截面弯曲刚度的概念和定义
混凝土结构设计原理(第3版)试卷2
第9章钢筋混凝土构件的变形、裂缝验算及耐久性一、填空题1.混凝土构件裂缝开展宽度及变形验算属于正常使用极限状态的设计要求,验算时材料强度采用标准值,荷载采用标准值、准永久值。
2. 增大构件截面高度是提高钢筋混凝土受弯构件抗弯刚度的最有效措施。
3.平均裂缝宽度计算公式中,σ是指裂缝截面处的纵向钢筋拉应力,其值是按荷载sk效应的标准组合计算的。
4.钢筋混凝土构件的平均裂缝间距随混凝土保护层厚度增大而增大,随纵筋配筋率增大而减小。
5.钢筋混凝土受弯构件挠度计算中釆用的最小刚度原则是指在相同符号弯矩范围内,假定其刚度为常数,并按最大弯矩截面处的最小刚度进行计算。
6.裂缝间纵向受拉钢筋应变不均匀系数ψ是指裂缝间受拉纵筋平均应变与裂缝截面处的受拉纵筋应变之比,反映了裂缝间拉区混凝土参与工作的程度。
7.结构构件正常使用极限状态的要求主要指在各种作用下的裂缝宽度和变形不应超过规定的限值。
8.结构的耐久性设计要求是指结构构件应满足设计使用年限的要求。
9.混凝土结构应根据使用环境类别和结构类别进行耐久性设计。
10.在荷载作用下,截面受拉区混凝土中出现裂缝,裂缝宽度与受拉纵筋应力几乎成正比。
11.钢筋混凝土和预应力混凝土构件,按所处环境类别和结构类别确定相应的裂缝控制等级最大裂缝宽度限值。
12.平均裂缝间距与混凝土保护层厚度、纵向受拉钢筋直径、纵向受拉钢筋表面特征系数及纵向钢筋配筋率有关。
13.轴心受拉构件的平均裂缝宽度为构件裂缝区段范围内钢筋的平均伸长与相应水平处构件侧表面混凝土平均伸长之差。
14.最大裂缝宽度等于平均裂缝宽度乘以扩大系数,这个系数是考虑裂缝宽度的随机性以及长期荷载作用的影响。
15.受弯构件的最大挠度应按荷载效应的标准组合,并考虑荷载长期作用影响进行计算。
16.结构构件正截面的裂缝控制等级分为三级。
17.环境类别中一类环境是指室内正常环境。
二、选择题1.减少钢筋混凝土受弯构件的裂缝宽度,首先应考虑的措施是[ a ]。
钢筋混凝土构件的变形裂缝及混凝土结构的耐久性
二、平均裂缝间距
理论分析表明Lm和钢筋直径 与有效配筋率比值有关
试验分析表明Lm还与混凝土 保护层厚度有关
wm ls lc smlm cmlm
wm 三 s、m (1平 均csmm )裂lm 缝 宽c s度mlm
sm
sk
sk
Es
wm
c
sk
Es
lm
一般构件: c 0.85
四、最大裂缝宽度
(
' f
0 )h0
2、ck裂缝截(面'f应M变k0 )bh02
' f
(b'f b)h'f bh0
sm cm
sm
sk
sk
Es
Mk
Ash0 Es
3、裂缝截面平均应变 cm
和
cck
c
ck Ec
c
(
' f
Mk
0 )bh02Ec
(
cm 4、bMh短02kE期c 刚度Bs表达E式s A刚shE0度2 计算公式
外在环境:温度、湿度腐 蚀性介质等。
技术措 施和构 造要求
弹塑性材料: B M
sm cm
h0
受弯构件的短期刚度
Bs
Bs
Mk
Mk
sm cm
M k h0
sm cm
h0
Mcr
第Ⅰ阶段
弹性材料: EI M
弹塑性材料: B M
sm cm
h0
二、受弯构件的短期刚度Bs
Bs
Mk
Mk
sm cm
M k h0
sm cm
1、截面的h0平均曲率
受压区混凝土的面积 sk
ck
和
sk
构件弯曲刚度-概述说明以及解释
构件弯曲刚度-概述说明以及解释1.引言1.1 概述构件弯曲刚度是指构件在承受外力作用下发生弯曲时所表现出的抵抗变形的能力。
在工程领域中,构件弯曲刚度是一个重要的参数,它直接影响着结构的稳定性和持久性能。
构件弯曲刚度的概念可以从两个方面来理解。
首先,从力学角度来看,构件弯曲刚度是指在给定的外力作用下,构件所发生的弯曲变形与所施加力矩的比值。
其数值越大,说明构件越难被弯曲和变形,具有较高的刚度。
其次,从工程设计角度来看,构件弯曲刚度反映了结构对外界荷载的抵抗能力。
在实际工程中,为了确保结构的稳定性和安全性,需要合理选取构件的弯曲刚度。
构件弯曲刚度受多种因素的影响。
首先,构件的材料性质是影响弯曲刚度的重要因素之一。
不同材料具有不同的弯曲刚度,如强度高的材料往往具有较高的弯曲刚度。
其次,构件的几何形状对弯曲刚度也有着重要的影响。
构件的截面形状和尺寸大小会直接影响构件的刚度。
此外,外部环境条件以及构件与其他构件之间的连接方式也会对弯曲刚度产生一定的影响。
在实际工程设计中,构件弯曲刚度的重要性不可忽视。
具有较高弯曲刚度的构件可以有效地抵抗外界荷载的作用,提高结构的稳定性和安全性。
同时,弯曲刚度也与结构的变形和挠度密切相关。
通过合理设计和加强构件的弯曲刚度,可以降低结构的变形,提高结构的使用寿命。
为了提高构件的弯曲刚度,可以采取多种方法。
首先,选用合适的材料,如高强度材料或具有较高刚度的材料,可以有效提高构件的弯曲刚度。
其次,通过改变构件的截面形状和尺寸,可以增加构件的刚度。
此外,采用适当的连接方式和支撑结构,也可以有效增加构件的弯曲刚度。
总之,构件弯曲刚度在工程设计中扮演着重要的角色。
了解构件弯曲刚度的定义、影响因素以及提高方法,对于设计出稳定可靠的工程结构具有重要意义。
在未来的研究和实践中,我们应该进一步深入研究构件弯曲刚度的理论与应用,为工程结构的设计和施工提供更准确、可靠的指导。
1.2文章结构1.2 文章结构本文将按照以下结构进行阐述构件弯曲刚度的相关内容:1. 引言:在引言部分,将对构件弯曲刚度的概念进行概述,介绍本文的目的和重要性。
混凝土结构原理第9章 正常使用极限状态验算
混凝土的徐变、收缩造成梁截面弯曲刚度降低,挠度随时 间增长。计算挠度时必须采用按荷载效应的标准组合并考虑荷 载效应的长期作用影响的刚度B。
1.荷载长期作用下刚度降低的原因
(1)混凝土的徐变 裂缝间受拉混凝土的应力松弛以及 混凝土和钢筋的徐变滑移,使受拉钢筋的平均应变和平均应力 随时间而增大;裂缝的发展,受拉混凝土退出工作;受压混凝 土的塑性发展,内力臂减小。
刚度是反映力与变形之间的关系:
s Ee 应力-应变: M EI ×f 弯矩-曲率: EI P 48 × 3 × f 荷载-挠度: (集中荷载) l EI V 12 3 d(两端刚接) 水平力-侧移: h
9.3.1
截面弯曲刚度的概念及定义
对于弹性均质材料截面,EI为常数,M-f 关系为直线。 钢筋混凝土是不均质的非弹性材料,因此受弯过程中EI不 是常数。
9.3.2
钢筋混凝土受弯构件的短期刚度Bs
2.物理关系
e sq
s sq
Es
,
s cq e ck Ec
x h0
sc wsc
C
3.平衡关系
M q C h h0 ws cq x h0 b hh0 M q T hh0 s sq As hh0
ssAs
hh0
9.3.2
“扩大系数”主要考虑两种情况:1)裂缝宽度的不均匀性,
采用扩大系数t;2)荷载长期作用下混凝土的收缩以及受力 混凝土的应力松弛、滑移徐变导致裂缝间受拉混凝土不断退 出工作,采用扩大系数tl。
9.2.4
最大裂缝宽度及其验算
最大裂缝宽度的计算
wmax t l ws ,max
s sk t t l wm 0.77 t t l y lm Es
第 8 章 弯曲刚度
例题 8-2
F
A
a
q
a
C
叠加法求A截面 B 的转角和C截面 的挠度. 解:
B
Fa 2 FA 4 EI
Fa 3 w FC 6 EI
F
A
a
=
FA C
wFC
a
q
+
B
A
a
qA C
wqC
a
qa 3 qA 3 EI 5 qa4 w qC 24 EI
d w M 2 EI dx
2
w
d 2w 0,M 0 2 dx M M
d 2w 0,M 0 2 dx
M M
本书所采 用的情况
x
x
d w M 2 EI dx
2
w
d w M 2 EI dx
2
使用条件:弹性范围内工作的细长梁。
EIw( x ) M ( x )
EIw( x ) M ( x )dx C 1
41ql 4 24 EI
§6 简单静不定梁
q
A
FAy
a
C
a
B
FBy
F
y
0 , FAy FBy 2qa 0.
0 , FBy 2a 2qa a 0.
M
A
1.静定梁:梁的未知力个数等于独立静力方程的个数 利用静力平衡方程就可以求出所有的未知力。
q
A
FAy
a
C
§2 小挠度微分方程及其积分 一、 小挠度微分方程
1 M( x ) ( x ) EI z
曲率与弯矩的关系
B
1 3 2 ( x ) 2 dw 1 dx d 2w dx 2
混凝土结构重点名词解释及相关概念
可靠性:在正常设计,正常施工,正常使用的情况下完成预定功能的能力。
建筑结构的功能(三性):安全性,适用性,耐久性。
可变系数:1.2可变荷载占优势,1.35永久荷载占优势。
结构的极限状态分为:承载能力极限状态,正常使用极限状态。
荷载的标准值是荷载的基本代表值(下标K表示)——验算变形和裂缝宽度荷载设计值(=标准值×荷载分项系数,恒荷载分项系数1.2,动1.4)——计算截面承载力材料强度设计值(=材料强度标准值÷材料强度分项系数,γc=1.4)——验算截面承载力内力标准值(如弯矩,轴向力)由内力标准值计算所得立方体抗压强度(fcu,k)测试方法:边长150mm立方体为标准试件,在标准条件下(20±3℃,≥90%湿度)养护28天,用标准试验方法测得的具有95%保证率的立方体抗压强度,用符号C表示,C30表示fcu,k=30N/mm2 影响因素:试件尺寸,试验方法(是否有润滑剂),加载速度(通常取每秒0.2~0.3N/mm2),加载龄期。
轴心抗压强度(fc):试验的标准试件为棱柱体(高宽比越大强度越小)。
抗拉强度(ft)测定:常常采用立方体或圆柱体劈拉试验。
ft=2p/πdl徐变:结构或材料承受的荷载不变,而应变和变形随时间增长的现象称为徐变。
徐变主要与时间参数有关。
影响因素:初始应力;内在结构;环境。
即应力大小,骨料弹性性质,混凝土组成(水灰比),加载龄期,混凝土的制作方法、养护条件。
徐变对结构的影响:结构的变形增加(如受弯构件的挠度);截面中应力重分布(轴心受压构件);引起预应力损失。
混凝土与钢筋的粘结:包括沿钢筋长度的粘结和钢筋端部的锚固。
光圆钢筋与混凝土的粘结作用组成:钢筋与混凝土接触面上的胶结力;混凝土收缩握裹钢筋而产生摩擦力;钢筋表面凹凸不平与混凝土之间的机械咬合作用力。
变形钢筋的粘结:主要来自钢筋表面凸出的肋对混凝土的挤压而产生的机械咬合作用。
偏心受拉构件正截面的承载力计算,按纵向拉力N的位置不同,可分为大、小偏心受拉。
混凝土结构设计原理截面抗弯刚度的取值课件ppt
第八章 钢筋混凝土构件的变形、 裂缝及混凝土结构的耐久性
2021/7/3
混凝土结构设计原理
§8.1钢筋混凝土受弯构件的挠度验算
8.1.1截面弯曲刚度的概念及其定义 材料力学中,匀质弹性材料梁的跨中挠度为
f S M l02 EI
式中 S ——与荷载类型和支承条件有关的系数; EI——梁截面的抗弯刚度。
=1;
直接承受
= 重复荷载的构件,取ψ 1 c-最外层纵向受拉钢筋外边缘至受拉区底边的距离:
式中 te ——按有效受拉混凝土面积计算的纵向受拉
钢筋配筋率, te
As A te
,当 te0.0时 1 , t= e 0 取 .01
2021/7/3
混凝土结构设计原理
Ate ——有效受拉混凝土面积。对轴心受拉构件,取 构件截面面积 ;对受弯构件,近似取
2021/7/3
混凝土结构设计原理
截面抗弯刚度的取值:
用Bs表示钢筋混凝土梁在荷载标准效应组合作用下的截 面抗弯刚度,简称为短期刚度 。
用B表示钢筋混凝土梁在荷载效应标准组合并考虑荷 载长期作用下的截面抗弯刚度,称为构件刚度。
▪ 计算钢筋混凝土受弯构件的挠度,实质上是计算它
的抗弯刚度,一旦求出抗弯刚度后,就可以用B代替, 然后按照弹性材料梁的变形公式即可算出梁的挠度。
A te0.5b h(bf b)hf
Ate
受拉区有效受拉混凝土截面面积的取值
2021/7/3
混凝土结构设计原理
s k ——按荷载短期效应组合计算的裂缝截面处纵向
受拉钢筋的应力,根据使用阶段(Ⅱ阶段)的应力状态
及受力特征计算:
对受弯构件
sk
Ms 0.87Ash0
钢筋混凝土结构辅导资料十四
钢筋混凝土结构辅导资料十四主题:第九章钢筋混凝土构件的变形和裂缝计算的辅导资料——钢筋混凝土受弯构件挠度验算;钢筋混凝土构件裂缝宽度验算。
学习时间:2014年12月29日-2015年1月4日内容:这周我们学习第九章的第一部分,学习本章时,重要的是要搞清一些概念和原理,而对一些公式,例如截面弯曲刚度和裂缝最大宽度的计算公式以及一些系数的计算公式是不要求背的,但对这些系数的物理意义是要知道的。
一、学习要求1.理解钢筋混凝土构件截面弯曲刚度的定义、基本表达式、主要影响因素以及裂缝间钢筋应变不均匀系数的物理意义;2.掌握简支梁、板的挠度验算方法;基本内容:二、主要内容根据钢筋混凝土结构物的某些工作条件以及使用要求,在钢筋混凝土结构设计中,除需要进行承载能力极限状态计算外,还应进行正常使用极限状态(即裂缝与变形)的验算,同时还应满足在正常使用下的耐久性的要求。
对结构构件进行变形验算和控制的目的是出于对结构的功能、非结构构件的损坏和外观的要求。
结构构件产生过大的变形会损害甚至使构件完全丧失所应负担的使用功能,如吊车梁变形过大将使吊车轨道歪斜而影响吊车的正常运行;构件过度变形会引起非结构构件的破坏,如建筑物中脆性隔墙(如石膏板、灰砂砖等)的开裂和损坏很多是由于支承它的构件变形过大所致;构件出现明显下垂的挠度会使房屋的使用者产生不安全感。
我国《规范》将配筋混凝土结构构件裂缝控制等级划分为三级。
一级——严格要求不出现裂缝的构件,按荷载效应的标准组合进行计算时,钢筋混凝土构件的变形︑裂缝及混凝土结构的截面弯曲刚度的概念和定短期刚度Bs ,裂缝间纵向受拉钢筋应变不均匀系数,截最小刚度原则与挠度验算,影响Bs 的主要因裂缝出现、分布和开展的机理 平均裂缝间距和平均裂缝宽度 最大裂缝宽度及其验算方法,影响裂缝宽度的主混凝土构件截面延性的概念 受弯构件的截面曲率延性系数,偏心受压构件截面曲率延混凝土结构耐久性的概念及其主要影响因素 混凝土的碳化,钢筋的锈蚀,耐久性构件受拉边缘混凝土不应产生拉应力。
材料力学-6-弯曲刚度
• 引言 • 弯曲刚度的基本原理 • 弯曲刚度的实验验证 • 弯曲刚度在工程中的应用 • 弯曲刚度的优化设计 • 结论与展望
01
引言
主题简介
01
弯曲刚度是材料力学中一个重要 的概念,主要研究材料在受到弯 曲力作用时的行为和性能。
02
弯曲刚度涉及到材料抵抗弯曲变 形的能力,对于工程结构的稳定 性、承载能力和使用寿命具有重 要意义。
车辆行驶安全
弯曲刚度影响桥梁的平顺性,从而 影响车辆行驶的安全性和舒适性。 弯曲刚度不足可能导致桥面不平整, 增加车辆颠簸和振动。
建筑度对其抗震性 能具有重要影响。在地震作用下, 具有较高弯曲刚度的建筑能够更 好地抵抗地震引起的振动,减少
破坏。
风载响应
弯曲刚度也决定了建筑结构对风 载的响应。弯曲刚度较大的建筑 能够更好地承受风力作用,减少
机械零件
在机械零件的设计中,弯曲刚度是评估零件性能的重要指标。例如,在汽车和 航空器的设计中,需要确保关键部件的弯曲刚度满足要求,以保证车辆和飞机 的安全性和稳定性。
03
弯曲刚度的实验验证
实验设备与材料
01
02
03
试样
选择具有代表性的材料试 样,如金属、塑料等。
实验设备
包括万能材料试验机、测 力计、测量工具等。
轻质材料
选择轻质材料,如铝合金、碳纤维复合材料等,以减小结构重量, 提高弯曲刚度。
高强度材料
选用高强度材料,如高强度钢、钛合金等,以提高结构承载能力, 降低弯曲变形。
材料属性优化
通过合金化、热处理等方法优化材料的力学性能,如提高弹性模量、 抗拉强度等,从而提高弯曲刚度。
结构设计优化
合理布局
第8章弯曲刚度(完整版)
因此,对于某根具体的梁,只要列出它的弯矩 方程M = M(x),将其代入 EIw( x ) M ( x ) ,对
x连续积分后有:
EIw M ( x ) dx C1 EIw [ M ( x ) dx ] dx C1 x C 2
利用梁的位移条件确定式中的积分常数,就得转角 方程 = (x) = w'(x)和挠度方程 w = w (x) ,从而也 就可以求某个具体横截面处的转角和挠度了。
工程力学教程电子教案
弯曲刚度
5
1.梁的曲率与位移
根据上一章所得 到的结果,弹性范围 内的挠度曲线在一点 的曲率与这一点处横 截面上的弯矩、弯曲
刚度之间存在下列关
系:
M = EI
1
工程力学教程电子教案
弯曲刚度
6
2.挠度与转角的相互关系 梁在弯曲变形后,横截面的位置将发生改变, 这种位置的改变称为位移。梁的位移包括三部分:
工程力学教程电子教案
弯曲刚度
19
(2)位移边界条件
积分法中常数由梁的约束条件与连续条件确定。约束 条件是指约束对于挠度和转角的限制: 在固定铰支座和辊轴支座处,约束条件为挠度等于
零:w=0;
在固定端处,约束条件为挠度和转角都等于零: w=0, θ =0。 连续条件是指,梁在弹性范围内加载,其轴线将弯曲 成一条连续光滑曲线,因此,在集中力、集中力偶以及
工程力学教程电子教案
弯曲刚度
9
3.研究梁的挠度和转角的目的:
(1) 对梁作刚度校核,即检查梁弯曲时的最大 挠度是否超过按要求所规定的容许值;
(2) 解超静定梁。如下图所示梁。
F1 A FA FC
C
F2 B FB
结构中的各种刚度
结构中的各种刚度刚度:结构或构件抵抗变形的能力,包括构件刚度和截面刚度,按受力状态不同可分为轴向刚度、弯曲刚度、剪变刚度和扭转刚度等。
对于构件刚度,其值为施加于构件上的力(力矩)与它引起的线位移(角位移)之比。
对于截面刚度,在弹性阶段,其值为材料弹性模量或剪变模量与截面面积或惯性矩的乘积。
首先得从刚度说起。
刚度是指:单位变形条件下,结构或构件在变形方向所施加的力的大小。
在结构静力或动力分析时需要用到。
如用位移法分析结构内力时要用到刚度矩阵,计算地震作用或风振影响时需要用到结构的刚度参数。
还有在设计动力机器基础时也需要用到结构刚度参数。
可以看有关结构力学或结构动力学的书。
举个两个简单的例子以方便理解:用力弯折直径和长度相等的实心钢管和木头,哪个费劲哪个刚度(弯曲刚度)就大。
很显然是钢管的大,你有可能把木头弯折,但要弯折钢管就很难吧!用力弯折长度相等而直径不等的实心钢管,当然是直径小的容易弯折吧,那就是直径小的刚度小了。
所以刚度是和材料特性及截面特性直接相关,当然线刚度还和长度有关了!一般能满足F=k△,F为作用力,△为位移,k即为刚度,所以刚度物理意义为单位位移时所产生的力。
k可以是某些量的函数,即可为表达式。
由F的不同,叫法不同。
另外就是我们要说的刚度叫线刚度,即单位长度上的刚度。
比如,我们在用反弯点法计算多层框架水平荷载作用下内力近似计算时。
计算柱的水平剪力时,剪力与柱层间水平位移△的关系为V=(12ic/h2)△那么d=(12ic/h2)就叫柱的侧移刚度,表示柱上下两端相对有单位侧移时柱中产生的剪力。
其中ic表示柱的线刚度(即ic=EI/h),h为楼层高,EI是柱的抗弯刚度(M=EI(1/p),M为弯矩,(1/p)为曲率,也满足F=k△形式)。
另外还可用D值法,即考虑了梁柱的刚度比变化,因为柱两端梁的刚度不同,即对柱的约束不同,那么它的反弯点,即M=0的点会随之移动,那端强,反弯点离它越远。
强度、刚度及弹性模量的区别和联系
强度、刚度及弹性模量的区别和联系1、材料、机械零件和构件抵抗外力而不失效的才能。
强度包括材料强度和构造强度两方面。
强度问题有狭义和广义两种涵义。
狭义的强度问题指各种断裂和塑性变形过大的问题。
广义的强度问题包括强度、刚度和稳定性问题,有时还包括机械振动问题。
强度要求是机械设计的一个根本要求。
材料强度指材料在不同影响因素下的各种力学性能指标。
影响因素包括材料的化学成分、加工工艺、热处理制度、应力状态,载荷性质、加载速率、温度和介质等。
按照材料的性质,材料强度分为脆性材料强度、塑性材料强度和带裂纹材料的强度。
①脆性材料强度:铸铁等脆性材料受载后断裂比较突然,几乎没有塑性变形。
脆性材料以其强度极限为计算强度的标准。
强度极限有两种:拉伸试件断裂前承受过的最大名义应力称为材料的抗拉强度极限,压缩试件的最大名义应力称为抗压强度极限。
②塑性材料强度:钦钢等塑性材料断裂前有较大的塑性变形,它在卸载后不能消失,也称剩余变形。
塑性材料以其屈服极限为计算强度的标准。
材料的屈服极限是拉伸试件发生屈服现象〔应力不变的情况下应变不断增大的现象〕时的应力。
对于没有屈服现象的塑性材料,取与0。
2%的塑性变形相对应的应力为名义屈服极限,用σ0。
2表示。
③带裂纹材料的强度:常低于材料的强度极限,计算强度时要考虑材料的断裂韧性〔见断裂力学分析〕。
对于同一种材料,采用不同的热处理制度,那么强度越高的断裂韧性越低。
按照载荷的性质,材料强度有静强度、冲击强度和疲劳强度。
材料在静载荷下的强度,根据材料的性质,分别用屈服极限或强度极限作为计算强度的标准。
材料受冲击载荷时,屈服极限和强度极限都有所进步〔见冲击强度〕。
材料受循环应力作用时的强度,通常以材料的疲劳极限为计算强度的标准〔见疲劳强度设计〕。
此外还有接触强度〔见接触应力〕。
按照环境条件,材料强度有高温强度和腐蚀强度等。
高温强度包括蠕变强度和持久强度。
当金属承受外载荷时的温度高于再结晶温度〔已滑移晶体可以回复到未变形晶体所需要的最低温度〕时,塑性变形后的应变硬化由于高温退火而迅速消除,因此在载荷不变的情况下,变形不断增长,称为蠕变现象,以材料的蠕变极限为其计算强度的标准。
钢筋混凝土构件的变形
0 . 87 0 . 12 ( 1 r )( f 其中:
h0 2 ) e
e s e0 y s
s 1
1 (l0 h) 2 4000e0 h0
当l0 h 14时,取s 1.0
四、最大裂缝宽度及其验算
1、确定最大裂缝宽度的方法
最大裂缝宽度由平均裂缝宽度乘以“扩大系数”得到,“扩大系数”主要 考虑以下两种情况: (1)荷载标准组合下裂缝宽度的不均匀性; (2)荷载长期效应 2、最大裂缝宽度的计算
· 裂缝出现瞬间,裂缝处的混凝土退出工作,应力降至零,砼向裂缝两侧回 缩,钢筋和混凝土之间产生粘结应力,混凝土的拉应力由裂缝处的零逐渐增 大,达到L后,粘结应力消失; · 粘结应力作用长度L与粘结强度有 关,与钢筋表面积大小有关,与配 筋率有关 · 弯矩继续增大,在离裂缝截面>L 的另一薄弱截面易出现新的裂缝 · 平均裂缝间距应为1.5l · 在荷载长期作用下,裂缝开展宽度增大, 原因为: a)混凝土的滑移徐变和拉应力松弛, b)混凝土的收缩 c)荷载的变动导致钢筋直径的变化引起粘结强度的降低
根据平截面假定:
1 sm cm r ho
r—与平均中和轴相应的平均曲率半径 sm , cm —分别为纵向受拉钢筋重心处的平均拉应变和受压区边缘砼的平均压 应变
ho —截而的有效高度
2.裂缝截面的应变 ck 和
M k ho BS sm cm
Mk
(4)使超静定结构能更好地进行内力重分布。
二、受弯构件截面曲率延性系数 1、受弯构件截面曲率延性系数表达式
5)h0增大,Bs增大显著
2.配筋率对承载力和挠度的影响
配筋率对承载力、刚度及挠度的影响如下图:
截面弯曲刚度指
截面弯曲刚度指截面弯曲刚度是指在构件的弯曲变形过程中,截面抵抗弯曲载荷的能力。
具体来说,截面弯曲刚度是构件截面上单位长度所承受的弯矩引起的单位侧向位移。
在结构设计和分析中,截面弯曲刚度是一个重要的参数,能够反映构件的刚度和受力特性。
截面弯曲刚度的计算通常基于弯曲理论和材料力学的基本原理。
截面弯曲刚度与构件的几何形状、材料特性有关。
常见的截面形状有矩形、圆形、T型、I型等。
不同的截面形状和尺寸会导致不同的截面弯曲刚度。
对于矩形截面来说,其截面弯曲刚度可以通过以下公式计算得到:EI = (b * h^3) / 12其中,EI表示截面的弯曲刚度,b表示矩形截面的宽度,h表示矩形截面的高度。
这个公式表明,截面弯曲刚度与截面高度的三次方成正比,与截面宽度成反比。
因此,当截面高度增加时,截面弯曲刚度会增加;当截面宽度增加时,截面弯曲刚度会减小。
对于其他形状的截面,如圆形、T型和I型,其截面弯曲刚度的计算更为复杂,需要使用更多的公式和理论。
例如,圆形截面的弯曲刚度可以通过以下公式计算得到:EI = (π * d^4) / 64其中,EI表示截面的弯曲刚度,d表示圆形截面的直径。
值得注意的是,截面弯曲刚度与材料的弹性模量和惯性矩有关。
弹性模量是材料的刚度指标,反映材料对应力的抵抗能力。
惯性矩则反映了构件抵抗截面变形的能力。
因此,在材料的选择和设计过程中,需要考虑到材料的弹性模量和惯性矩对截面弯曲刚度的影响。
在实际工程中,截面弯曲刚度的计算和分析是非常重要的。
它能够帮助工程师确定构件的受力性能和刚度要求。
在结构设计中,截面弯曲刚度的计算是确定构件截面尺寸和形状的关键一步。
通过合理的设计和计算,可以提高构件的抗弯能力,减小位移和变形,确保结构的安全性和稳定性。
总之,截面弯曲刚度是评估构件抗弯能力的重要参数,它与构件的几何形状、材料特性密切相关。
通过合理的设计和计算,可以提高构件的弯曲刚度,确保结构的安全性和稳定性。
截面弯曲刚度
截面弯曲刚度本文将从原理、定义和应用三个方面讨论截面弯曲刚度,从而帮助读者对截面弯曲刚度有更深入的了解。
一、原理截面弯曲刚度被定义为一种形状变形的度量,它反映了材料的弹性性能。
主要取决于材料的弹性模量和相应截面的形状及尺寸。
材料弹性模量是衡量物体弹性性能的重要参数,它描述了材料在拉伸或压缩条件下弹性变形的大小。
当一个对象受到均匀加载时,截面的形状及尺寸也会发生变化。
物体的截面变形主要由其截面弯曲刚度决定,这是物体在受到均匀加载情况下截面形状变形的快慢程度。
二、定义截面弯曲刚度是衡量物体纵向弯曲变形能力的度量,其定义如下:截面弯曲刚度定义为一个对象在受到均匀加载下发生的截面形状变形的速度,以材料的弹性模量以及相应截面形状及尺寸为参数。
用数学符号表示为:K = E/ (h*t)其中:K截面弯曲刚度;E材料的弹性模量;h截面的水平高度,即宽度;t截面的厚度;三、应用截面弯曲刚度对于对象弯曲变形性能即纵向形变至关重要。
截面弯曲刚度值越大,表明材料在受到均匀加载情况下形状变形越缓慢,物体的纵向弯曲变形性能越好。
在消费品行业,截面弯曲刚度的值是衡量纸张的弹性性能的一个重要指标,也是衡量和比较不同纸张的一个重要指标之一。
在结构工程中,截面弯曲刚度的值也是非常重要的,因为它可以反映出某一结构体的形变性能,如果截面弯曲刚度值不够大,那么结构体可能会因形变而发生损坏。
因此,截面弯曲刚度值在工程多个领域都有着重要的作用,它反映了材料的弹性性能,因此说明一种材料在受到均匀加载情况下,其截面形状变形的快慢程度,可以为实际应用提供很大的参考价值。
总之,本文从原理、定义和应用三个方面讨论了截面弯曲刚度,即物体在受到均匀加载情况下截面形状变形的快慢程度的度量,总结为取决于材料的弹性模量和相应截面的形状及尺寸,可以反映出材料的弹性性能,其中被大量用于消费品行业和结构工程领域。
刚度介绍
9.1.2 短期刚度B s截面弯曲刚度不仅随荷不载增大而减小,而且还将随荷载作用时间的增长而减小。
首先讨论荷载短期作用下的截面弯曲刚度(简称为短期刚度),记作B s。
1 .平均曲率取承受两个对称集中荷载的简支梁在荷载间的纯弯段进行讨论。
左图为裂缝出现后的第Ⅱ阶段,在纯弯段内测得的钢筋和混凝土的应变情况:1) 沿梁长,受拉钢筋的拉应变和受压区边缘混凝土的压应变都是不均匀分布的,裂缝截面处最大,裂缝间为曲线变化;2) 沿梁长,中和轴高度呈波浪形变化,裂缝截面处中和轴高度最小;3) 如果量测范围比较长(≥ 750mm) ,则各水平纤维的平均应变沿梁截面高度的变化符合平截面假定。
由于平均应变符合平截面的假定,可得平均曲率式中r —与平均中和轴相应的平均曲率半径;εsm、εcm—分别为纵向受拉钢筋重心处的平均拉应变和受压区边缘混凝土的平均压应变;在此处,第二个下脚码m 表示平均值; h0—截面的有效高度。
因此,短期刚度式中, M k为按荷载标准组合计算的弯矩值。
2. 裂缝截面的应变εsk和εck在荷载效应的标准组合也即短期效应组合作用下,裂缝截面纵向受拉钢筋重心处的拉应变εsk和受压区边缘混凝土的压应变εck按下式计算式中σsk , σck—分别为按荷载效应的标准组合作用计算的裂缝截面处纵向受拉钢筋重心处的拉应力和受压区边缘混凝土的压应力;E c'、E c—分别为混凝土的变形模量和弹性模量;ν —混凝土的弹性特征值。
σsk和σck可按右图所示第Ⅱ阶段裂缝截面的应力图形求得。
对受压区合力点取矩,得受压区面积为(b f' - b )h f'+ b x0 =( γf' + ξ0 )bh0,将曲线分布的压应力换算成平均压应力ωσck,再对受拉钢筋的重心取矩,则得式中:ω-压应力图形丰满程度系数;η—裂缝截面处内力臂长度系数;ξ0—裂缝截面处受压区高度系数,ξ0 =x0 /h0;γf' —受压翼缘的加强系数(相对于肋部面积),γf' =(b f '-b) h f '/bh 0 。
受弯构件的刚度计算
s—k —按荷载短期效应组合计算的裂缝截面处纵向受拉
钢筋的应力,根据使用阶段(Ⅱ阶段)的应力状态及受力
特征计算:
对受弯构件
sk
Ms 0.87 Ash0
式中 M s——按荷载短期效应组合计算的弯矩值,即按 全部永久荷载及可变荷载标准值求得的弯矩标准值。
三、 长期刚度Bl
长期刚度Bl 是指考虑荷载长期效应组合时的刚度值。在 荷载的长期作用下,由于受压区混凝土的徐变以及受拉区 混凝土不断退出工作,即钢筋与混凝土间粘结滑移徐变、 混凝土收缩,致使构件截面抗弯刚度降低,变形增大,故 计算挠度时必须采用长期刚度Bl 。《规范》建议采用荷载 长期效应组合挠度增大的影响系数θ来考虑荷载长期效应对 刚度的影响。长期刚度按下式计算:
同的适筋梁,ρ小,变形大些;截面抗弯刚度小些;
③沿构件跨度,弯矩在变化,截面刚度也在变化,即使 在纯弯段刚度也不尽相同,裂缝截面处的小些,裂缝间截 面的大些;
④随加载时间的增长而减小。构件在长期荷载作用下, 变形会加大,在变形验算中,除了要考虑短期效应组合, 还应考虑荷载的长期效应的影响,故有长期刚度Bs 和短期 刚度Bl 。
Bl
Mq (
Mk 1)
Mk
Bs
式中Mk——荷载效应的标准组合值;
Mq——按荷载长期效应组合下计算的弯矩值,即按永久荷 载标准值与可变荷载准永久值计算。
三、 长期刚度Bl
2.0 0.4
式中 , ——分别为受压及受拉钢筋的配筋率。
此处反映了在受压区配置受压钢筋对混凝土受压徐 变和收缩起到一定约束作用,能够减少构件在长期荷
当hf′>0.2h0时,取hf′>0.2h0。
二、短期刚度Bs
ρ ψ
E————纵钢向筋受的拉弹钢性筋模的量配E筋s和率混,凝土EbcA弹hs0性模;量的比值;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、 2、 3、 4、
保证建筑的使用功能要求 防止结构性能与设计假定不符 防止对非结构构件产生不良影响 保证人们的感觉在可接受程度内
对均质弹性材料梁的跨中挠度:
2 Ml0 2 f S Sl0 EI M EI
对混凝土受弯构件:
在混凝土结构设计中,用到截面弯曲刚度时可采用 简化方法: 1) 对要求不出现裂缝的构件:截面弯曲刚度采用
0.85EC I 0
2)验算正常使用阶段构件挠度时,构件正常使用时是 带裂缝工作,截面弯曲刚度:定义为:
0 0 • 在 曲线 M 上 0.5M u 0.7M u 任一点与坐标原点相连的割线斜率
----梁的截面曲率,即单位长I
M
• 截面刚度:使截面产生单位转角所需施加的弯矩值;
当梁的截面形状、尺寸和材料已知,EI为常数; 钢受弯构件,在正常使用阶段的荷载效应不会使材料超出弹性 范围,EI 为常数; 混凝土受弯构件:EI 是变化的
区段内,
B tg
M