
sin sin 2
h g t θθ=⋅ 可得运动时间
12sin h t g
θ=
C 正确;
D .水平位移应是AB 线段在水平面上的投影,到达B 点的沿水平x 方向的位移
002sin g
x h t v v θ==
沿水平y 方向的位移
cot y h θ=
因此水平位移
0222sin v s x y h g
θ=+>
D 错误。
故选AC 。
9.如图甲所示是网球发球机。
某次室内训练时将发球机放在距地面一定的高度,然后向竖直墙面发射网球。
假定网球均水平射出,某两次射出的网球碰到墙面时速度与水平方向夹角分别为30°和60°,如图乙所示。
若不考虑网球在空中受到的阻力,则( )
A .两次发射网球的初速度大小之比为3:1
B .网球碰到墙面前在空中运动时间之比为1:3
C .网球下落高度之比为1:3
D .网球碰到墙面时速度大小之比为3:1 【答案】BC 【解析】 【分析】 【详解】
AB .由题知,小球两次平抛运动的水平位移相同,设为x ,根据平抛运动规律,位移与水平方向夹角的正切值是速度与水平方向夹角的正切值的一半,可得
1
tan 2
y x θ= 竖直方向做自由落体运动,可得
212
y gt =
联立得:
tan x t g
θ
=
所以两次运动的时间之比为:
1
2
tan 303
tan 60o
o
x g t t x g
==
根据x =v 0t ,得:
0120213v t v t == 故A 错误;故B 正确; C .根据2
12
y gt =
,得下降高度之比: 21122213
y t y t == 故C 正确;
D .根据平抛运动规律可知,网球碰到墙面时速度大小
0cos cos x v v
v =
=θθ
可得,网球碰到墙面时速度大小之比为
011202cos 601cos301
v v v v ︒==︒ 故D 错误。
故选BC 。
10.如图所示,a ,b 两个小球分别从半圆轨道顶端和斜面顶端以大小相等的初速度同时水平抛出,已知半圆轨道的半径与斜面的竖直高度相等,斜面底边长是其竖直高度的2倍,则( )
A .一定是b 球先落在斜面上
B .可能是a 球先落在半圆轨道上
C .当0210gR
v >时,一定是a 球先落到半圆轨道上 D .当043gR
v <
时,一定是b 球先落在斜面上 【答案】BC 【解析】 【分析】 【详解】
AB .将圆轨道和斜面轨道重合在一起,如图所示
交点为A ,初速度合适,小球可做平抛运动落在A 点,则运动的时间相等,即同时落在半圆轨道和斜面上。
若初速度不适中,由图可知,可能小球先落在斜面上,也可能先落在圆轨道上,故A 错误,B 正确;
CD .斜面底边长是其竖直高度的2倍,由几何关系可知,斜面与水平面之间的夹角
1tan 2
θ=
由图中几何关系可知
42cos sin 5h R R θθ=⋅⋅=
,82cos cos 5x R R θθ=⋅= 当小球落在A 点时
2
12
h gt =
,0x v t = 联立得
0210gR
v =
所以当0210gR v >
a 球先落到半圆轨道上,当0210gR
v <时,一定是b 球先落在斜面上,故C 正确,D 错误。
故BC 正确。
二、第六章 圆周运动易错题培优(难)
11.如图所示,小球A 可视为质点,装置静止时轻质细线AB 水平,轻质细线AC 与竖直方向的夹角37θ︒=,已知小球的质量为m ,细线AC 长L ,B 点距C 点的水平和竖直距离相等。
装置BO 'O 能以任意角速度绕竖直轴O 'O 转动,且小球始终在BO 'O 平面内,那么在ω从零缓慢增大的过程中( )(g 取10m/s 2,sin370.6︒=,cos370.8︒=)
A .两细线张力均增大
B .细线AB 中张力先变小,后为零,再增大
C .细线AC 中张力先不变,后增大
D .当AB 中张力为零时,角速度可能为54g L
【答案】BCD 【解析】 【分析】 【详解】
AB .当静止时,受力分析如图所示
由平衡条件得
T AB =mg tan37°=0.75mg T AC =
cos37
mg
=1.25mg
若AB 中的拉力为0,当ω最小时绳AC 与竖直方向夹角θ1=37°,受力分析如图
mg tan θ1=m (l sinθ1)ωmin 2
得
ωmin =
54g l
当ω最大时,由几何关系可知,绳AC 与竖直方向夹角θ2=53°
mg tan θ2=mωmax 2l sin θ2
得
ωmax =
53g l
所以ω取值范围为
54g l ≤ω≤53g l
绳子AB 的拉力都是0。
由以上的分析可知,开始时AB 是拉力不为0,当转速在
54g l ≤ω≤53g
l
时,AB 的拉力为0,角速度再增大时,AB 的拉力又会增大,故A 错误;B 正确;
C .当绳子AC 与竖直方向之间的夹角不变时,AC 绳子的拉力在竖直方向的分力始终等于重力,所以绳子的拉力绳子等于1.25mg ;当转速大于
54g
l
后,绳子与竖直方向之间的夹角增大,拉力开始增大;当转速大于
53g
l
后,绳子与竖直方向之间的夹角不变,AC 上竖直方向的拉力不变,水平方向的拉力增大,则AC 的拉力继续增大;故C 正确; D .由开始时的分析可知,当ω取值范围为54g l ≤ω≤53g l
时,绳子AB 的拉力都是0,故D 正确。
故选BCD 。
12.如图所示,一个竖直放置半径为R 的光滑圆管,圆管内径很小,有一小球在圆管内做圆周运动,下列叙述中正确的是( )
A .小球在最高点时速度v gR
B.小球在最高点时速度v由零逐渐增大,圆管壁对小球的弹力先逐渐减小,后逐渐增大C.当小球在水平直径上方运动时,小球对圆管内壁一定有压力
D.当小球在水平直径下方运动时,小球对圆管外壁一定有压力
【答案】BD
【解析】
【分析】
【详解】
A.小球恰好通过最高点时,小球在最高点的速度为零,选项A错误;
<,轨道对小球的作用力方向向上,有
B.在最高点时,若v gR
2
v
-=
mg N m
R
可知速度越大,管壁对球的作用力越小;
>,轨道对小球的作用力方向向下,有
若v gR
2
v
+=
N mg m
R
可知速度越大,管壁对球的弹力越大。
选项B正确;
C.当小球在水平直径上方运动,恰好通过最高点时,小球对圆管内外壁均无作用力,选项C错误;
D.当小球在水平直径下方运动时,小球受竖直向下的重力,要有指向圆心的向心力,则小球对圆管外壁一定有压力作用,选项D正确。
故选BD。
13.如图所示,一个边长满足3:4:5的斜面体沿半径方向固定在一水平转盘上,一木块静止在斜面上,斜面和木块之间的动摩擦系数μ=0.5。
若木块能保持在离转盘中心的水平距离为40cm处相对转盘不动,g=10m/s2,则转盘转动角速度ω的可能值为(设最大静摩擦力等于滑动摩擦力)()
A.1rad/s B.3rad/s C.4rad/s D.9rad/s
【答案】BC
【解析】
【分析】
【详解】
根据题意可知,斜面体的倾角满足
3
tan 0.54
θμ=
>= 即重力沿斜面的分力大于滑动摩擦力,所以角速度为零时,木块不能静止在斜面上;当转动的角速度较小时,木块所受的摩擦力沿斜面向上,当木块恰要向下滑动时
11cos sin N f mg θθ+= 2111sin cos N f m r θθω-=
又因为滑动摩擦力满足
11f N μ=
联立解得
1522
rad/s 11
ω=
当转动角速度变大,木块恰要向上滑动时
22cos sin N f mg θθ=+
2
222sin cos N f m r θθω+=
又因为滑动摩擦力满足
22f N μ=
联立解得
252rad/s ω=
综上所述,圆盘转动的角速度满足
522
rad/s 2rad/s 52rad/s 7rad/s ω≈≤≤≈ 故AD 错误,BC 正确。
故选BC 。
14.如图所示,一个边长满足3:4:5的斜面体沿半径方向固定在一水平转盘上,一木块静止在斜面上,斜面和木块之间的动摩擦系数μ=0.5。
若木块能保持在离转盘中心的水平距离为40cm 处相对转盘不动,g =10m/s 2,则转盘转动角速度ω的可能值为(设最大静摩擦力等于滑动摩擦力)( )
A .2rad/s
B .3rad/s
C .4rad/s
D .5rad/s
【答案】BCD 【解析】
【分析】 【详解】
根据题意可知斜面体的倾角满足
3
tan 0.54
θμ=
>= 即重力沿斜面的分力大于滑动摩擦力,所以角速度为0时,木块不能够静止在斜面上。
当转动的角速度较小时,木块所受的摩擦力沿斜面向上,则木块恰好向下滑动时
cos sin N f mg θθ+=
2sin cos N f mr θθω-=
滑动摩擦力满足
f N μ=
解得
5
22rad/s 11
ω=
当转动角速度变大,木块恰好向上滑动时
cos sin N f mg θθ=+
2sin cos N f mr θθω+='
滑动摩擦力满足
f N μ=
解得
52rad/s ω'=
所以圆盘转动的角速度满足
05
22rad/s 2rad/s 52rad/s 7rad/s 11
ω≈≤≤≈ A 错误,BCD 正确。
故选BCD 。
15.如图所示,足够大的水平圆台中央固定一光滑竖直细杆,原长为L 的轻质弹簧套在竖直杆上,质量均为m 的光滑小球A 、B 用长为L 的轻杆及光滑铰链相连,小球A 穿过竖直杆置于弹簧上。
让小球B 以不同的角速度ω绕竖直杆匀速转动,当转动的角速度为ω0时,小球B 刚好离开台面。
弹簧始终在弹性限度内,劲度系数为k ,重力加速度为g ,则
A .小球均静止时,弹簧的长度为L -
mg
k
B .角速度ω=ω0时,小球A 对弹簧的压力为mg
C .角速度ω0
D .角速度从ω0继续增大的过程中,小球A 对弹簧的压力不变 【答案】ACD 【解析】 【详解】
A .若两球静止时,均受力平衡,对
B 球分析可知杆的弹力为零,
B N mg =;
设弹簧的压缩量为x ,再对A 球分析可得:
1mg kx =,
故弹簧的长度为:
11mg
L L x L k
=-=-
, 故A 项正确;
BC .当转动的角速度为ω0时,小球B 刚好离开台面,即0B
N '=,设杆与转盘的夹角为θ,由牛顿第二定律可知:
2
0cos tan mg m L ωθθ
=⋅⋅ sin F mg θ⋅=杆
而对A 球依然处于平衡,有:
2sin k F mg F kx θ+==杆
而由几何关系:
1
sin L x L
θ-=
联立四式解得:
2k F mg =,
0ω=
则弹簧对A 球的弹力为2mg ,由牛顿第三定律可知A 球队弹簧的压力为2mg ,故B 错误,C 正确;
D .当角速度从ω0继续增大,B 球将飘起来,杆与水平方向的夹角θ变小,对A 与B 的系统,在竖直方向始终处于平衡,有:
2k F mg mg mg =+=
则弹簧对A 球的弹力是2mg ,由牛顿第三定律可知A 球队弹簧的压力依然为2mg ,故D 正
确; 故选ACD 。
16.如图所示,放于竖直面内的光滑金属细圆环半径为R ,质量为m 的带孔小球穿于环上,同时有一长为R 的细绳一端系于球上,另一端系于圆环最低点,绳能承受的最大拉力为2mg .重力加速度的大小为g ,当圆环以角速度ω绕竖直直径转动时,下列说法错误的是( )
A .圆环角速度ωg
R
时,小球受到2个力的作用 B .圆环角速度ω2g
R
C .圆环角速度ω等于2
g
R
D .圆环角速度ω6g
R
2个力的作用 【答案】C 【解析】 【分析】 【详解】
A 、
B 、设角速度ω在0~ω1范围时绳处于松弛状态,球受到重力与环的弹力两个力的作用,弹力与竖直方向夹角为θ,则有mg tan θ=mR sin θ·ω2,即cos g
R ωθ
=,当绳恰好
伸直时,θ=60°,对应12g
R
ω=
A 、
B 正确. 设在ω1<ω<ω2时绳中有张力且小于2mg ,此时有F N cos 60°=mg +F T cos 60°,F N sin 60°+F T sin 60°=mω2R sin 60°,当F T 取最大值2mg 时代入可得26g R ω=
,即当6g R
ω>时绳将断裂,小球又只受到重力、环的弹力两个力的作用,C 错误,D 正确. 本题选错误的故选C. 【点睛】
本题主要考查了圆周运动向心力公式的应用以及同学们受力分析的能力,要求同学们能找出临界状态并结合几何关系解题.
17.如图所示,长为r 的细杆一端固定一个质量为 m 的小球,使之绕另一光滑端点 O 在竖直面内做圆周运动,小球运动到最高点时的速度 v =4
gr , 则下列说法不正确的 是( )
A .小球在最高点时对细杆的压力是
3mg
4
B .小球在最高点时对细杆的拉力是
mg
2
C gr ,小球对细杆的弹力是零
D .若小球运动到最高点速度为gr ,小球对细杆的拉力是 3mg 【答案】B 【解析】 【分析】 【详解】
AB .在最高点,根据牛顿第二定律得
2
v mg F m r
-=
解得
34
F mg =
根据牛顿第三定律知,小球在最高点对细杆的压力为3
4
F mg =,选项A 正确,B 错误; C .在最高点,若细杆弹力为零,根据牛顿第二定律得
2
v mg m r
=
解得
v gr
选项C 正确;
D .若在最高点速度为2gr
2
v F mg m r
+=
解得
3F mg =
选项D 正确。
本题选不正确的,故选B 。
18.如图所示,一个半径为R 的实心圆盘,其中心轴与竖直方向的夹角为30︒,开始时,圆盘静止,其上表面覆盖着一层灰尘,没有掉落。
现将圆盘绕其中心轴旋转,其角速度从零缓慢增大至ω,此时圆盘表面上的灰尘75%被甩掉。
设灰尘与圆盘间的动摩擦因数为
μ=
3
,重力加速度为g ,则ω的值为( )
A 2g R
B 32g R
C 52g R
D g R
【答案】A 【解析】 【分析】 【详解】
越靠近边缘的灰尘越容易被甩掉,剩余的灰尘半径为r ,则
22(175%)R r ππ-=
解得
12
r R =
在圆盘的最低点,根据牛顿的第二定律
2cos sin mg mg m r μθθω-=
解得
2g R
ω=
A 正确,BCD 错误。
故选A 。
19.如图所示,一倾斜的圆筒绕固定轴OO 1以恒定的角速度ω转动,圆筒的半径r =1.5m.
筒壁内有一小物体与圆筒始终保持相对静止,小物体与圆筒间的动摩擦因数为
3
2
(设最大静摩擦力等于滑动摩擦力),转动轴与水平面间的夹角为60°,重力加速度g 取10m/s 2,则ω的最小值是( )
A .1rad/s
B .
30
rad/s C . 10rad/s D .5rad/s
【答案】C 【解析】 【分析】 【详解】
对物体受力分析如图:
受重力G ,弹力N ,静摩擦力f .ω的最小值时,物体在上部将要产生相对滑动.由牛顿第二定律可知,
2cos mg N m r θω+=
在平行于桶壁方向上,达到最大静摩擦力,即
max sin f mg θ=
由于max f N μ=;由以上式子,可得
10rad/s ω=
故选C .
20.质量为 m 的小球由轻绳 a 和 b 分别系于一轻质细杆的 A 点和 B 点,如图所示,绳 a 与水平方向成θ角,绳 b 在水平方向且长为 l ,当轻杆绕轴 AB 以角速度ω匀速转动时,小球在水平面内做匀速圆周 运动,则下列说法正确的是( )
A .a 绳的张力可能为零
B .a 绳的张力随角速度的增大而增大
C .若 b 绳突然被剪断,则 a 绳的弹力一定发生变化
D .当角速度tan g
l ωθ
>,b 绳将出现弹力 【答案】D 【解析】 【分析】 【详解】
A 、小球做匀速圆周运动,在竖直方向上的合力为零,水平方向上的合力提供向心力,所以a 绳在竖直方向上的分力与重力相等,可知a 绳的张力不可能为零,故A 错;
B 、根据竖直方向上平衡得,F a sinθ=mg ,解得sin a mg
F θ
=,可知a 绳的拉力不变,故B 错误.
D 、当b 绳拉力为零时,有:2mgcot m l θω= ,解得tan g
l ωθ
=
,可知当角速度tan g
l ωθ
>
,b 绳将出现弹力,故D 对; C 、由于b 绳可能没有弹力,故b 绳突然被剪断,a 绳的弹力可能不变,故C 错误 故选D 【点睛】
小球做匀速圆周运动,在竖直方向上的合力为零,水平方向上的合力提供向心力,所以a 绳在竖直方向上的分力与重力相等,可知a 绳的张力不可能为零;由于b 绳可能没有弹力,故b 绳突然被剪断,a 绳的弹力可能不变.
三、第八章 机械能守恒定律易错题培优(难)
21.质量是m 的物体(可视为质点),从高为h ,长为L 的斜面顶端,由静止开始匀加速下滑,滑到斜面底端时速度是v ,则( )
A.到斜面底端时重力的瞬时功率为
B.下滑过程中重力的平均功率为
C.下滑过程中合力的平均功率为
D.下滑过程中摩擦力的平均功率为
【答案】AB
【解析】
试题分析:A、根据P=mgvcosα可知,滑到底端的重力的瞬时功率为为:
P=mgvcosα=mgv.故A正确.B、物体运动的时间为:t==,则重力做功的平均功率为:P===.故B正确.C、物体做匀加速直线运动的加速度为:a=,则合力为:F合=ma=,合力做功为:W合=F合L=,则合力的平均功率为:
.故C错误.D、根据动能定理得:mgh﹣W f=mv2,解得克服摩擦力做功为:W f=mgh﹣mv2,则摩擦力做功的平均功率为:=﹣.故D错
误.
考点:功率、平均功率和瞬时功率.
22.在一水平向右匀速传输的传送带的左端A点,每隔T的时间,轻放上一个相同的工件,已知工件与传送带间动摩擦因素为,工件质量均为m,经测量,发现后面那些已经和传送带达到相同速度的工件之间的距离为x,下列判断正确的有
A.传送带的速度为x T
B.传送带的速度为22gx
μ
C.每个工件与传送带间因摩擦而产生的热量为1
2
mgx μ
D .在一段较长的时间内,传送带因为传送工件而将多消耗的能量为2
3mtx T
【答案】AD 【解析】 【分析】 【详解】
A .工件在传送带上先做匀加速直线运动,然后做匀速直线运动,每个工件滑上传送带后运动的规律相同,可知x =vT ,解得传送带的速度v =
x
T
.故A 正确; B .设每个工件匀加速运动的位移为x ,根据牛顿第二定律得,工件的加速度为μg ,则传送带的速度2v gx μ=,根据题目条件无法得出s 与x 的关系.故B 错误; C .工件与传送带相对滑动的路程为
22
2
22v v x x v g g gT μμμ∆=-=
则摩擦产生的热量为
Q =μmg △x =2
2
2mx T
故C 错误;
D .根据能量守恒得,传送带因传送一个工件多消耗的能量
22212mx E mv mg x T
μ=+∆=
在时间t 内,传送工件的个数f
W E η
=
则多消耗的能量
23mtx E nE T
'==
故D 正确。
故选AD 。
23.一辆小汽车在水平路面上由静止启动,在前5s 内做匀加速直线运动,5s 末达到额定功率,之后保持以额定功率运动,其v t -图象如图所示.已知汽车的质量为
3110kg m =⨯,汽车受到地面的阻力为车重的0.1倍,则以下说法正确的是( )
A .汽车在前5s 内的牵引力为3510N ⨯
B .汽车速度为25m /s 时的加速度为25m /s
C .汽车的额定功率为100kW
D .汽车的最大速度为80m /s
【答案】AC 【解析】 【分析】 【详解】
A .由速度时间图线知,匀加速运动的加速度大小
2220
m/s 4m/s 5
a =
= 根据牛顿第二定律得
F f ma -=
解得牵引力
1000N 4000N 5000N F f ma =+=+=
选项A 正确; BC .汽车的额定功率
500020W 100000W 100kW P Fv ==⨯==
汽车在25m/s 时的牵引力
100000'N 4000N 25
P F v ===
根据牛顿第二定律得加速度
22'40001000'm/s 3m/s 1000
F f a m --===
选项B 错误,C 正确;
D .当牵引力等于阻力时,速度最大,则最大速度
100000m/s 100m/s 1000
m P v f ===
选项D 错误。
故选AC 。
24.如图所示,倾角θ=30°的固定斜面上固定着挡板,轻弹簧下端与挡板相连,弹簧处于原长时上端位于D 点.用一根不可伸长的轻绳通过轻质光滑定滑轮连接物体A 和B ,使滑轮左侧轻绳始终与斜面平行,初始时A 位于斜面的C 点,C 、D 两点间的距离为L .现由静止同时释放A 、B ,物体A 沿斜面向下运动,将弹簧压缩到最短的位置E 点,D 、E 两点间
的距离为
2L .若A 、B 的质量分别为4m 和m ,A 与斜面间的动摩擦因数μ=,不计空气阻力,重力加速度为g ,整个过程中,轻绳始终处于伸直状态,则( )
A .A 在从C 至E 的过程中,先做匀加速运动,后做匀减速运动
B .A 在从
C 至
D 的过程中,加速度大小为120
g C .弹簧的最大弹性势能为
15
8mgL D .弹簧的最大弹性势能为38
mgL 【答案】BD 【解析】 【分析】 【详解】
AB .对AB 整体,从C 到D 的过程受力分析,根据牛顿第二定律得加速度为
4sin 304cos30420
mg mg mg g
a m m μ︒--⋅︒=
=+
可知a 不变,A 做匀加速运动,从D 点开始与弹簧接触,压缩弹簧,弹簧被压缩到E 点的过程中,弹簧弹力是个变力,则加速度是变化的,所以A 在从C 至E 的过程中,先做匀加速运动,后做变加速运动,最后做变减速运动,直到速度为零,故A 错误,B 正确; CD .当A 的速度为零时,弹簧被压缩到最短,此时弹簧弹性势能最大,整个过程中对AB 整体应用动能定理得
004sin 304cos30222L L L mg L mg L mg L W μ⎛⎫⎛⎫⎛
⎫-=+︒-+-⨯︒+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝
⎭弹
解得3
8
W mgL =
弹,则弹簧具有的最大弹性势能为 p 3
8
E W mgL ==弹
故C 错误,D 正确。
故选BD 。
25.如图所示,倾角为的足够长倾斜传送带沿逆时针方向以恒定速率运行,一个小物块无初速度的放在传送带上端,传送带与物块间动摩擦因数tan μθ<,取传送带底端为零势能面,下列描述小物块速度v ,重力势能E P ,动能E k 和机械能E 四个物理量随物块沿传送带运动距离x 的变化趋势中正确的有( )。