初中数学九年级下册圆周角和圆心角的关系1

合集下载

圆周角和圆心角定理

圆周角和圆心角定理

《圆周角和圆心角的关系》第1课时教学设计教学过程设计说明[师]前面我们学习了与圆有关的哪种角?它有什么特点?请同学们画一个圆心角.回顾旧知,导入新课[生]学习了圆心角,它的顶点在圆心.创设问题设置悬念,激发学生学[师]圆心是圆中一个特殊的点,当角的顶点在圆情境习欲望。

心时,就有圆心角.这样角与圆两种不同的图形产生了联系,在圆中还有比较特殊的点吗?如果有,把这样的点作为角的顶点,会是怎样的图形?[师]同学们请观察下面的图(1).(出示投影片)A.13.3在通过射门游戏引入圆周角的概念。

[师]图中的∠ABC,顶点在什么位置?角的两边有什么特点?[生]∠ABC的顶点B在圆上,它的两边分别和圆有另一个交点.(通过学生观察,类比得到定义)探索新知圆周角(angle in a circular segment)定义:顶点在圆上,并且角的两边和圆相交的角.[师]请同学们考虑两个问题:认识概念顶点在圆上的角是圆周角吗?(1)圆和角的两边都相交的角是圆周角吗?(2)请同学们画图回答上述问题.[师]通过画图,相互交流,讨论认清圆周角概念让学生认识圆周角的两的本质特征,从而总结出圆周角的两个特征:个重要特征。

(1)角的顶点在圆上;(2)两边在圆内的部分是圆的两条弦.试列举一些反例让学生进行辨析。

)1(出示投影片一试[师]在图(1)中,当球员在B、D、E处射门时,他所处的位置对球门AC分别形成三个张角∠ABC,∠ADC,∠AEC.这三个角的大小有什么关系?我们知道,在同圆或等圆中,相等的弧所对的圆心角相等.那么,在同圆或等圆中,相等的弧所对的圆周角有什么关系?联想建构[师]请同学们动手画出⊙O中弧AC所对的圆心角和圆周角.观察弧AC所对的圆周角有几个?提出这一问题意在引起它们的大小有什么关系?你是通过什么方法得到学生思考,为本节活动的?弧AC所对的圆心角和所对的圆周角之间有埋下伏笔。

什么关系?验[生] 弧AC所对的圆周角有无数个.通过测量的证猜方法得知:弧AC所对的圆周角相等,所对的圆想周角都等于它所对的圆心角的一半.(教师用几何画板展示变化中的圆周角与圆心角的关系)[师]对于有限次的测量得到的结论,必须通过其论证,怎么证明呢?说说你的想法,并与同伴交流.[生]互相讨论、交流,寻找解题途径.[师生共析]能否考虑从特殊情况入手试一下.(学生口述,教师播放flash.)(学生口述,教师播放flash[师]如果∠ABC的两边都不经过圆心(如下图),那么结果怎样?特殊情况会给我们什么启发吗?你能将下图中的两种情况分别转化成上图中的情况去解决吗?(学生互相交流、讨论)[生甲]如图(1),点O在∠ABC内部时,只要作通过这样的启发提问,出直径BD,将这个角转化为上述情况的两个角的可提高学生的思维能力,为推理论证圆周角和即可证出.(学生口述,教师播放flash.)[生定理,打下了良好的基乙]在图(2)中,当点O在∠ABC外部时,仍然是础。

九年级数学下册 3.4 圆周角和圆心角的关系 圆的知识在足球比赛中的应用素材 (新版)北师大版

九年级数学下册 3.4 圆周角和圆心角的关系 圆的知识在足球比赛中的应用素材 (新版)北师大版

圆的知识在足球比赛中的应用
题目:如图1,在一次足球比赛场上,甲、乙两名队员互相配合向对方球门MN进攻,当甲带球冲到点A时,乙已经跟随冲到点B,从数学角度看,此时甲是自己射门好,还是将球传给乙,让乙射门好?为什么?
分析:从数学角度看,甲、乙谁射门好,关键是比较∠MAN与∠MBN的大小,角度越大,射门的机会越好。

如何比较∠MAN与∠MBN的大小呢?
如图2,过M、B、N三点作⊙O,发现点A落在⊙O的外部,连结CN。

根据圆周角定理的推论得,∠MBN=∠MCN;在△CAN中,根据三角形内角和定理的推论得,∠MCN>∠MAN,所以∠MBN>∠MAN,所以甲将球传给乙,让乙射门更好些。

当然我们也可以过M、A、N三点作圆。

如图3,过M、A、N三点作⊙O′,发现点B落在⊙O’的内部,延长MB交⊙O’于点D,连结DN。

根据圆周角定理的推论得,∠MDN=∠MAN;在△BND中,根据三角形内角和定理的推论得,∠MBN>∠MDN,同样可得∠MBN>∠MAN。

图1
图1
图3。

初中数学_圆周角和圆心角的关系教学设计学情分析教材分析课后反思

初中数学_圆周角和圆心角的关系教学设计学情分析教材分析课后反思

3.4圆周角和圆心角的关系(第1课时)【教学目标】1.理解圆周角的概念,掌握圆周角的两个特征.2.经历探索圆周角和圆心角关系的过程,会运用它进行有关的证明和运算. 3.在经历探索圆周角和圆心角关系的过程中,感悟分类,转化的数学思想.【重点难点】重点: 理解圆周角与圆心角的关系.难点: 感悟圆周角定理证明过程中的分类,转化的数学思想.【教法学法】教法:引导发现,组织交流,探索归纳,当堂训练.学法:在教师指导下观察思考,自主学习,交流合作,归纳发现,探索新知.课前准备:圆形纸片,多媒体课件.【教学过程】一.创设情境,引入新课很多同学都喜欢看足球世界杯.2020年中国足球将冲出亚洲,走向世界.这是我们亿万球迷的中国足球梦,足球中也有数学问题.同学们想一想,球员射中球门的难易程度与什么有关?这与他所处的位置B对球门AC的张角(∠ABC)有关.当球员在B,D,E处射门时,他所处的位置对球门AC分别形成三个张角∠ABC,∠ADC,∠AEC.这三个角的大小有什么关系?通过今天的学习,我们就能解答这个问题.今天我们就来学习圆周角和圆心角的关系.(板书课题:3.4圆周角和圆心角的关系)处理方式:学生观看视频,思考分析并进行交流.设计意图:通过视频欣赏,充分调动学生的听课热情和积极性,同时也让学生感受到生活或娱乐中处处都有数学的身影. 通过设疑,激发学生的求知欲,培养学习兴趣.二. 探究学习,感悟新知活动内容1:圆周角的概念问题1:∠ABC,∠ADC,∠AEC是圆心角吗?什么是圆心角?问题2:它们与圆心角有什么区别?与同伴交流.问题3:你能给圆周角下个定义吗?处理方式:学生先自主思考,然后与同伴交流自己的想法.教师组织学生说出自己的发现,引导学生与圆心角进行对比,重点引导学生说出∠ABC,∠ADC,∠AEC的共同特征,把握两点特征:角的顶点在圆上;两边在圆内的部分是圆的两条弦.接着给出圆周角的定义:顶点在圆上,两边分别与圆还有另一个交点.像这样的角,叫做圆周角.巩固练习:火眼金睛1.判断下列各图形中的角是不是圆周角.处理方式:教师演示几何画板,动态展示图中各种情况,要注意引导学生回顾圆周角定义中的两个条件:①顶点在圆上;②两边分别与圆还有另一个交点.设计意图:通过让学生经历“观察—发现—对比—交流—总结”这一数学活动过程,一方面积累数学活动的经验,另一方面也加深了学生对圆周角的理解.类比圆心角来学习圆周角,学生会感觉自然,易于接受;通过两个练习,让学生加深对圆周角定义的理解和直观感受,让学生熟练判断圆中哪些是同一条弧所对的圆周角,并掌握如何在比较复杂的图形中按照一定的规律寻找所有的圆周角和圆心角,这一能力对于学习后续的圆的相关证明题是很必要的.活动内容2:圆周角和圆心角的关系1.直观感受:做一做如图,∠AOB=80°.(1)请你画几个所对的圆周角. 这几个圆周角有什么关系?与同伴进行交流.(2)这些圆周角和圆心角∠AOB的大小有什么关系?你是怎么发现的?与同伴进行交流.处理方式:对于问题(1)应先让学生明确问题的要求,找到特定的弧,然后再画圆周角.学生所画的圆周角的位置会有不同,教师可以从中找出典型的图形进行展示,同时引导学生观察所画的圆周角与圆心角∠ AOB 有几种位置关系,猜测这几个圆周角的关系,与同伴交流自己的想法.学生所画圆周角展示:对于问题(2),教师可引导学生通过度量验证这些圆周角和圆心角∠AOB 的大小有什么关系,并启发学生思考:为什么不同位置的圆周角度数相同?从而初步得出结论:圆周角的度数等于它所对弧上的圆心角的一半,同弧所对的圆周角相等.2.猜想:议一议在上图中,改变∠AOB 的度数,你得到的结论还成立吗?说说你的想法,并与同伴交流.处理方式:学生猜想结论是否成立,并尝试进行说理;教师演示几何画板改变角的度数加以验证.3.证明已知:如图,∠C 所对的圆周角,∠AOB 所对的圆心角. 求证:AOB C ∠=∠21.分析:根据圆周角和圆心角的位置关系,分三种情况讨论:(1)圆心O 在圆周角∠C 的一边上,如图(1);(2)圆心O 在圆周角∠C 的内部,如图(2);(3)圆心O在圆周角∠C的外部,如图(3).处理方式:先引导学生明确题意,再根据圆周角和圆心角的位置关系,进行分析--讨论--证明.证明时先让学生证明圆心O在圆周角∠C的一边上的情况,对于另外两种情况教师应适时进行引导,分析如何添加辅助线,将其转化为(1)的情况进行证明.情况(1)可让学生到黑板板演,适时点拨强调,规范学生的解题步骤.情况(2)(3)如果时间充足可让学生板演证明过程,也可借助实物投影展示学生的证明过程.注意要及时给予肯定的评价,帮助学生树立信心.4.总结归纳通过以上证明过程你能得出什么结论?圆周角定理: 圆周角的度数等于它所对弧上的圆心角度数的一半.5. 得出推论(1)在足球射门的游戏中,球员在B,D,E三点射门时,所形成的三个张角∠ABC,∠ADC,∠AEC大小有什么关系?你能用圆周角定理证明你的结论吗?由圆周角定理可以很容易的得到:同弧所对的圆周角相等.(2)若把同弧换成等弧,结论还成立吗?结论仍然成立. 由此得到圆周角定理的一个推论:同弧或等弧所对的圆周角相等.处理方式:引导学生观察∠ABC,∠ADC,∠AEC是同弧所对的圆周角,根据圆心角定理,它们都等于圆心角的一半,所以这几个圆周角相等.设计意图:通过画图加深对圆周角的理解,同时在画图的过程中让学生感受所画的圆周角与圆心角∠AOB所对的弧是同一条弧.学生通过测量出来,就能直观地感受它们之间的关系,再经历猜想,验证,归纳,证明的思维过程,培养学生的数学思维能力,渗透数学思想方法.设计意图:然后就会很努力的去验证这个目标.三.回顾反思,提炼升华通过这节课的学习,你有哪些收获?有何感想?学会了哪些方法?先想一想,再与大家一起分享. (学生畅谈自己的收获)设计意图:通过学生对本节课所学知识的梳理,理清本节课的主要内容,让学生养成反思与总结的习惯,培养学生自主发展的意识.四.达标检测,反馈提高1. 如图,在直径为AB的半圆中,O为圆心,C, D为半圆上的两点,∠CAD=25°,则∠COD 的度数为 . .2. 如图,点B,C在⊙O上,且BO=BC,则圆周角∠BAC= .3.AB,AC为⊙O的两条弦,延长CA到D,使AD=AB,如果∠ADB=35°,求∠BOC的度数.处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测,及时获知学生对所学知识的掌握情况,尽可能地调动学生学习数学的积极性,使每个学生都有不同程度的提高.五.布置作业,课堂延伸必做题:课本80页习题3.4第1,2题.选做题:课本81页习题3.4第4题.附:板书设计§3.4.1 圆周角和圆心角的关系(1)圆周角定义:做一做:圆周角定理:已知:求证:证明:推论:练习:投影区学生活动区域学生的知识技能基础:学生在本章的第二节课中,通过探索已经学习了同圆或等圆中弧、弦和圆心角的关系,并对定理进行了严密的证明,通过一系列简单的练习具备了应用本关系解决问题的基本能力.但由于本班学生对问题的推理以及证明题的书写能力不是很好,所以圆周角定理的证明对他们有一定的挑战性.学生活动经验基础:在之前的学习过程中,学生已经经历了“猜想-验证”、分类讨论的数学方法,获得了在得到数学结论的过程中采用数学方法解决的经验,同时在学习过程中也经历了合作学习的过程,具备一定的合作和交流的能力.本节课对教学目标的确定明确、具体、全面,符合学生的认知特点。

沪科版九年级下册24.3圆周角教学设计(共三课时)

沪科版九年级下册24.3圆周角教学设计(共三课时)

沪科版初中数学九年级第24章圆教学设计 24.3圆周角(共三课时)第一课时圆周角与圆心角的关系一.教学背景(一)教材分析本课内容是在学生已经学习圆心角、弧、弦、弦心距之间的关系的基础上进行研究的。

通过本课的学习,一方面可以巩固圆心角与弧的关系定理,另一方面圆周角与圆心角的关系在圆的有关说理、作图、计算中应用比较广泛。

所以这一节课既是前面所学知识的继续又是后面研究圆与其它平面几何图形的桥梁和纽带.另外,通过对圆周角定理的探讨,培养学生严谨的思维品质,同时教会学生从特殊到一般和分类讨论的思维方法,因此,这节课无论在知识上,还是在方法上,都起着十分重要的作用。

(二)学情分析本课内容是在学生已经了解圆的基本性质,会判断圆心角,基本掌握了圆心角与弧、弦、弦心距之间的关系,熟练掌握了三角形的外角定理的基础上进行研究的。

初三的学生已具备一定的独立思考和探索能力,并能在探索过程中形成自己的观点,再通过合作交流逐步完善自己的想法,因此本节课设计成探究课,给学生提供探索与交流的空间,体现知识的形成过程。

二.教学目标1.理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;2.经历探索圆周角的有关性质的过程,渗透由“特殊到一般”的数学思想方法.体会分类、转化等数学思想方法。

三.教学重难点教学重点:1.圆周角及圆周角定理2.探索圆周角与圆心角的关系是本课时的重点.教学难点:了解圆周角的分类,用化归思路合情推理验证“圆周角与圆心角的关系”及圆周角定理的简单应用。

四.教学方法分析及学习方法指导教学方法分析本课以教师为主导,学生为主体,知识为主线,以突出重点、突破难点、发展学生数学素养为目的,采用以“探究式教学法”为主、启发式教学法、多媒体辅助教学等多种方法相结合,引导学生用数学的眼光思考问题、发现规律、验证猜想。

学习方法指导学生在动手实践、自主探索、合作交流活动中发现新知和发展能力,与此同时教师通过适时的精讲、点拨使观察、实验、猜想、验证、归纳、推理贯穿整个学习过程。

[初中教育][初三数学]圆心角和圆周角

[初中教育][初三数学]圆心角和圆周角

小班辅导教案知识点一圆心角定理1.概念填空:(1)把圆绕旋转任意一个角度,所得的图形都和原图形重合.圆是中心对称图形,就是它的对称中心.(2)顶点在的角叫做圆心角.(3)圆心角定理:在同圆会等圆中,相等的圆心角所对的相等,所对的也相等.(4)我们把1°圆心角所对的弧叫做,则n°的圆心角所对的弧就是 .2.把一个圆分成相等的6段弧,每段弧所对的圆心角的度数是 >3.如图,MN为⊙○的弦,∠M=50°,则圆心角∠MON等于()A.50°B.55°C.65°D.80°̂= .4.如图,在⊙○中,∠AOB=∠COD,则AC= ,AĈ的度数5.如图,两个同心圆的圆心为O,大圆半径OA,OB分别交小圆于A′,B′两点,如果AB̂的度数是60°,那么A′B′为()A.60°B.大于60°C.小于60°D.不能确定题型一利用圆心角定理证明角(弧)度、线段间的等量关系例1:如图,O为等腰三角形ABC的底边AB上的中点,以AB为直径的半圆分别交AC,BC于点D,E,连结OD,OE.求证:(1)∠AOE=∠BOD;̂=BÊ.(2)AD巩固练习1:如图,在⊙○中,弦AB=CD.求证:AC=BD.题型二利用圆心角定理计算弧的度数̂的度数为40°,例2:如图,AB,DF是⊙○的两条直径,C是⊙○的直径AB上一点,过点C作弦DE,使CD=CO.若AD̂的度数.求BE巩固练习2:如图,以Rt△ABC的直角顶点为圆心,以BA为半径的圆分别交AC于点D,交BC于点E.若∠C=31°,̂的度数.求AD知识点二圆心角定理的逆定理1.在同圆或等圆中,如果、、、中有一对量相等,那么它们所对应的其余各对量都相等.2.下列命题中,真命题是()A.相等的圆心角所对的弧相等B.相等的弦所对的弧相等C.度数相等的弧是等弧D.在同心圆中,同一圆心角所对的两条弧的度数相等3.在⊙○中,弦AB=2cm,圆心角∠AOB=60°,则⊙○的直径为 cm.4.已知AB,CD是⊙○的两条弦,且AB=CD,OE⊥AB于点E,OF⊥CD于点F.若OE=3,则OF= .̂=BĈ.若AB=3,则CD= .5.如图,在⊙○中,AD题型一:利用圆心角、弧、弦、弦心距之间的关系进行相关证明例1:如图,⊙○的弦AB,CD相交于点P,PO平分∠APD.求证:AB=CD.̂=BD̂.求巩固练习1:如图所示,⊙○的两条弦AB,CD互相垂直且相交于点P,OE⊥AB,OF⊥CD,垂足分别为E,F,AC证:四边形OEPF是正方形.例2:如图,P为⊙○的直径EF延长线上一点,PA交⊙○于点B,A,PC交⊙○于点D,C,∠1=∠2.求证:PB=PD.巩固练习2:如图,P为⊙○外一点,∠APC的两边分别交⊙○于点A,B和点C,D.如果PA=PC,求证:AB=CD.知识点三圆周角定理及其推论1.顶点在圆上,的角,叫做圆周角.2.圆周角定理:圆周角的度数等于它所对弧上的度数的一半.圆周角定理的推论1:半径(或直径)所对的圆周角是;90°的圆周角所对的弦是 .3.如图,A,C,B是⊙○上三点,若∠AOC=40°,则∠ABC的度数是 .4.已知一条弧的度数为80°,则这条弧所对的圆心角和圆周角分别是和 .5.在⊙○中,一条6cm长的弦所对的圆周角为90°,则⊙○的直径是 cm.6.已知Rt△ABC的两直角边的长分别为6cm和8cm,则它的外接圆的半径为 cm.题型一与圆周角定理有关的计算例1:如图,A,B,C,D四个点均在⊙○上,∠AOD=70°,AO//DC,求∠B的度数.巩固练习1:如图,A,B,C是⊙○上三点,AB=2,∠ACB=30°,求⊙○的半径.题型二利用圆周角定理的推理1进行计算与证明例2:如图AB,AC是⊙○的两条弦,且AB=AC.延长CA到点D,使AD=AC,连结DB并延长,交⊙○于点E.求证:CE是⊙○的直径.巩固练习2:如图,△ABC是⊙○的内接三角形,AD是⊙○的直径.若∠ABC=50°,求∠CAD的度数.知识点四圆周角定理的推理21.圆周角定理的推理2:在同圆或等圆中,所对的圆周角相等;的圆周角所对的弧也相等.2.如图,点A,B,C,D在⊙○上,若∠BDC=30°,则∠BAC= .3.如图,∠DBC=20°,∠APB=80°,则∠D= .4.若⊙○的弦AB所对的弧的度数是180°,则AB必是⊙○.5.如图,AB是⊙○的直径,∠CAB=60°,则∠D= .题型一:利用圆周角定理及其推论进行计算例1:如图,已知在⊙○中,直径AB=10cm,弦AC为6cm,∠ACB的平分线交⊙○于点D,求BC,AD,BD的长.巩固练习1:如图,点A,B,C,D都在⊙○上,AD是⊙○的直径,且AD=6cm.若∠ABC=∠CAD,求弦AC的长.题型二:利用圆周角定理及其推论进行证明例2:如图,已知在△ABC中,∠BAC与∠ABC的平分线AE,BE交于点E,延长AE交△ABC的外接圆于点D,连结BD,CD,CE且∠BDA=60°.(1)求证:△BDE是等边三角形;(2)若∠BDC=120°,猜想四边形BDCE是怎样的四边形?并证明你的猜想.巩固练习2:如图,过圆内一点P作弦AB和CD,且AP=CP.求证:PB=PD.1.如图,点O 是两个同心圆的圆心,大圆半径OA,OB 交小圆于点C,D ,下列结论中正确的个数有( )①∠OCD=∠OAB ;②AB=CD;③AB̂=CD ̂. A.0个 B.1个 C.2个 D.3个2.如图,BE 是半径为6的⊙D 的14圆周,C 点是BÊ上的任意一点,△ABD 是等边三角形,则四边形ABCD 的周长P 的取值范围是( )A.12<P ≤18B. 18<P ≤24C. 18<P ≤18+6√2D. 12<P ≤12+6√23.已知AB 是⊙○的直径,AC,AD 是弦,且AB=2,AC=√2,AD=1,则圆周角∠CAD 的度数是( )A.45°和60°B.60°C.105°D.15°或105°4.如图,AB 是⊙○的直径,点C 在⊙○上,弦BD 平分∠ABC ,则下列结论错误的是( )A.AD=DCB.AD̂=DC ̂ C.∠ADB=∠ACB D.∠DAB=∠CBA5.如图,已知AB 是⊙○的直径,PA=PB ,∠P=60°,则CD̂所对的圆心角等于 度.6.如图,AB,CD 是⊙○的两条互相垂直的弦,圆心角∠AOC=130°,AD,CB 的延长线相交于点P ,则∠P 的度数为 .7.如图,∠A 的两边交⊙○于点B,C,D,E ,若BD̂:BC ̂:CE ̂:DE ̂=1:3:4:4,则∠A 的度数为 .8.如图为⊙○的部分图形,OA,OB 是⊙○的两条互相垂直的半径,M 是弦AB 的中点,过点M 作MC//OA ,交AB̂于点C.求证:AC ̂=13AB ̂.9.已知:如图,A 点是半圆上一个三等分点,B 点是AN̂的中点,P 是直径MN 上一动点,⊙○的半径为1,则AP+BP 的最小值为多少?1.若⊙○内的一条弦与直径相交成30°的角,并把直径分成2cm 和6cm 两端,则这条弦的弦心距为( )A.1cmB. 2cmC. 3cmD. 4cm2.如图,用四个边长为1的小正方形拼成一个大正方形,A,B,O是小正方形的顶点,⊙○的半径为1,P是⊙○上的一点,且位于右上方的小正方形内,则∠APB的度数为()A.30°B.45°C.60°D.15°或105°3.如图,MN是半圆O的直径,点A是MN延长线上一点,AP交半圆于点Q,P.若∠A=20°,∠PMQ=40°,则∠MQP等于()A.30°B.35°C.40°D.50°4.如图,AB为⊙○的一固定直径,它把⊙○分成上、下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙○于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变̂ D.随C点移动而移动C.等分BD(第4题)(第5题)(第7题)5.如图,已知A,B,C三点在⊙○上,AC⊥BO于点D,∠B=55°,则∠BOC的度数是 .6.圆内的一条弦把圆分成5:1两部分,如果圆的半径是2cm,那么这条弦的长是 cm.7.如图,CD是半圆的直径,点O是圆心,点A在CD的延长线上,点E在半圆上,EA与半圆相交于点B.若AB=OC,̂的度数为 .∠DAE=15°,则DE8.如图,在⊙○中,AB是直角,CD是弦,AB⊥CD.̂上一点(不与C,D重合).求证:∠CPD=∠COB.(1)P是CAD̂上(不与C,D重合)时,∠C P′D与∠COD有什么数量关系?请证明你的结论.(2)点P′在CD9.如图,AB ̂是⊙○的14圆周,半径OA ⊥OB ,C,D 是AB ̂的三等分点,AB 分别交OC,OD 于点E,F.求证:AE=BF=CD.。

初中数学知识点精讲精析 圆周角和圆心角的关系

初中数学知识点精讲精析 圆周角和圆心角的关系

3·3圆周角和圆心角的关系1.圆周角定义:圆周角(angle in a circular segment):顶点在圆上,并且角的两边和圆相交的角.两个特征:(1)角的顶点在圆上;(2)两边在圆内的部分是圆的两条弦.2.圆周角定理:同弧所对的圆周角相等,所对的圆周角都等于它所对的圆心角的一半.注意:(1)定理的条件是同一条弧所对的圆周角和圆心角,结论是圆周角等于圆心角的一半.(2)不能丢掉“一条弧所对的”而简单说成“圆周角等于圆心角的一半”.在同圆或等圆中,同弧或等弧所对的圆周角相等.注意:(1)“同弧”指“同一个圆”.(2)“等弧”指“在同圆或等圆中”.(3)“同弧或等弧”不能改为“同弦或等弦”.3.直径所对的圆周角是直角,90°的圆周角所对的弦是直径.注意:这一推论应用非常广泛,一般地,如果题目的已知条件中有直径时,往往作出直径上的圆周角——直角:如果需要直角或证明垂直时,往往作出直径即可解决问题.4.反证法:注意:用反证法证明命题的一般步骤:(1)假设命题的结论不成立;(2)从这个假设出发,经过推理论证,得出矛盾.(3)山矛盾判定假设不正确,从而肯定命题的结论正确.5.圆内角与圆外角:我们把顶点在圆内(两边自然和圆相交)的角叫圆内角(如图1.顶点在圆外并且两边都和圆相交的角叫圆外角(如图2).定理:圆内角的度数,等于它所对弧的度数与它的对顶角所对弧的度数之和的一半.圆外角的度数,等于它的两边所夹两条弧的度数的差的一半.1.已知:⊙O 中,所对的圆周角是∠ABC ,圆心角是∠AOC .求证:∠ABC =12AOC . 【解析】证明:∠AOC 是△ABO 的外角,∴∠AOC =∠ABO +∠BAO .∵OA =OB ,∴∠ABO =∠BAO . ∴∠AOC =2∠ABO .即∠ABC =12∠AOC .如果∠ABC 的两边都不经过圆心(如下图),那么结果怎样?特殊情况会给我们什么启发吗?你能将下图中的两种情况分别转化成上图中的情况去解决吗?如图(1),点O 在∠ABC 内部时,只要作出直径BD ,将这个角转化为上述情况的两个角的和即可证出.由刚才的结论可知:∠ABD =12∠AOD ,∠CBD =12∠COD , ∴∠ABD +∠CBD =12(∠AOD +∠COD),即∠ABC =12∠AOC .在图(2)中,当点O 在∠ABC 外部时,仍然是作出直径BD ,将这个角转化成上述情形的两个角的差即可.由前面的结果,有 ∠ABD =12∠AOD ,∠CBD =12∠COD .∴∠ABD -∠CBD =12(∠AOD -∠COD),即∠ABC=12∠AOC.2.如图示,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?[分析]由于AB是⊙O的直径,故连接AD.由推论直径所对的圆周角是直角,便可得AD⊥BC,又因为△ABC中,AC=AB,所以由等腰三角形的二线合一,可证得BD=CD.【解析】BD=CD.理由是:连结AD.∵AB是⊙O的直径,∴∠ADB=90°.即AD⊥BC.又∵AC=AB,∴BD=CD.3.为什么有些电影院的坐位排列(横排)呈圆弧形?说一说这种设计的合理性.【解析】有些电影院的坐位排列呈圆弧形,这样设计的理由是尽量保证同排的观众视角相等.4.如下图,哪个角与∠BAC相等?【解析】∠BDC=∠BAC.5. 如下图,⊙O的直径AB=10 cm,C为⊙O上的一点,∠ABC=30°,求AC的长.【解析】∵AB为⊙O的直径.∴ACB=90°.又∵∠ABC=30°, ∴AC=21AB=21×10=5(cm). 6.小明想用直角尺检查某些工件是否恰好为半圆形,根据下图,你能判断哪个是半圆形?为什么?【解析】图(2)是半圆形、理由是:90°的圆周角所对的弦是直径.7.船在航行过程中,船长常常通过测定角度来确定是否会遇到暗礁,如下图,A 、B 表示灯塔,暗礁分布在经过A 、B 两点的一个圆形区域内,C 表示一个危险临界点,∠ACB 就是“危险角”.当船与两个灯塔的夹角大于“危险角”时,就有可能触礁;当船与两个灯塔的夹角小于“危险角”时,就能避免触礁.(1)当船与两个灯塔的夹角∠α大于“危险角”时,船位于哪个区域?为什么? (2)当船与两个灯塔的夹角∠α小于“危险角”时,船位于哪个区域?为什么? 分析:这是一个有实际背景的问题,由题意可知:“危险角” ∠ACB 实际上就是圆周角,船P 与两个灯塔的夹角为∠α,P 有可能在⊙O 外,P 有可能在⊙O 内,当∠α>∠C 时,船位于暗礁区域内;当∠α<∠C 时,船位于暗礁区域外,我们可采用反证法进行论证. 【解析】(1)当船与两个灯塔的夹角∠α大于“危险角” ∠C 时,船位于暗礁区域内(即⊙O 内),理由是:连结BE ,假设船在(⊙O 上,则有∠α=∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 上;假设船在⊙O 外,则有∠α<∠AEB ,即∠α<∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 外.因此.船只能位于⊙O 内.(2)当船与两个灯塔的夹角∠α小于“危险角”∠C时,船位于暗礁区域外(即⊙O 外).理由是:假设船在⊙O上,则有∠α=∠C,这与∠α<∠C矛盾,所以船不可能在⊙O上;假设船在⊙O内,则有∠α>∠AEB,即∠α>∠C.这与∠α<∠C矛盾,所以船不可能在⊙O内,因此,船只能位于⊙O外.8.如图,已知在⊙O中,直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D.求BC、AD和BD的长.分析:由AB为直径,知∠ACB=90°,又AC、AB已知,可由勾股定理求BC.又∠ADB=90°,AD=DB,由勾股定理可求AD、BD.【解析】∵AB为直径,∴∠ACB=∠ADB=90°,又∵AB=10cm,AC=6cm,又∵CD是∠ACB的平分线,∠ACD=∠DCB,∴AD=DB.在 Rt∠ADB中,9.已知AB是⊙O的直径,AE是弦,C是的中点,CD⊥AB于D,交AE于F,CB交AE于G.求证:CF=FG.分析:如图7—107,要证CF=FG,只需证∠FCG=∠FGC.由已知,∠FCG与∠B互余.如果连结AC,∠ACB=90°.∠FGC与∠CAG互余.【解析】证明:连结AC,∵AB为直径,∴∠ACB=90°,∠FGC=90°-∠CAE.又∵CD⊥AB于D,∠FCG=90°-∠B,∴∠FGC=∠FCG.因此,CF=FG.10.如图,AB 是⊙O 的直径.(1)若OD ∥AC ,的大小有什么关系?为什么?(2)把(1)中的条件和结论交换一下,还能成立吗?说明理由. 【解析】(1)=延长DO 交⊙O 于E . ∵AC∥OD , ∴=. ∵∠1=∠2, ∴=. ∴=.(2)仍成立,延长DO 交⊙O 于点E ,连结AD . ∵=,=, ∴=. ∴∠3=∠D . ∴AC ∥OD .11.如图,⊙O 上三点A 、B 、C ,AB =AC ,∠ABC 的平分线交⊙O 于点E ,∠ACB 的平分线交⊙O 于点F ,BE 和CF 相交于点D ,四边形AFDE 是菱形吗?验证你的结论.【解析】四边形AFDE 是菱形.证明:∵∠ABC=∠ACB, ∠ABE=∠EBC=∠ACF=∠FCB. 又∠FAB ,∠FCB 是同弧上的圆周角, ∴∠FAB=∠FCB ,同理∠EAC=∠EBC. 有∠FAB=∠ABE=∠EAC=∠ACF.∴AF ∥ED ,AE ∥FD 且AF=AE. ∴四边形AFDE 是菱形.12.如图是一大型圆形工件被埋在土里而露出地表的部分.为推测它的半径,小亮同学谈了他的做法:先量取弦AB 的长,再量中点到AB 的距离CD 的长,就能求出这个圆形工件的半径.你认为他的做法合理吗?如不合理,说明理由;如合理,请你给出具体的数值,.BDCABD【解析】小亮的做法合理.取AB=8 m ,CD=2 m, 设圆形工件半径为r, ∴r 2=(r -2)2+42. 得r=5(m).13.如图,现需测量一井盖(圆形)的直径,但只有一把角尺(尺的两边互相垂直,一边有刻度,且两边长度都长于井盖的半径),请配合图形,用文字说明测量方案,写出测量的步骤.(要求写出两种测量方案)【解析】方案1:使角尺顶点在圆上,角尺两边与圆两交点连接就是圆的直径,用刻度尺量出直径.方案2:任画圆的一条弦,用尺量出弦的中点,利用角尺过弦中点做弦的垂线,垂线与圆的两交点间的线段为圆的直径.14.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD . (1)P 是上一点(不与C 、D 重合),求证:∠CPD =∠COB .(2)点P ′在劣弧CD 上(不与C 、D 重合)时,∠CP′D 与∠COB 有什么数量关系?请证明你的结论.【解析】(1)证明:连结OD, ∵AB 是直径,AB ⊥CD, ∴=.∴∠COB=∠DOB=21∠COD. 又∵∠CPD=21∠COD, ∴∠CPD=∠COB. (2)∠CP ′D 与∠COB 的数量关系是:∠CP ′D+∠COB=180°.证明:∵∠CPD+∠CP ′D=180°,∠COB=∠CPD, ∴∠CP ′D+∠COB=180°15.(9分)已知,如图20,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC,过点C 作直线CD ⊥AB 于D(AD<DB),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙O 于点F,连接AF 与直线CD 交于点G.(1)求证:AC 2=AG ·AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.B【解析】(1)证明:连接CB ,∵AB 是直径,CD ⊥AB , ∴∠ACB =∠ADC =90°. ∴Rt △CAD ∽Rt △BAC . ∴得∠ACD =∠ABC . ∵∠ABC =∠AFC , ∴∠ACD =∠AFC . ∴△ACG ∽△ACF . ∴ACAF AG AC . ∴AC 2=AG ·AF . (2)当点E 是AD (点A 除外)上任意一点,上述结论仍成立 ①当点E 与点D 重合时,F 与G 重合, 有AG =AF ,∵CD ⊥AB ,∴=, AC =AF . ∴AC 2=AG ·AF .②当点E 与点D 不重合时(不含点A )时,证明类似①.。

3.4.1圆周角和圆心角的关系(教案)

3.4.1圆周角和圆心角的关系(教案)
五、教学反思
在今天的教学中,我发现学生们对圆周角和圆心角的关系这一部分内容兴趣浓厚,但也存在一些理解上的难点。首先,他们对圆周角和圆心角的定义掌握得相对较好,但在应用到具体问题时,还是会出现一些困惑。我意识到,这主要是因为他们在将理论知识转化为实际应用时,缺乏足够的练习和经验。
在讲授过程中,我尽量用生动的例子和直观的图形来解释这两个概念,但效果似乎并不如预期。我反思,可能需要更多的互动和实际操作,让学生在动手实践中感受圆周角和圆心角的关系。比如,可以设计一些更具挑战性的题目,让学生分组讨论,通过合作解决问题,加深对知识点的理解。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“圆周角和圆心角在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
还有一个值得注意的问题是,在小组讨论过程中,部分学生表现出较强的依赖性,不够独立思考。针对这一问题,我将在后续教学中加强对学生的引导,培养他们独立思考的能力,鼓励他们大胆提出自己的观点和疑问。
三、教学难点与重点
1.教学重点
-理解并掌握圆周角和圆心角的定义:这是本节课的基础,要求学生能够明确圆周角和圆心角的含义,并能够正确画出相应的图形。
-掌握圆周角和圆心角的关系:学生需要理解在同圆或等圆中,相等的圆周角所对的圆心角相等,反之亦然。
-应用圆周角和圆心角的关系解决实际问题:学生应学会运用这一关系进行几何证明和计算,解决与圆相关的实际问题。
2.提高学生的逻辑推理能力:引导学生通过严密的逻辑推理证明圆周角和圆心角的关系,培养他们运用几何知识分析和解决问题的能力。

初中数学知识点精讲精析-圆周角和圆心角的关系

初中数学知识点精讲精析-圆周角和圆心角的关系

3·3圆周角和圆心角的关系要点精讲1.圆周角定义:圆周角(angle in a circular segment):顶点在圆上,并且角的两边和圆相交的角.两个特征:(1)角的顶点在圆上;(2)两边在圆内的部分是圆的两条弦.2.圆周角定理:同弧所对的圆周角相等,所对的圆周角都等于它所对的圆心角的一半.注意:(1)定理的条件是同一条弧所对的圆周角和圆心角,结论是圆周角等于圆心角的一半.(2)不能丢掉“一条弧所对的”而简单说成“圆周角等于圆心角的一半”.在同圆或等圆中,同弧或等弧所对的圆周角相等.注意:(1)“同弧”指“同一个圆”.(2)“等弧”指“在同圆或等圆中”.(3)“同弧或等弧”不能改为“同弦或等弦”.3.直径所对的圆周角是直角,90°的圆周角所对的弦是直径.注意:这一推论应用非常广泛,一般地,如果题目的已知条件中有直径时,往往作出直径上的圆周角——直角:如果需要直角或证明垂直时,往往作出直径即可解决问题.4.反证法:注意:用反证法证明命题的一般步骤:(1)假设命题的结论不成立;(2)从这个假设出发,经过推理论证,得出矛盾.(3)山矛盾判定假设不正确,从而肯定命题的结论正确.5.圆内角与圆外角:我们把顶点在圆内(两边自然和圆相交)的角叫圆内角(如图1.顶点在圆外并且两边都和圆相交的角叫圆外角(如图2).定理:圆内角的度数,等于它所对弧的度数与它的对顶角所对弧的度数之和的一半.圆外角的度数,等于它的两边所夹两条弧的度数的差的一半.典型例题1.已知:⊙O中,所对的圆周角是∠ABC,圆心角是∠AOC.求证:∠ABC=12 AOC.【解析】证明:∠AOC是△ABO的外角,∴∠AOC=∠ABO+∠BAO.∵OA=OB,∴∠ABO=∠BAO.∴∠AOC=2∠ABO.即∠ABC=12∠AOC.如果∠ABC的两边都不经过圆心(如下图),那么结果怎样?特殊情况会给我们什么启发吗?你能将下图中的两种情况分别转化成上图中的情况去解决吗?如图(1),点O在∠ABC内部时,只要作出直径BD,将这个角转化为上述情况的两个角的和即可证出.由刚才的结论可知:∠ABD=12∠AOD,∠CBD=12∠COD,∴∠ABD+∠CBD=12(∠AOD+∠COD),即∠ABC=12∠AOC.在图(2)中,当点O在∠ABC外部时,仍然是作出直径BD,将这个角转化成上述情形的两个角的差即可.由前面的结果,有∠ABD=12∠AOD,∠CBD=12∠COD.∴∠ABD-∠CBD=12(∠AOD-∠COD),即∠ABC=12∠AOC.2.如图示,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有什么关系?为什么?[分析]由于AB是⊙O的直径,故连接AD.由推论直径所对的圆周角是直角,便可得AD⊥BC,又因为△ABC中,AC=AB,所以由等腰三角形的二线合一,可证得BD=CD.【解析】BD=CD.理由是:连结AD.∵AB是⊙O的直径,∴∠ADB=90°.即AD⊥BC.又∵AC=AB,∴BD=CD.3.为什么有些电影院的坐位排列(横排)呈圆弧形?说一说这种设计的合理性.【解析】有些电影院的坐位排列呈圆弧形,这样设计的理由是尽量保证同排的观众视角相等.4.如下图,哪个角与∠BAC相等?【解析】∠BDC=∠BAC.5. 如下图,⊙O的直径AB=10 cm,C为⊙O上的一点,∠ABC=30°,求AC的长.【解析】∵AB为⊙O的直径.∴ACB=90°.又∵∠ABC=30°, ∴AC=21AB=21×10=5(cm). 6.小明想用直角尺检查某些工件是否恰好为半圆形,根据下图,你能判断哪个是半圆形?为什么?【解析】图(2)是半圆形、理由是:90°的圆周角所对的弦是直径.7.船在航行过程中,船长常常通过测定角度来确定是否会遇到暗礁,如下图,A 、B 表示灯塔,暗礁分布在经过A 、B 两点的一个圆形区域内,C 表示一个危险临界点,∠ACB 就是“危险角”.当船与两个灯塔的夹角大于“危险角”时,就有可能触礁;当船与两个灯塔的夹角小于“危险角”时,就能避免触礁.(1)当船与两个灯塔的夹角∠α大于“危险角”时,船位于哪个区域?为什么? (2)当船与两个灯塔的夹角∠α小于“危险角”时,船位于哪个区域?为什么? 分析:这是一个有实际背景的问题,由题意可知:“危险角” ∠ACB 实际上就是圆周角,船P 与两个灯塔的夹角为∠α,P 有可能在⊙O 外,P 有可能在⊙O 内,当∠α>∠C 时,船位于暗礁区域内;当∠α<∠C 时,船位于暗礁区域外,我们可采用反证法进行论证. 【解析】(1)当船与两个灯塔的夹角∠α大于“危险角” ∠C 时,船位于暗礁区域内(即⊙O 内),理由是:连结BE ,假设船在(⊙O 上,则有∠α=∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 上;假设船在⊙O 外,则有∠α<∠AEB ,即∠α<∠C ,这与∠α>∠C 矛盾,所以船不可能在⊙O 外.因此.船只能位于⊙O 内.(2)当船与两个灯塔的夹角∠α小于“危险角”∠C时,船位于暗礁区域外(即⊙O 外).理由是:假设船在⊙O上,则有∠α=∠C,这与∠α<∠C矛盾,所以船不可能在⊙O上;假设船在⊙O内,则有∠α>∠AEB,即∠α>∠C.这与∠α<∠C矛盾,所以船不可能在⊙O内,因此,船只能位于⊙O外.8.如图,已知在⊙O中,直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D.求BC、AD和BD的长.分析:由AB为直径,知∠ACB=90°,又AC、AB已知,可由勾股定理求BC.又∠ADB=90°,AD=DB,由勾股定理可求AD、BD.【解析】∵AB为直径,∴∠ACB=∠ADB=90°,又∵AB=10cm,AC=6cm,又∵CD是∠ACB的平分线,∠ACD=∠DCB,∴AD=DB.在 Rt∠ADB中,9.已知AB是⊙O的直径,AE是弦,C是的中点,CD⊥AB于D,交AE于F,CB交AE于G.求证:CF=FG.分析:如图7—107,要证CF=FG,只需证∠FCG=∠FGC.由已知,∠FCG与∠B互余.如果连结AC,∠ACB=90°.∠FGC与∠CAG互余.【解析】证明:连结AC,∵AB为直径,∴∠ACB=90°,∠FGC=90°-∠CAE.又∵CD⊥AB于D,∠FCG=90°-∠B,∴∠FGC=∠FCG.因此,CF=FG.10.如图,AB 是⊙O 的直径. ABCDO(1)若OD ∥AC ,与 的大小有什么关系?为什么?(2)把(1)中的条件和结论交换一下,还能成立吗?说明理由. 【解析】(1)=延长DO 交⊙O 于E . ∵AC ∥OD , ∴=. ∵∠1=∠2, ∴=. ∴=.(2)仍成立,延长DO 交⊙O 于点E ,连结AD . ∵=,=, ∴=. ∴∠3=∠D . ∴AC ∥OD .11.如图,⊙O 上三点A 、B 、C ,AB =AC ,∠ABC 的平分线交⊙O 于点E ,∠ACB 的平分线交⊙O 于点F ,BE 和CF 相交于点D ,四边形AFDE 是菱形吗?验证你的结论. AB CDEFO【解析】四边形AFDE 是菱形.证明:∵∠ABC=∠ACB, ∠ABE=∠EBC=∠ACF=∠FCB. 又∠FAB ,∠FCB 是同弧上的圆周角, ∴∠FAB=∠FCB ,同理∠EAC=∠EBC. 有∠FAB=∠ABE=∠EAC=∠ACF.∴AF ∥ED ,AE ∥FD 且AF=AE. ∴四边形AFDE 是菱形.12.如图是一大型圆形工件被埋在土里而露出地表的部分.为推测它的半径,小亮同学谈了他的做法:先量取弦AB 的长,再量中点到AB 的距离CD 的长,就能求出这个圆形工件的半径.你认为他的做法合理吗?如不合理,说明理由;如合理,请你给出具体的数值,求出半径,与同伴交流.BDCDEO1 23CABD【解析】小亮的做法合理.取AB=8 m ,CD=2 m, 设圆形工件半径为r, ∴r 2=(r -2)2+42. 得r=5(m).13.如图,现需测量一井盖(圆形)的直径,但只有一把角尺(尺的两边互相垂直,一边有刻度,且两边长度都长于井盖的半径),请配合图形,用文字说明测量方案,写出测量的步骤.(要求写出两种测量方案)【解析】方案1:使角尺顶点在圆上,角尺两边与圆两交点连接就是圆的直径,用刻度尺量出直径.方案2:任画圆的一条弦,用尺量出弦的中点,利用角尺过弦中点做弦的垂线,垂线与圆的两交点间的线段为圆的直径.14.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD . (1)P 是上一点(不与C 、D 重合),求证:∠CPD =∠COB .(2)点P ′在劣弧CD 上(不与C 、D 重合)时,∠CP ′D 与∠COB 有什么数量关系?请证明你的结论.BA CDOP【解析】(1)证明:连结OD, ∵AB 是直径,AB ⊥CD, ∴=.∴∠COB=∠DOB=21∠COD. 又∵∠CPD=21∠COD, ∴∠CPD=∠COB. (2)∠CP ′D 与∠COB 的数量关系是:∠CP ′D+∠COB=180°.证明:∵∠CPD+∠CP ′D=180°,∠COB=∠CPD, ∴∠CP ′D+∠COB=180°15.(9分)已知,如图20,AB 是⊙O 的直径,C 是⊙O 上一点,连接AC,过点C 作直线CD ⊥AB 于D(AD<DB),点E 是DB 上任意一点(点D 、B 除外),直线CE 交⊙O 于点F,连接AF 与直线CD 交于点G.(1)求证:AC 2=AG ·AF ;(2)若点E 是AD (点A 除外)上任意一点,上述结论是否仍然成立?若成立,请画出图形并给予证明;若不成立,请说明理由.AB CD OEGF【解析】(1)证明:连接CB ,∵AB 是直径,CD ⊥AB , ∴∠ACB =∠ADC =90°. ∴Rt △CAD ∽Rt △BAC . ∴得∠ACD =∠ABC . ∵∠ABC =∠AFC , ∴∠ACD =∠AFC . ∴△ACG ∽△ACF . ∴ACAF AG AC. ∴AC 2=AG ·AF . (2)当点E 是AD (点A 除外)上任意一点,上述结论仍成立 ①当点E 与点D 重合时,F 与G 重合, 有AG =AF ,∵CD ⊥AB ,∴=, AC =AF . ∴AC 2=AG ·AF .②当点E 与点D 不重合时(不含点A )时,证明类似①.。

初中数学 文档:圆心角和圆周角的知识梳理与应用

初中数学 文档:圆心角和圆周角的知识梳理与应用

圆心角与圆周角复习一、知识梳理1、圆心角圆心角:顶点在圆心的角叫做圆心角.1°圆心角所对的弧叫做1°的弧. n°的圆心角所对的弧就是n°的弧.2、圆心角的性质性质1:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;相等的弦或相等的弧所对的圆心角相等.性质2:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么它们所对应的其余各组量都相等.如图所示,OE⊥AB于E,OF⊥CD于F,若下列四个等式:①∠AOB=∠COD;②AB=CD;③;④OE=OF中有一个等式成立,则其他三个等式也成立,即:若①成立②,③,④成立;若②成立①,③,④成立;若③成立①,②,④成立;若④成立①,②,③成立.特别强调:(1)不能忽略“在同圆或等圆中”这个前提条件,若没有这一条件,虽然圆心角相等,但所对的弧、弦不一定相等.(2)若无特殊说明,性质中“弧”一般指劣弧.3、圆周角(1)圆周角:顶点在圆上,两边和圆相交的角叫做圆周角.(2)圆周角定理:一条弧所对的圆周角等于它所对圆心角的一半.推论1:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.推论2:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧相等.4、重要结论:圆的内接四边形对角互补二、习题库同弧(等弧)所对的圆周角相等; 同弧(等弧)所对的弦相等;同弧(等弧)所对的圆周角等于圆心角的一半;在处理角的问题时,除了要熟悉和圆相关的角的性质外,还要熟悉三角形角的性质、四边形角的性质,并能将这些性质进行综合应用。

(1)同弧与圆心角、圆周角的关系1.如图,点A 、B 、P 在⊙O 上,点P 为动点,要是△ABP 为等腰三角形,则所有符合条件的点P 有 个.2. 如图,ABC △内接于圆,50A =∠,60ABC =∠,是圆的直径, 交于点,连结,则AEB ∠= .3.如图,AB 是⊙O 的直径,弦DC 与AB 相交于点E ,若∠ACD=60°,∠ADC=50°,则∠ABD= ,∠CEB= .4.如图,△内接于⊙O ,点是上任意一点(不与C A 、重合),POC ABC ∠=∠则,55的取值范围是 .(2)等弧与圆周角1.如图所示,AB 是⊙O 的直径,AD =DE ,AE 与BD 交于点C ,则图中与∠DBE 相等的角有( )A .2个B .3个C .4个D .5 个2.如图,已知AB 是半圆O 的直径,∠BAC=32º,D 是弧AC 的中点,那么∠DAC 的度数是( )º º º °3.如图,点D 是弧AC 的中点,则图中与∠ABD 相等的角的个数是( )。

初中数学九年级下册《圆周角和圆心角的关系

初中数学九年级下册《圆周角和圆心角的关系

课时课题:第三章圆3.圆周角和圆心角的关系第1课时课型:新授课教学目标:1.经历圆周角和圆心角的关系的探索、证明、应用的过程,养成自主探究、合作交流的学习习惯,体会分类、归纳等数学思想方法。

2.理解圆周角的概念及圆周角和圆心角的关系。

并能够应用“圆周角与圆心角的关系”进行简单的论证和计算.重点:经历探索“圆周角与圆心角的关系”的过程,理解“圆周角与圆心角的关系”.难点:了解圆周角与圆心的三种位置关系,用化归思想合情推理验证“圆周角与圆心角的关系”.教学分析及教学方法:本节课是在学生掌握了圆的有关性质和圆心角概念的基础上进行的,是前面学过的三角形内角和定理的推论和等腰三角形性质的延续,又是下一节课学习圆周角定理的推论的理论依据,还能充分渗透分类讨论的数学思想和方法。

本节课储备的知识,在推理、论证和计算中应用广泛,并且它在研究圆和其他图形中起着桥梁和纽带作用,是本章重点内容之一。

根据本节课教学内容的特点,采用“创景导学—自主探究—合作交流—巩固提升—当堂检测”的教学模式.课前准备:多媒体课件教学过程:一、创设情境,导入新课师:同学们玩过足球射门游戏吗?(投影展示一系列足球射门的图片)生:玩过.师:适当玩一些益智游戏,可以锻炼我们的多种能力,但是一定要把握度。

请同学们想一想,球员射中球门的难易与什么有关?生:积极回答!设计说明:设计上述问题,意在通过射门游戏引入圆周角的概念,激发学生的兴趣,而对于这一问题的答案,则可以让学生相互交流,自由发挥,不必去刻意追求正确的答案.师:(教师总结)如图1所示,球员射中球门的难易与他所在的位置B对球门AC的张角(∠ABC)有关.把实际图形画成图(1),请同学们观察图中的∠ABC有哪些特征?生1:角的顶点在圆上.生2:他说的不全面,应该有两个特征:(1)角的顶点在圆上;(2)角的两边都与圆相交.设计说明:在引导学生探索圆周角的特征时,要引导学生先在观察图形的基础上进行独立思考,然后再进行合作交流,最后形成共识.师:第二位同学回答的非常全面,我们把具备这两个特征的角叫做圆周角,这节课我们就来探索圆周角与圆心角的关系.(板书课题,导入新课)二、问题导学,合作探究(一)圆周角的概念师:哪位同学能叙述一下圆周角的概念?生:顶点在圆上,并且两边分别与圆还有另一个交点,像这样的角,叫做圆周角.师:这位同学回答的很正确,同学们在理解圆周的概念时一定要抓住它的两个特征:(1)角的顶点在圆上;(2)角的两边都与圆相交.下面我就出个题目,来检测一下同学们对圆周角概念的掌握情况.投影出示:判断下列图中的角是否是圆周角,并说明理由.(先让学生观察思考,然后再找基础较弱的学生回答)生1:第(1)个不是圆周角,因为角的顶点不在圆上.生2:第(2)个是圆周角.生3:第(3)个不是圆周角,因为角的顶点不在圆上. 生4:第(4)个是圆周角.生5:第(5)个不是圆周角,因为该角只有一边与圆有一个交点,另一边不与圆相交. 生6:第(6)个不是圆周角,因为该角的两边都不与圆相交. 生7:第(7)个是圆周角.生8:第(6)个不是圆周角,它是圆心角.设计意图:一是通过对圆周角的辨析,加深对圆周角概念的理解;二是通过对(2)、(4)、(7)三个图形中圆周角不同位置的展示,引起学生的注意和思考,为下一步探索圆周角与圆心的位置关系做铺垫;三是借助(8)中图形对圆心角进行回顾. (二)探索圆周角和圆心角的关系 师:在图1中,当球员在B ,D ,E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC,∠ADC ,∠AEC.这三个角的大小有什么关系? 生:相等.师:我们知道,在同圆或等圆中,相等的弧所对的圆心角相等,那么在同圆或等圆中,相等的弧所对的圆周角有什么关系? 生:也相等.(大部分学生思考不语,有极少部分学生回答)设计说明:提出这一问题意在引起学生思考,为本节课活动埋下伏笔,但有部分学生提前进行了预习或通过猜测,说出了答案,教师可在此基础上继续质疑、引导. 师:你能说出理由吗? 生:思考,回答不出来.师:为了解决这个问题,我们先研究一条弧所对的圆周角与它所对的圆心角之间的关系. 首先请同学们画出⊙O 中弧AC 所对的圆心角和圆周角.然后思考:(1)弧AC 所对的圆周角有多少个?动手画一下.(2)这些圆周角与圆心有几种位置关系? 生:结合图形回答.设计说明:教师引导学生通过动手画图,操作与观察,去发现弧AC 所对的圆周角有无数个,它们与圆心的位置关系只有三种情况.教师在此基础上利用多媒体投影演示图2、图3,进一步明确圆周角与圆心的这三种位置关系,这样就为后面的分类探索起铺垫作用,达到分散难点的目的.师:下面我们把图1画成图4,其中O 为圆心,请同学们观察:圆周角∠ABC 与圆心角∠AOC,它们的大小有什么关系?说说你的想法,并与同伴交流一下.(这里给学生留出思考、交流的时间)oB 3A CB 2 B 1oBACoACBoACB(点B 在优弧AC 上运图2图3图4生:既然圆周角与圆心的位置关系只有三种情况,那我们就先考虑特殊情况下:圆周角的一边经过圆心时圆周角与圆心角的关系.设计说明:有了前面的铺垫,个别学生能够提出类似教材上小亮的想法,此时教师可顺势进行下面的教学,指导学生进行规范的演绎推理.师:这位同学说得很好,现在我们就来探究这种特殊情况:如图5,当∠ABC 的一边BC 经过圆心O 时,圆周角∠ABC 与圆心角∠AOC 的关系.哪位同学能到黑板上把你的结论和理由写出来?(画出图形,让学生到黑板板演) 生:解:∠ABC=21∠AOC.理由:∵∠AOC 是△ABO 的外角,∴∠AOC=∠ABO+∠BAO. ∵OA=OB,∴∠ABO=∠BAO. ∴∠AOC=2∠ABO,即∠ABC=21∠AOC. 师:如果∠ABC 的两边都不经过圆心(如图6所示),那么结果会怎样?生:开始思考、交流讨论. 师:(引导点拨)这两种情况能转化为第一种情况吗?如何转化?请同学讨论一下.设计说明:学生解决这一问题时,教师可先设计问题引导,让学生独立思考:这两种情况能否转化为第一种情况?如何转化?在此基础上再指导学生进行合作交流.时机成熟后找两名同学上黑板板演,师生共同纠错. 生1:解:如图(1),在⊙中作直径BD ,由前面的结论可知,∠ABD=21∠AOD,∠CBD=21∠COD. ∴∠ABD+∠CBD=21∠AOD+21∠COD.即:∠ABC=21∠AOC.生2:解:如图(2),在⊙O 中作直径BD , 由前面的结论可知,∠ABD=21∠AOD,∠CBD=21∠COD.图5图6∴∠ABD-∠CBD=21∠AOD-21∠COD.即:∠ABC=21∠AOC.师:同学们做得非常好,通过对圆周角和圆心角关系的探究,你发现了什么结论?生:一条弧所对的圆周角等于它所对的圆心角的一半.师:我们把这一结论称为圆周角定理,请同学们结合图形识记这个定理.(教师板书定理)三、学以致用,巩固提高(投影出示练习题)1.(2012·湘潭)如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=( ) A.20° B. 40° C.50° D. 80°2.(2012·南通)如图,在⊙O中,∠AOB=46º,则∠ACB=º.3.(2012·吉林中考)如图,A,B,C是⊙O上的三点,∠CAO=25°,∠BCO=35°,则∠AOB =度.4.如图,OA,OB,OC都是⊙O的半径,∠AOB=2∠BOC.∠ACB与∠BAC的大小有什么关系?为什么?5.如图,A,B,C,D是⊙O上的四点,且∠BCD=100°,求∠BOD(弧BCD所对的圆心角)和∠BAD的大小.设计说明:先让学生独立完成,教师做巡视,了解学情,然后师生共同校对答案、纠错.通过一组习题来加深学生对圆周角及其定理的理解,提高运用所学知识解决问题的能力.如果第4题图第5题图时间允许可在学生完成4、5两题的基础上补充:(1)(2012·鄂州)如图OA=OB=OC且∠ACB=30°,则∠AOB的大小是() A.40°B.50°C.60°D.70°(2)如图,∠BCD=100°,点C在⊙O上,且点A不与B、D重合,求∠BAD度数.设计意图:让学生在独立自主解答问题的过程中,进一步巩固所学的知识,夯实基础,同时培养学生发现问题,解决问题的能力.四、归纳小结,知识升华师:请同学们从以下四个方面:1、学到了哪些知识;2、掌握了哪些数学方法;3、体会到了哪些数学思想;4、还有哪些发现与猜想?谈一谈本节课的学习收获.生:畅所欲言,谈收获与感受.设计意图:一是给学生抒发感受的机会,让学生在民主、和谐的氛围中小结本节课所学的知识及自己的感悟,;二是让学生总结出自己在“做中学”的收获,理清思路、整理经验,从而形成良好的学习习惯,以培养学生的表达能力和概括能力.五、当堂达标检测(投影出示达标检测题)1.若⊙O的一条弧所对的圆周角为60°,则这条弧所对的圆心角是()A.30° B.60° C.120° D.以上答案都不对2.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()A.15︒ B.28︒ C.29︒ D.34︒3.(2012·泰州中考)如图,点A,B,C都在⊙O上,OD⊥BC于D,∠A=50°,则∠OCD的度数是()A.40° B.45° C.50° D.60°4.(2012·大庆)如图所示,点A,B,C,D,E均在⊙O上,则∠AD C+∠AEB+∠BAC=( ) A.90° B.180° C.270°D.360°5.(2012·威海中考)如图,在⊙O中,∠AOB的度数为160度,C是弧ACB上一点,D,E 是弧AB上不同的两点(不与A,B两点重合),则∠D+∠E的度数为.设计意图:通过当堂达标检测,一是巩固学生所学知识,使学生将刚刚理解的知识加以应用,并在应用过程中加深理解;二是通过对学生检测信息的收集、处理,来了解本节课学生当堂学习情况及教学中的不足之处,便于及时调整,起到查漏补缺的目的.六、板书设计3.圆周角和圆心角的关系一、圆周角的概念二、圆周角定理投影区域学生板演七、教学反思在本节课的教学中,我结合本节课教学内容、教学目标和学生的认知规律,在教学设计上,一是注重创设情境,激发学生学习的兴趣、主动性和求知欲望,为下一步教学的顺利展开开个好头;二是注重引导学生经历探索、验证、论证、应用数学新知的过程,鼓励学生用动手实践、自主探究、合作交流的学习方法进行学习,使学生在数学活动中深刻的理解知识和掌握由特殊到一般的认知方法。

初二数学圆周角与圆心角关系详解

初二数学圆周角与圆心角关系详解

初二数学圆周角与圆心角关系详解圆周角和圆心角是初中数学中重要的概念,它们在几何图形的研究中起着非常关键的作用。

在本文中,我们将详细讨论圆周角与圆心角之间的关系。

一、圆周角的定义圆周角是指以圆心为顶点的角,其两边为相交于圆上任意两点的弧所对应的角。

通常用字母表示圆周角。

二、圆心角的定义圆心角是指以圆心为顶点的角,其两边分别与圆上某两点相交,且两边和两弧的夹角相等。

通常用字母表示圆心角。

三、圆周角与圆心角的关系1. 角的度量关系圆周角的度量单位是弧度,圆心角的度量单位是角度。

圆周角的度量值等于对应弧长的长度除以圆的半径,而圆心角则是直接使用角度来表示。

2. 圆周角的度数与弧度之间的关系圆周角的度数等于对应弧长的长度除以圆的半径,再乘以180°。

而圆周角的弧度数等于对应弧长的长度除以圆的半径。

例如,圆周角的度数为60°,则其弧度数为π/3弧度。

3. 圆周角与圆心角的夹角关系当一个圆周角所对应的弧等于另一个圆心角所对应的弧时,这两个角的夹角就是90°。

换句话说,这两个角是直角。

4. 圆周角与圆心角的相等关系当两个圆周角对应的弧相等时,这两个圆周角相等。

同理,当两个圆心角对应的弧相等时,这两个圆心角相等。

5. 圆心角平分弦的关系当圆心角平分一个弦时,该弦的两个端点与圆心所对应的圆心角的度数相等。

综上所述,圆周角和圆心角在几何图形中有着密切的关系。

通过对圆周角和圆心角的研究,我们可以更好地理解和应用于圆相关的数学概念和问题。

结论圆周角和圆心角是初中数学中重要的概念,它们在几何图形中具有重要的作用。

通过深入了解圆周角和圆心角的定义及其关系,我们可以更好地解决与圆相关的数学问题。

希望本文能够帮助初中生更好地理解和应用圆周角和圆心角的知识。

23.1.3圆周角和圆心角的关系圆周角定理

23.1.3圆周角和圆心角的关系圆周角定理

❖ 2.当圆心(O)在圆周角(∠ABC)的内部时,圆周角
∠ABC与圆心角∠AOC的大小关系会怎样? A D
老师提示:能否转化为1的情况?
C
过点B作直径BD.由1可得:
●O
∠ABD
=
∠1 AOD,∠CBD
2
=
∠1 COD,
2
∴ ∠ABC = 1∠AOC. 一条弧所对的圆周角等B 于它所
2
对的圆心角的一半.
你能写出这个命题吗ww? 初中数学资源网
议一议
驶向胜利
圆周角和圆心角的关系 的彼岸
❖ 如果圆心不在圆周角的一边上,结果会怎样?
❖ 3.当圆心(O)在圆周角(∠ABC)的外部时,圆周角 ∠ABC与圆心角∠AOC的大小关系会怎样? A
老师提示:能否也转化为1的情况?
C
过点B作直径BD.由1可得:
老师期望:
∵OA=OB, ∴∠A=∠B.
∴∠AOC=2∠B.
你可要理 解并掌握 这个模型. B
C ●O
即你能写∠出AB这C 个= 命∠12 题AO吗Cw.w?w.1230一对.org条的初中弧圆数学所心资源对角网 的的圆一半周.角等于它所
议一议
驶向胜利
圆周角和圆心角的关系 的彼岸
❖ 如果圆心不在圆周角的一边上,结果会怎样?
的角?为什么呢?
证明:
❖ 因为OA=OB=OC,所以△AOC、△BOC都是 等腰三角形,所以∠OAC=∠OCA,∠OBC= ∠OCB. 又 ∠OAC+∠OBC+∠ACB=180°, 所以 ∠ACB=∠OCA+∠OCB=90°.因此, 不管点C在⊙O上何处(除点A、B),∠ACB总 等于90°,即:
初中数学资源网
为什么? 初中数学资源网

34圆周角和圆心角的关系(教案)

34圆周角和圆心角的关系(教案)

课题 3.4 圆周角和圆心角的关系教学目标知识技能:1.理解圆周角概念和圆周角与圆心角的关系定理及推论;2.会用定理进行简单的说明或推理.过程方法:1.经历观察、猜想、推理论证等探索圆周角定理的过程,掌握从特殊情况入手,通过转化来解决一般性问题的方法;2.感悟分类讨论、转化的数学思想.德育目标:通过观察、实验、类比、猜想、论证、反思,使学生树立运动变化和对立统一的辩证唯物主义观点和严谨的科学态度.教学重、难点重点:对圆周角与圆心角关系的剖析与论证. 难点:定理证明中的分类化归思想.教法学法分析为了更好地突出重点、突破难点,圆满完成教学任务,采用探究式教学方法,着眼引导学生通过动手实践、自主探索、合作交流的学习方式,着重于探索、发现、归纳能力的培养.教学过程教学环节教学内容设计意图温故知新教师提出问题:问题1:点和圆有哪几种位置关系?问题2:什么叫圆心角?学生回答问题,并进行画图展示,从而得到圆周角.由点和圆的位置关系及圆心角概念,通过画图得到圆周角,实现了知识的整体性,又为学习新知做好铺垫.概念引领1.教师引导学生说出圆周角的定义.教师进行板书:顶点在圆上,两边分别与圆还有另一个交点的角叫做圆周角.教师引导学生分析圆周角所具备的两个条件:①顶点;②两边.2.辨一辨:判别下列各图形中的角是不是圆周角,并说明理由.此环节是为了让学生根据角的特征归纳圆周角的定义.同时进一步加强学生对圆周角定义中“角的顶点在圆上”“角的两边与圆还有一个交点”两个要素的理解.探究活动问题:1.在⊙O中,弧AB所对的圆心角有几个?所对的圆周角呢?一是为了让学生动手通过画图感受同弧所对的圆周角有无数多个,并用几何画板演示移动一个圆周角的顶点,让同学们从动态感受相同的结论;二是为引导学生观察圆心与圆周角的位置关系作铺垫.2.在上图中,你认为圆周角和圆心的位置关系有几种情况?为了让学生在合作学习和教师的演示中经历观察、发现、归纳总结的过程,并巧妙地化解“分类讨论”这个难点.3.如图所示,你知道∠C和∠AOB的数量关系吗?让学生运用多种方法得到同弧所对的圆周角与圆心角之间的数量关系,为根据图形写出已知、求证、证明打好基础.探究活动根据同弧所对的圆周角与圆心的三种位置关系,学生分三种情况进行证明.教师提出:问题1:三类图形中,应从哪一个着手证明,为什么?问题2:如何证明特殊情况?并总结其中用到的几何知识.问题3:另外两个图形是否能通过作适当的辅助线转化为特殊情况?学生自主思考,小组合作完成证明过程.教师巡视,深入小组内适时点拨.指导一名学生板演证明过程,集体评价.让学生体会推理的严谨性,感悟从特殊到一般的数学思想,并体会用此种数学方法去解决问题的妙处,同时领会辅助线的数学价值和分类化归的数学方法.。

17-第三章4圆周角和圆心角的关系

17-第三章4圆周角和圆心角的关系
知识点三 圆内接四边形
栏目索引
8.(2019黑龙江哈尔滨道外一模)如图3-4-6,AB、BC为☉O的两条弦,∠AOC -∠ABC=60°,则∠ABC的度数为 ( )
A.120°
B.100°
C.160°
图3-4-6 D.150°
4 圆周角和圆心的关系
答案
B
如图,在优弧

AC
上取点D,连接DA、DC,
温馨提示 任何一个四边形都最多只有一个外接圆,但是一个圆的内接四边形有无数个
4 圆周角和圆心的关系
2.圆内接四边形的性质
内容
性质
圆内接四边形的对角互补
详解
∵ ︵ 与 ︵ 所对的圆心角之
ABC ADC
和为360°,∴∠ABC+∠D= 1×36
2
0°=180°.同理,∠BCD+∠BAD=1
80°
拓展
∵∠ABC+∠D=180°,∠CBE+∠ ABC=180°,∴∠CBE=∠D. 结论:圆内接四边形的任何一个 外角等于它的内对角
2
栏目索引
③如图3-4-1(3)所示,圆心O在∠BAC的外部.连接AO并延长交☉O于点D,由
①得∠BAD= 1 ∠BOD,∠CAD= 1 ∠COD,∴∠CAD-∠BAD= 1(∠COD-∠
2
2
2
BOD),即∠BAC= 1 ∠BOC.
2
提示:不能把“一条弧所对的”去掉,而简单说成“圆周角等于圆心角的一
解析 因为四边形ADBC内接于☉O,所以∠2+∠D=180°,同理可得∠1+∠ E=180°,所以∠1+∠2+∠D+∠E=360°,又∠1+∠2=180°-∠BAC=130°,所以 ∠D+∠E=230°.

初中数学《圆周角定理及点圆关系》讲义及练习

初中数学《圆周角定理及点圆关系》讲义及练习

内容基本要求略高要求较高要求圆的有关概念 理解圆及其有关概念 会过不在同一直线上的三点作圆;能利用圆的有关概念解决简单问题圆的性质 知道圆的对称性,了解弧、弦、圆心角的关系能用弧、弦、圆心角的关系解决简单问题能运用圆的性质解决有关问题圆周角 了解圆周角与圆心角的关系;了解直径所对的圆周角是直角会求圆周角的度数,能用圆周角的知识解决与角有关的简单问题能综合运用几何知识解决与圆周角有关的问题一、圆周角定理圆心角和圆周角1. 圆心角:顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等. 2. 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角. 3. 圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等. 推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.4. 圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等.圆是平面几何中的一个重要内容.由于圆与直线型图形可组合成一些复杂的几何问题,所以它经常出现在数学竞赛中. 圆的基本性质有:⑴ 直径所对的圆周角是直角. ⑵ 同弧所对的圆周角相等.⑶ 经过圆心及一弦中点的直线垂直平分该弦.二、圆心角、弧、弦、弦心距之间的关系在同圆或等圆中,两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,其它各组量都相等。

三、点与圆的位置关系点与圆的位置关系知识点睛中考要求第十讲圆周角定理及点与圆关系点与圆的位置关系有:点在圆上、点在圆内、点在圆外三种,这三种关系由这个点到圆心的距离与半径的大小关系决定.设O⊙的半径为r,点P到圆心O的距离为d,则有:点在圆外⇔d r>;点在圆上⇔d r<.=;点在圆内⇔d r确定圆的条件1. 圆的确定确定一个圆有两个基本条件:①圆心(定点),确定圆的位置;②半径(定长),确定圆的大小.只有当圆心和半径都确定时,圆才能确定.2. 过已知点作圆⑴经过点A的圆:以点A以外的任意一点O为圆心,以OA的长为半径,即可作出过点A的圆,这样的圆有无数个.⑵经过两点A B、、的圆:以线段AB中垂线上任意一点O作为圆心,以OA的长为半径,即可作出过点A B 的圆,这样的圆也有无数个.⑶过三点的圆:若这三点A B C、、三点不共线时,圆心是线段AB、、共线时,过三点的圆不存在;若A B C与BC的中垂线的交点,而这个交点O是唯一存在的,这样的圆有唯一一个.n≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆⑷过n()4心.3. 定理:不在同一直线上的三点确定一个圆.注意:⑴”不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆;⑵”确定”一词的含义是”有且只有”,即”唯一存在”.4. 三角形的外接圆⑴经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形.⑵三角形外心的性质:①三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等;②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.⑶锐角三角形外接圆的圆心在它的内部;直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半);钝角三角形外接圆的圆心在它的外部.四、相交弦定理(选讲)相交弦定理:圆内的两条相交弦被交点分成的两条线段长的乘积相等.如图,弦AB和CD交于O⋅=⋅.⊙内一点P,则PA PB PC PDP ODC BA相交弦定理的推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.教学重点:圆周角的概念和圆周角定理教学难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.一、圆周角定理【例1】 (08山西太原)如图,AB 是⊙O 的直径,CD 是⊙O 的弦,连接AC AD ,,若35CAB ∠=,则ADC ∠的度数为 .【解析】 直径所对圆周角是90°且同弧所对圆周角相等. 所以得55°. 【巩固】⑴(08龙岩)如图,量角器外沿上有A B 、两点,它们的度数分别是7040︒︒、,则1∠的度数为_________.⑵ 如图,ABC △的三个顶点都在O ⊙上,302cm C AB ∠==,,则O ⊙的半径为______cm .O1BAOCBAOCBA【解析】 ⑴ ()117040152∠=︒-︒=︒. ⑵ 连接OA ,OB∵30C ∠=︒,∴260O C ∠=∠=︒,又∵OA OB =,∴OAB ∆为等边三角形, ∴2OA AB ==,即O 的半径为2.【巩固】⑴ 已知O ⊙的弦AB 长等于圆的半径,求该弦所对的圆周角.⑵ (06年安徽课改)如图所示,在ABC ∆中,45C ∠=︒,4AB =,则O ⊙的半径为( )A.22B.4C.23D.5CBD OA重、难点例题精讲BABA【解析】 ⑴ 连接OA 、OB ,设弦AB 所对的圆周角为ACB ∠.∵AB OA OB ==∴AOB ∆是等边三角形 ∴60AOB ∠=︒∴当点C 在AB 上时(劣弧上),1(360)2ACB AOB ∠=︒-∠1(36060)1502=⨯︒-︒=︒.当点C 在AmB 上时(优弧上),1302ACB AOB ∠=∠=︒故该弦所对的圆周角为30︒或150︒. ⑵ 如右图所示连接OA 、OB ,因为45C ∠=︒,290AOB C ∠=∠=︒4AB=,所以半径为OA OB ==.【例2】 (07年威海中考题)如图,AB 是O 的直径,点C ,D ,E 都在O 上,若C D E ==∠∠∠,求A B +∠∠.B ABA【解析】 连接AC 、BC∵AB 是O 的直径,∴90ACB ∠=︒,∴90CAB CBA ∠+∠=︒, 又∵D CBA ∠=∠,E CAB ∠=∠,∴90D E ∠+∠=︒, 又∵DCE D E ∠=∠=∠,∴45DCE D E ∠=∠=∠=︒,∴9045135DAB EBA DCB ECA ACB DCE ∠+∠=∠+∠=∠+∠=︒+︒=︒, 即135A B +=︒∠∠【巩固】(08年济宁改编)如图,四边形ABCD 中,AB AC AD ==,若7613CAD BDC ∠=︒∠=︒,,则CBD ∠=_________,BAC ∠=__________.DCBA【解析】 以A 为圆心,AB 为半径作辅助圆则C D 、均在A ⊙上,∴1382CBD CAD ∠=∠=︒,226BAC BDC ∠=∠=︒.【例3】 如图,AB 为O ⊙的直径,CD 是O ⊙的弦,AB CD 、的延长线交于点E ,若218AB DE E =∠=︒,,求AOC ∠的度数.EE【解析】 连结OD∵AB 是直径,2AB DE =,∴12DE AB OD ==∴18DOE E ∠=∠=︒,∴36ODC DOE E ∠=∠+∠=︒∵OC OD =,∴36OCD ODC ∠=∠=︒, ∴54AOC OCD E ∠=∠+∠=︒.【巩固】如图所示CD 是O ⊙的直径,87EOD ∠=︒,AE 交O ⊙于B ,且AB OC =,求A ∠ 的度数.DD【解析】 连结OB∵AB OC =,OB OC =,∴OB AB = 设A x ∠=,则BOA x ∠=. ∴2OBE BOA A x ∠=∠+∠=. ∵OE OB =,∴2OEA OBE x ∠=∠=.∴387EOD E A x ∠=∠+∠==︒ ∴29x =︒,即29A ∠=︒.【巩固】如图,已知AB 为⊙O 的直径,20E ∠=︒,50DBC ∠=︒,则CBE ∠=______.B【解析】 连结AC .设∠DCA =x°,则∠DBA =x°,所以∠CAB =x°+20°.因为AB 为直径,所以∠BCA=90°,则∠CBA +∠CAB =90°.又 ∠DBC =50°,∴ 50+x +(x +20)=90. ∴ x =10.∴∠CBE =60°.所以答案是60°.【例4】 (07重庆)已知,如图:AB 为O ⊙的直径,AB AC =,BC 交O ⊙于点D ,AC 交O ⊙于点E ,45BAC ∠=︒.给出以下五个结论:①22.5EBC ∠=︒,;②BD DC =;③2AE EC =;④劣弧AE 是劣弧DE 的2倍;⑤AE BC =.其中正确结论的序号是 .【解析】 由题意可知122.52EBC BAC ∠=∠=︒,故①正确,连接AD 可得90ADB ∠=︒,由等腰三角形三线合一的性质可知BD DC =,故②正确;2ABE EBD ∠=∠,由弧的度数和它所对的圆心角是相等的,可知2AE DE =,故④正确, ∴正确结论的序号是:①②④.【例5】 如图AB 是半圆O 的直径,点C D 、在弧AB 上,且AD 平分CAB ∠,已知106AB AC ==,,求AD的长.【解析】 延长AC 交BD 的延长线于E ,∵AB 是半圆的直径,AD 平分CAB ∠, 则可得10AE AB ==,BD ED =, ∴4CE AE AC =-=,∵90ACB ∠=︒,∴8BC =,在RtBCE ∆中,BE =,∴BD DE ==∴AD =【例6】 (08乌鲁木齐)如图所示的半圆中,AD 是直径,且32AD AC ==,,则sin B 的值是________.DCA B【例7】 ⑴(09河北)如下左图,四个边长为1的小正方形拼成一个大正方形,A B O 、、是小正方形顶点,O ⊙的半径为1,P 是O ⊙上的点,且位于右上方的小正方形内,则APB ∠等于__________.PO BAB⑵(09四川成都)如上右图,ABC ∆内接于O ⊙,120AB BC ABC =∠=︒,,AD 为O ⊙的直径,6AD =,那么BD =_________.⑶(09山东泰安)O ⊙的半径为1,AB 是O ⊙的一条弦,且AB =AB 所对圆周角的度数为_____________.【解析】 ⑴45︒;⑵60︒或120︒.【例 1】 (07年枣庄中考题)如图,ABC ∆内接于O ⊙,120BAC ∠=︒,AB AC =,BD 为O ⊙的直径,6AD =,则BC = .A【解析】 连接CD .证明ABD CDB ∆∆≌,∴6BC AD ==.【例8】 如图,过O ⊙的直径AB 上两点M N ,,分别作弦CD EF ,,若CD EF AC BF =,∥.求证:⑴BEC ADF =;⑵ AM BN =.【解析】 ⑴ ∵AC BF =,∴AC BF =, ∵AB 是直径,∴AEB ADB =,∴AEB AC ADB BF -=-,即BEC ADF =. ⑵ 由⑴可知CAM FBN ∠=∠,∵CD EF ∥,∴CMA DMB FNB ∠=∠=∠,又AC BF =,∴ACM BFN ∆∆≌,∴AM BN =.【例9】 如图,点A B C 、、是O ⊙上的三点,AB OC ∥.⑴ 求证:AC 平分OAB ∠;⑵ 过点O 作OE AB ⊥于点E ,交AC 于点P .若230AB AOE =∠=︒,,求PE 的长.【解析】 ⑴ ∵AB OC ∥,∴BAC C ∠=∠,∵OA OC =,∴OAC C ∠=∠,∴BAC OAC ∠=∠,∴AC 平分OAB ∠.⑵ ∵OE AB ⊥,∴112AE AB ==,在Rt AOE ∆中,9030OEA AOE ∠=︒∠=︒,,∴22AO AE OE ==,以下可以用两种不同方法解答:解法一:∵AB OC ∥,∴12AE PE OC OP ==∴13PE OE =解法二:由⑴得AC 平分OAB ∠,∴2OA OPAE PE==,∴13PE OE =【例10】 ⑴如图,AB 是O ⊙的直径,CD AB ⊥,设COD α∠=,则2sin 2AB AD α⋅=_____________.O PFEDC B A⑵ 如图,AB 是O ⊙的直径,弦PC 交OA 于点D ,弦PE 交OB 于点F ,且OC DC OF EF ==,.若C E ∠=∠,则CPE ∠=___________.⑶ 已知:如图,MN 是O ⊙的直径,点A 是半圆上一个三等分点,点B 是AN 的中点,P 是MN 上一动点,O ⊙的半径为1,则PA PB +的最小值是_____________.【解析】 ⑴1;⑵40︒;⑶作B 点关于MN 的对称点B ′,连结AB ′与MN 交于点P , 易证得,此时PA PB +取得最小值.根据圆的对称性,B ′点在O ⊙上,且B N BN =′, ∵A 是半圆的三等分点,∴13AN MAN =,∴60AON ∠=︒,∵B 是AN 的中点,∴1302BON AON ∠=∠=︒,∴30B ON ∠=︒′,∴90AOB AON B ON ∠=∠+∠=︒′′, ∵O ⊙半径为1,∴1OA OB ==′,∴AB ′,∴PA PB +【巩固】(09浙江衢州)如图,AD 是O ⊙的直径.⑴ 如图1,垂直于AD 的两条弦11B C ,22B C 把圆周4等分,则1B ∠的度数是___________,2B ∠的度数是____________;⑵ 如图2,垂直于AD 的三条弦112233B C B C B C 、、把圆周6等分,分别求123B B B ∠∠∠,,的度数;⑶ 如图3,垂直于AD 的n 条弦112233n n B C B C B C B C ,,,…,把圆周2n 等分,请你用含n 的代数式表示n B ∠的度数(只需直接写出答案).图3图2图1-1n -2B n 3B B 2【解析】 ⑴ 22.567.5︒︒,;⑵ ∵圆周被6等分,∴111223360660B C C C C C ===÷=︒.∵直径11AD B C ⊥,∴1111302AC B C ==︒,∴()()12311153060453060607522B B B ∠=︒∠=⨯︒+︒=︒∠=⨯︒+︒+︒=︒,,.⑶ ()()90451136036012222n n B n n n n -︒︒︒⎡⎤∠=⨯+-⋅=⎢⎥⎣⎦(或3604590908nB n n ︒︒∠=︒-=︒-)【例11】 已知如图,ACD ∆的外角平分线CB 交其外接圆于B ,连接BA 、BD ,求证:BA BD =.N【解析】 ∵ACB BCN ∠=∠,又∵ACB ADB ∠=∠;BCN BAD ∠=∠, ∴BAD BDA ∠=∠, ∴BA BD =.【巩固】已知如图,ACD ∆的外角平分线CB 交其外接圆于B ,连接BA 、BD ,过B 作BM AC ⊥于M ,BN CD ⊥于N ,则下列结论中一定正确的有 .①CM CN =;②MBN ABD ∠=∠;③AM DN =;④BN 为⊙O 的切线.【解析】 可证得BCM ∆≌BCN ∆.∴CM CN =,故①正确;四边形BMCN 的内角和为360︒可知,180MBN MCN ∠+∠=︒, 又∵180MCN ACD ∠+∠=︒, ∴MBN ACD ∠=∠, ∵ACD ABD ∠=∠,∴MBN ABD ∠=∠,故②正确;利用外角平分线易证AB BD =,又∵BM BN =,AMB DNB ∠=∠, ∴ABM DBN ∆∆≌,∴AM DN =,故③正确;若BN 为⊙O 的切线,则NBC BAC ∠=∠, ∵90NBC BCN ∠+∠=︒,而BCN ACB ∠=∠, ∴90BAC ACB ∠+∠=︒, ∴AC 为O ⊙直径.而AC 不一定为O ⊙直径,故④不正确.【巩固】(09辽宁)已知∆ABC 中,=AB AC ,D 是∆ABC 外接圆劣弧AC 上的点(不与点A C ,重合),延长BD 至E .⑴ 求证:AD 的延长线平分∠CDE ;⑵ 若30∠=︒BAC ,∆ABC 中BC边上的高为2∆ABC 外接圆的面积.AB CD【解析】 ⑴ 如图,设F 为AD 延长线上一点∵D 在∆ABC 外接圆上(A B C D 、、、四点共圆) ∴∠=∠CDF ABC又=AB AC ,∴∠=∠ABC ACB , 且∠=∠ADB ACB ,∴∠=∠ADB CDF对顶角∠=∠EDF ADB ,故∠=∠EDF CDF , 即AD 的延长线平分∠CDE .⑵ 设O 为外接圆圆心,连接AO 交BC 于H ,则⊥AH BC . 连接OC ,由题意15∠=∠=︒OAC OCA ,75∠=︒ACB , ∴60∠=︒OCH .设圆半径为r,则2+=r 2=r ,外接圆的面积为4π.二、圆心角、弧、弦、弦心距之间的关系【例12】 如图所示在O ⊙中,2AB CD =,那么( )A.2AB CD >B.2AB CD <C.2AB CD =D.AB 与2CD的大小关系不能确定【解析】 如图所示,作DE CD =,则2CE CD =,∵在CDE ∆中CD DE CE +>,∴2CD CE >, ∵2AB CD =,∴AB CE >,∴AB CE >,即2AB CD >. 故选A .【例13】 已知AB AC 、是O ⊙的弦,AD 平分BAC ∠交O ⊙于D ,弦DE AB ∥交AC 于P ,求证:OP 平分APD ∠.【解析】 过O 点分别作OF AC OG DE ⊥⊥,,垂足分别为F G 、.∵DE AB ∥,∴BAD D ∠=∠,∵AD 平分BAC ∠,∴BAD CAD ∠=∠,∴CAD D ∠=∠, ∴AE CD =,∴AE EC CD EC +=+,即AC DE = ∴AC DE =, ∵OF AC OG DE ⊥⊥,,∴OF OG =,∴点O 在APD ∠的平分线上,即OP 平分APD ∠.【巩固】已知,如图M N ,为O 中劣弧AB 的三等分点,E F ,为弦AB 的三等分点,连接ME 并延长,交直线MF 于点P ,连接AP BP ,交O 于C D ,两点,求证:3AOB APB ∠=∠.PNMOFEDCBAQPNMOFEDCBA【解析】 连接CN AN ,,ON OM ,,连接MN 并延长,交PA 的延长线于Q .∵M N ,三等分AB ,∴AM BN =,故MN AB ∥,由AE EF =,可证得QM MN =, 由AM MN =得AM MN =, ∴MA MQ MN ==, ∴QAN ∠为直角,∴90CAN ∠=︒,故CN 为O 直径, 故O 在CN 上∴22AON ACN MON ∠=∠=∠∴MON ACN ∠=∠,故OM AP ∥, 同理可证:ON AB ∥于是可证得:MON APB ∠=∠,∵3AOB MON ∠=∠,∴3AOB APB ∠=∠.【例14】 (2008年广州市数学中考试题)如图,射线AM 交一圆于点B C ,,射线AN 交该圆于点D 、E ,且BC DE =.⑴ 求证:AC AE =⑵ 分别作线段CE 的垂直平分线与MCE ∠的平分线,两线交于点F .求证:EF 平分CEN ∠.NME【解析】 ⑴ 作OP AM ⊥,OQ AN ⊥,由BC DE =,得OP OQ =,证APO AQO ∆∆≌,可得AP AQ =, 由BC CD =,得CP EQ = ∴AC AE =. ⑵ ∵AC AE =,∴ACE AEC ∠=∠,∴MCE NEC ∠=∠, ∵F 在线段CE 的中垂线上, ∴FC FE =,∴FCE FEC ∠=∠,∵12FCE MEC ∠=∠,∴12FEC NEC ∠=∠,即EF 平分CEN ∠.三、点与圆的位置关系【例15】 一个已知点到圆周上的点的最大距离为5cm ,最小距离为1cm ,则此圆的半径为______.【解析】 ⑴ 当点在圆外时,512cm 2r -==,⑵ 当点在圆内时,513cm 2r +==.【例16】 已知:四边形ABCD 中,AB CD ∥,AD BC =,135BAD ∠=︒,20AB =,40CD =,以A 为圆心,AB 长为半径作圆.求证:在A ⊙上,在A ⊙内,A ⊙外都有线段DC 上的点.C【解析】 如图所示,作AE CD ⊥于E∵ABCD 是等腰梯,AE CD ⊥,135BAD ∠=︒,20AB =,40CD =∴20AD =<,20AC = ∴D 点在A ⊙内,C 点在A ⊙外,圆内一点与圆外一点的连线,必与圆有一交点, 所以A ⊙上,A ⊙内, A ⊙外都有线段DC 上的点.【例17】 在平面直角坐标系内,以原点O 为圆心,5为半径作O ⊙,已知A ,B ,C 三点的坐标分别为()34A ,,()33B --,,(4C ,,试判断A ,B ,C 三点与O ⊙的位置关系.【解析】∵5OA =5OB =5OC >∴点A 在O ⊙上,点B 在O ⊙内,点C 在O ⊙外.【点评】要判定点与圆的位置关系,就是要比较点到圆心的距离与半径的大小关系.【例18】 在ABC ∆ 中,90C ∠=︒,4AC =,5AB =,以点C 为圆心,以r 为半径作圆,请回答下列问题,并说明理由.⑴ 当r 取何值时,点A 在C ⊙上,且点B 在C ⊙内部?⑵ 当r 在什么范围内取值时,点A 在C ⊙外部,且点B 在C ⊙的内部? ⑶ 是否存在这样的实数r ,使得点B 在C ⊙上,且点A 在C ⊙内部?CBA【解析】 如右图所示在Rt ABC ∆中,90C ∠=︒,4AC =,5AB =,根据勾股定理得:3BC ==⑴ 当4r =时,点A 在C ⊙上,且点B 在C ⊙内.因为4AC r ==,所以点A 在C ⊙上,34BC r =<=,所以B 在C ⊙内; ⑵ 当34r <<时,点A 在C ⊙的外部,且点B 在C ⊙的内部.由于3BC =,要使点B 在C ⊙的内部,必须C ⊙的半径3r >;又由于4AC =,要使点A 在C ⊙的外部,必须C ⊙的半径4r <. 综合上述两方面可知,34r <<.⑶ 不存在这样的实数r ,使得点B 在C ⊙上,且点A 在C ⊙内部.因为3BC =,要使点B 在C ⊙上,必须3r =,此时,由于4AC r =>,所以点A 在C ⊙的外部,点A 不在C ⊙的内部,所以这样的实数r 不存在.【例19】 已知ABC ∆中,90C ∠=︒,2AC =,3BC =,AB 的中点为M ,⑴ 以C 为圆心,2为半径作C ⊙,则点A ,B ,M 与C ⊙的位置关系如何? ⑵ 若以C 为圆心作C ⊙,使A ,B ,M 三点至少有一点在C ⊙内,且至少有一点在C ⊙外,求C ⊙半径r 的取值范围.M CBA【解析】 如右图所示⑴ ∵2AC =,且C ⊙的半径也为2,即AC r =∴点A 在C ⊙上.又∵3BC =,2R =,BC r > ∴点B 在C ⊙外.在ABC ∆中,AB = ∵M 为AB 的中点∴122MC AB ==<∴点M 在C ⊙内; ⑵ ∵2AC =,3BC =,MC ∴BC AC MC >>∴要使A ,B ,M 三点中至少有一点在C ⊙内,且至少有一点在C ⊙外,则C ⊙的半径r 的3r <<.【点评】⑴ 要判定点A ,B ,M 与C ⊙的位置关系,只要比较AC ,BC ,MC 的长度与C ⊙的半径的大小关系即可;⑵ 由⑴求得AC ,BC ,MC 的长度即可确定C ⊙的半径r 的取值范围.【例20】 ABC ∆中,10AB AC ==,12BC =,求其外接圆的半径.【解析】 作高AD ,设点O 是ABC ∆OB∵AB AC =,AD BC ⊥,∴16BD BC ==在Rt ABD ∆中,8AD 设O ⊙的半径为R ,则OB AO R ==,8OD R =-. 在Rt OBD ∆中, 222OB BD OD =+∴2226(8)R R =+-,解得254R =.∴外接圆的半径为254.【点评】运用外心到三角形的三个顶点的距离相等这一性质,注意,三角形的外心在等腰三角形底边的中垂线上.四、相交弦定理(选讲)相交弦定理:圆内的两条相交弦被交点分成的两条线段长的乘积相等.如图,弦AB 和CD 交于O ⊙内一点P ,则PA PB PCPD ⋅=⋅.相交弦定理的推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项. 【例21】 ⑴ 如下左图,在O ⊙中,弦AB 与CD 相交于点P ,已知3cm 4cm 2cm PA PB PC ===,,,那么PD = cm .⑵ 如下中图,在O ⊙中,弦AB 与半径OC 相交于点M ,且OM MC =,若 1.54AM BM ==,,则OC 的长为( )A. BC. D .⑶ 如下右图,在O ⊙中,P 为弦AB 上一点,PO PC ⊥,PC 交O ⊙于C ,那么( )A .2OP PA PB =⋅ B .2PC PA PB =⋅C .2PA PB PC =⋅D .2PB PA PC =⋅【解析】 ⑴6;⑵D ;⑶B .【例22】如图,圆的半径是A C 、两点在圆上,点B 在圆内,6AB =,2BC =,90ABC ∠=︒求点B到圆心的距离.【解析】 连结OB ,则线段OB 的长就是所求点B 到圆心的距离.连结OA ,延长AB 交O ⊙于D ,过O 点作OE AD ⊥于E ,延长CB 交O ⊙于F . 设BD x =,由相交弦定理可得AB BD BC BF ⋅=⋅,则3AB BDBF x BC⋅==,∵OE AD ⊥,∴()()11166222AE AD x BE x ==+=-,,()()11132232222OE CF BC x x =-=+-=-,在Rt AOE ∆中,90AEO ∠=︒,∴222OE AE OA +=,即()()22113265044x x -++=,解得4x =,∴()()1134256412OE BE=⨯-==-=,,OB =【例23】 如图,正方形ABCD 内接于O ⊙,点P 在劣弧AB 上,连结DP 交AC 于点Q .若QP QO =,则QCQA的值为___________.【解析】 连结DO ,设O ⊙半径为r ,QO m =,则QP m QC r m QA r m ==+=-,,.在O ⊙中,根据相交弦定理得QA QC QP QD ⋅=⋅,即()()r m r m mQD -+=,∴22r m QD m-=,由勾股定理得222QD DO QO =+,即22222r m r m m ⎛⎫-=+ ⎪⎝⎭,解得33m r =. ∴313231QC r m QA r m ++===+--.【习题1】 (2007浙江温州)如图,已知ACB ∠是O 的圆周角,50ACB ∠=︒,则圆心角AOB ∠是( )A .40︒B . 50︒C . 80︒D . 100︒【解析】 考察同弧所对圆心角圆周角关系.答案选:D .【习题2】 如图,将圆沿AB 折叠后,圆弧恰好经过圆心,则AmB 等于 .A . 60°B . 90°C . 120°D . 150°mBAO【解析】 答案选C .【习题3】 (09四川凉山)如图,O ⊙是ABC ∆的外接圆,已知50ABO ∠=︒,则ACB ∠的大小为__________.OCBA【解析】 40︒.【习题4】 (09四川南充)如图,AB 是O ⊙的直径,点C D 、在O ⊙上,110BOC ∠=︒,AD OC ∥,则AOD ∠=___________.OD CBA家庭作业【解析】 40︒.【习题5】 如果两条弦相等,那么( )A .这两条弦所对的弧相等B .这两条弦所对的圆心角相等C .这两条弦的弦心距相等D .以上答案都不对【解析】 考察圆心角定理,关键是这些条件成立的前提是在同圆或等圆中.所以选D .【习题6】 如图,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C =70°. 现给出以下四个结论:①∠A =45°; ②AC =AB ; ③AE BE =; ④22CE AB BD ⋅=. 其中正确结论的序号是A .①②B .②③C .②④D .③④ED C BAO【解析】 考察利用圆中角可推出等弧,等弦,相似.答案选 C .【习题7】 如图,量角器外缘边上有A P Q ,,三点,它们所表示的读数分别是180,70,30,则PAQ ∠的大小为( )A .10B .20C .30D .40【解析】 考察同弧所对圆心角是圆周角的2倍.答选 B .【习题8】 (首师大附中2008-2009初三月考)定义:定点A 与O ⊙上的任意一点之间的距离的最小值称为点A 与O ⊙之间的距离.现有一矩形ABCD 如图,14cm 12cm AB BC ==,,K ⊙与矩形的边AB BC CD 、、分别相切于点E F G 、、,则点A 与K ⊙的距离为______________.GEK DB A【解析】 连结KE AK 、,由题意可知K ⊙的半径为6cm ,6cm EK AB BE ⊥=,,∴8cm AE =,∴2210cm AK AE EK =+=, ∴点A 与K ⊙的距离为1064cm -=.【备选1】 如图,CD 为O ⊙的直径,过点D 的弦DE 平行于半径OA ,若D ∠的度数是50︒,则C ∠的度数是 A .25︒ B .40︒ C .30︒ D .50︒O EDCA【解析】 A .【备选2】 (08泰安)如图,在O ⊙中,AOB ∠的度数为m ,C 是ACB 上一点,D E 、是AB 上不同的两点(不与A B 、两点重合),则D E ∠+∠的度数为____________.OEDCBA【解析】 ()136018022mD E m ∠+∠=︒-=︒-.【备选3】 如图,已知⊙O 的弦AB 、CD 相交于点E ,AC 的度数为60°,BD 的度数为100°,则AEC∠等于( )A . 60°B . 100°C . 80°D . 130°EDC BO A【解析】 连结BC ,则∠AEC =∠B +∠C =21×60°+21×100°=80°.所以答案是C .【备选4】 设Rt ABC ∆的两条直角边长分别为3,4则此直角三角形的内切圆半径为 ,外接圆半径为【解析】 内切圆半径为1()12r a b c =+-=;外接圆半径为 2.52cR ==.【备选5】 等边三角形的外接圆的半径等于边长的( )倍.月测备选A .23B .33C .3D .21【解析】 考察等边三角形与外接圆半径的关系,所以选B【备选6】 (08山东滨州)如图所示,AB 是⊙O 的直径,AD=DE ,AE 与BD 交于点C ,则图中与∠BCE相等的角有( )BAA . 2个B . 3个C . 4个D . 5个【解析】 考察同弧,等弧所对圆周角相等,所以选B .【备选7】 (宜宾)已知:如图,四边形ABCD 是O ⊙的内接正方形,点P 是劣弧CD 上不同于点C 的任意一点,则BPC ∠的度数是( )A.45︒ B .60︒ C.75︒ D.90︒P【解析】 连接BO ,CO ,可得90BOC ∠=︒,∴1452BPC BOC ∠=∠=︒,故选A .【备选8】 (09浙江温州)如图,80AOB ∠=︒,则弧AB 所对圆周角ACB ∠的度数是A .40︒B .45︒C .50︒D .80︒【解析】 A .【备选9】 Rt ABC ∆的两条直角边3BC =,4AC =,斜边AB 上的高为CD ,若以C 为圆心,分别以12r =,2 2.4r =,33r =为半径作圆,试判断D 点与这三个圆的位置关系.DCBA【解析】 在Rt ABC ∆中,90ACB ∠=︒,4AC =,3BC =,∴5AB =由面积相等得,AC BC AB CD ⋅=⋅.∴122.45AC BC CD AB ⋅===∴ 2.4d CD ==∴1d r >, 2d r =, 3d r <∴点D 与三个圆的位置关系分别是:在圆外,在圆上,在圆内.【点评】要判定点与圆的位置关系,就是要比较点到圆心的距离与半径的大小关系.。

初中数学 圆心角和圆周角

初中数学 圆心角和圆周角

一条弧所对的圆周角等于它所对的圆心角的一半.
如果圆心不在圆周角的一边上,结果会怎样? 2.当圆心(O)在圆周角(∠ABC)的内部时,圆周角∠ABC与圆 心角∠AOC的大小关系会怎样?
提示:能否转化为1的情况?
过点B作直径BD.由1可得: ∠ABD = ∠AOD,
AD C
●O
∠CBD = ∠COD,
定理:圆的内接四边形的对角互补,且任何一个外角都 等于它的内对角.
1. 如图,AB、CD是⊙O的两条弦.
AE B
(1)如果AB=CD,那么__弧__A_B_=_弧__C_D_,
O
D
___A_O__B_____C_O_D___.
F C
(2)如果弧AB=弧CD,那么___A__B_=_C__D___,
O
A
根据旋转的性质,将圆心角∠AOB绕 B′
圆心O旋转到∠A′OB′的位置时,显然 ∠AOB=∠A′OB′,射线OA与OA′重合, OB与OB′重合.而同圆的半径相等, OA=OA′,OB=OB′,从而点A与点A′重 合,点B与点B′重合.
A′ B
O
A
因此,弧AB与弧A′B′重合,弦AB与弦A′B′重合. 弧AB=弧A′B′,
B ∴∠ABC = ∠AOC.
A C
D

O
你能写出这个命题吗?
圆上一条弧所对的圆周角等于它所对的圆心角的一半.
4.圆周角定理及其推论
圆周角定理: 圆周角的度数等于它所对弧所得的圆心角度数的一半.
即∠ABC = ∠AOC.
圆心在角的边 上
A C
圆心在角 内 AD C
圆心在角 外 A C
●O
●O
●O D
们所对的圆心角__相__等__,所对的弧 __相__等_____.

初中数学圆心角和圆周角

初中数学圆心角和圆周角

圆心角和圆周角及之间的关系练习:判断下列各图形中的是不是圆周角,并说明理由.二、看一看ABCO有没有圆周角?∠BAC 有没有圆心角?∠BOC 它们有什么共同的特点? 它们都对着同一条弧BC三、猜想归纳:请画出弧BC 所对的圆周角. 若按圆心O 与这个圆周角的位置关系来分类,我们可以分成几类?圆周角的度数与什么有关系?动手量一量∠BOC 与∠BAC 有何数量关系?ABCO AB CO四、证明圆心角与圆周角之间的关系1、首先考虑一种特殊情况:当圆心(O)在圆周角(∠BAC)的一边(AB)上时,圆周角∠BAC与圆心角∠BOC的大小关系.∵∠BOC是△ACO的外角∴∠BOC=∠C+∠A∵OA=OC,∴∠A=∠C∴∠BOC=2∠A即∠BAC = 1/2∠BOC2、如果圆心不在圆周角的一边上,结果会怎样?当圆心(O)在圆周角(∠ABC)的内部时,圆周角∠ABC与圆心角∠AOC的大小关系会怎样?思考:能否转化成1中的情况?证明:过点A作直径AD.由1可得:∵∠BAD = 1/2∠BOD,∠CAD = 1/2∠COD∴∠BAC = 1/2∠BOC.3、当圆心(O)在圆周角(∠ABC)的外部时,圆周角∠ABC与圆心角∠AOC的大小关系会怎样? 思考:同样是否能转化成1中的情况?5.如图4,AB是⊙O的直径,∠AOD是圆心角,∠BCD是圆周角.若∠BCD=25°,则∠AOD=.6.如图5,⊙O直径MN⊥AB于P,∠BMN=30°,则∠AON=.7.⊙O的弦AB等于半径,那么弦AB所对的圆周角一定是().(A)30°(B)150°(C)30°或150°(D))60°8.△ABC中,∠B=90°,以BC为直径作圆交AC于E,若BC=12,AB=12,则的度数为()(A)60°(B)80°(C)100°(D))120°9.如图,△ABC是⊙O的内接等边三角形,D是AB上一点,AB与CD交于E点,则图中60°的角共有( )个.(A)3 (B)4 (C)5 (D)610.如图,△ABC内接于⊙O,∠OBC=25°,则∠A的度数为()(A)70°(B)65°(C)60°(D))50°二、填空题:1.如图4,A、B、C为⊙O上三点,若∠OAB=46°,则∠ACB=_______度.BC;,求ABC的度数.DCBAO四、能力提升:如图1,AB是半⊙O的直径,过A、B两点作半⊙O的弦,当两弦交点恰好落在半⊙O上C点时,则有AC·AC+BC·BC=AB2.(1)如图2,若两弦交于点P在半⊙O内,则AP·AC+BP·BD=AB2是否成立?请说明理由.(2)如图3,若两弦AC、BD的延长线交于P点,则AB2=.参照(1)填写相应结论,并证明你填写结论的正确性.学生对于本次课的评价:○特别满意○满意○一般○差学生签字:________教学总结:。

湘教版初中数学九年级下册2.2.2 第1课时 圆周角定理与推论1PPT课件

湘教版初中数学九年级下册2.2.2 第1课时 圆周角定理与推论1PPT课件
关角 系相 有对
探究点二 圆周角定理
如图是一个圆柱形的海洋馆的横截面示意图,人们可以通
过其中的圆弧形玻璃窗观看窗内的海洋动物,同学甲站在
圆心O的位置,同学乙站在正对着玻璃窗的靠墙的位置C,
他们的视角(∠AOB和∠ACB)有什么关系?如果同学丙、丁
分别站在其他靠墙的位置D和E,他们的视角( ∠ADB和
∠AEB)和同学乙的视角相同吗?
观察图中∠ACB、 ∠ADB和∠AEB 与我们学过的圆 心角有什么区别 ?
• 分别量一下 所对的圆周角∠ACB、∠ADB和 ∠AEB的度数比较一下,再改变圆周角的位置, 圆周角的度数有没有变化?你有什么发现?
• 再量出图中 所对的圆周角和圆心角的度数, 比较一下,你有什么发现?
我们再来证明第(2)情况:
连结PO并延长交⊙于C 由(1)可知: ∠APC=1/2∠AOC ∠BPC=1/2 ∠BOC ∴ ∠APC+ ∠BPC=1/2(
∠AOC+ ∠BOC) 即∠APB=1/2 ∠AOB
最后我们来证明第(3)种情况:
连结PO并延长交⊙O于C 由(1)可知: ∠APC=1/2∠AOC ∠BPC=1/2 ∠BOC ∴ ∠BPC- ∠APC =1/2(
∠BOC- ∠AOC ) 即∠APB=1/2 ∠AOB
圆周角定理
在同圆或等圆中,同弧或等弧所对的 圆周角相等,都等于这条弧所对的圆心角 的一半.
D A
C

E
B
做一做
1.圆周角的两个特征:(1) 顶点在圆上,
两边都与圆相交
(2)
.
2.在同圆或等圆一中半,一条弧所对的圆周角等于它所
对的圆心角的
.
3.如图,AB是⊙O的直径,∠AOD是圆心13角0°, ∠BCD是圆周角,若∠BCD=25°,则∠AOD= .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.4 圆周角和圆心角的关系 第1课时 圆周角和圆心角的关系
教学目标
1.理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;(重点)
2.能运用圆周角定理及其推论进行简单的证明计算.(难点)
教学过程 一、情境导入
在下图中,当球员在B, D, E 处射门时,他所处的位置对球门AC 分别形成三个张角∠ABC, ∠ADC ,∠AEC .这三个角的大小有什么关系?
二、合作探究
探究点:圆周角定理及其推论 【类型一】 利用圆周角定理求角
的度数
如图,已知CD 是⊙O 的直径,
过点D 的弦DE 平行于半径OA ,若∠D 的度数是50°,则∠C 的度数是( )
A .25°
B .30°
C .40° D
.50°
解析:∵OA ∥DE ,∠D =50°,∴∠AOD =50°.∵∠C =1
2
∠AOD ,∴∠C
=12×50°=25°.故选A. 方法总结:解决问题的关键是熟练掌握圆周角定理.
【类型二】 利用圆周角定理的推
论求角的度数
如图,在⊙O 中,AB ︵=AC ︵

∠A =30°,则∠B =( )
A .150°
B .75°
C .60°
D .15°
解析:因为AB ︵=AC ︵
,根据“同弧或等弧所对的圆周角相等”得到∠B =∠C ,因为∠A +∠B +∠C =180°,所以∠A +2∠B =180°,又因为∠A =30°,所以30°+2∠B =180°,解得∠B =75°.故选B.
方法总结:解题的关键是掌握在同圆或等圆中,相等的两条弧所对的
圆周角也相等.注意方程思想的应用.
【类型三】 圆周角定理与垂径定
理的综合
如图所示,AB 是⊙O 的一条
弦,OD ⊥AB ,垂足为点C ,交⊙O 于点
D ,
E 在⊙O 上.
(1)∠AOD =52°,求∠DEB 的度数;
(2)若AC =7,CD =1,求⊙
O 的半径.
解析:(1)由OD ⊥AB ,根据垂径定理的推论可求得AD ︵
=BD ︵
,再由圆周角定理及其推论求∠DEB 的度数;(2)首先设⊙O 的半径为x ,然后由勾股定理得到方程解答.
解:(1)∵AB 是⊙O 的一条弦,OD ⊥AB ,∴AD ︵
=BD ︵
,∴∠DEB =1
2
∠AOD
=1
2
×52°=26°; (2)设⊙O 的半径为x ,则OC =OD -CD =x -1.∵OC 2+AC 2=OA 2,∴(x -1)2+(7)2=x 2,解得x =4,∴⊙O 的半径为4.
方法总结:本题综合考查了圆周角定理及其推论、垂径定理以及勾股
定理.注意掌握数形结合思想与方程思想的应用.
【类型四】 圆周角定理的推论与
圆心角、弧、弦之间的关系的综合
如图,△ABC 内接于⊙O ,AB
=AC ,点D 在弧AB 上,连接CD 交AB 于点E ,点B 是CD ︵
的中点,求证:∠
B =∠BE
C .
解析:由点B 是CD ︵
的中点,得∠BCE =∠BAC ,即可得∠BEC =∠ACB ,然后由等腰三角形的性质,证得结论.
证明:∵B 是CD ︵的中点,∴BC ︵=BD ︵,∴∠BCE =∠BAC .∵∠BEC =180°-∠B -∠BCE ,∠ACB =180°-∠BAC -∠B ,∴∠BEC =∠ACB .∵AB =AC ,∴∠B =∠ACB ,∴∠B =∠BEC .
方法总结:此题考查了圆周角定理的推论以及等腰三角形的性质.解答时一定要结合图形.
【类型五】 圆周角定理的推论与
三角形知识的综合
如图,A 、P 、B 、C 是⊙O 上
四点,且∠APC =∠CPB =60°.连接
AB 、BC 、AC .
(1)试判断△ABC 的形状,并给予证明;
(2)求证:CP =BP +AP . 解析:(1)利用圆周角定理可得∠BAC =∠CPB ,∠ABC =∠APC ,而∠APC =∠CPB =60°,所以∠BAC =∠ABC =60°,从而可判断△ABC 的形状;(2)在PC 上截取PD =AP ,则△APD 是等边三角形,然后证明△APB ≌△ADC ,证明BP =CD ,即可证得.
(1)解:△ABC 是等边三角形.证明如下:在⊙O 中,∵∠BAC 与∠CPB 是BC ︵
所对的圆周角,∠ABC 与∠APC 是AC ︵
所对的圆周角,∴∠BAC =∠CPB ,∠ABC =∠APC .又∵∠APC =∠CPB =60°,∴∠ABC =∠BAC =60°,∴△
ABC 为等边三角形;
(2)证明:在PC 上截取PD =AP ,连接AD .又∵∠APC =60°,∴△APD 是等边三角形,∴AD =AP =PD ,∠ADP =60°,即∠ADC =120°.又∵∠APB =∠APC +∠BPC =120°,∴∠ADC =∠APB .在△APB 和△ADC 中,
⎩⎨⎧∠APB =∠ADC ,∠ABP =∠ACD ,AP =AD ,
∴△APB ≌△
ADC (AAS),∴BP =CD .又∵PD =AP ,∴CP =BP +AP .
方法总结:本题考查了圆周角定理的理论以及三角形的全等的判定与性质,正确作出辅助线是解决问题的关键.
【类型六】 圆周角定理的推论与
相似三角形的综合
如图,点E 是BC ︵
的中点,点
A 在⊙O 上,AE 交BC 于D .求证:BE 2=AE
·DE .
解析:点E 是BC ︵
的中点,根据圆周角定理的推论可得∠BAE =∠CBE ,可证得△BDE ∽△ABE ,然后由相似三角形的对应边成比例得结论.
证明:∵点E 是BC ︵的中点,即BE ︵
=CE ︵
,∴∠BAE =∠CBE .∵∠E =∠E (公共角),∴△BDE ∽△ABE ,∴BE ∶AE =
DE ∶BE ,∴BE 2=AE ·DE .
方法总结:圆周角定理的推论是和角有关系的定理,所以在圆中,解决相似三角形的问题常常考虑此定
理.
三、板书设计
圆周角和圆心角的关系
1.圆周角的概念
2.圆周角定理
3.圆周角定理的推论
教学反思
本节课的重点是圆周角与圆心角的关系,难点是应用所学知识灵活解题.在本节课的教学中,学生对圆周角的概念和“同弧所对的圆周角相等”这一性质较容易掌握,理解起来问题也不大,而对圆周角与圆心角的关系理解起来则相对困难,因此在教学过程中要着重引导学生对这一知识的探索与理解.还有些学生在应用知识解决问题的过程中往往会忽略同弧的问题,在教学过程中要对此予以足够的强调,借助多媒体加以突出.。

相关文档
最新文档