山东省济钢高级中学下册万有引力与宇宙同步单元检测(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、第七章 万有引力与宇宙航行易错题培优(难)
1.如图所示,a 、b 、c 是地球大气层外圈圆形轨道上运动的三颗卫星,a 和b 质量相等,且小于c 的质量,则( )
A .b 所需向心力最小
B .b 、c 的周期相同且大于a 的周期
C .b 、c 的向心加速度大小相等,且大于a 的向心加速度
D .b 、c 的线速度大小相等,且小于a 的线速度 【答案】ABD 【解析】 【分析】 【详解】
A .因卫星运动的向心力是由它们所受的万有引力提供,由2
GMm
F r =向知,b 所受的引力最小,故A 正确; B .由
2
2
22GMm mr mr r T πω⎛⎫== ⎪⎝⎭
得3
2r T GM
=,即r 越大,T 越大,所以b 、c 的周期相等且大于a 的周期,B 正确;
C .由
2
GMm
ma r
= 得2
GM
a r =
,即 2
1a r ∝
所以b 、c 的向心加速度大小相等且小于a 的向心加速度,C 错误; D .由
2
2GMm mv r r
=
得GM
v r
=
,即 v r

所以b 、c 的线速度大小相等且小于a 的线速度,D 正确。

故选ABD 。

2.在地球上观测,太阳与地内行星(金星、水星)可视为质点,它们与眼睛连线的夹角有最大值时叫大距。

地内行星在太阳东边时为东大距,在太阳西边时为西大距,如图所示。

已知水星到太阳的平均距离约为0.4天文单位(1天文单位约为太阳与地球间的平均距离),金星到太阳的平均距离约为0.7天文单位,地内行星与地球可认为在同一平面内的圆轨道上运动,地球的自转方向与公转方向相同,取0.70.8≈,0.40.6≈,则下列说法中正确的是( )
A .水星的公转周期为0.4年
B .水星的线速度大约为金星线速度的1.3倍
C .水星两次东大距的间隔时间大约
619
年 D .金星两次东大距的间隔时间比水星短 【答案】BC 【解析】 【分析】 【详解】
A .行星绕太阳公转时,由万有引力提供向心力,则得
2
224Mm G m r r T
π= 可得行星公转周期为
3
2r T GM
= 式中M 是太阳的质量,r 是行星的公转轨道半径。

则水星与地球公转周期之比
3
33 040.40.4T r T r ===水水
地地
. 所以水星的公转周期为
0.40.4T =水年
故A 错误
B .由万有引力提供向心力得
2
2Mm v G m r r
= 得
GM
v r
=
则水星的线速度与金星线速度之比
0.7 1.30.4
v r v r ==≈水
金水金 则B 正确。

C .设水星两次东大距的间隔时间为t 。


222t t T T ππ
π=
-水地

10.40.46
1910.40.4
T T t T T ⨯=
=
≈--地水地水
年年
则C 正确;
D .因金星的周期长,则金星两次东大距的间隔时间比水星长,则D 错误。

故选BC 。

3.嫦娥三号探测器欲成功软着陆月球表面,首先由地月轨道进入环月椭圆轨道Ⅰ,远月点A 距离月球表面为h ,近月点B 距离月球表面高度可以忽略,运行稳定后再次变轨进入近月轨道Ⅱ。

已知嫦城三号探测器在环月椭圆轨道周期为T 、月球半径为R 和引力常量为G ,根据上述条件可以求得( )
A .探测器在近月轨道Ⅱ运行周期
B .探测器在环月椭圆轨道Ⅰ经过B 点的加速度
C .月球的质量
D .探测器在月球表面的重力 【答案】ABC 【解析】 【分析】 【详解】
A .根据开普勒第三定律可得
3
322
22R h R T T II +⎛⎫ ⎪⎝⎭=
解得
T II =
A 正确;
B .探测器在环月椭圆轨道Ⅰ经过B 点时,由万有引力提供向心力
2
224=B Mm G ma m R R T πII
= 即
2
24B a R T πII
=
B 正确;
C .由万有引力提供向心力
2B Mm
G
ma R
= 可得
2
B a R M G
= C 正确;
D .由于不知道探测器的质量,无法求出探测器在月球表面的重力,D 错误。

故选ABC 。

4.宇宙中有两颗孤立的中子星,它们在相互的万有引力作用下间距保持不变,并沿半径不同的同心圆轨道做匀速圆周运动.如果双星间距为L ,质量分别为1m 和2m ,引力常量为G ,则( )
A .双星中
1m 的轨道半径2
112
m r L m m =+
B .双星的运行周期()
2122L
T m L
m G m π=+
C .1m 的线速度大小11
12()
G
v m L m m =+
D .若周期为T ,则总质量23
122
4L m m GT π+=
【答案】AD 【解析】 【分析】 【详解】
A .设行星转动的角速度为ω,周期为T ,如图:
对星球m 1,根据万有引力提供向心力可得
212
112
m m G
m R L
ω= 同理对星球m 2,有
212
222
m m G
m R L
ω= 两式相除得
12
21
R m R m =(即轨道半径与质量成反比) 又因为
12L R R =+
所以得
2
112m R L m m =+
1
212
m R L m m =
+
选项A 正确; B .由上式得到
ω=因为2T π
ω
=
,所以
2T π=选项B 错误; C .由2R
v T
π=
可得双星线速度为
2
1122m L
R v m T π
π===
1
2222m L
R v m T π
π=== 选项C 错误; D
.由前面2T π=得
23
122
4L m m GT π+=
选项D 正确。

故选AD 。

5.行星A 和行星B 是两个均匀球体,行星A 的卫星沿圆轨道运行的周期为T A ,行星B 的卫星沿圆轨道运行的周期为T B ,两卫星绕各自行星的近表面轨道运行,已知
:1:4A B T T =,行星A 、B 的半径之比为A B :1:2R R =,则()
A .这两颗行星的质量之比A
B :2:1m m = B .这两颗行星表面的重力加速度之比:2:1A B g g =
C .这两颗行星的密度之比A B :16:1ρρ
= D .这两颗行星的同步卫星周期之比A B :T T =【答案】AC 【解析】 【分析】 【详解】
A .人造地球卫星的万有引力充当向心力
2224Mm R G m R T
π= 得
23
2
4R M GT π=
所以这两颗行星的质量之比为
32()116(2 811
)A A B B B A m R T m R T ⨯⨯=== 故A 正确;
B .忽略行星自转的影响,根据万有引力等于重力
2Mm
G
mg R = 得
2
GM
g R =
所以两颗行星表面的重力加速度之比为
2248 11()1
A A
B B B A g m R g m R ⨯⨯=== 故B 错误;
C .行星的体积为3
4
3
V R π= 故密度为
23
2234343
R M GT V GT R ππ
ρπ===
所以这两颗行星的密度之比为
2)16 1
(A B B A T T ρρ== 故C 正确;
D .根据题目提供的数据无法计算同步卫星的周期之比,故D 错误。

故选AC 。

6.我国探月探测器“嫦娥三号”在西昌卫星发射中心成功发射升空,此飞行轨道示意图如图所示,探测器从地面发射后奔向月球,在P 点从圆形轨道Ⅰ进入椭圆轨道Ⅱ,Q 为轨道Ⅱ上的近月点。

下列关于“嫦娥三号”的运动,正确的说法是( )
A.在轨道Ⅱ上经过P的速度小于在轨道Ⅰ上经过P的速度
B.在轨道Ⅱ上经过P的加速度小于在轨道Ⅰ上经过P的加速度
C.发射速度一定大于7.9 km/s
D.在轨道Ⅱ上从P到Q的过程中速率不断增大
【答案】ACD
【解析】
【分析】
【详解】
A.从轨道Ⅰ上的P点进入轨道Ⅱ需减速,使得万有引力大于向心力,做近心运动,所以轨道Ⅱ上经过P的速度小于在轨道Ⅰ上经过P的速度,故A正确;
B.在两个轨道上在P点所受的万有引力相等,根据牛顿第二定律知,在轨道Ⅱ上经过P
的加速度等于于在轨道Ⅰ上经过P的加速度,故B错误;
C.地球的第一宇宙速度为7.9km/s,这是发射卫星的最小速度,发射速度如果等于
7.9km/s,卫星只能贴近地球表面飞行,要想发射到更高的轨道上,发射速度应大于
7.9km/s,故C正确;
D.在轨道Ⅱ上运动过程中,只受到月球的引力,从P到Q的过程中,引力做正功,动能越来越大,速率不断增大,故D正确。

故选ACD。

7.电影《流浪地球》讲述的是面对太阳快速老化膨胀的灾难,人类制定了“流浪地球”计划,这首先需要使自转角速度大小为ω的地球停止自转,再将地球推移出太阳系到达距离太阳最近的恒星(比邻星)。

为了使地球停止自转,设想的方案就是在地球赤道上均匀地安装N台“喷气”发动机,如图所示(N较大,图中只画出了4个)。

假设每台发动机均能沿赤道的切线方向提供大小恒为F的推力,该推力可阻碍地球的自转。

已知描述地球转动的动力学方程与描述质点运动的牛顿第二定律方程F=ma具有相似性,为M=Iβ,其中M 为外力的总力矩,即外力与对应力臂乘积的总和,其值为NFR;I为地球相对地轴的转动惯量;β为单位时间内地球的角速度的改变量。

将地球看成质量分布均匀的球体,下列说法中正确的是()
A .在M=Iβ与F =ma 的类比中,与质量m 对应的物理量是转动惯量I ,其物理意义是反映改变地球绕地轴转动情况的难易程度
B .地球自转刹车过程中,赤道表面附近的重力加速度逐渐变小
C .地球停止自转后,赤道附近比两极点附近的重力加速度大
D .地球自转刹车过程中,两极点的重力加速度逐渐变大 E.这些行星发动机同时开始工作,使地球停止自转所需要的时间为
I NF
ω F.若发动机“喷气”方向与地球上该点的自转线速度方向相反,则地球赤道地面的人可能会“飘”起来
G.在M=Iβ与F =ma 的类比中,力矩M 对应的物理量是m ,其物理意义是反映改变地球绕地轴转动情况的难易程度 H.β的单位应为rad/s
I.β-t 图象中曲线与t 轴围成的面积的绝对值等于角速度的变化量的大小 J.地球自转刹车过程中,赤道表面附近的重力加速度逐渐变大
K.若停止自转后,地球仍为均匀球体,则赤道处附近与极地附近的重力加速度大小没有差异
【答案】AFIJK 【解析】 【分析】 【详解】
A .I 为刚体的“转动惯量”,与平动中的质量m 相对应,表征刚体转动状态改变的难易程度,故在本题中的物理意义是反映改变地球绕地轴转动情况的难易程度,故A 正确; BJ .地球自转刹车过程中,万有引力提供赤道表面附近的重力加速度和物体做圆周运动的向心力,则
22Mm
G
mg m r r
ω-=
故赤道表面附近的重力加速度逐渐增大,故B 错误,J 正确;
C .地球视为均匀球体地球停止自转后,万有引力提供重力加速度,故赤道附近和两极点附
近的重力加速度一样大,故C 错误;
D .地球自转刹车过程中,;两极点处万有引力提供重力加速度,故两极点的重力加速度保持不变,故D 错误; EHI .由题意可知
M I β=,M NFR =
解得
NFR I
β=

t t
ωωβ∆-=
=∆ 故β的单位为2rad/s ,由β的定义式可知,β-t 图象中曲线与t 轴围成的面积的绝对值等于角速度的变化量的大小,且联立解得
I t NFR
ω=
故EH 错误,I 正确;
F .若发动机“喷气”方向与地球上该点的自转线速度方向相反,则地球的自转角速度变大,则人跟地球一起做圆周运动所需的向心力变大,当万有引力不足以提供向心力时,人会飘起来,故F 正确;
G .在M=Iβ与F =ma 的类比中,力矩M 对应的物理量是F ,表征外力对刚体的转动效果,故G 错误; 故选AFIJK 。

8.如图所示,曲线Ⅰ是一颗绕地球做圆周运动卫星轨道的示意图,其半径为R ;曲线Ⅱ是一颗绕地球椭圆运动卫星轨道的示意图,O 点为地球球心,AB 为椭圆的长轴,两轨道和地心都在同一平面内,已知在两轨道上运动的卫星的周期相等,万有引力常量为G ,地球质量为M ,下列说法正确的是
A .椭圆轨道的半长轴长度为R
B .卫星在Ⅰ轨道的速率为v 0,卫星在Ⅱ轨道B 点的速率为v B , 则v 0>v B
C .卫星在Ⅰ轨道的加速度大小为a 0,卫星在Ⅱ轨道A 点加速度大小为a A ,则a 0<a A
D .若OA =0.5R ,则卫星在B 点的速率v B 23GM
R
【答案】ABC 【解析】 【分析】
【详解】
由开普勒第三定律可得:2
3 T k a =,圆轨道可看成长半轴、短半轴都为R 的椭圆,故a=R ,
即椭圆轨道的长轴长度为2R ,故A 正确;根据万有引力做向心力可得:2
2
GMm mv r r
=,故v =
GM
r
,那么,轨道半径越大,线速度越小;设卫星以OB 为半径做圆周运动的速度为v',那么,v'<v 0;又有卫星Ⅱ在B 点做向心运动,故万有引力大于向心力,所以,v B <v'<v 0,故B 正确;卫星运动过程只受万有引力作用,故有:2
GMm
ma r =,所以加速度2
GM
a r =;又有OA <R ,所以,a 0<a A ,故C 正确;若OA=0.5R ,则OB=1.5R ,那么,v ′=2
3GM R ,所以,v B <2 3GM
R
,故D 错误; 点睛:万有引力的应用问题一般由重力加速度求得中心天体质量,或由中心天体质量、轨道半径、线速度、角速度、周期中两个已知量,根据万有引力做向心力求得其他物理量.
9.宇宙间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图所示,三颗质量为m 的星球位于等边三角形的三个顶点上,任意两颗星球的距离均为L ,并绕其中心O 做匀速圆周运动.忽略其他星球对它们的引力作用,引力常量为G ,以下对该三星系统的说法正确的是 ( )
A .每颗星球做圆周运动的半径都等于L
B .每颗星球做圆周运动的加速度与星球的质量无关
C .每颗星球做圆周运动的线速度Gm
v L
=
D .每颗星球做圆周运动的周期为2L T L Gm
π=【答案】C 【解析】 【分析】 【详解】
A .三颗星球均绕中心做圆周运动,由几何关系可知
r =2cos30L


3
L A 错误;
B .任一星球做圆周运动的向心力由其他两个星球的引力的合力提供,根据平行四边形定则得
F =22
2Gm L
cos 30°=ma
解得
a =
3Gm
B 错误; CD .由
F =222Gm L cos 30°=m 2v r =m 2
24T
πr

v =
Gm
L T =2πL
3L Gm
C 正确,
D 错误。

故选C 。

10.科幻影片《流浪地球》中为了让地球逃离太阳系,人们在地球上建造特大功率发动机,使地球完成一系列变轨操作,其逃离过程可设想成如图所示,地球在椭圆轨道I 上运行到远日点P 变轨进入圆形轨道II ,在圆形轨道II 上运行一段时间后在P 点时再次加速变轨,从而最终摆脱太阳束缚。

对于该过程,下列说法正确的是( )
A .地球在P 点通过向前喷气减速实现由轨道I 进入轨道II
B .若地球在I 、II 轨道上运行的周期分别为T 1、T 2,则T 1<T 2,
C .地球在轨道I 正常运行时(不含变轨时刻)经过P 点的加速度比地球在轨道II 正常运行(不含变轨时刻)时经过P 点的加速度大
D .地球在轨道I 上过O 点的速率比地球在轨道II 上过P 点的速率小 【答案】B
【分析】 【详解】
A .地球沿轨道Ⅰ运动至P 点时,需向后喷气加速才能进入轨道Ⅱ,A 错误;
B .设地球在Ⅰ、Ⅱ轨道上运行的轨道半径分别为r 1(半长轴)、r 2,由开普勒第三定律
3
3r k T
= 可知
T 1<T 2
B 正确;
C .因为地球只受到万有引力作用,故不论从轨道Ⅰ还是轨道Ⅱ上经过P 点,地球的加速度都相同,C 错误;
D .由万有引力提供向心力
2
2
GMm v m r r
= 可得
Gm
v r
=
因此在O 点绕太阳做匀速圆周运动的速度大于轨道II 上过P 的速度,而绕太阳匀速圆周运动的O 点需要加速才能进入轨道Ⅰ,因此可知地球在轨道Ⅰ上过O 点的速率比地球在轨道II 上过P 点的速率大,D 错误。

故选B 。

11.“嫦娥四号”已成功降落月球背面,未来中国还将建立绕月轨道空间站。

如图所示,关闭动力的宇宙飞船在月球引力作用下沿地-月转移轨道向月球靠近,并将与空间站在A 处对接。

已知空间站绕月轨道半径为r ,周期为T ,万有引力常量为G ,月球的半径为R ,下列说法正确的是( )
A .地-月转移轨道的周期小于T
B .宇宙飞船在A 处由椭圆轨道进入空间站轨道必须点火减速
C .宇宙飞船飞向A 的过程中加速度逐渐减小
D .月球的质量为M =
22
2
4πR GT
【答案】B 【解析】
【详解】
A .根据开普勒第三定律可知,飞船在椭圆轨道的半长轴大于圆轨道的半径,所以地-月转移轨道的周期大于T ,选项A 错误;
B .宇宙飞船在椭圆轨道的A 点做离心运动,只有在点火减速后,才能进入圆轨道的空间站轨道,选项B 正确;
C .宇宙飞船飞向A 的过程中,根据
2Mm
G
ma r
= 知半径越来越小,加速度越来越大,选项C 错误; D .对空间站,根据万有引力提供向心力有
2
224Mm G m r r T
π= 解得
23
2
4r M GT π=
其中r 为空间站的轨道半径,选项D 错误。

故选B 。

12.2020年1月7号,通信技术试验卫星五号发射升空,卫星发射时一般需要先到圆轨道1,然后通过变轨进入圆轨道2。

假设卫星在两圆轨道上速率之比v 1∶v 2=5∶3,卫星质量不变,则( )
A .卫星通过椭圆轨道进入轨道2时应减速
B .卫星在两圆轨道运行时的角速度大小之比12ωω:=125∶27
C .卫星在1轨道运行时和地球之间的万有引力不变
D .卫星在两圆轨道运行时的动能之比
E k1∶E k 2=9∶25 【答案】B 【解析】 【分析】 【详解】
A .卫星通过椭圆轨道进入轨道2,需要做离心运动,所以应加速才能进入2轨道,选项A 错误;
B .根据万有引力提供向心力有
2
2
GMm v m r r
= 解得
GM
v r
=
因为v 1:v 2=5:3,则
r 1:r 2=9∶25
根据万有引力提供向心力有
2
2
GMm mr r
ω= 解得
3
=
GM
r ω 可得卫星在两轨道运行时的角速度大小之比
ω1:ω2=125:27
选项B 正确;
C .万有引力大小不变,但方向一直变化,选项C 错误;
D .根据2
12
k E mv =
,则卫星在两轨道运行时的动能之比 E k1∶E k2=25:9
选项D 错误; 故选B 。

13.宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用互相绕转,称之为双星系统,设某双星系统绕其连线上的O 点做匀速圆周运动,转动周期为T ,轨道半径分别为R A 、R B 且R A <R B ,引力常量G 已知,则下列说法正确的是( )
A .星球A 所受的向心力大于星球
B 所受的向心力 B .星球A 的线速度一定等于星球B 的线速度
C .星球A 和星球B 的质量之和为
()22
4A B R R GT
π+
D .双星的总质量一定,双星之间的距离越大,其转动周期越大 【答案】D 【解析】
【分析】 【详解】
A .双星靠相互间的万有引力提供圆周运动的向心力,所以两个星球的向心力大小相等,选项A 错误;
B .双星的角速度相等,根据v r ω=知,两星球半径不同,则线速度不相等,选项B 错误;
C .对于星球A ,有
2
2A B A A m m G
m R L
ω= 对于星球B ,有
2
2A B B B m m G
m R L
ω= 又
=
2T
π
ω
A B L R R =+
联立解得
()3
223
22
44A B A B R R L m m GT GT
ππ++== 选项C 错误;
D .根据23
2
4A B L m m GT π+=,双星之间的距离增大,总质量不变,则转动的周期变大,选
项D 正确。

故选D 。

14.地球同步卫星的发射方法是变轨发射,如图所示,先把卫星发射到近地圆形轨道Ⅰ上,当卫星到达P 点时,发动机点火。

使卫星进入椭圆轨道Ⅱ,其远地点恰好在地球赤道上空约36000km 处,当卫星到达远地点Q 时,发动机再次点火。

使之进入同步轨道Ⅲ,已知地球赤道上的重力加速度为g ,物体在赤道表面上随地球自转的向心加速度大小为a ,下列说法正确的是如果地球自转的( )
A .角速度突然变为原来的
g a
a
+倍,那么赤道上的物体将会飘起来 B .卫星与地心连线在轨道Ⅱ上单位时间内扫过的面积小于在轨道Ⅲ上单位时间内扫过的面积
C .卫星在轨道Ⅲ上运行时的机械能小于在轨道Ⅰ上运行时的机械能
D .卫星在远地点Q 时的速度可能大于第一宇宙速度 【答案】B 【解析】 【分析】 【详解】
A .赤道上的物体的向心加速度
2
0a R ω=
若赤道上的物体飘起来,万有引力全部用来提供向心力,此时
22
()GMm m g a m R R
ω=+= 可得
0=
g a
a
ωω+ 即角速度突然变为原来的
g a
a
+倍,赤道上的物体将会飘起来,故A 错误; B .由于在椭圆轨道Ⅱ上Q 点的速度小于轨道Ⅲ上Q 点的速度,因此在轨道II 上Q 点附近单位时间内扫过的面积小于轨道III 上单位时间内扫过的面积,而在轨道II 上相同时间内扫过的面积相等,故B 正确;
C .从轨道I 进入轨道II 的过程中,卫星点火加速,机械能增加,从轨道II 上进入轨道III 的过程中,再次点火加速,机械能增加,因此卫星在轨道Ⅲ上运行时的机械能大于在轨道Ⅰ上运行时的机械能,故C 错误;
D .在轨道II 上Q 点的速度小于轨道III 上Q 点的速度,而轨道III 上卫星的运行速度小于第一宇宙速度,因此卫星在轨道II 的远地点Q 时的速度小于第一宇宙速度,故D 错误。

故选B 。

15.如图所示,飞行器P 绕某星球做匀速圆周运动,下列说法不正确的是( )
A .轨道半径越大,周期越长
B .张角越大,速度越大
C .若测得周期和星球相对飞行器的张角,则可得到星球的平均密度
D .若测得周期和轨道半径,则可得到星球的平均密度 【答案】D 【解析】 【分析】
【详解】
A .根据开普勒第三定律3
2r k T
=,可知轨道半径越大,飞行器的周期越长, A 正确;
B
.根据卫星的速度公式v =
,可知张角越大,轨道半径越小,速度越大,B 正确; C .根据公式222
4Mm r
G m r T
π=可得 23
2
4r M GT
π= 设星球的质量为M ,半径为R ,平均密度为ρ,飞行器的质量为m ,轨道半径为r ,周期为T ,对于飞行器,由几何关系得
sin
2
R r θ
=
星球的平均密度为
343
M R ρπ=
由以上三式知,测得周期和张角,就可得到星球的平均密度,C 正确;
D .由222
4Mm r
G m r T
π=可得 23
2
4r M GT
π= 星球的平均密度为
343
M R ρπ=
可知若测得周期和轨道半径,可得到星球的质量,但星球的半径未知,不能求出星球的体积,故不能求出平均密度,D 错误。

故选D 。

相关文档
最新文档