三相异步电动机工作特性及参数测定实验

合集下载

三相鼠笼异步电动机实验

三相鼠笼异步电动机实验

三相鼠笼异步电动机实验————————————————————————————————作者:————————————————————————————————日期:实验六三相鼠笼异步电动机的工作特性一.实验目的1.掌握三相异步电机的空载、堵转和负载试验的方法。

2.用直接负载法测取三相鼠笼异步电动机的工作特性。

3.测定三相笼型异步电动机的参数。

二.预习要点1.异步电动机的工作特性指哪些特性?2.异步电动机的等效电路有哪些参数?它们的特理意义是什么?3.工作特性和参数的测定方法。

三.实验项目1.测量定子绕组的冷态电阻。

2.判定定子绕组的首未端。

3.空载试验。

4.短路试验。

5.负载试验。

三.实验设备及仪器1.MEL系列电机教学实验台主控制屏。

2.电机导轨及测功机、矩矩转速测量(MEL-13、MEL-14)。

3.交流功率、功率因数表(MEL-20或MEL-24或含在实验台主控制屏上)。

4.直流电压、毫安、安培表(MEL-06或含在实验台主控制屏上)。

5.三相可调电阻器900Ω(MEL-03)。

6.波形测试及开关板(MEL-05)。

7.三相鼠笼式异步电动机M04。

五.实验方法及步骤1.测量定子绕组的冷态直流电阻。

准备:将电机在室内放置一段时间,用温度计测量电机绕组端部或铁芯的温度。

当所测温度与冷动介质温度之差不超过2K 时,即为实际冷态。

记录此时的温度和测量定子绕组的直流电阻,此阻值即为冷态直流电阻。

(1)伏安法测量线路如图3-1。

S1,S2:双刀双掷和单刀双掷开关,位于MEL-05。

R:四只900Ω和900Ω电阻相串联(MEL-03)。

A、V:直流毫安表和直流电压表,或采用MEL-06,或在主控制屏上。

量程的选择:测量时,通过的测量电流约为电机额定电流的10%,即为50mA,因而直流毫安表的量程用200mA档。

三相笼型异步电动机定子一相绕组的电阻约为50欧姆,因而当流过的电流为50mA时三端电压约为2.5伏,所以直流电压表量程用20V档,实验开始前,合上开关S1,断开开关S2,调节电阻R至最大(3600Ω)。

三相异步电动机的工作特性及测取方法

三相异步电动机的工作特性及测取方法

三相异步电动机的⼯作特性及测取⽅法三相异步电动机的⼯作特性及测取⽅法*转速特性*定⼦电流特性*功率因数特性*电磁转矩特性*效率特性异步电动机的⼯作特性在额定电压和额定频率运⾏的情况下,* 电动机的转速n、* 定⼦电流I1、* 功率因数cosΦ1、* 电磁转矩Tem、* 效率η等与输出功率P2 的关系即U1 = UN,f = fn 时的⼀.⼯作特性的分析(⼀) 转速特性输出功率变化时转速变化的曲线n = f (P2)转差率s、转⼦铜耗Pcu2 和电磁功率Pem 的关系式负载增⼤时,必使转速略有下降,转⼦电势E2s 增⼤,所以转⼦电流I2增⼤,以产⽣更⼤⼀点的电磁转矩和负载转矩平衡因此随着输出功率P2的增⼤,转差率s 也增⼤,则转速稍有下降,所以异步电动机的转速特性为⼀条稍向下倾斜的曲线(⼆)定⼦电流特性定⼦电流的变化曲线I1= f (P2)定⼦电流⼏乎随P2按正⽐例增加(三)功率因数特性定⼦功率因数的变化曲线cosΦ1 = f(P2)(1)空载时定⼦电流I1主要⽤于⽆功励磁,所以功率因数很低,约为0.1~ 0.2(2)负载增加时转⼦电流的有功分量增加,使功率因数提⾼,(3)接近额定负载时功率因数达到最⼤(4)负载超过额定值时s 值就会变得较⼤,使转⼦电流中得⽆功分量增加,因⽽使电动机定⼦功率因数⼜重新下降了(四)电磁转矩特性电磁转矩特性Tem = f (P2) 接近于⼀条斜率为1/Ω的直线(五)效率特性异步电动机的效率为当可变损耗等于不变损耗时,异步电动机的效率达到最⼤值中⼩型异步电机的最⼤效率出现在⼤约为3/4的额定负载时异步电动机的⼯作特性可⽤直接负载法求取,也可利⽤等效电路进⾏计算*空载试验*励磁参数与铁耗及机械损耗的确定通过空载试验可以测定异步电动机的励磁参数,异步电动机的励磁参数决定于电机主磁路的饱和程度,所以是⼀种⾮线性参数;通过短路试验可以测定异步电动机的短路参数异步电动机的短路参数基本上与电机的饱和程度⽆关,是⼀种线性参数⼀.空载试验与励磁参数的确定(⼀) 空载试验1.异步电动机空载运⾏指在额定电压和额定频率下,轴上不带任何负载的运⾏状态2.空载试验电路图5.7.1异步电动机空载试验电路3.空载试验的过程定⼦绕组上施加频率为额定值的对称三相电压,从(1.10 ~ 1.30) 倍额定电压值开始调节电源电压,逐渐降低到可能使转速发⽣明显变化的最低电压值为⽌每次记录端电压、空载电流、空载功率和转速,根据记录数据,绘制电动机的空载特性曲线图5.7.2空载特性曲线(⼆) 励磁参数与铁耗及机械损耗的确定从空载特性可确定计算⼯作特性所需等值电路中的励磁参数、铁耗和机械损耗1.机械损耗和铁耗的分离空载试验时输⼊电动机的损耗有:定⼦铜耗、铁耗和机械损耗其中定⼦铜耗和铁耗与电压⼤⼩有关,⽽机械损耗仅与转速有关上式改写为由于可认为铁耗与磁密平⽅成正⽐,因⽽铁耗与端电压平⽅成正⽐,绘制曲线p Fe + p mec = f (U1)2图5.7.3 机械损耗与铁耗的分离作曲线延长线相交于直轴于0ˊ点,过0ˊ作⼀⽔平虚线将曲线的纵坐标分为两部分,由于空载状态下电动机的转速n 接近n0 ,可以认为机械损耗是恒值所以虚线下部纵坐标表⽰与电压⼤⼩⽆关的机械损耗,虚线上部纵坐标表⽰对应于某个电压U1 的铁耗2.励磁参数的确定(1)空载试验时的等效电路图5.7.4 空载试验等效电路(2)励磁参数计算公式⼆. 短路试验与短路参数的确定(⼀) 短路试验对异步电动机⽽⾔,短路是指T 形等效电路中的附加电阻(1-s)r2'/s = 0 的状态,即电动机在外施电压下处于静⽌的状态1.短路试验电路图5.7.5 异步电动机短路试验电路2.短路试验的过程短路试验在电动机堵转降低电源电压情况下进⾏,⼀般从U1 = 0.4 UN 开始,然后逐步降低电压,测量5~7个点,每次记录端电压、定⼦短路电流和短路功率,并测量定⼦绕组的电阻。

(整理)电机实验——三相鼠笼异步电动机的工作特性

(整理)电机实验——三相鼠笼异步电动机的工作特性

三相鼠笼异步电动机的工作特性一、实验目的1、掌握用日光灯法测转差率的方法。

2、掌握三相异步电动机的空载、堵转和负载试验的方法。

3、用直接负载法测取三相鼠笼式异步电动机的工作特性。

4、测定三相鼠笼式异步电动机的参数。

二、预习要点1、用日光灯法测转差率是利用了日光灯的什么特性?2、异步电动机的工作特性指哪些特性?3、异步电动机的等效电路有哪些参数?它们的物理意义是什么?4、工作特性和参数的测定方法。

三、实验项目1、测定电机的转差率。

2、测量定子绕组的冷态电阻。

3、判定定子绕组的首末端.4、空载实验。

5、短路实验。

6、负载实验。

四、实验方法1、实验设备2、屏上挂件排列顺序DQ43、DQ42、DQ25-3、DQ22、DQ27、DQ31 三相鼠笼式异步电机的组件编号为DQ11。

3、用日光灯法测定转差率日光灯是一种闪光灯,当接到50H z 电源上时,灯光每秒闪亮100次,人的视觉暂留时间约为十分之一秒左右,故用肉眼观察时日光灯是一直发亮的,我们就利用日光灯这一特性来测量电机的转差率。

(1)异步电机选用编号为DQ11的三相鼠笼异步电动机(U N =220V ,Δ接法)极数2P=4。

直接与测速发电机同轴联接,在DQ11和测速发电机联轴器上用黑胶布包一圈,再用四张白纸条(宽度约为3毫米),均匀地贴在黑胶布上。

(2)由于电机的同步转速为 ,而日光灯闪亮为100次/秒,即日光灯闪亮一次,电机转动四分之一圈。

由于电机轴上均匀贴有四张白纸条,故电机以同步转速转动时,肉眼观察图案是静止不动的(这个可以用直流电动机DQ09、DQ19和三相同步电机DQ14来验证)。

(3)开启电源,打开控制屏上日光灯开关,调节调压器升高电动机电压,观察电动机转向,如转向不对应停机调整相序。

转向正确后,升压至220V ,使电机起动运转,记录此时电机转速。

(4)因三相异步电机转速总是低于同步转速,故灯光每闪亮一次图案逆电机旋转方向落后一个角度,用肉眼观察图案逆电机旋转方向缓慢移动。

三相异步电动机工作特性和参数测定.

三相异步电动机工作特性和参数测定.

电机学实验报告——三相异步电动机工作特性和参数测定姓名:张春学号:2100401332实验八三相异步电动机工作特性和参数测定实验一、实验目的1.掌握三相异步电动机直接负载和空载、堵转实验方法。

2.用空载、堵转实验数据,求出异步电动机每相等效电路中各个参数。

二、实验内容1.用测功机作负载,测出三相异步电动机的工作特性。

2.空载实验,测出空载特性曲线3.堵转实验,测出堵转特性曲线4.从空载实验和堵转实验中求出和等参数。

三、实验说明和操作步骤每次实验,应从所求测量值的上限开始读数,然后逐渐减小测量值,这样求得的整条曲线,其温度比较均匀,减小因温度不同带来的误差。

1.直接负载法求取异步电动机的工作特性负载实验在定子上施加额定电压和额定频率的情况下进行的,接线如图8-8所示,(a)为涡流测功器线路,(b)为电动测功机线路。

操作步骤:(1)记录被试电机额定电压、额定电流值。

(2)调压器输出电压调至零,并合上开关调至额定值。

(3)将测功机励磁回路单相调压器输出调至0位置(逆时针到底)。

(4)保持电动机外加电压不变,调节单相调压器改变测功机的励磁电流,调节电动机的负载。

在范围内均匀测取点,每次记录三相电流、三相功率和转速、转矩。

数据填入表8-1内。

图 8-8 三相异步电动机负载实验接线图表8-1 负载实验数据伏序号记录数据计算数据1 5.96 5.97 5.95 2261 947.51.61435.963208.52349.573.230.8180.0462 5.12 5.33 5.56 2096 830.61.414435.332926.62074.770.890.8330.0383 4.98 4.73 5.04 1883 660.71.314464.912543.71930.673.90.7860.0364 4.23 4.04 4.31 1574 403.61 14584.191977.61497.475.890.7160.0285 3.43 3.24 3.58 1186 50.970.614753.411237.908.8 73.470.7230.0166 3.15 3.01 3.33 1004 -124 0.414843.16880 609.6369.280.4230.0117 2.97 2.89 2.17 834.-303 0.214932.67531 306.6757.750.3010.005表中的单位为公斤·米;为三相电流平均值(安;;;;;。

三相鼠笼式异步电机实验 (1)

三相鼠笼式异步电机实验 (1)

三相鼠笼式异步电动机的参数测定一、实验目的1.了解三相鼠笼式异步电动机2.测定三相鼠笼式异步电动机的参数二、预习要点1.鼠笼式异步电动机的等效电路有哪些参数?他们的物理意义是什么?2.异步电动机参数的测定方法三、实验项目1.空载实验2.短路实验四、实验线路及操作步骤1.空载试验空载试验时所用的仪器设备有:三相交流电源、电机导轨、功率表、交流电流表、交流电压表。

电机选用三相鼠笼异步电动机D21仪表量程选择为:交流电压表的量程选为300V,交流电流表的量程为0.5A,功率表的量程选为250V、0.5A。

安装电机时,空载实验时电机和测功机脱离,旋紧固定螺丝。

实验前首先把三相电源调至零位,然后接通电源,慢慢的调节三相交流可调电源使电机起动旋转,注意观察电机旋转的方向。

调整电源相序,使电机旋转方向符合测功机加载的要求。

注意:调整相序时,必须切断电源。

仍然将三相电源调至零位,短接电流表及功率表电流线圈。

接通电源,逐渐升高电压,起动电机,保持电动机在额定电压时空载运行数分钟,使机械损耗达到稳定后再进行试验。

去掉电流短接导线。

调节电源电压由1.2倍额定电压开始逐渐降低,直至电机电流或功率显著增大为止。

在这个范围内读取空载电压、空载电流、空载频率,共读取4~5组数据。

=415.9456Ω空载电阻r0=P03I02空载电抗x0=√Z02−r02=1634.0217Ω2.短路实验电路要求在空载实验的基础上,将电机与测功机同轴连接即可。

实验时首先把三相电源调至零位,然后接通电源,慢慢的调节三相交流可调电源使之逐渐升压至1.2倍额定电流,然后逐渐降压至0.3倍额定电流为止。

在这范围内读取短路电压、=109.1253Ω短路电阻r k=P k3I k2短路电抗x k=√Z k2−r k2=437.8361Ω五、思考题1.由空载、短路实验数据求取异步电机的等效电路参数时,有哪些因素会引起误差?答:电动机在正常运行情况下,就是负载转矩在额定转矩以下情况时,电动机总能维持负载转矩与电机输出转矩的平衡,并且保持转速变化很小,但当负载转矩过大,超过额定转矩时,电动机仍然要维持转矩平衡,只有降低转速,继续提高转矩,(如果转矩超过最大负载转矩电机将堵转)转矩的继续提高,必然导致定子电流的升高,从而导致定子绕组发热增加,如果持续大过载,会造成电动机烧毁.2.从短路实验数据我们可以得出那些结论?答:短路、电机阻转情况下,电机的电压和电流是呈线性关系的。

三相异步电动机在各种运行特性下地机械特性

三相异步电动机在各种运行特性下地机械特性

实验五 三相异步电动机在各种运行状态下的机械特性【思考要点】1. 如何利用现有设备测定三相绕线式异步电动机的机械。

2. 测定各种运行状态下的机械特性应注意哪些问题。

3. 如何根据所测得的数据计算被试电机在各种运行状态下的机械特性。

【实验原理】三相异步电动机的定、转子之间没有直接电的联系,它们之间的联系是通过电磁感应而实现的。

一台三相异步电动机的电磁转矩的大小决定了其拖动负载的能力,而三相异步电动机的电磁力矩的大小不仅与电动机本身的参数有关,也和其外加电源的电压有关。

本实验围绕异步电动机的电磁力矩和其参数、外加电压的关系以及各种运行状态等电力拖动问题进行展开。

1. 三相异步电动机的机械特性机械特性是指电动机转速n 与转矩T 之间的关系,一般用曲线表示。

欲求机械特性,先求T 与n 的数学关系式,称为机械特性表达式。

电磁转矩''21200em R m I P s T ==ΩΩ由异步电动机的近似等效电路,得()'22'2'2112X U I R R X X s =⎛⎫+++ ⎪⎝⎭ 代入T 的公式,即得参数表达式)()('212'21'221X X s R R sR U mT X+++Ω=考虑到0(1)n s n =-, 00260n πΩ=, 即可由此式绘出异步电动机的机械特性曲线()n f t =,如图6.24所示。

图6.24 三相异步电动机机械特性机械特性的参数表达式为二次方程,电磁转矩必有最大值,称为最大转矩T m 。

将表达式对s 求导,并令0dTds=,可求出产生最大转矩T m 时的转差率S m()'222'112m R S R X X =±++S m 称为临界转差率。

代入T 的公式则可得T m 的公式()2122'011122Xm U T R R X X =±Ω⎡⎤±+++⎢⎥⎣⎦式中正号对应于电动机状态,负号适用于发电机状态。

三相异步电动机的参数测定

三相异步电动机的参数测定

三相异步电动机的参数测定三相异步电动机是工业生产中常用的一种机械设备,其性能参数的合理测定对于设备的运行维护、故障诊断以及节约能源等方面具有重要意义。

本文主要介绍三相异步电动机的参数测定方法。

1. 基本结构和工作原理三相异步电动机是由定子和转子两部分组成。

其中,定子是由电磁铁线圈、铁芯和端盖组成,转子是由铜导体(亦称作离子)和铁芯组成。

在电源的驱动下,定子线圈中形成不间断的交变电流,调节转子和定子之间的磁场使得转子开始旋转。

由于转子导体的移动,感应出对应的逆向电势,即“感应电势”,进而阻碍电流的进一步流动,使得机械能输出稳定。

2. 测量参数(1)空载测试空载测试是指在电机不带载(即转子不带外来负荷)的情况下运行,测试该状态下的磁场特性、无负载电流和功率等参数。

测试步骤如下:首先,将电动机空载连接于电源,确保电机正常启动。

然后,使用电流表和功率表等测试工具测量该状态下的电流和功率。

最后,将测得的数值与电机的额定数值比较,目的是判断电机的稳定性和电路系统的效率。

(2)短路测试通过带有额定负载的测试可以获取到一些转速、转矩、功率等关键参数。

这种测试可以检测电机的运行能力和效率等。

测试步骤如下:首先,将特定负载连接于电机,确保不对电机造成损坏。

然后,使用转速传感器、扭矩传感器、功率计和电能表等测试设备测量测试所需参数,并记录下相应数据。

最后,根据测得的数据分析电机的运行能力和效率。

3. 结论通过以上的三种测试,我们就可以获取一些重要的性能参数,比如空载电流、短路电流、转矩、输出功率、效率等。

针对这些参数,我们在日常维护和故障诊断时可以结合实际情况进行全方位的分析与判断,以减小不必要的损失和风险。

三相异步电动机的工作特性和参数测定

三相异步电动机的工作特性和参数测定

三相异步电动机的工作特性和参数测定原理简述一、基本方程式和等效电路异步电机定子绕组所产生的旋转磁场,以转差速度切割转子导体,在转子导体中感应电势,产生电流,转子导体中的电流与定子旋转磁场相互作用而产生电磁转矩,使转子旋转。

当转子的转速与定子旋转磁场的转速相等时,定、转子之间没有相对切割,转子中就没有电流,也就不能产生转矩。

因此转子的转速一定要异于磁场的转速,故称异步电机。

由于异步而产生的转矩称为异步转矩。

当时,为电动机运行;时为发电机运行;当即转子逆着磁场方向旋转时,它是制动运行。

异步电机绝大多数都是作为电动机运行。

其转矩和转速(转差率)曲线,如图8-1所示。

由《电机学》中可知,将转子边的量经过频率折算和绕组折算,可得到异步电机的基本方程式为:式中转差率是异步电机的重要运行参数,为折算到定子一边的转子参数,也就是从定子上测得转子方面的数值。

由方程式可以画出相应的等效电路,如图8-2所示。

当异步电动机空载时,,。

附加电阻。

图8-2中转子回路相当开路;当异步电动机堵转时,,,附加电阻,图8-2转子回路相当短路,这就和变压器完全相同。

因此异步电机也可以通过空载实验和堵转(短路)实验来求出异步电机的等效电路中的各参数。

二、空载实验由空载实验可以求得励磁参数,以及铁耗和机械损耗。

实验是在转子轴上不带任何机械负载,转速,电源频率的情况下进行的。

用调压器改变试验电压大小,使定子端电压从逐步下降到左右,每次记录电动机的端电压、空载电流和空载功率,即可得到异步电动机的空载特性,如图8-3所示。

图 8-3 空载特性 图 8-4 铁耗和机械耗分离空载时,电动机的输入功率全部消耗在定子铜耗、铁耗和转子的机械损耗上。

所以从空载功率中减去定子铜耗,即得铁耗和机械耗之和,即式中为定子绕组每相电阻值,可直接用双臂电桥测得。

机械损耗仅与转速有关而与端电压无关,因此在转速变化不大时,可以认为是常数。

铁耗在低电压时可近似认为与磁通密度的平方成正比。

三相鼠笼异步电动机的工作特性实验报告

三相鼠笼异步电动机的工作特性实验报告

三相鼠笼异步电动机的工作特性一.实验目的1.掌握三相异步电机的空载、堵转和负载试验的方法。

2.用直接负载法测取三相鼠笼异步电动机的工作特性。

3.测定三相笼型异步电动机的参数。

二.实验项目1.空载试验。

2.短路试验。

3.负载试验。

三.实验设备及仪器1.NMCL系列电机教学实验台主控制屏。

2.电机导轨及测功机、矩矩转速测量(MMEL-13)。

3.交流功率、功率因数表(MMEL-001A)。

4.直流电压、毫安、安培表(MMEL-06)。

5.三相可调电阻器900Ω(NMEL-03)。

6.旋转指示灯及开关(MMEL-05B)。

7.三相鼠笼式异步电动机M04。

四.实验方法及步骤1.空载试验测量电路如图3-3所示。

电机定子绕组接线如图3-4所示,电机绕组为△接法(U N=220伏),S开关扳到左边,且电机不同测功机同轴联接,不带测功机。

a.起动电压前,把交流电压调节旋钮退至零位,然后接通电源,逐渐升高电压,使电机起动旋转,观察电机旋转方向。

并使电机旋转方向为正。

b.保持电动机在额定电压下空载运行数分钟,使机械损耗达到稳定后再进行试验。

c.调节电压由1.2倍额定电压开始逐渐降低电压,直至电流或功率显著增大为止。

在这范围内读取空载电压、空载电流、空载功率。

表3-3序号U OC(V)I OL(A)P O(W)cosϕU AB U BC U CA U OL I A I B I C I OL P I P II P O1 220 220 220 220.000 0.274 0.281 0.276 0.277 -20.7 37.02 16.32 0.472 264.1 265 263.1 264.067 0.339 0.352 0.345 0.345 -32.4 54.07 21.67 0.463 180.5 180.8 180 180.433 0.224 0.223 0.224 0.224 -12.9 25.10 12.2 0.444 140.3 140 139.7 140.000 0.176 0.174 0.175 -6.82 15.97 9.15 0.425 100.8 99.65 99.92 100.123 0.135 0.133 0.130 0.133 -2.48 9.11 6.63 0.46 60.63 58.96 59.5. 59.795 0.110 0.102 0.097 0.103 0.23 4.74 4.97 0.377 20.91 18.84 19.32 19.690 0.079 0.074 0.669 0.274 -0.27 0.80 0.53 0.342.短路实验a.将起子插入测功机堵转孔中,使测功机定转子堵住将三相调压器退至零。

三相异步电动机工作特性及参数测定实验

三相异步电动机工作特性及参数测定实验

实验二、三相鼠笼异步电动机的工作特性及参数测定一、实验目的1、掌握三相异步电动机的空载、堵转和负载试验的方法。

2、用直接负载法测取三相鼠笼式异步电动机的工作特性。

3、测定三相鼠笼式异步电动机的参数。

二、预习要点1、异步电动机的工作特性指哪些特性2、异步电动机的等效电路有哪些参数它们的物理意义是什么3、工作特性和参数的测定方法。

三、实验项目1、测量定子绕组的冷态电阻。

2、空载实验。

3、短路实验。

4、负载实验。

四、实验方法12D33、D32、D34-3、D31、D42、D51三相鼠笼式异步电机的组件编号为DJ16。

3、测量定子绕组的冷态直流电阻。

将电机在室内放置一段时间,用温度计测量电机绕组端部或铁心的温度。

当所测温度与冷却介质温度之差不超过2K时,即为实际冷态。

记录此时的温度和测量定子绕组的直流电阻,此阻值即为冷态直流电阻。

利用万用表测定绕组电阻,记录下表表4一34、空载实验1)按图4-3接线。

电机绕组为△接法(U、二220V),直接与测速发电机同轴联接,负载电机DJ23不接。

2)把交流调压器调至电压最小位置,接通电源,逐渐升高电压,使电机起动旋转,观察电机旋转方向。

并使电机旋转方向符合要求(如转向不符合要求需调整相序时,必须切断电源)。

3)保持电动机在额定电压下空载运行数分钟,使机械损耗达到稳定后再进行试验。

图4-3三相鼠笼式异步电动机试验接线图4)调节电压由倍额定电压开始逐渐降低电压,直至电流或功率显著增大为止。

在这范围内读取空载电压、空载电流、空载功率。

5)在测取空载实验数据时,在额定电压附近多测几点,共取数据7〜9 组记录于表4-4中。

表4-41)测量接线图同图4-3o用制动工具把三相电机堵住。

制动工具可用DD05±的圆盘固定在电机轴上,螺杆装在圆盘上。

2)调压器退至零,合上交流电源,调节调压器使之逐渐升压至短路电流到倍额定电流,再逐渐降压至倍额定电流为止。

3)在这范围内读取短路电压.短路电流.短路功率。

三相鼠笼式异步电动机参数测试方法

三相鼠笼式异步电动机参数测试方法

三相鼠笼式异步电动机参数测试方法三相鼠笼式异步电动机参数测定分三部分:测量定子绕组的冷态直流电阻,空载实验,短路(堵转)实验。

下面将分别讲述。

一、测量定子绕组的冷态直流电阻原理:将电机在室内放置一段时间,用温度计测量电机绕组端部或铁心的温度。

当所测温度与冷却介质温度之差不超过2K时,即为实际冷态。

记录此时的温度和测量定子绕组的直流电阻,此阻值即为冷态直流电阻。

具体实现方法有:伏安法、电桥法等。

各种方法详细的理论分析及原理介绍在书中有说明。

在实际应用场合,可以使用万用表来进行伏安法的测试。

二、空载实验《电机学实验指导书》上讲述的是Δ接法的测量方法。

原理分析如下:采样Δ接法的测量方法时,只需一相绕组短接,测量一相得到的数据是线电压跟线电流,可以得出空载实验的空载阻抗。

Δ接法电机等效电路如图1所示。

ABC图1 Δ接法电机等效图但是,在小功率的应用场合(比如:家电等消费产品场合),三相异步电动机亦有好多采用Y型接法。

此时电机测量如果可以检测相电压或者线电压均可,下面将逐一分析。

Y型接法电机等效图如图2所示。

ABC图2 Y 接法电机等效图按照图2的等效图,若检测一相得到相电压,线电流,则可直接计算得出短路阻抗。

若检测一相得到线电压,线电流,计算便可得到2倍的短路阻抗。

三、短路(堵转)实验短路实验的原理跟实际的操作流程在实验指导书上均有详细的指导,再次不再重复叙述。

注:因三相异步电动机的广泛使用,在许多场合并未对三相异步电动机的一些细则进行说明,例如,现在许多三相电动机均由变频器拖动,且变频器的前级整流大部分采用全桥整流。

下面以小功率消费场合所采用不控整流技术来进行说明:此时 直流输出 22.34cos d U U α=[1]大部分情况下,我们只知道电机的供电电源是市电。

而不知道电机的一些详细额定参数(我遇到的是额定电压未知)。

此时,在进行实验时,我们无法确定三相调压器所施加电压的上限是多少。

所以,在这种情况下,可根据上面的公式及电机的供电方式及供电电源的等级来确定三相调压器所施加电压的上限(上式中反推所得到的2U )。

三相异步电动机实习报告

三相异步电动机实习报告

三相异步电动机实习报告在本次实习中,我主要负责了三相异步电动机的实验研究和数据分析。

三相异步电动机作为一种常见的电动机,广泛应用于工业生产中,具有运行可靠、维护方便、成本低廉等优点。

通过本次实习,我对三相异步电动机的结构、工作原理以及性能特点有了更深入的了解。

首先,我对三相异步电动机的结构进行了学习和实际操作。

三相异步电动机主要由定子和转子两部分组成,定子上绕有三组对称分布的绕组,而转子则是由导体材料制成的。

在实验中,我通过拆解和组装电动机的过程,深入了解了电动机内部各个部件的结构和功能,对电动机的工作原理有了更清晰的认识。

其次,我进行了三相异步电动机的性能测试和数据分析。

在实验室中,我通过连接电路、调节参数等操作,成功实现了对电动机的启动、调速、制动等控制。

通过测量电动机的转速、电流、功率因数等参数,并利用相关仪器进行数据记录和分析,我得出了电动机在不同工况下的性能曲线和特性参数。

这些数据为我进一步了解电动机的运行规律和性能特点提供了重要依据。

最后,我对实验结果进行了总结和分析。

通过对实验数据的分析,我发现电动机的效率随着负载的增加而逐渐降低,而功率因数则随着负载的增加而提高。

同时,我还发现在不同的工作条件下,电动机的运行状态和性能表现存在一定的差异。

这些结论对于进一步优化电动机的运行控制和提高其效率具有一定的指导意义。

通过本次实习,我不仅对三相异步电动机有了更深入的了解,同时也提高了自己的实际操作能力和数据分析能力。

在未来的工作中,我将继续努力,不断提升自己的专业技能,为电动机及其控制系统的研究和应用做出更大的贡献。

总之,本次实习使我受益匪浅,对三相异步电动机有了更深入的了解,也提高了自己的实践操作能力和数据分析能力。

希望在今后的学习和工作中能够继续努力,不断提升自己的专业能力,为电动机及其控制系统的研究和应用做出更大的贡献。

三相异步电动机的参数测定

三相异步电动机的参数测定

实验报告定后,再继续进行实验。

d.调节电压有1.2倍的额定电压开始逐渐降低电压,同时读取空载电压,空载电流,空载功率。

在测定空载实验数据时,可取7~9组数据,并记录于表3-1。

e.降低电源电压至0,断开交流电源。

(2)短路实验a.测量接线图如图3-1所示,利用制动工具把三相异步电动机堵住(即用扳手别在轴上,使电动机卡住而转不起来)。

x由下列短路实验求得。

励磁电阻:r m 3F2,式中P Fe为额定电压下的铁损耗,由图3-2确定—_▼ ____ ________图2-2电机的铁损与机械损耗即作出P f(J2)曲线,在U H时对应的P Fe , P mec o P mec可取P f (U Q)的延长线与纵轴的交点,线段OK的长度表示机械损耗P mec。

由短路实验计算出短路参数:短路阻抗Z k牛;短路电阻:R k 3Pk2 ;短路电抗:X k T Z k~ ,式中U k,I k,P k分别是短路相电压、短路相电流、三相短路功率之和。

转子绕组的折合值为「2 R k R i,定、转子漏电抗为洛X2 - X k2 最后画出完整的三相异步电动机等效电路图,并填入相关参数。

四、回答问题1.空载电流大约是额定电流的百分之几?异步电动机的空载电流为什么比三相变压器大得多?(3.9/50)%=7.8%如果异步电动机和三相变压器的容量、电压相同,则所建立的磁场也应一样。

因异步电动机主磁路中除铁芯外还有气隙段,而变压器的主磁路为闭合的铁芯,所以异步电动机主磁路的磁阻比三相变压器磁阻大,空载电流也比同容 _ 量的变压器大。

2 .短路实验若把U k误加上U N值,会导致什么严重结果?误加上U N值会导致电流过大,电流过大会让电动机过热而烧坏。

三相异步电动机的工作特性和参数测定

三相异步电动机的工作特性和参数测定

三相异步电动机的⼯作特性和参数测定三相异步电动机的⼯作特性和参数测定原理简述⼀、基本⽅程式和等效电路异步电机定⼦绕组所产⽣的旋转磁场,以转差速度切割转⼦导体,在转⼦导体中感应电势,产⽣电流,转⼦导体中的电流与定⼦旋转磁场相互作⽤⽽产⽣电磁转矩,使转⼦旋转。

当转⼦的转速与定⼦旋转磁场的转速相等时,定、转⼦之间没有相对切割,转⼦中就没有电流,也就不能产⽣转矩。

因此转⼦的转速⼀定要异于磁场的转速,故称异步电机。

由于异步⽽产⽣的转矩称为异步转矩。

当时,为电动机运⾏;时为发电机运⾏;当即转⼦逆着磁场⽅向旋转时,它是制动运⾏。

异步电机绝⼤多数都是作为电动机运⾏。

其转矩和转速(转差率)曲线,如图8-1所⽰。

由《电机学》中可知,将转⼦边的量经过频率折算和绕组折算,可得到异步电机的基本⽅程式为:式中转差率是异步电机的重要运⾏参数,为折算到定⼦⼀边的转⼦参数,也就是从定⼦上测得转⼦⽅⾯的数值。

由⽅程式可以画出相应的等效电路,如图8-2所⽰。

当异步电动机空载时,,。

附加电阻。

图8-2中转⼦回路相当开路;当异步电动机堵转时,,,附加电阻,图8-2转⼦回路相当短路,这就和变压器完全相同。

因此异步电机也可以通过空载实验和堵转(短路)实验来求出异步电机的等效电路中的各参数。

⼆、空载实验由空载实验可以求得励磁参数,以及铁耗和机械损耗。

实验是在转⼦轴上不带任何机械负载,转速,电源频率的情况下进⾏的。

⽤调压器改变试验电压⼤⼩,使定⼦端电压从逐步下降到左右,每次记录电动机的端电压、空载电流和空载功率,即可得到异步电动机的空载特性,如图8-3所⽰。

图 8-3 空载特性图 8-4 铁耗和机械耗分离空载时,电动机的输⼊功率全部消耗在定⼦铜耗、铁耗和转⼦的机械损耗上。

所以从空载功率中减去定⼦铜耗,即得铁耗和机械耗之和,即式中为定⼦绕组每相电阻值,可直接⽤双臂电桥测得。

机械损耗仅与转速有关⽽与端电压⽆关,因此在转速变化不⼤时,可以认为是常数。

三相异步电动机工作特性及参数测定实验

三相异步电动机工作特性及参数测定实验

三相异步电动机工作特性及参数测定实验三相异步电动机的工作特性主要包括转速-转矩特性、效率特性和功率因数特性。

转速-转矩特性是指电动机在不同负载下的转速和转矩的关系。

通常来说,电动机的转速与其转矩成反比关系,也就是转速越高,转矩越小。

通过测定电动机在不同负载下的转速和转矩,可以绘制出转速-转矩特性曲线,用于电动机的选型和工作状态的评估。

效率特性是指电动机在不同负载下的效率变化情况。

电动机的效率是指输出功率与输入功率之间的比值,通常以百分比表示。

通过测定电动机在不同负载下的输入功率和输出功率,可以计算出电动机的效率,并绘制出效率-负载特性曲线,用于评估电动机的能量利用效率。

功率因数特性是指电动机在不同负载下的功率因数的变化情况。

功率因数是指电动机输入功率与有功功率之比,它描述了电动机输入电网的电力质量。

通常来说,功率因数越高,表示电动机对电网的影响越小。

通过测量电动机在不同负载下的功率因数,可以绘制功率因数-负载特性曲线,用于评估电动机对电网的影响程度。

对于三相异步电动机工作特性及参数测定实验,一般可以按照以下步骤进行:1.实验仪器准备:准备好实验所需的电动机、测功仪、转速传感器、负载电阻等仪器设备,并进行检查和校准。

2.实验电路连接:根据实验要求,连接好电动机、测功仪、转速传感器和负载电阻等设备,确保电路连接正确。

3.实验参数调节:根据实验要求,调节电源电压和频率,使其符合电动机的额定工作参数。

4.实验数据记录:在实验过程中,记录电动机的转速、输入功率、输出功率、转矩、功率因数等相关参数,并按照实验要求进行数据记录和整理。

5.数据处理和分析:根据实验记录的数据,进行数据处理和分析,计算出电动机在不同负载下的转速、转矩、效率和功率因数等参数,并绘制相应的特性曲线。

6.结果与讨论:根据实验结果,进行结果的分析、比较和讨论,验证实验的准确性,并对实验结果进行解释和说明。

总结:通过三相异步电动机工作特性及参数测定实验,可以深入理解电动机的工作原理和性能特点,为电动机的选型和运行维护提供依据。

三相异步电动机实验报告

三相异步电动机实验报告
i和基准工作温度21r1电阻r按sin计算作oeun与og成角oe即为圆心线欧姆根据短路试验数据取试验线电流接近ukpk及额定相电压un按ikunik计算额定电ukik压时的短路相电流ikpkpkik计算短路相电流为的短路功率pk按a和ap确定工作毫米圆短路点dopk毫米的平行线一毫米为半径画圆弧交平行线于作工作圆交oe于c点c点即为工作圆的圆心
(5)若堵转试验时最大电压在~倍额定电压范围内,应根据试验数据绘制堵转特性曲线 , ,额定电压的堵转电流 ,堵转转矩 ,由特性曲线上查取。
(6)若堵转试验时限于设备,最大电压低于 ,应作 曲线,并延长在该曲线上查取 时的堵转电流 ,此时的堵转转矩按下式求取:
, ——试验中测取的最大电流及该点转矩
(五)电机型式试验记录及计算
10.启动过程中最小转矩的测定(仅对笼形电机)。
11.超速试验(对笼形转子电动机,仅在型式试验时进行)。*
12.振动的测定。*
13.噪声的测定。
14.转动惯量的测定。
15.短时升高电压试验。*
16.耐电压试验。*
其中后面标有*的为检查试验项目。第12项也可根据需要仅列为型式试验项目。
二、试验内容及方法
=毫米
(8)作工作圆
连接O和D点,作OD线的垂直平分线,交OE于C点,C点即为工作圆的圆心。作工作圆的半圆ODE。量工作圆直径
=毫米
=安
(9)起动圆短路点
根据短路试验数据:取试验线电流接近(~) 点的 、 、 ,按 计算
按 计算 ,按 和 确定起动圆短路点D1(方法同工作圆)。

=伏
=瓦

=毫米

=毫米
(3)效率的间接测定法
效率的测量有间接法和直接法,采用间接法各部分损耗按下面方法计算:

47三相异步电动机的参数测定

47三相异步电动机的参数测定

47三相异步电动机的参数测定三相异步电动机是一种常用的电动机类型,广泛应用于各个领域。

为了正确运行和维护电动机,对其参数进行测定是非常重要的。

本文将详细介绍三相异步电动机的参数测定方法和步骤。

一、测量电动机额定数据首先,我们需要测量电动机的额定电压、额定频率、额定功率和额定转速。

这些数据通常可以在电动机的铭牌上找到,也可以参考电动机的技术手册。

测量电动机的额定数据是参数测定的基础,确保我们得到准确的结果。

二、测量电动机的绕组电阻绕组电阻是评估电动机运行状态和故障诊断的重要指标之一、测量绕组电阻可以通过直流电桥或万用表来完成。

1.使用直流电桥测量绕组电阻的方法:a.将电动机全部三相引出线路断开,保持绕组的温度稳定。

b.通过绕组的任意两个引出线路接入直流电桥,测量电阻值。

c.注意测量时要排除电动机的惯性反应。

2.使用万用表测量绕组电阻的方法:a.将电动机全部三相引出线路断开,保持绕组的温度稳定。

b.选择万用表的电阻量程和适当的测试端点。

c.分别将万用表的两个测试探头接在绕组的两个引出线路上,读取电阻值。

三、测量电动机的绝缘电阻绝缘电阻是判断电动机绝缘性能和绝缘状态的重要指标之一、测量电动机的绝缘电阻可以通过绝缘电阻测试仪来完成。

1.连接绝缘电阻测试仪和电动机的绕组。

2.根据测试仪的操作说明,设置测试仪的测试模式和参数。

3.启动测试仪进行测试,并记录测试结果。

4.根据测试结果,评估电动机的绝缘状态是否符合要求。

四、测量电动机的励磁电流励磁电流是电动机运行过程中的一个重要参数,对电动机的性能和功率因数有较大的影响。

测量电动机的励磁电流可以通过测量电动机的电流和电压来完成。

1.将电动机正常接通供电。

2.使用电流表和电压表分别测量电动机的电流和电压。

3.根据测得的电流和电压计算励磁电流的值。

4.根据励磁电流的值,评估电动机的运行状态和效率。

五、测量电动机的转速电动机的转速是衡量电动机性能和运行状态的重要指标之一、测量电动机的转速可以通过测量电动机的电压和电流的谐波分析来完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二、三相鼠笼异步电动机的工作特性及参数测定
一、实验目的
1、掌握三相异步电动机的空载、堵转和负载试验的方法。

2、用直接负载法测取三相鼠笼式异步电动机的工作特性。

3、测定三相鼠笼式异步电动机的参数。

二、预习要点
1、异步电动机的工作特性指哪些特性?
2、异步电动机的等效电路有哪些参数?它们的物理意义是什么?
3、工作特性和参数的测定方法。

三、实验项目
1、测量定子绕组的冷态电阻。

2、空载实验。

3、短路实验。

4、负载实验。

四、实验方法
1、实验设备
2、屏上挂件排列顺序
D33、D32、D34-3、D31、D42、D51
三相鼠笼式异步电机的组件编号为DJ16。

3、测量定子绕组的冷态直流电阻。

将电机在室内放置一段时间,用温度计测量电机绕组端部或铁心的温度。

当所测温度与冷却介质温度之差不超过2K时,即为实际冷态。

记录此时的温度和测量定子绕组的直流电阻,此阻值即为冷态直流电阻。

利用万用表测定绕组电阻,记录下表
表4-3
4、空载实验
1) 按图4-3接线。

电机绕组为Δ接法(U N=220V),直接与测速发电机同轴联接,负载电机DJ23不接。

2) 把交流调压器调至电压最小位置,接通电源,逐渐升高电压,使电机起动旋转,观察电机旋转方向。

并使电机旋转方向符合要求( 如转向不符合要求需
调整相序时,必须切断电源)。

3) 保持电动机在额定电压下空载运行数分钟,使机械损耗达到稳定后再进行试验。

图4-3 三相鼠笼式异步电动机试验接线图
4) 调节电压由1.2倍额定电压开始逐渐降低电压,直至电流或功率显著增大为止。

在这范围内读取空载电压、空载电流、空载功率。

5) 在测取空载实验数据时,在额定电压附近多测几点,共取数据7~9 组记录于表4-4中。

表4-4
序号
U0L(V)I0L(A)P0(W)
cosφ0 U AB U BC U CA U0L I A I B I C I0L PⅠP P0
5、短路实验
1) 测量接线图同图4-3。

用制动工具把三相电机堵住。

制动工具可用DD05上的圆盘固定在电机轴上,螺杆装在圆盘上。

2) 调压器退至零,合上交流电源,调节调压器使之逐渐升压至短路电
流到1.2倍额定电流,再逐渐降压至0.3倍额定电流为止。

3) 在这范围内读取短路电压、短路电流、短路功率。

表4-5
4) 共取数据5~6组记录于表4-5中。

6、负载实验
1) 测量接线图同图4-3。

同轴联接负载电机。

图中R f用D42上1800Ω阻
值,R L用D42上1800Ω阻值加上900Ω并联900Ω共2250Ω阻值。

2) 合上交流电源,调节调压器使之逐渐升压至额定电压并保持不变。

3) 合上校正过的直流电机的励磁电源,调节励磁电流至校正值( 50mA 或100mA)并保持不变。

4) 调节负载电阻R L(注:先调节1800Ω电阻,调至零值后用导线短接再调节450Ω电阻),使异步电动机的定子电流逐渐上升,直至电流上升到1.25倍额定电流。

5) 从这负载开始,逐渐减小负载直至空载,在这范围内读取异步电动机的定子电流、输入功率、转速、直流电机的负载电流I F等数据。

6) 共取数据8~9组记录于表4-6中。

表4-6 U1φ=U1N=220V(Δ)I f= mA
五、实验报告
1、计算基准工作温度时的相电阻
由实验直接测得每相电阻值,此值为实际冷态电阻值。

冷态温度为室 温。

按下式换算到基准工作温度时的定子绕组相电阻:
式中 r1ref —— 换算到基准工作温度时定子绕组的相电阻,Ω; r1c ——定子绕组的实际冷态相电阻,Ω; θref ——基准工作温度 ,对于E 级绝缘为75℃; θc ——实际冷态时定子绕组的温度,℃; 2、作空载特性曲线:I 0L 、P 0、cos φ0=f(U 0L ) 3、作短路特性曲线:I KL 、P K =f(U KL )
4、由空载、短路实验数据求异步电机的等效电路参数。

(1) 由短路实验数据求短路参数
短路阻抗: 短路电阻:
短路电抗:
式中 ,P K ——电动机堵转时的相电压,相电流,三相
短路功率(Δ接法)。

C
ref C
ref r r θθ++=23523511KL
KL
K K K I U I
U Z 3=
=ϕϕ
2
23KL K
K K K I P I P r ==ϕ
2
2K
K K r Z X -=
3
I , K KL KL K I
U U ==ϕϕ
转子电阻的折合值:

式中r 1C 是没有折合到75℃时实际值。

定、转子漏抗:
≈ ≈
(2) 由空载试验数据求激磁回路参数
空载阻抗
空载电阻
空载电抗
式中 ,P 0——电动机空载时的相电压、相电流、三相空
载功率(Δ接法)。

激磁电抗
激磁电阻
式中P Fe 为额定电压时的铁耗,由图4-4确定。

'2r C
K r r 1-σ
1X '

X 2K X
L
L
I U I U Z 000003=
=ϕϕ
2
00
20003L
I P I P r ==
ϕ2
0200r Z X -=3I
I , 0L
000==ϕϕL U U σ10X X X m -=2
0203L
Fe
Fe m I P I P r ==ϕ
图4-4 电机中铁耗和机械耗
5、作工作特性曲线P 1、I 1、η、S 、cos φ1=f(P 2)。

由负载试验数据计算工作特性,填入表4-7中。

表4-7 U 1=220V(Δ) I f = mA
序 号
电动机输入 电动机输出
计 算 值
(A)
P 1 (W)
T 2 (N ·m)
n (r/min ) P 2 (W)
S (%)
η
(%)
cos φ1
计算公式为:
1I
式中
——定子绕组相电流,A ; ——定子绕组相电压,V ;
S ——转差率; η——效率。

6、由损耗分析法求额定负载时的效率 电动机的损耗有:
铁 耗: P Fe 机械损耗: P mec
定子铜耗:
转子铜耗: 杂散损耗P ad 取为额定负载时输入功率的0.5%。

式中 P em ——电磁功率,W ;
铁耗和机械损耗之和为:
ϕ1I ϕ1U
12113r I P CU ϕ=S
P
P em CU 100
2=Fe
cu em P P P P --=111
2
00'0r I P P P P mec Fe ϕ-=+=%
100105.03cos %1001500
1500333
1
22
2111
111⨯===
⨯-=
++=
=
P P nT P I U P n
S I I I I I C
B A L
ηϕϕϕϕ
为了分离铁耗和机械损耗,作曲线 ,如图4-4。

延长曲线的直线部分与纵轴相交于K 点,K 点的纵座标即为电动机的机械损耗P mec ,过K 点作平行于横轴的直线,可得不同电压的铁耗P Fe 。

电机的总损耗
于是求得额定负载时的效率为:
式中P 1、S 、I 1由工作特性曲线上对应于P 2为额定功率P N 时查得。

六、思考题
1、由空载、短路实验数据求取异步电机的等效电路参数时,有哪些因素会引起误差?
2、从短路实验数据我们可以得出哪些结论?
3、由直接负载法测得的电机效率和用损耗分析法求得的电机效率各有哪些因素会引起误差?
∑++++=mec
ad cu cu Fe P P P P P P 21%
1001
1
⨯∑-=
P P P η)(200U f P =‘。

相关文档
最新文档