圆柱绕流阻力实验数据
(最新整理)圆柱图绕流实验-5-4
(完整)圆柱图绕流实验2011-5-4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)圆柱图绕流实验2011-5-4)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)圆柱图绕流实验2011-5-4的全部内容。
圆柱绕流阻力实验一实验目的:1.熟悉多管压差计测量圆柱体压强分布的方法;2.了解利用压力传感器、数据采集系统测量绕流圆柱表面压强分布的方法;3 绘制压强分布图,并计算图柱体的阻力系数.二实验装置:1. 小型风洞或气动台;2。
多管压差计;3。
压力传感器,数据采集模块及其系统。
三实验原理:1. 小型风洞或气动台经风机产生的气流经过稳压箱,收缩段,进入实验段。
圆柱体安装在实验段的中部.气动台稳压箱的气流速度近似为零,其压强可认为是驻点压强p0。
小型风洞在试验段上部设置了一个正对来流方向的导管,为驻点压强p0.实验段中分布比较均匀的气流,速度为V∞,压强为p∞。
气流绕圆柱体流动时,流动变得复杂起来。
本实验为了测量圆柱体表面各点的压强分布,在圆柱体表面开设一个测压孔,测压孔通过一个细针管接出与多管压差计或压力传感器相连,细针管垂直方向装有指针,当转动圆柱时其转角通过角度盘指针的读数来表示,因而随着测压孔位置的改变,即可将绕圆柱体整个壁面上的压强分布测出。
图2。
2。
1 圆柱表面压强分布实验装置2。
多管压差计的方法测量原理:在流体力学中,绕流阻力即流体绕物体流动而作用于物体上的阻力,由摩擦阻力fD 和压强阻力p D 构成,其f D 相对于p D 小得多,在本实验中可忽略不计.其压强用无量纲的参数-—压强系数C P 来表示:由伯努利方程2202121V p V p pρρ+=+=∞∞ 推导得到各个不同角度测点的压强系数Cp∞∞∞∞∞--=--=-=l l l l p p p p V p p Cp 00221ρ ( 2-2-1 )式中p 为圆柱体不同测点压强。
(完整word版)圆柱绕流成功算例
一个世纪以来,圆柱绕流一直是众多理论分析,实验研究及数值模拟的对象。
因为这种流动既有不固定的分离点,又有分离后的尾流和脱体涡。
随着雷诺数的增加,尾流性质,脱体涡的形态有很大的变化,具有丰富的流动现象。
应观察到的物理现象图圆柱体的St(Strouhal数)随Re(Reynolds数)变化曲线/ u0 q+ C以上数据是由A.Roshko、H。
s.Ribner、B。
Etkins和K.K.Nelly,E。
F.Relt和L。
F。
G.Simmons,以及G.W。
Jones等人测量得到。
注意观察圆柱体的St(Strouhal数)随Re(Reynolds数)的变化规律。
St与特征长度、特征速度和特征频率(圆柱绕流:涡脱落的频率)有关.圆柱体的阻力系数Cd随Reynolds数的变化曲线( l% ~1 O0 l# ], f/ e图中实曲线是由Wieselsberger,A.Roshko 测量数据绘制得到注意观察圆柱体的阻力系数Cd随Reynolds数的变化规律及阻力危机现象。
湍流模型的选取FLUENT是目前国际上比较流行的商用CFD软件包。
它具有丰富的物理模型,先进的数值方法和强大的前后处理功能,在航空航天,汽车设计,石油天然气,涡轮机设计等方面都有着广泛的运用。
FLUENT提供的湍流模型包括:单方程(Spalart-Allmaras)模型、双方程模型(标准κ—ε模型、重整化群κ—ε模型、可实现(Realizable)κ-ε模型)及雷诺应力模型和大涡模拟.湍流模型种类如图所示。
. f) y7 l, l8图湍流模型种类示意图# g3 Q, j2 p2 l+ b F0 u+ e9 D; S) c6 n7 d注意!二维平面模型显示的湍流模式.注意没有大涡模型(LES)三维平面模型显示的湍流模式。
注意出现大涡模型(LES)要使二维平面模型出现LES,需要如下操作。
在FLUENT屏幕上键入(rpsetvar 'les—2d?’#t)屏幕会出现les-2d?,然后回车即可特别注意!/ w/ [7 n’ L* T" z- e( `% X3 j, |雷诺数大于100000后,二维平面模型,运用各种湍流模型(除LES外)计算,卡门涡街都将很难出现。
流体力学Fluent报告材料——圆柱绕流
亚临界雷诺数下串列双圆柱与方柱绕流的数值模拟摘要:本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进展了数值研究,通过结果比照,分析了雷诺数、柱体形状对柱体绕流阻力、升力以与涡脱频率的影响。
一般而言,Re数越大,方柱的阻力越大,圆柱体如此不然;而Re越大,两种柱体的升力均越大。
相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。
Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。
关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数在工程实践中,如航空、航天、航海、体育运动、风工程与地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。
当流体流过圆柱时, 由于漩涡脱落,在圆柱体上产生交变作用力。
这种作用力引起柱体的振动与材料的疲劳,损坏结构,后果严重。
因此,近些年来,众多专家和学者对于圆柱绕流问题进展过细致的研究,特别是圆柱所受阻力、升力和涡脱落以与涡致振动问题。
沈立龙等[1]基于RNG k⁃ε模型,采用有限体积法研究了亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕流阻力系数C d与Strouhal 数随雷诺数的变化规律。
姚熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱与串列双圆柱的水动力特性。
使用非结构化网格六面体单元和有限体积法对二维N- S方程进展求解。
他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力与Sr数随Re数的变化趋势。
费宝玲等[3]用FLUENT软件对串列圆柱绕流进展了二维模拟,他们选取间距比L/D(L 为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进展了数值分析。
计算均在Re = 200 的非定常条件下进展。
计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。
圆柱绕流的一个重要特征是流动形态取决于雷诺数。
流体力学Fluent报告——圆柱绕流
亚临界雷诺数下串列双圆柱与方柱绕流的数值模拟摘要:本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。
一般而言,Re数越大,方柱的阻力越大,圆柱体则不然;而Re越大,两种柱体的升力均越大。
相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。
Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。
关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。
当流体流过圆柱时 , 由于漩涡脱落,在圆柱体上产生交变作用力。
这种作用力引起柱体的振动及材料的疲劳,损坏结构,后果严重。
因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。
立龙等[1]基于RNG k⁃ε模型,采用有限体积法研究了亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕流阻力系数C与 Strouhal 数d随雷诺数的变化规律。
熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。
使用非结构化网格六面体单元和有限体积法对二维N- S方程进行求解。
他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力及Sr数随Re数的变化趋势。
费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析。
计算均在 Re = 200 的非定常条件下进行。
计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。
圆柱绕流的一个重要特征是流动形态取决于雷诺数。
流体力学Fluent报告——圆柱绕流
亚临界雷诺数下串列单圆柱与圆柱绕流的数值模拟之阳早格格创做目要:原文使用Fluent硬件中的RNG k-ε模型对付亚临界雷诺数下二维串列圆柱战圆柱绕流问题举止了数值钻研,通过截止对付比,分解了雷诺数、柱体形状对付柱体绕流阻力、降力以及涡脱频次的效率.普遍而止,Re数越大,圆柱的阻力越大,圆柱体则可则;而Re越大,二种柱体的降力均越大.相对付于圆柱,共种条件下,圆柱受到的阻力要大;好异天,圆柱涡脱降频次要小.Re越大,串列柱体的Sr数越靠近于单圆柱体的Sr数.闭键字:圆柱绕流、降力系数、阻力系数、斯特劳哈我数正在工程试验中,如航空、航天、航海、体育疏通、风工程及大天接通等广大的本量范畴中,绕流钻研正在工程本量中具备要害的意思.当流体流过圆柱时, 由于漩涡脱降,正在圆柱体上爆收接变效率力.那种效率力引起柱体的振荡及资料的疲倦,益坏结构,成果宽沉.果此,近些年去,稠稀博家战教者对付于圆柱绕流问题举止过细致的钻研,特天是圆柱所受阻力、降力战涡脱降以及涡致振荡问题.沈坐龙等[1]鉴于RNG k⁃ε模型,采与有限体积法钻研了亚临界雷诺数下二维圆柱战圆柱绕流数值模拟,得到了圆柱战圆柱绕流阻力系数Cd与Strouhal 数随雷诺数的变更顺序.姚熊明等[2]采与估计流体硬件CFX中LES模型估计了二维不可压缩匀称流中孤坐圆柱及串列单圆柱的火能源个性.使用非结构化网格六里体单元战有限体积法对付二维N- S圆程举止供解.他们着沉钻研了下雷诺数时串列单圆柱正在分歧间距比时的压力分集、阻力、降力及Sr数随Re数的变更趋势.费宝玲等[3]用FLUENT硬件对付串列圆柱绕流举止了二维模拟,他们采用间距比L/D(L为二圆柱核心间的距离,D为圆柱直径)2、3、4共3个间距举止了数值分解.估计均正在Re = 200 的非定常条件下举止.估计了圆柱的降阻力系数、尾涡脱降频次等形貌绕流问题的主要参量,分解了分歧间距对付圆柱间相互效率战尾流个性的效率.圆柱绕流的一个要害个性是震动形态与决于雷诺数.Lienhard[4]归纳了洪量的真验钻研截止并给出了圆柱体尾流形态随雷诺数变更的顺序.当Re<5时,圆柱上下游的流线呈对付称分集,流体本去不摆脱圆柱体,不旋涡爆收.此时与理念流体相似,若改变流背,上下游流形仍相共.当5<Re<40时,鸿沟层爆收分散,分散剪切层正在圆柱体里前产死一对付宁静的“附着涡”.当40<Re<150时,震动脆持层流状态而且流体旋涡接替天从圆柱后部做周期性的脱降并正在尾流中产死二列接叉排列的涡,即卡门涡街.从150<Re<300启初,旋涡里里启初由层流背湍流转捩,直至减少至3x105安排,此时圆柱体表面附近的鸿沟层仍为层流,所有涡街渐渐转化成湍流,及e<3xl05称为亚临界天区.当3xl05<Re<3.5x106时,鸿沟层的震动也渐渐趋于湍流状态,尾流中不明隐的涡街结构,称为临界状态.[5]圆柱绕流的另一个隐著个性是斯特劳哈我数是雷诺数的函数.早正在1878年,捷克科教家Strouhal[6]便对付风吹过金属丝时收出鸣喊声做过钻研,创造金属丝的风鸣音调与风速成正比,共时与弦线之细细成反比,并提出估计涡脱降频次f的体味公式:式中即斯特劳哈我数Sr由Re所唯一决定.原文使用Fluent硬件中的RNG k-ε模型对付亚临界雷诺数下二维串列圆柱战圆柱绕流问题举止了数值钻研,通过截止对付比,分解了雷诺数、柱体形状对付柱体绕流阻力、降力以及涡脱频次的效率.1.数教模型1.1统造圆程对付于停止圆柱绕流,原文钻研对付象为二维不可压缩震动.正在直角坐标系下,其疏通顺序可用N-S圆程去形貌,连绝性圆程战动量圆程分别为:其中ui为速度分量;p为压力;ρ为流体的稀度;ν为流体的能源黏性系数.对付于湍流情况,原文采与RNG k⁃ε模型,RNG k⁃ε模型是k⁃ε模型的矫正规划.通过正在大尺度疏通战建正后的粘度项体现小尺度的效率,而使那些小尺度疏通有系统天从统造圆程中去除.所得到的k圆程战ε圆程,与尺度k⁃ε模型非常相似,其表白式如下:其中Gk为由于仄衡速度梯度引起的湍动能的爆收项,,,体味常数=0.084 5,==1.39,=1.68.相对付于尺度k⁃ε模型,RNG k⁃ε模型通过建正湍动粘度,思量了仄衡震动中的转动及转动震动情况,RNG k⁃ε模型不妨更佳的处理下应变率及流线蜿蜒程度较大的震动.1.2相闭参数圆柱绕流的相闭参数主要有雷诺数Re、斯特劳哈我数Sr、降力系数Cl战阻力系数Cd,底下给出各个参数的估计公式战物理意思.雷诺数Re与圆柱绕流的状态战雷诺数有很大闭系,雷诺数代表惯性力战粘性力之比:其中U为去流速度;L为个性少度,原文与圆柱直径或者圆柱边少;为流体稀度;、分别为流体介量能源粘度战疏通粘度.斯特劳哈我数Sr是Strouhal 指出圆柱绕流后正在圆柱后里不妨出现接替脱降的旋涡,旋涡脱降频次、风速、圆柱直径之间存留一个闭系:式中:Sr为斯托罗哈数,与决于结构的形状断里;f 为旋涡脱降频次;L为结构的个性尺寸; U 为去流速度.阻力系数战降力系数是表征柱体阻力、降力的无量目参数.定义为:,式中ρ为流体稀度;V为去流速度;A为迎流截里里积;战.由于涡脱降的闭系,阻力系数将爆收振荡,原文采用仄衡脉动降力去钻研,即与圆均根值去钻研.2.数值估计2.1物理模型二维数值模拟单圆柱流场估计天区的采用如图1所示,圆柱绕流以圆柱体直径为个性尺度D,采用圆柱半径为1.5 mm,估计天区为9D×32D的矩形天区.柱1距上游少度图 1 串列圆柱战圆柱的估计天区5D,下游少度27D,脆持二柱间距 L/D= 2. 5D稳定 (L是二圆柱核心连线少度),二柱到上下鸿沟距离相等.对付于圆柱绕流,采用圆柱边少为个性少度,D=30mm.2.2网格区分估计天区采与分块结构化网格,柱体表面网格干加稀处理,鸿沟区网格相对付稠稀.简直网格区分情况睹图2.其中串列圆柱网格31116个节面,30615个四边形里单元;串图 2 圆柱绕流与圆柱绕流估计域的网格区分列圆柱46446个节面,46550个四边形里单元.2.3鸿沟条件管讲壁里战柱体表面均采与无滑移的停止壁里条件.而出心采用速度出心,出心采用自由出流.去溜速度大小根据Re去树坐,雷诺数分300、3000、12000、30000四个等第,速度大小依次为0.1m/s、1m/s、4m/s、10m/s.2.4估计模型原文湍流模型采与尺度壁里函数的RNG k-ε模型.采与有限容积法供解二维不可压缩粘性流体非定常震动统造圆程,即把估计天区分成很圆柱近壁里网格多小的统造体,对付每个统造体的各个变量举止积分.统造圆程的对付流项采与二阶迎风圆法失集,速度战压力采与SIMPLE算法耦合供解,将所有天区瞅成一个完全举止耦合估计.动量、湍动能战湍动耗集率均采与二阶迎风圆法.先定常估计流场,再用定常估计的截止动做非定常迭代的初初值举止估计.根据初略估计的涡脱频次,牢固树坐时间步少为0. 002s, 正在每个时间步内树坐迭代次数为20.流体介量为液态火.3.估计截止3.1网格模型考证为考证网格独力性,原文估计了网格节面数为8346,里单元为8932的细网格、节面数为31116,里单元为30615的稀网格、节面数为63432,里单元为67434的细稀网格下Re=200、L/D=2的串列网格的Sr数,截止隐现三套网格的估计截止分别为0.143、0.133、0.133.故稀网格可用.而圆柱绕流则采与共级别网格.[7]的估计数据相比较,比较图像如图3所示,最大缺面为2.2%.图3串列圆柱分歧间距的Sr数估计对付比3.2流线与涡量图图 6 Re=3000圆柱绕流流线图图 7 Re=3000圆柱绕流涡量等值线图图 4 Re=3000圆柱绕流流线图图 5 Re=3000圆柱绕流涡量等值线图原文给出了估计历程中雷诺数Re=3000,t=1s时的流线图战涡量图.3.3阻力系数图 9 Re=3000圆柱绕流脉动阻力系数图 8 Re=3000圆柱绕流脉动阻力系数原文给出了Re=3000时,圆柱绕流战圆柱绕流的脉动阻力系数图如下.由图9战错误!未找到引用源。
流体力学Fluent报告——圆柱绕流
亚临界雷诺数下串列双圆柱与方柱绕流的数值模拟摘要:本文运用Fluent软件中的RNGk-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。
一般而言,Re数越大,方柱的阻力越大,圆柱体则不然;而Re越大,两种柱体的升力均越大。
相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。
Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。
关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。
当流体流过圆柱时, 由于漩涡脱落,在圆柱体上产生交变作用力。
这种作用力引起柱体的振动及材料的疲劳,损坏结构,后果严重。
因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。
沈立龙等[1]基于RNG k⁃ε模型,采用有限体积法研究了亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕流阻力系数C与Stroduhal 数随雷诺数的变化规律。
姚熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。
使用非结构化网格六面体单元和有限体积法对二维N-S方程进行求解。
他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力及Sr数随Re数的变化趋势。
费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析。
计算均在Re= 200的非定常条件下进行。
计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。
圆柱绕流的一个重要特征是流动形态取决于雷诺数。
流体力学Fluent报告——圆柱绕流
亚临界雷诺数下串列双圆柱与方柱绕流的数值模拟令狐采学摘要:本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。
一般而言,Re数越大,方柱的阻力越大,圆柱体则不然;而Re越大,两种柱体的升力均越大。
相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。
Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。
关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。
当流体流过圆柱时, 由于漩涡脱落,在圆柱体上产生交变作用力。
这种作用力引起柱体的振动及材料的疲劳,损坏结构,后果严重。
因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。
沈立龙等[1]基于RNG k⁃ε模型,采用有限体积法研究了亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕流阻力系数Cd与Strouhal 数随雷诺数的变化规律。
姚熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。
使用非结构化网格六面体单元和有限体积法对二维N- S方程进行求解。
他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力及Sr数随Re数的变化趋势。
费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析。
计算均在Re = 200 的非定常条件下进行。
计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。
圆柱绕流的一个重要特征是流动形态取决于雷诺数。
第五章 圆柱阻力系数
圆柱阻力系数EFD.V5 可以用于研究物体周围的流动和确定由于流动所造成物体上的升力和牵引阻力。
在这个例子中我们利用 EFD.V5 确定一个浸没在均匀流体中的圆柱体阻力系数。
这个圆柱的轴线与流体流向垂直。
在雷诺数 1、1000、105 三种情况下进行计算,R e UD ρμ=,D 圆柱的直径, U 流体的速度,ρ 是密度,μ 是动力粘度。
圆柱体的阻力系数如下式定义:212DD F C U DL ρ=此处 D F 是沿流动方向上作用在圆柱体直径D 和长度L 上总的力。
这个仿真的目的是通过 EFD.V5 来获取圆柱体阻力系数并且与 Ref.1 中的实验数据进行比较。
复制 Tutorial 2 - Drag Coefficient 文件夹到你的工作目录,此外由于 EFD.V5 在运行时会对其输入的数据进行存储,所以必须确保文件处于非只读状态。
运行 EFD.V5。
创建一个新的EFD.V5 product。
点击Insert, Existing Component并且点击模型树的根目录项。
在File Selection对话框,浏览Tutorial 2 - Drag Coefficient\cylinder 0.01m文件夹找到Cylinder0.01m.CATPart 组件并且点击Open。
并且以EFD.CATProduct文件名进行保存。
这个Cylinder分析是了一个典型的EFD.V5 External分析。
外部流体分析主要是处理流体在物体上流过的问题,诸如流体经过飞行器,汽车,建筑等。
对于外部分析远场才是计算域的边界。
你可以在EFD.V5 项目中求解一个既有内部分析又包括外部分析的流动问题(例如,流体掠过和通过一个建筑)。
如果分析的问题同时包括了内部和外部分析,则你必须定义分析的类型为外部。
首先创建一个新的EFD.V5 项目。
创建项目1. 点击Insert, Wizard。
这个项目向导会指导你一步一步完成整个项目的特性定义。
圆柱绕流理论研究和数值模拟
圆柱绕流理论研究和数值模拟摘要:在生活中,绕流问题随处可见,河水流过桥墩长期以来物体绕流问题是我们学者研究和分析的热点问题,其中最典型的是绕流圆柱体的现象是卡门涡街。
应用CFD方法求流体力学的经典问题。
电脑的数值模拟方法的优点在于能够不受物理模型和实验模型的基本条件限制,有较好的灵活性,经济性,适应性,能够很好地处理现实的问题。
本课题利用软件FLUENT通过应用连续性方程和动量方程求解层流状态下,固定的圆柱体绕流问题,分别得到二维圆柱的周围流场流,速度矢量图,速度涡量图,求出其对应的阻力系数,把已有的模拟结果和理论研究结果进行比较,得出准确的绕流问题的结论,将测得的数据与已有的文献结论相比较,得出层流在不同文献下结果不尽相同。
关键词:FLUENT;阻力系数;雷诺数1柱体绕流阻力研究1.1 圆柱绕流的基本参数雷诺数(O.Reynolds)描述粘性流体力学最重要也是最基本的参数,其他无量纲物理量必然依赖于Re数。
它反映了惯性力与粘性力的比值:(1-1)其中ρ为流体的密度,U、L分别描述流体的特征速度和结构物的特征长度;μ、υ分别为流体的动力学及运动学粘性系数;决定圆柱绕流流态的是雷诺数的值 ,雷诺数在300≤Re≤3×105范围内的称为亚临界区,此时边界层仍是层流分离,而尾迹中己经是湍流涡街了;当雷诺数增加到3×105≤Re≤3.5×106时为临界区,边界层从层流分离转化为湍流分离;而后当Re≥3.5×106时为过临界区,完全变为湍流分离[1]。
斯特鲁哈数(Strouhal number)St:斯特鲁哈数根据罗斯柯(A .Roshko)1954年的实验结果,它只于雷诺数有关,在大雷诺数(Re>1000)它近似地等于常数0.21[2]。
它是描述圆柱绕流的一个非常重要的无量纲数:(1-2)U是的均匀来流速度,直径为D的静止柱体,泻涡频率为;升力系数(1ift coemcient):(1-3)阻力系数(dragcoefficient):(1-4)式中为作用于单位长度圆柱上的升力,为作用于单位长度圆柱上的阻力。
圆柱绕流圆球扰流阻力系数
C4.7.2 圆柱绕流与卡门涡街分析钝体绕流阻力的典型例子是圆柱绕流1.圆柱表面压强系数分布无粘性流体绕流圆柱时的流线图如图C4.7.1中虚线所示。
A 、B 点为前后驻点,C 、D 点为最小压强点。
AC 段为顺压梯度区,CB 段为逆压梯度区。
压强系数分布如下图对称的a 线所示。
实际流体绕流圆柱时,由于有后部发生流动分离,圆柱后表面上的压强分布与无粘性流动有很大差别。
后部压强不能恢复到与前部相同的水平,大多保持负值(表压)。
(圆柱后部流场显示)实验测得的圆柱表面压强系数如图C4.7.1中b 、c 线所示,两条线分别代表不同Re 数时的数值。
b 为边界层保持层流时发生分离的情况,分离点约在 = 80°左右;c 为边界层转捩为湍流后发生分离的情况,分离点约在 =120°左右。
(高尔夫球尾部分离)从图中可看到后部的压强均不能恢复到前部的水平。
沿圆柱面积分的压强合力,即压差阻力,以b 线最大,以c 线最小。
从图中还可发现,在尾流分离区内,压强大致是均匀分布,因此沿圆柱表面的压强分布应如图B3.6.3所示。
图C4.7.12.阻力系数随R e 数的变化用量纲分析法分析二维圆柱体绕流阻力F D 与相关物理量ρ、V 、d 、μ的关系,可得(C4.7.13)上式表明圆柱绕流阻力系数由流动Re 数(ρVd /μ)唯一确定。
图C4.7.2为二维光滑圆柱体绕流的C D -Re 关系曲线。
根据阻力与速度的关系及阻力系数变化特点,可将曲线分为6个区域,并画出与5个典型Re 数对应的圆柱尾流结构图案(图C4.7.3)。
θθ图C4.7.2(1)Re<<1,称为低雷诺数流动或蠕动流。
几乎无流动分离,流动图案上下游对称(a)。
阻力以摩擦阻力为主,且与速度一次方成比例。
(2)1≤Re≤500,有流动分离。
当Re=10,圆柱后部有一对驻涡(b)。
当Re 〉100时从圆柱后部交替释放出旋涡,组成卡门涡街(c)。
阻力由摩擦阻力和压差阻力两部分组成,且大致与速度的1.5次方成比例。
圆柱绕流的阻力系数
圆柱绕流的阻力系数
圆柱绕流的阻力系数通常称为绕流阻力系数,用符号C_d表示。
该系数是指圆柱在流体中运动时所受到的阻力与流体动压力平方和直径D乘积的比值。
数学表达式为:
C_d = F_d / (0.5 * ρ* v^2 * A)
其中,F_d为圆柱所受到的阻力,ρ为流体的密度,v为流体与圆柱的相对速度,A为圆柱的横截面积。
对于光滑的圆柱绕流,其阻力系数C_d在较低雷诺数(Re)范围内可近似地由斯托克斯公式给出:
C_d = 24 / Re
在较高雷诺数范围内,绕流阻力系数会随着雷诺数的增加而逐渐降低,这是由于湍流的发生和涡街的形成。
在这种情况下,通常采用实验数据或经验公式进行计算。
圆柱绕流阻力实验(压强分布法)
3.14 圆柱绕流阻力实验(压强分布法)一、实验目的圆柱绕流实验是研究外流问题和形状阻力的典型实验。
通过测量圆柱表面的压强分布,认识实际流体绕圆柱流动时表面压强分布规律,并与理想流体相比较,理解形状阻力产生的原因及测量、计算方法。
二、实验原理理想流体均流对二维圆柱作无环量绕流时,圆柱表面任一点的速度分量为0,2sin r V V V θθ∞== (1)式中∞V 为来流速度。
圆柱表面任一点的压强i p 与来流压强p ∞的关系满足伯努利方程2222i p V p V g g g gθρρ∞∞+=+ (2) 式中ρ为流体密度。
以压强系数P C 表达流体压强的分布 2214sin 12i P p p C V θρ∞∞−==− (3)由于压强分布沿圆柱面前后对称,压强合力为零,称为达朗贝尔佯缪。
实际流体绕圆柱流动时,由于粘性得影响压强分布前后不对称;特别是当流动达到一定雷诺数后,粘性边界层在圆柱后部发生分离,形成漩涡。
从分离点开始圆柱体后部的压强大致接近分离点压强,不能恢复到前部的压强,破坏了前后压强分布的对称性,形成压差阻力D F 。
由于圆柱表面的摩擦阻力相对于压差阻力小得多,可忽略不计,阻力系数可表为20cos 12D D P F C C d V A πθθρ∞==∫ (4)式中A 为圆柱的迎风特征面积,压强系数P C 由(3)式确定。
实验中由多管压力计分别测量i p p ∞−和212V ρ∞ ()i m i p p g h h ρ∞∞−=− (5)201()2m V k g h h ρρ∞∞=− (6) 式中i h 为测点的静压水头高,0h 来流的总压水头高,∞h 为来流的静压水头高,m ρ测压计中液体密度,k 为测压系统损失修正系数。
这样(4)式中压强系数可表为 0()i p h h C k h h ∞∞−=− (7)测定P C 后代入(4)式求出D C ,并计算圆柱阻力D F 。
三、实验设备本实验是在多功能实验台上进行的,如下图示。
流体力学Fluent报告——圆柱绕流
亚临界雷诺数下串列双圆柱与方柱绕流的数值模拟摘要:本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。
一般而言,Re数越大,方柱的阻力越大,圆柱体则不然;而Re越大,两种柱体的升力均越大。
相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。
Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。
关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。
当流体流过圆柱时, 由于漩涡脱落,在圆柱体上产生交变作用力。
这种作用力引起柱体的振动及材料的疲劳,损坏结构,后果严重。
因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。
沈立龙等[1]基于RNG k⁃ε模型,采用有限体积法研究了亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕流阻力系数C d与Strouhal 数随雷诺数的变化规律。
姚熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。
使用非结构化网格六面体单元和有限体积法对二维N- S方程进行求解。
他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力及Sr数随Re数的变化趋势。
费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析。
计算均在Re = 200 的非定常条件下进行。
计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。
圆柱绕流的一个重要特征是流动形态取决于雷诺数。
圆柱绕流圆球扰流阻力系数
圆柱绕流与卡门涡街分析钝体绕流阻力的典型例子是圆柱绕流1.圆柱表面压强系数分布无粘性流体绕流圆柱时的流线图如图中虚线所示。
A、B点为前后驻点,C、D点为最小压强点。
AC段为顺压梯度区,CB段为逆压梯度区。
压强系数分布如下图对称的a线所示。
实际流体绕流圆柱时,由于有后部发生流动分离,圆柱后表面上的压强分布与无粘性流动有很大差别。
后部压强不能恢复到与前部相同的水平,大多保持负值(表压)。
(圆柱后部流场显示)实验测得的圆柱表面压强系数如图中b、c线所示,两条线分别代表不同Re数时的数值。
b 为边界层保持层流时发生分离的情况,分离点约在θ= 80°左右;c为边界层转捩为湍流后发生分离的情况,分离点约在θ=120°左右。
(高尔夫球尾部分离)从图中可看到后部的压强均不能恢复到前部的水平。
沿圆柱面积分的压强合力,即压差阻力,以b线最大,以c线最小。
从图中还可发现,在尾流分离区内,压强大致是均匀分布,因此沿圆柱表面的压强分布应如图所示。
图阻力系数随R e数的变化用量纲分析法分析二维圆柱体绕流阻力F D与相关物理量ρ、V、d、μ的关系,可得上式表明圆柱绕流阻力系数由流动Re数(ρVd/μ)唯一确定。
图为二维光滑圆柱体绕流的C-Re关系曲线。
根据阻力与速度的关系及阻力系数变化特点,可将曲线分为6个区域,并画出D与5个典型Re数对应的圆柱尾流结构图案(图。
图(1)Re<<1,称为低雷诺数流动或蠕动流。
几乎无流动分离,流动图案上下游对称(a)。
阻力以摩擦阻力为主,且与速度一次方成比例。
(2)1≤Re≤500,有流动分离。
当Re=10,圆柱后部有一对驻涡(b)。
当Re 〉100时从圆柱后部交替释放出旋涡,组成卡门涡街(c)。
阻力由摩擦阻力和压差阻力两部分组成,且大致与速度的次方成比例。
(3)500≤Re〈2×105,流动分离严重,大约从Re=104起,边界层甚至从圆柱的前部就开始分离(d),涡街破裂成为湍流,形成很宽的分离区。
流体力学Fluent报告——圆柱绕流
亚临界雷诺数下串列双圆柱与方柱绕流的数值模拟之巴公井开创作摘要:本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。
一般而言,Re数越大,方柱的阻力越大,圆柱体则否则;而Re越大,两种柱体的升力均越大。
相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。
Re 越大,串列柱体的Sr数越接近于单圆柱体的Sr数。
关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。
当流体流过圆柱时 , 由于漩涡脱落,在圆柱体上发生交变作用力。
这种作用力引起柱体的振动及资料的疲劳,损坏结构,后果严重。
因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。
沈立龙等[1]基于RNG k⁃ε模型,采取有限体积法研究了亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕流阻力系数Cd与 Strouhal 数随雷诺数的变更规律。
姚熊亮等[2]采取计算流体软件CFX中LES模型计算了二维不成压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。
使用非结构化网格六面体单元和有限体积法对二维N- S方程进行求解。
他们着重研究了高雷诺数时串列双圆柱在分歧间距比时的压力分布、阻力、升力及Sr数随Re数的变更趋势。
费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析。
计算均在 Re = 200 的非定常条件下进行。
计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了分歧间距对圆柱间相互作用和尾流特征的影响。
圆柱绕流的一个重要特征是流动形态取决于雷诺数。
流体力学Fluent报告——圆柱绕流
亚临界雷诺数下串列双圆柱与方柱绕流的数值模拟之欧侯瑞魂创作摘要:本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究, 通过结果比较, 分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响.一般而言, Re数越年夜, 方柱的阻力越年夜, 圆柱体则否则;而Re越年夜, 两种柱体的升力均越年夜.相对圆柱, 同种条件下, 方柱受到的阻力要年夜;相反地, 方柱涡脱落频率要小.Re越年夜, 串列柱体的Sr数越接近于单圆柱体的Sr数.关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数在工程实践中, 如航空、航天、航海、体育运动、风工程及空中交通等广泛的实际领域中, 绕流研究在工程实际中具有重年夜的意义.当流体流过圆柱时 , 由于漩涡脱落, 在圆柱体上发生交变作用力.这种作用力引起柱体的振动及资料的疲劳, 损坏结构, 后果严重.因此, 近些年来, 众多专家和学者对圆柱绕流问题进行过细致的研究, 特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题.沈立龙等[1]基于RNG k⁃ε模型, 采纳有限体积法研究了亚临界雷诺数下二维圆柱和方柱绕流数值模拟, 获得了圆柱和方柱绕流阻力系数Cd与 Strouhal 数随雷诺数的变动规律.姚熊亮等[2]采纳计算流体软件CFX中LES模型计算了二维不成压缩均匀流中孤立圆柱及串列双圆柱的水动力特性.使用非结构化网格六面体单位和有限体积法对二维N- S方程进行求解.他们着重研究了高雷诺数时串列双圆柱在分歧间距比时的压力分布、阻力、升力及Sr数随Re数的变动趋势.费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟, 他们选取间距比L/D(L为两圆柱中心间的距离, D为圆柱直径)2、3、4共3个间距进行了数值分析.计算均在 Re = 200 的非定常条件下进行.计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量, 分析了分歧间距对圆柱间相互作用和尾流特征的影响.圆柱绕流的一个重要特征是流动形态取决于雷诺数.Lienhard[4]总结了年夜量的实验研究结果并给出了圆柱体尾流形态随雷诺数变动的规律.当Re<5时, 圆柱上下游的流线呈对称分布,流体其实不脱离圆柱体, 没有旋涡发生.此时与理想流体相似, 若改变流向, 上下游流形仍相同.当5<Re<40时,鸿沟层发生分离,分离剪切层在圆柱体面前形成一对稳定的“附着涡”.当40<Re<150时, 流动坚持层流状态而且流体旋涡交替地从圆柱后部作周期性的脱落并在尾流中形成两列交叉排列的涡, 即卡门涡街.从150<Re<300开始, 旋涡内部开始由层流向湍流转捩, 直至增加至3x105左右, 此时圆柱体概况附近的鸿沟层仍为层流, 整个涡街逐渐转酿成湍流, 及e<3xl05称为亚临界区域.当3xl05<Re<3.5x106时,鸿沟层的流动也逐渐趋于湍流状态, 尾流中没有明显的涡街结构, 称为临界状态.[5]圆柱绕流的另一个显著特征是斯特劳哈尔数是雷诺数的函数.早在1878年, 捷克科学家Strouhal[6]就对风吹过金属丝时发出鸣叫声作过研究, 发现金属丝的风鸣音调与风速成正比,同时与弦线之粗细成反比, 并提出计算涡脱落频率f的经验公式:式中即斯特劳哈尔数Sr由Re所唯一确定.本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究, 通过结果比较, 分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响.1.数学模型1.1控制方程对静止圆柱绕流, 本文研究对象为二维不成压缩流动.在直角坐标系下, 其运动规律可用 N-S方程来描述, 连续性方程和动量方程分别为:其中ui为速度分量;p为压力;ρ为流体的密度;ν为流体的动力黏性系数.对湍流情况, 本文采纳RNG k⁃ε模型, RNG k⁃ε模型是k⁃ε模型的改进方案.通过在年夜标准运动和修正后的粘度项体现小标准的影响, 而使这些小标准运动有系统地从控制方程中去除.所获得的 k方程和ε方程, 与标准k⁃ε模型非常相似, 其表达式如下:其中Gk为由于平均速度梯度引起的湍动能的发生项, , , 经验常数=0.084 5, ==1.39, =1.68.相对标准 k⁃ε模型, RNG k⁃ε模型通过修正湍动粘度, 考虑了平均流动中的旋转及旋转流动情况, RNG k⁃ε模型可以更好的处置高应变率及流线弯曲水平较年夜的流动.1.2相关参数圆柱绕流的相关参数主要有雷诺数 Re、斯特劳哈尔数Sr、升力系数Cl和阻力系数 Cd, 下面给出各个参数的计算公式和物理意义.雷诺数Re与圆柱绕流的状态和雷诺数有很年夜关系, 雷诺数代表惯性力和粘性力之比:其中U为来流速度;L为特征长度, 本文取圆柱直径或方柱边长;为流体密度;、分别为流体介质动力粘度和运动粘度.斯特劳哈尔数 Sr是Strouhal 指出圆柱绕流后在圆柱后面可以呈现交替脱落的旋涡, 旋涡脱落频率、风速、圆柱直径之间存在一个关系:式中: Sr为斯托罗哈数, 取决于结构的形状断面; f 为旋涡脱落频率;L为结构的特征尺寸; U 为来流速度.阻力系数和升力系数是表征柱体阻力、升力的无量纲参数.界说为:,式中ρ为流体密度;V为来流速度;A为迎流截面面积;和为柱体所受阻力和升力.由于涡脱落的关系, 阻力系数将发生振荡, 本文选取平均脉动升力来研究, 即取方均根值来研究.2.数值计算2.1物理模型二维数值模拟双圆柱流场计算区域的选取如图 1所示, 圆柱绕流以圆柱体直径为特征标准 D, 选取圆柱半径为 1.5 mm, 计算区域为9D× 32D的矩形区域.柱1距上游长度 5D, 下游长度27D,坚持两柱间距 L/D= 2. 5D不变 (L是两圆柱中心连线长度 ), 两柱到上下鸿沟距离相等.对方柱绕流, 选择方柱边长为特征长度, D=30mm.2.2网格划分计算区域采纳分块结构化网格, 柱体概况网格做加密处置, 鸿沟区网格相对稀疏.具体网格划分情况见图 2.其中串列圆柱网格31116个节点, 30615个四边形面单位;串列方柱46446个节点, 46550个四边形面单位.图 2 圆柱绕流与方柱绕流计算域的网格划分2.3鸿沟条件管道壁面和柱体概况均采纳无滑移的静止壁面条件.而入口选择速度入口, 出口选择自由出流.来溜速度年夜小根据Re来设置, 雷诺数分300、3000、12000、30000四个品级, 速度年夜小依次为0.1m/s、1m/s、4m/s、10m/s.2.4计算模型本文湍流模型采纳标准壁面函数的RNG k-ε模型.采纳有限容积法求解二维不成压缩粘性流体非定常流动控制方程, 即把计算区域分成很圆柱近壁面网格多小的控制体, 对每个控制体的各个变量进行积分.控制方程的对流项采纳二阶迎风格式离散, 速度和压力采纳SIMPLE算法耦合求解, 将所有区域看成一个整体进行耦合计算.动量、湍动能和湍动耗散率均采纳二阶迎风格式.先定常计算流场, 再用定常计算的结果作为非定常迭代的初始值进行计算.根据初略计算的涡脱频率, 固定设置时间步长为0. 002s, 在每个时间步内设置迭代次数为20.流体介质为液态水.3.计算结果3.1网格模型验证为验证网格自力性, 本文计算了网格节点数为8346, 面单位为8932的粗网格、节点数为31116, 面单位为30615的密网格、节点数为63432, 面单位为67434的精密网格下Re=200、L/D=2的串列网格的Sr数, 结果显示三套网格的计算结果分别为0.143、0.133、0.133.故密网格可用.而方柱绕流则采纳同级别网格.[7]的计算数据相比力, 比力图像如图3所示, 最年夜误差为2.2%.图3串列圆柱分歧间距的Sr数计算比较3.2流线与涡量图图 6 Re=3000圆柱绕流流线图图 7 Re=3000圆柱绕流涡量等值线图图 4 Re=3000方柱绕流流线图图 5 Re=3000方柱绕流涡量等值线图本文给出了计算过程中雷诺数Re=3000, t=1s时的流线图和涡量图.3.3阻力系数图 9 Re=3000圆柱绕流脉动阻力系数图 8 Re=3000方柱绕流脉动阻力系数本文给出了Re=3000时, 圆柱绕流和方柱绕流的脉动阻力系数图如下.由图9和错误!未找到引用源。
流体力学Fluent报告——圆柱绕流
亚临界雷诺数下串列双圆柱与方柱绕流的数值模拟(一):本文运用Fluent软件中的RNG k-ε模型对亚临界雷诺数下二维串列圆柱和方柱绕流问题进行了数值研究,通过结果对比,分析了雷诺数、柱体形状对柱体绕流阻力、升力以及涡脱频率的影响。
一般而言,Re数越大,方柱的阻力越大,圆柱体则不然;而Re越大,两种柱体的升力均越大。
相对于圆柱,同种条件下,方柱受到的阻力要大;相反地,方柱涡脱落频率要小。
Re越大,串列柱体的Sr数越接近于单圆柱体的Sr数。
关键字:圆柱绕流、升力系数、阻力系数、斯特劳哈尔数在工程实践中,如航空、航天、航海、体育运动、风工程及地面交通等广泛的实际领域中,绕流研究在工程实际中具有重大的意义。
当流体流过圆柱时, 由于漩涡脱落,在圆柱体上产生交变作用力。
这种作用力引起柱体的振动及材料的疲劳,损坏结构,后果严重。
因此,近些年来,众多专家和学者对于圆柱绕流问题进行过细致的研究,特别是圆柱所受阻力、升力和涡脱落以及涡致振动问题。
沈立龙等[1]基于RNG k⁃ε模型,采用有限体积法研究了亚临界雷诺数下二维圆柱和方柱绕流数值模拟,得到了圆柱和方柱绕流阻力系数Cd与 Strouhal 数随雷诺数的变化规律。
姚熊亮等[2]采用计算流体软件CFX中LES模型计算了二维不可压缩均匀流中孤立圆柱及串列双圆柱的水动力特性。
使用非结构化网格六面体单元和有限体积法对二维N- S方程进行求解。
他们着重研究了高雷诺数时串列双圆柱在不同间距比时的压力分布、阻力、升力及Sr数随Re数的变化趋势。
费宝玲等[3]用FLUENT软件对串列圆柱绕流进行了二维模拟,他们选取间距比L/D(L为两圆柱中心间的距离,D为圆柱直径)2、3、4共3个间距进行了数值分析。
计算均在Re = 200 的非定常条件下进行。
计算了圆柱的升阻力系数、尾涡脱落频率等描述绕流问题的主要参量,分析了不同间距对圆柱间相互作用和尾流特征的影响。
圆柱绕流的一个重要特征是流动形态取决于雷诺数。
绕圆柱体表面压力分布实验
实验八 绕圆柱体表面压力分布实验一、 实验目的1. 学习掌握测量被绕流物体表面压力分布的方面及压力分布情况。
2. 通过实验测得的压力分布与理论压力分布相比较,了解实际流体绕物体流动时,物体所受形状阻力的来源。
二、 实验原理理想流体平行流绕援助作无环量流动时,圆柱体表面的速度分布规律是:0=r V (1)θδsin 2∞−=V V (2)而圆柱体表面上任一点的压力,可由伯努利方程得出:P 2222P V P V g g g ρρg∞∞+=+ (3) 式中:——无穷远处流体的压力;∞P ——无穷远处流体的流速。
∞V 工程上习惯于用无因次的压力系数来表示液体作用在物体上的任一点压力。
由上两式可得到绕圆柱体流动的理论压力系数:P C 2214s i n12pP P CV θρ∞∞−==− (4)实际流体具有粘性,达到某一雷诺数后,在圆柱体后面便产生旋涡区,形成尾涡区。
从而 破环了前后压力分布的对称,形成压差阻力。
实际的压力系数分布可由实测得到,其中动压:[]2002/)(8.92m N h h P P v ∞∞∞−=−=ρ (5)式中: ——来流总压值0h []o mmH P 20(取稳压箱压强值);——来流静压值∞h []o mmH P 2∞(退收缩段下端直管上测得的压强值); 9.81——由换成应乘的系数。
圆柱体表面任一点压力与来流压力差2[]mmH O 2[/]N m 29.81()[/]P P h h N ∞∞−=−m ] (6)式中: ——圆柱体表面任一点压力P 的值。
这样压力系数。
h 2[mmH O 209.81()19.81()2p P P h h C h h V ρ∞∞∞∞−−==− (7)因为流速时低速的,所以可以认为流体时不可压缩的,即流体密度ρ=常数。
实验条件下的雷诺数为:e V DR ν∞=式中:——圆柱直径,D R D 2=。
三、 实验设备图2-1为实验设备简图,即空气动力学多功能的实验装备。