江西省九江市九年级上学期期中数学试卷

合集下载

江西省九江市第三中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

江西省九江市第三中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

江西省2025届九年级期中综合评估数学▶上册◀说明:共有六个大题,23个小题,满分120分,考试时间120分钟.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后括号内错选、多选或未选均不得分.1.若关于的函数是二次函数,则的值为( )A.1B.2C.0D.32.以下是几种化学物质的结构式,其中文字上方的结构式图案属于中心对称图形的是( )A.甲醛B.甲烷 C.水 D.乙酸3.已知关于的一元二次方程有一个根为,则另一根为( )A.7B.3C.D.4.如图,四边形是的内接四边形,连接,,若,则的度数是( )A. B. C. D.5.在平面直角坐标系中,将抛物线绕顶点旋转得到新抛物线,再将新抛物线沿轴翻折得到抛物线,则,,的值分别是( )A.2,,11B.2,,5C.,,11D.,8,56.某校计划举办劳动之星颁奖典礼,想在颁奖现场设计一个如图1所示的抛物线型拱门入口.要在拱门上顺次粘贴“劳”“动”“之”“保”(分别记作点,,,)四个大字,要求与地面平行,且,抛物线最高点的五角星(点)到的距离为,,,如图2所示,则点到的距离为( )图1 图221.124.1~x 31my x x =-+m x 2520x x m -+=2-7-3-ABCD O OA OC 86AOC ∠=︒ADC ∠94︒127︒136︒137︒285y ax x =-+P 180︒x22y x bx c =++a b c 8-8-2-8-2-A B C D BC BC AD ∥E BC 0.6m 2m BC =4m AD =C ADA. B. C. D.二、填空题(本大题共6小题,每小题3分,共18分)7.一元二次方程的解为______.8.在平面直角坐标系中,点关于原点对称的点的坐标是______.9.如图,是半圆的直径,,为的中点,连接,,则的度数为______.10.《九章算术》“勾股”章有一题:“今有二人同所立.甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会,问甲、乙行各几何.”大意是说:已知甲、乙两人同时从同一地点出发,甲每单位时间走7步,乙每单位时间走3步.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?设甲走了步(步为古代长度单位,类似于现在的米),根据题意可列方程:____________.(结果化为一般式)11.在平面直角坐标系中,若抛物线向左平移2个单位长度后经过点,则的最大值为______.12.如图,在矩形中,连接,,,将线段绕点顺时针旋转,得到线段,连接,,当时,的周长为______三、解答题(本大题共5小题,每小题6分,共30分)13.(1)解方程:.(2)如图,将绕点逆时针旋转得到,若,且于点,求的度数.14.某件夏天T 恤的售价为100元,因换季促销,在经过连续两次降价后,现售价为81元,求平均每次降价的百分率.15.自古以来,景德镇就是中国陶瓷文化的象征,生产的瓷器闻名四方,远销世界各地.如图,这是景德镇2m 1.8m 2.4m 1.5m290x -=()2,4-BC OAB AC =D AC OD BD BDO ∠x ()()220y a x c a =-+≠()1,6-ac ABCD AC 1AB =60BAC ∠=︒AB B ()0180a α︒<≤︒BP CP DP 12PCB BAC ∠=∠DPC △()()()2131x x x x +=++ABC △A 28︒AB C ''△40C ∠'=︒AB BC '⊥E BAC ∠生产的某种瓷碗正面的形状示意图,是的一部分,是的中点,连接,与弦交于点,连接,.已知,碗深,求的长.16.如图,是的直径,点,点在上,,,请仅用无刻度的直尺按下列要求作图(保留作图痕迹).(1)如图1,在上作一点,使得是以为底边的等腰三角形.(2)如图2,在上方作一点,使得为等边三角形.图1图217.在平面直角坐标系中,已知抛物线与轴没有交点.(1)求的取值范围.(2)请直接写出抛物线顶点所在的象限.四、解答题(本大题共3小题,每小题8分,共24分)18.如图,在平面直角坐标系中,抛物线经过点.(1)求的值,并求出此抛物线的顶点坐标.(2)当时,请利用图象,直接写出的取值范围.(3)当时,请利用图象,直接写出的取值范围.19.如图,在中,,将绕点顺时针旋转,得到,连接,.(1)求证:点,,在同一条直线上.(2)若,,求的面积.AB O D AB OD AB C OA OB 18cm AB =6cm CD =OA AB O C D O 60COA ∠=︒OD AB ⊥OD E OCE △OC AB F ABF △214y x x c =-++x c 222y x xc c c =-+-24y x mx =-++()3,4A -m 20x -≤≤y 0y ≤x ABC △135BCA ︒∠=ACB △A 90︒ADE △CD CE B C D 2BC=AC =CDE △20.某主播销售一种商品,已知这种商品的成本价为20元/个,规定销售价格不低于成本价,且不高于成本价的2倍,通过前几天的销售发现,该商品每天的销售量(单位:个)与销售价格(单位:元/个)之间满足一次函数关系,部分对应数据如下表:/(元/个) (23252811)/个…540500440…(1)求出关于的函数关系式,并直接写出的取值范围.(2)求销售该商品每天的最大利润.五、解答题(本大题共2小题,每小题9分,共18分)21.追本溯源题(1)来自课本中的习题,请你完成解答,提炼方法并解答题(2).(1)如图1,,比较与的长度,并证明你的结论.方法应用(2)如图2,,是的两条弦,点,分别在,上,连接,,且,是的中点.①求证:.②若圆心到的距离为3,的半径是6,求的长.图1 图222.如图,在平面直角坐标系中,抛物线与轴相交于点和点(点在点的左侧),与轴相交于点,点与点关于轴对称,为该抛物线上一点,连接,,,.(1)求该抛物线的解析式.(2)若的面积与的面积相等,请直接写出点的横坐标.y x x y y x x AD BC = AB CDMB MD O A C MBMD AB CD AB CD =M AC BM DM =O DM O DM 25y x bx =-++x A ()5,0B A B y C D A y E AC CD DE BE BDE △ACD △E(3)当点在第一象限时,连接,设的面积为,求的最大值.六、解答题(本大题共12分)23.综合与实践如图,是等边内一点,,连接,将线段绕点顺时针旋转得到,连接.初步感知(1)如图1,的延长线与交于点,求的度数.特例应用(2)如图2,作点关于的对称点,若点在的角平分线上.①当点与点重合时,的长为______;②当点与点不重合时,判断四边形的形状,并证明.拓展延伸(3)如图2,在(2)的条件下,取的中点,记为,当点从点运动到点时,请直接写出点运动的路径长.图1图2E CE ECD △S S P ABC △2AB =CP CP C 60︒CE AE BP AE Q AQB ∠E ACF P ABC △BD P F BP P F BPEF FPG P B D G江西省2025届九年级期中综合评估数学参考答案1.B2.C3.A4.D5.A 提示:由旋转和翻折可知,,抛物线的顶点的坐标为.点关于轴的对称点的坐标为,最后得到的抛物线的解析式为,.故选A.6.B 提示:建立如图所示的平面直角坐标系.由题意易知点的坐标为,点的坐标为,则点的坐标为,故设抛物线的解析式为,将点的坐标代入上式,得,抛物线的解析式为.点的横坐标为2,点的纵坐标为,点到的距离为.故选B.7.8.9.10.11.912.3或或 提示:,,,,,.如图1,当时,此时.易证得为等边三角形,的周长为;2a =8b =-∴2285y x x =-+P ()2,3- ()2,3P -x ()2,3∴()222232811y x x x =-+=-+11c ∴=C ()1,0B ()1,0-E ()0,0.6()()11y a x x =+-E 0.6a =-∴()()0.611y x x =-+- D ∴D ()()0.62121 1.8-⨯+⨯-=-∴C AD 1.8m 3x =±()2,4-22.5︒24020049x x -=2+3+1AB = 90ABC ∠=︒60BAC ∠=︒1CD ∴=22AC AB ==BC ∴==60α=︒1302PCB BAC ∠=︒=∠DPC △DPC ∴△33CD =如图2,当时,此时,,.易证得,,的周长为;如图3,当时,此时,,,.的周长为.综上所述,的周长为3或或.图1 图2 图313.(1)(解法不唯一)解:,,,.(2)解:将绕点逆时针旋转得到.,.又,,.14.解:设平均每次降价的百分率为.由题意得,解得,(舍去).答:平均每次降价的百分率为.15.解:是的中点,,.设,则.在中,由勾股定理得,120α=︒1302PCB BAC ∠=︒=∠30PBC PCB ∴∠=∠=︒1PC BP ∴==DCP BPC ≌△△DP BC ∴==DPC ∴△2CD PC DP ++=+180a =︒1302PCB BAC ∠=︒=∠2PC AC ∴==22AP AB ==DP ∴===DPC ∴△123CD PC DP ++=+=+DPC △2+3+()()()2131x x x x +=++ ()()1230x x x ∴+--=11x ∴=-23x = ABC △A 28︒AB C ''△28BAE ∴∠=︒40C C ∠'=∠=︒AB BC '⊥ 9050EAC C ∴∠=︒-∠=︒285078BAC BAE EAC ∴∠=∠+∠=︒+︒=︒x ()2100181x -=10.110%x ==2 1.9x =10%DAB OD AB ∴⊥19cm 2AC BC AB ∴===cm OA r =()6cm OC r =-Rt OAC △222OC AC OA +=即,解得,的长为.16.解:(1)如图1,即所求.(2)如图2,即所求.图1 图217.解:(1)抛物线与轴没有交点,,即,解得.(2)第二象限.提示:,该抛物线的顶点坐标为.,,点在第二象限.18.解:(1)把代入,得,解得.,抛物线的顶点坐标为.(2)当时,的取值范围是.(3)当时,的取值范围是或.19.解:(1)证明:是由绕点顺时针旋转得到的,,,,.()22269r r -+=394r =OA ∴39cm 4OCE △ABF △ x 240b ac ∴∆=-<10c +<1c <-()2222y x xc c c x c c =-+-=-- ∴(),c c -1c <- 1c ∴->∴(),c c -()3,4A -24y x mx =-++9344m --+=3m =-223253424y x x x ⎛⎫=--+=-++ ⎪⎝⎭∴325,24⎛⎫- ⎪⎝⎭20x -≤≤y 2544y ≤≤0y ≤x 4x ≤-1x ≥ADE△ACB △A 90︒ACB ADE ∴≌△△90CAD ∠=︒AC AD ∴=()1180452ACD ADC CAD ∴∠=∠=︒-∠=︒又,,点,,在同一条直线上.(2)由(1)可知,,.,.,.20.解:(1)设关于的函数关系式为.将,代入上式.得解得.(2)设销售该商品每天的利润为元.由题意得.,,当时,取得最大值,且最大值为4500.答:销售该商品每天的最大利润为4500元.21.解:(1).证明:,,,即.(2)①证明:是的中点,.,,,,.②如图,过点作,是垂足,连接.135BCA ∠=︒ 13545180BCA ACD ∴∠+∠=︒+︒=︒∴B C D 90CAD ∠=︒AC AD=6CD ∴===135ADE BCA ︒∠=∠= 90CDE ADE ADC ︒∴∠=∠-∠=2DE BC == 1162622CDE S CD DE ∴=⋅=⨯⨯=△y x y kx b =+()23,540()25,50023540,25500,k b k b +=⎧⎨+=⎩20,1000,k b =-⎧⎨=⎩()2010002040y x x ∴=-+≤≤W ()()()22202010002014002000020354500W x x x x x =--+=-+-=--+200-< 203540<<∴35x =W AB CD=AD BC = AD BC∴= AD AC BC AC ∴+=+ AB CD=M AC AM CM∴=AB CD = AB CD∴= AB AM CMCD ∴+=+ BMDM ∴=BM DM ∴=O ON MD ⊥N OM在中,,,22.解:(1)∵抛物线与轴相交于点和点,,解得,该抛物线的解析式为.(2.(3),令,即,解得,,点的坐标为.点与点关于轴对称,点的坐标为.设点的坐标为.设直线的解析式为.由点,的坐标可知,解得直线的解析式为.如图,过点作轴,交于点.当时,,点的坐标为,, Rt OMN △3ON =6OM =MN ∴==2DM MN ∴==25y x bx =-++x A ()5,0B 25550b ∴-++=4b =∴245y x x =-++245y x x =-++ ∴0y =2450x x -++=11x =-25x =∴A ()1,0- D A y ∴D ()1,0-E ()2,45m m m -++CE y kx t =+()0,5C ()2,45E m m m -++25,45,t mk t m m =⎧⎨+=-++⎩4,5,k m t =-+⎧⎨=⎩∴CE ()45y m x =-++D DF y ∥CE F 1x =()459y m m =-++=-+∴F ()1,9m -+9DF m ∴=-则,当时,的值最大,且最大值为,故的最大值为.23.解:(1),,即.又,,(SAS ),.,.(2②四边形为平行四边形.证明:如图1,连接.图1在等边中,平分,.又,关于对称,,,,.在等边中,,,.在等边中,,,,,,,.平分,,,,为等边三角形,()2111981922228E S DF x m m m ⎛⎫=⋅⋅=-=--+ ⎪⎝⎭∴92m =S 818S 81860ACB PCE ∠=∠=︒ ACB ACP PCE ACP ∴∠-∠=∠-∠BCP ACE ∠=∠BC AC = CP CE =BCP ACE ∴≌△△CBP CAE ∴∠=∠CBP ACB CAE AQB ∠+∠=∠+∠ 60AQB ACB ︒∴∠=∠=BPEF CF ABC △BD ABC ∠BD AC ∴⊥E F AC AF AE ∴=CF CE =AC EF ∴⊥EF BP ∴∥ PCE △60PCE ∠=︒PC CE PE ==CF PC ∴= ABC △AC BC =60ACB ∠=︒ACB PCE ∴∠=∠PCB ACE ∴∠=∠()SAS BCP ACE ∴≌△△CAE CBP ∴∠=∠BP AE =BD ABC ∠30CBP ︒∴∠=30CAE FAC CBP ∴∠=∠=∠=︒60FAE ∴∠=︒AFE ∴△,.,,四边形为平行四边形.(3.提示:将图1中与的交点记为.由(2)易知.,,,即,易求得,,.如图2,当点从点运动到点时.图2,点的运动路径为图2中的长,为的中点,连接,.,同理可得,是等边三角形.是的中点,,易求得.AE EF ∴=BP EF ∴=BP EF ∥BP EF =∴BPEF AF BP M BP AF =30FAB ABP ∠=∠=︒ AM BM∴=BP BM AF AM ∴-=-PM FM =∴30MPF ∠=︒MPF ABP ∴∠=∠PF AB ∴∥P B D PF AB ∥∴G GH H AB DH HF 112DF AB == 1DH HF ==DFH ∴△G DF 1DH DF ==∴GH =。

2020-2021学年江西省九江市九年级(上)期中数学试卷(附答案详解)

2020-2021学年江西省九江市九年级(上)期中数学试卷(附答案详解)

2020-2021学年江西省九江市九年级(上)期中数学试卷一、选择题(本大题共6小题,共18.0分)1.一元二次方程x2−9=0的根是()A. x=9B. x=±9C. x=3D. x=±32.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在0.15和0.45,则口袋中白色球的个数很可能是()个.A. 12B. 24C. 36D. 483.下列几何图形中,即是轴对称图形,又是中心对称图形的是()A. 等边三角形B. 平行四边形C. 菱形D. 对角线相等的四边形4.为了加强视力保护意识,小明要在书房里挂一张视力表.由于书房空间狭小,他想根据测试距离为5m的大视力表制作一个测试距离为3m的小视力表.如图,如果大视力表中“E”的高度是3.5cm,那么小视力表中相应“E”的高度是()A. 3cmB. 2.5cmC. 2.3cmD. 2.1cm5.生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a与全身b的高度比值接近0.618,可以增加视觉美感.若图中b为2米,则a约为()A. 1.24米B. 1.38米C. 1.42米D. 1.62米6.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A. 485B. 325C. 245D. 125二、填空题(本大题共6小题,共18.0分)7.顺次连接一个对角线互相垂直的四边形各边中点,所得的四边形是______形.8.现有四张正面分别标有数字−1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m,n.则点P(m,n)在第二象限的概率为______.9.已知一元二次方程x2−x+k=0的一根为1,则另一根为______.10.在Rt△ABC中,∠C=90°,∠A=30°,点P为AC中点,经过点P的直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有______条.11.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是______.12.如图,在平行四边形ABCD中,AB=8,BC=12,∠B=120°,E是BC的中点,点P在平行四边形ABCD的边上,若△PBE为等腰三角形,则EP的长为______.三、计算题(本大题共1小题,共6.0分)13.(1)用配方法解方程x2+4x−5=0;(2)用因式分解法解方程(x−3)2+4x(x−3)=0.四、解答题(本大题共10小题,共78.0分)14.在图1、2中,点E是矩形ABCD边AD上的中点,现要求仅用无刻度的直尺分别按下列要求画图.[保留画(作)图痕迹,不写画(作)法](1)在图1中,以BC为一边画△PBC,使△PBC面积=矩形ABCD面积;(2)在图2中,以BE、ED为邻边作▱BEDK.15.如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.16.已知关于x的方程x2−(m+1)x+2(m−1)=0(1)求证:无论m取何值时,方程总有实数根;(2)若等腰三角形一边长为4,另两边恰好是此方程的根,求此三角形的另两边长.17.小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排,志愿者被随机分到A组(体温检测)、B组(便民代购)、C组(环境消杀).(1)小红的爸爸被分到B组的概率是______;(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)18.如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE//AC,EF//AB.(1)求证:△BDE∽△EFC;(2)若BC=12,AFFC =12,求线段BE的长.19.某商店将进价为30元的商品按每件40元出售,每月可出售600件,现在采用提高商品售价减少销售量的办法增加利润,这种商品每件的销售价每提高1元,其销售量就减少10件,商店想在月销售成本不超过1万元的情况下,使每月总利润为10000元,那么此时每件商品售价应为多少元?20.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.21.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG//EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.22.已知x1,x2是一元二次方程x2−2x+k+2=0的两个实数根.(1)求k的取值范围.(2)是否存在实数k,使得等式1x1+1x2=k−2成立?如果存在,请求出k的值;如果不存在,请说明理由.23.如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD,EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AE=2,求AB的长;(3)如图2,连接AG,请探究线段EG、AG、DG之间的数量美系,并说明理由.答案和解析1.【答案】D【解析】解:x2−9=0,移项得:x2=9,两边直接开平方得:x=±3,故选:D.首先把−9移到方程的右边,然后两边直接开平方即可.此题主要考查了直接开方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.2.【答案】B【解析】解:∵小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在0.15和0.45,∴估计摸到红色、黑色球的概率分别为0.15和0.45,∴摸到白球的概率为1−0.15−0.45=0.4,∴口袋中白色球的个数为60×0.4=24,即口袋中白色球的个数很可能24个.故选B.根据频率估计概率得到摸到红色、黑色球的概率分别为0.15和0.45,则摸到白球的概率为0.4,然后利用概率公式计算即可.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.3.【答案】C【解析】解:A、等边三角形是轴对称图形,不是中心对称图形,故此选项不合题意;B、平行四边形不是轴对称图形,是中心对称图形,故此选项不合题意;C、菱形即是轴对称图形,也是中心对称图形,故此选项符合题意;D、对角线相等的四边形不是轴对称图形,也不是中心对称图形,故此选项不合题意;故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】D【解析】解:由题意得:CD//AB,∴CDAB =DEBE,∵AB=3.5cm,BE=5m,DE=3m,∴CD3.5=35,∴CD=2.1cm,故选:D.直接利用平行线分线段成比例定理列比例式,代入可得结论.本题考查了相似三角形的应用,比较简单;根据生活常识,墙与地面垂直,则两张视力表平行,根据平行相似或平行线分线段成比例定理列比例式,可以计算出结果.5.【答案】A【解析】解:∵雕像的腰部以下a与全身b的高度比值接近0.618,∴ab=0.618,∵b为2米,∴a约为1.24米.故选:A.根据雕像的腰部以下a与全身b的高度比值接近0.618,因为图中b为2米,即可求出a 的值.本题考查了黄金分割,解决本题的关键是掌握黄金分割定义.6.【答案】C【解析】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC=√62+82=10∴AO=DO=12AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为矩形ABCD面积的14,∴△AOD的面积=12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=12AO×EO+12DO×EF,∴12=12×5×EO+12×5×EF,∴5(EO+EF)=24,∴EO+EF=245,故选:C.依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD=S△AOE+S△DOE,即可得到OE+EF的值.本题主要考查了矩形的性质、三角形的面积、勾股定理,解题时注意:矩形的四个角都是直角;矩形的对角线相等且互相平分.7.【答案】矩【解析】解:矩形.理由如下:∵E、F、G、H分别为各边的中点,∴EF//AC,GH//AC,EH//BD,FG//BD,(三角形的中位线平行于第三边)∴四边形EFGH是平行四边形,(两组对边分别平行的四边形是平行四边形)∵AC⊥BD,EF//AC,EH//BD,∴∠EMO=∠ENO=90°,∴四边形EMON是矩形(有三个角是直角的四边形是矩形),∴∠MEN=90°,∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).根据三角形中位线的性质,可得到这个四边形是平行四边形,再由对角线垂直,能证出有一个角等于90°,则这个四边形为矩形.本题考查的是矩形的判定方法,常用的方法有三种:①一个角是直角的平行四边形是矩形.②三个角是直角的四边形是矩形.③对角线相等的平行四边形是矩形.8.【答案】316【解析】解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,.所以点P(m,n)在第二象限的概率=316.故答案为316画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点P(m,n)在第二象限的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了点的坐标.9.【答案】0【解析】解:设方程的另一个根是x2,则:1+x2=1,解得x2=0.所以另一根为0,故答案为0.根据根与系数的关系由两根之和可以求出另一个根.本题考查了根与系数的关系,熟练掌握两根之和等于−b是解题的关键.a10.【答案】3【解析】解:过点P作PE//AB交AB于点E,△CPE∽△CAB.过点P作PF//BC交AB于点F,△APF∽△ACB.过点P作PG⊥AB交AB于点G,△PGA∽△BCA.故满足条件的直线有3条,故答案为:3.根据相似三角形的判定方法,画出图形判断即可.本题考查相似三角形的判定,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.11.【答案】8√5【解析】解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA−AE=OC−CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,=2,∵AC=BD=8,OE=OF=8−42由勾股定理得:DE=√OD2+OE2=√42+22=2√5,∴四边形BEDF的周长=4DE=4×2√5=8√5,故答案为:8√5.连接BD交AC于点O,则可证得OE=OF,OD=OB,可证四边形BEDF为平行四边形,且BD⊥EF,可证得四边形BEDF为菱形;根据勾股定理计算DE的长,可得结论.本题主要考查正方形的性质、菱形的判定和性质及勾股定理,掌握对角线互相垂直平分的四边形为菱形是解题的关键.12.【答案】6或6√3或√57【解析】解:当P点在BA上,BP=BE=6,作BH⊥PE于H,如图1,则PH=EH,∵∠B=120°,∴∠BPE=∠BEP=30°,在Rt△BEH中,BH=1BE=3,EH=√3BH=23√3,∴PE=2EH=6√3;当P点在AD上,BP=PE,作BG⊥AD于G,PF⊥BE于F,如图2,则BF=EF=3,∵四边形ABCD为平行四边形,∴AD//BC,∵∠ABC=120°,∴∠A=60°,AB=4,BG=√3AG=4√3,在Rt△ABG中,AG=12∴PF=4√3,在Rt△PEF中,PE=√32+(4√3)2=√57;当点P在CD上,如图3,EB=EP=6,综上所述,PE的长为6或6√3或√57.故答案为6或6√3或√57.当P点在BA上,BP=BE=6,作BH⊥PE于H,如图1,根据等腰三角形的性质得PH=EH,再计算出∠BPE=∠BEP=30°,然后利用含30度的直角三角形三边的关系计算出EH,从而得到此时的PE的长;当P点在AD上,BP=PE,作BG⊥AD于G,PF⊥BE于F,如图2,所以BF=EF=3,先求出BG=4√3,从而得到PF=4√3,然后利用勾股定理计算出此时PE的长;当点P在CD上,如图3,EB=EP=6.本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.平行线间的距离处处相等.也考查了等腰三角形的性质.13.【答案】解:(1)x2+4x=5.∴x2+4x+4=9,∴(x+2)2=9,∴x+2=±3,∴x1=−5,x2=1;(2)原方程因式分解得:(x−3)(5x−3)=0,∴x−3=0或5x−3=0,∴x1=3,x2=3.5【解析】(1)利用配方法求解即可.(2)利用因式分解法求解即可.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.14.【答案】解:(1)如图所示,△PBC即为所求;(2)如图所示,平行四边形BEDK即为所求.【解析】(1)连接CE并延长,交BA的延长线于P,根据△APE≌△DCE,可得△PBC面积=矩形ABCD面积;(2)连接矩形ABCD的对角线,交于点O,可得BO=DO,再连接EO并延长,交BC于K,根据△BOK≌△DOE,可得EO=KO,连接DK,即可得到▱BEDK.本题主要考查了复杂作图,平行四边形的判定,矩形的性质的运用,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.解题时注意:对角线互相平分的四边形是平行四边形.15.【答案】证明:四边形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,{AB=AD ∠B=∠D BE=DF,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.【解析】本题考查了菱形的性质、全等三角形的判定与性质,解决本题的关键是掌握菱形的性质.根据菱形的性质可得∠B=∠D,AB=AD,再证明△ABE≌△ADF,即可得∠BAE=∠DAF.16.【答案】解:(1)证明:∵Δ=[−(m+1)]2−4×2(m−1)=m2−6m+9=(m−3)2≥0,∴无论m取何值,这个方程总有实数根;(2)若腰长为4,将x=4代入原方程,得:16−4(m+1)+2(m−1)=0,解得:m=5,∴原方程为x2−6x+8=0,解得:x1=2,x2=4.组成三角形的三边长度为2、4、4;若底边长为4,则此方程有两个相等实数根,∴Δ=0,即m=3,此时方程为x2−4x+4=0,解得:x1=x2=2,由于2+2=4,不能构成三角形,舍去;所以三角形另外两边长度为4和2.【解析】本题考查了根的判别式、三角形三边关系、等腰三角形的性质以及解一元二次方程,解题的关键是:(1)牢记“当Δ≥0时,方程有实数根”;(2)代入x=4求出m值.(1)根据方程的系数结合根的判别式,即可得出Δ=(m−3)2≥0,由此即可证出:无论m取何值,这个方程总有实数根;(2)分腰长为4和底边长度为4两种情况分别求解可得.17.【答案】13【解析】解:(1)共有3种可能出现的结果,被分到“B组”的有1中,因此被分到“B组”的概率为13;(2)用列表法表示所有可能出现的结果如下:共有9种可能出现的结果,其中“他与小红的爸爸”在同一组的有3种,∴P(他与小红爸爸在同一组)=39=13.(1)共有3种可能出现的结果,被分到“B组”的有1中,可求出概率.(2)用列表法表示所有可能出现的结果,进而计算“他与小红的爸爸”分到同一组的概率.本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确求解的前提.18.【答案】证明:(1)∵DE//AC,∴∠DEB=∠FCE,∵EF//AB,∴∠DBE=∠FEC,∴△BDE∽△EFC;(2)∵EF//AB,∴BEEC =AFFC=12,∵EC=BC−BE=12−BE,∴BE12−BE =12,解得:BE=4.【解析】(1)由平行线的性质可得∠DEB=∠FCE,∠DBE=∠FEC,可得结论;(2)由平行线分线段成比例可得BEEC =AFFC=12,即可求解.本题考查了相似三角形的判定和性质,平行线分线段成比例,掌握相似三角形的判定是本题的关键.19.【答案】解:设每件商品售价应为x元,每月的销量为[600−10(x−40)]件,由题意,得[600−10(x−40)](x−30)=10000,解得:x1=50,x2=80.当x=50时,600−10(50−40)=500件,销售成本为:500×30=15000>10000舍去,当x=80时,600−10(80−40)=200件,销售成本为:200×30=6000<10000舍去,答:此时每件商品售价应为80元.【解析】设每件商品售价应为x元,根据利润=售价−进价建立方程求出其解并检验即可.本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,利润率问题的数量关系的运用,解答时根据利润=售价−进价建立方程是关键.20.【答案】证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF//AB,DE//AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.【解析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF//AB,DE//AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半的性质,平行四边形的判定与性质,熟记各性质并准确识图是解题的关键.21.【答案】解:(1)∵四边形ABCD是菱形,∴BD⊥AC,∠DAO=∠BAO,∵E是AD的中点,AD,∴AE=OE=12∴∠EAO=∠AOE,∴∠AOE=∠BAO,∴OE//FG,∵OG//EF,∴四边形OEFG是平行四边形,∵EF⊥AB,∴∠EFG=90°,∴四边形OEFG是矩形;(2)∵四边形ABCD是菱形,∴BD⊥AC,AB=AD=10,∴∠AOD=90°,∵E是AD的中点,∴OE=AE=12AD=5;由(1)知,四边形OEFG是矩形,∴FG=OE=5,∵AE=5,EF=4,∴AF=√AE2−EF2=3,∴BG=AB−AF−FG=10−3−5=2.【解析】(1)根据菱形的性质得到BD⊥AC,∠DAO=∠BAO,得到AE=OE=12AD,推出OE//FG,求得四边形OEFG是平行四边形,根据矩形的判定定理即可得到结论;(2)根据菱形的性质得到BD⊥AC,AB=AD=10,得到OE=AE=12AD=5;由(1)知,四边形OEFG是矩形,求得FG=OE=5,根据勾股定理得到AF=√AE2−EF2=3,于是得到结论.本题考查了矩形的判定和性质,菱形的性质,勾股定理,直角三角形的性质,正确的识别图形是解题的关键.22.【答案】解:(1)∵一元二次方程x2−2x+k+2=0有两个实数根,∴△=(−2)2−4×1×(k+2)≥0,解得:k≤−1.(2)∵x1,x2是一元二次方程x2−2x+k+2=0的两个实数根,∴x1+x2=2,x1x2=k+2.∵1x1+1x2=k−2,∴x1+x2x1x2=2k+2=k−2,∴k2−6=0,解得:k1=−√6,k2=√6.又∵k≤−1,∴k=−√6.∴存在这样的k值,使得等式1x1+1x2=k−2成立,k值为−√6.【解析】本题考查了根与系数的关系以及根的判别式,(1)根据方程的系数结合△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(2)根据根与系数的关系可得出x1+x2=2,x1x2=k+2,结合1x1+1x2=k−2,即可得出关于k的方程,解之即可得出k值,再结合(1)即可得出结论.23.【答案】解:(1)∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC;(2)∵四边形ABCD是矩形,∴AE//CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴AECD =AFDF,即AE⋅DF=AF⋅DC,设AE=AD=a(a>0),则有a⋅(a−1)=1,化简得a2−a−1=0,解得a=√5−1或a=−√5−1(舍去),∴AB=√5−1;(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠PAG=∠PAD+∠DAG=∠PAD+∠EAP=∠DAE=90°,∴△PAG为等腰直角三角形,∴EG−DG=EG−EP=PG=√2AG.【解析】(1)证明△AEF≌△ADB(SAS),则∠AEF=∠ADB,∠GEB+∠GBE=∠ADB+∠ABD=90°,即可求解;(2)证明△AEF∽△DCF,则AECD =AFDF,设AB=a(a>0),则有22−2a=a2,即可求解;(3)证明△AEP≌△ADG(SAS),则△PAG为等腰直角三角形,故EG−DG=EG−EP= PG=√2AG.本题是四边形综合题,考查了矩形的性质,相似三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.第21页,共21页。

江西省九江市九年级上学期数学期中考试试卷

江西省九江市九年级上学期数学期中考试试卷

江西省九江市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列方程是一元二次方程的是()A . y2+x=1B .C . x2+1=0D . 2x+1=02. (2分)下列函数中,反比例函数是()A . y=x﹣1B . y=C . y=+3x+1D . y=3. (2分)反比例函数的图象经过点,则当时,函数值的取值范围是()A .B .C .D .4. (2分)下列各组图形中不一定相似的有()①两个矩形;②两个正方形;③两个等腰三角形;④两个等边三角形;⑤两个直角三角形;⑥两个等腰直角三角形.A . 2个B . 3个C . 4个D . 5个5. (2分)(2017·北仑模拟) 如图,等腰三角形ABC的底边BC在x轴正半轴上,点A在第一象限,延长AB 交y轴负半轴于点D,延长CA到点E,使AE=AC,双曲线y= (x>0)的图象过点E.若△BCD的面积为2 ,则k的值为()A . 4B . 4C . 2D . 26. (2分) (2017八下·宁波期中) 已知一元二次方程x2﹣8x+12=0的两个解恰好是等腰△ABC的底边长和腰长,则△ABC的周长为()A . 14B . 10C . 11D . 14或107. (2分)(2020·合肥模拟) 如图,已知直线y=mx与双曲线的一个交点坐标为(3,4),则它们的另一个交点坐标是()A . (﹣3,4)B . (﹣4,﹣3)C . (﹣3,﹣4)D . (4,3)8. (2分) (2019九下·保山期中) 一元二次方程x2-4x+4=0的根的情况是()A . 有两个不相等的实数根B . 无实数根C . 有两个相等的实数根D . 无法确定9. (2分) (2018九上·和平期末) 已知△ABC∽△DEF,且AB∶DE=1∶2,则△ABC的面积与△DEF的面积之比为()A . 1∶2B . 1∶4C . 2∶1D . 4∶110. (2分)(2017·南开模拟) 反比例函数的大致图象为()A .B .C .D .11. (2分)如图,矩形ABCD中,点P从点B出发沿BC向点C运动,E、F分别是AP、PC的中点,则EF的长度()A . 逐渐增大B . 逐渐减小C . 不变D . 无法确定12. (2分) (2019八下·瑞安期中) 一个长30cm,宽20cm的长方形纸板,将四个角各剪去一个边长为xcm的小正方形后,剩余部分刚好围成一个底面积为200cm2的无盖长方体盒子,根据题意可列方程()A . (30﹣x)(20﹣x)=200B . (30﹣2x)(20﹣2x)=200C . 30×20﹣4x2=200D . 30×20﹣4x2﹣(30+20)x=200二、填空题 (共6题;共7分)13. (1分) (2019八下·南关期中) 如图,已知反比例函数=(为常数,≠0)的图象经过点,过点作⊥ 轴,垂足为,点为轴上的一点,若△ 的面积为,在的值为________;14. (1分)在代数式3m+5n﹣k中,当m=﹣2,n=1时,它的值为1,则k=________;当m=2,n=﹣3时代数式的值是________.15. (1分) (2019八下·盐田期末) 如图,菱形的边长为1,;作于点,以为一边,作第二个菱形,使;作于点,以为一边,作第三个菱形,使;…依此类推,这样作出第个菱形.则________. ________.16. (1分)已知,点C线段AB的黄金分割点,且AC>BC,那么AB:AC=________.17. (1分) (2016九上·龙海期中) 设一元二次方程x2﹣3x﹣1=0的两根分别是x1 , x2 ,则x1+x2(x22﹣3x2)=________.18. (2分) (2017八下·临泽开学考) 已知O(0,0),A(﹣3,0),B(﹣1,﹣2),则△AOB的面积为________.三、解答题 (共8题;共64分)19. (10分) (2020八下·高新期末) 用指定的方法解方程:(1) 2x2-5x+3=0(用公式法解方程)(2)3x²-5=6x(用配方法解方程)20. (2分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC于点E,交BC于点D,连接BE、AD交于点P.求证:(1)D是BC的中点;(2)△BEC∽△ADC.21. (2分) (2020八上·张店期末) 某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示,根据图象解答下列问题:(1)洗衣机的进水时间是________分钟,清洗时洗衣机中的水量是________升.(2)进水时y与x之间的关系式是________.(3)已知洗衣机的排水速度是每分钟18升,如果排水时间为2分钟,排水结束时洗衣机中剩下的水量是________升.22. (10分)(2017·安陆模拟) 已知关于x的方程x2﹣(m+2)x+2m﹣1=0.(1)求证:此方程有两个不相等的实数根;(2)若抛物线y=x2﹣(m+2)x+2m﹣1=0与x轴有两个交点都在x轴正半轴上,求m的取值范围;(3)填空:若x2﹣(m+2)x+2m﹣1=0的两根都大于1,则m的取值范围是________.23. (5分) (2019九上·随县期中) 某超市销售一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能销售出500千克;销售单价每涨价1元,月销售量就减少10千克。

江西省九江市九年级上学期数学期中考试试卷

江西省九江市九年级上学期数学期中考试试卷

江西省九江市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016九上·涪陵期中) 关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A . ﹣1B . 1C . 1或﹣1D . 0.52. (2分)用配方法解方程x2-6x-7=0,下列配方正确的是()A . (x-3)2=16B . (x+3)2=16C . (x-3)2=7D . (x-3)2=23. (2分) (2018八下·长沙期中) 若关于x的一元二次方程2x2-2x+3m-1=0的两个实数根x1 , x2 ,且x1·x2>x1+x2-4,则实数m的取值范围是()A . m>B . m≤C . m<D . <m≤4. (2分)如图,在菱形中,是边上的一点,分别是的中点,则线段的长为()A . 8B .C . 4D .5. (2分) (2017八下·洪湖期中) 下列说法正确的是()A . 对角线互相垂直的四边形是菱形B . 矩形的对角线互相垂直C . 四边相等的四边形是菱形D . 一组对边平行的四边形是平行四边形6. (2分) (2018九上·安定期末) 某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是()实验次数10020030050080010002000频率0.3650.3280.3300.3340.3360.3320.333A . 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃B . 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C . 抛一个质地均匀的正六面体骰子,向上的面点数是5D . 抛一枚硬币,出现反面的概率7. (2分)如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A .B .C .D .8. (2分) (2018八上·孟州期末) 在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球不放回,再随机摸出一个小球,则两次摸出小球的标号之和为奇数的概率是()A .B .C .D .9. (2分)(2018·邯郸模拟) 已知面积为8的正方形边长是x,则关于x的结论中,正确的是()A . x是有理数B . x不能在数轴上表示C . x是方程4x=8的解D . x是8的算术平方根10. (2分)如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A 重合,折痕为DE,则BE的长为()A . 4 cmB . 5 cmC . 6 cmD . 10 cm二、填空题 (共5题;共5分)11. (1分) (2017九上·河东开学考) 方程3(x﹣5)2=2(x﹣5)的根是________.12. (1分) (2019九上·重庆开学考) 如图,在△ABC中,∠C=90°,E,F分别是AC,BC上两点,AE=16,BF=12,点P,Q,D分别是AF,BE,AB的中点,则PQ的长为________.13. (1分)李老师想从小明、小红、小丽和小亮四个人中用抽签的方式抽取两个人做流动值周生,则小红和小丽同时被抽中的概率是________.14. (1分)(2018·南山模拟) 方程(m+1)x2+2x-1=0有两个不相等的实数根,则m的范围为________.15. (1分)如图,正方形ABCD,点E是DC上一点,点F是AD上一点,且AF>DF,EF=EC,FG⊥EF交AB于点G,连接CF、CG,若△CFG的面积为15,BC=6,则AF的长度是________.三、解答题 (共7题;共52分)16. (10分) (2017九上·临颍期中) 用适当的方法解下列方程:(1) x2+4x﹣2=0;(2)(x﹣1)(x+2)=2(x+2).17. (5分)已知:如图,点E、F在AD上,且AF=DE,∠B=∠C,AB∥DC.求证:AB=DC.18. (2分)(2017·蜀山模拟) 每年11月的最后一个星期四是感恩节,小龙调查了初三年级部分同学在感恩节当天将以何种方式表达感谢帮助过自己的人.他将调查结果分为如下四类:A类﹣﹣当面致谢;B类﹣﹣打电话;C类﹣﹣发短信息或微信;D类﹣﹣写书信.他将调查结果绘制成如图不完整的扇形统计图和条形统计图:请你根据图中提供的信息完成下列各题:(1)补全条形统计图;(2)在A类的同学中,有3人来自同一班级,其中有1人学过主持.现准备从他们3人中随机抽出两位同学主持感恩节主题班会课,请你用树状图或表格求出抽出的两人都没有学过主持的概率.19. (5分) (2018九上·茂名期中) 某种童鞋原价为100元,由于店面转让要清仓,经过连续两次降价处理,现以64元销售,已知两次降价的百分率相同,求每次降价的百分率.20. (10分) (2019八下·铜仁期中) 如图,在四边形ABCD中,AD∥BC,点E在BC的延长线上,CE=BC,连接AE,交CD边于点F,且CF=DF.(1)求证:AD=BC;(2)连接BD、DE,若BD⊥DE,求证:四边形ABCD为菱形.21. (10分)泰兴鑫都小商品市场以每副60元的价格购进800副羽毛球拍.九月份以单价100元销售,售出了200副.十月份如果销售单价不变,预计仍可售出200副.鑫都小商品市场为增加销售量,决定降价销售.根据市场调查,销售单价每降低5元,可多售出10副,但最低销售单价应高于购进的价格.十月份结束后,批发商将对剩余的羽毛球拍一次性清仓,清仓时销售单价为50元.设十月份销售单价降低x元.(1)填表:月份九月十月清仓销售单价(元)100________50销售量(件)200________________(2)如果鑫都小商品市场希望通过销售这批羽毛球拍获利9200元,那么十月份的销售单价应是多少元?22. (10分) (2019九上·农安期中) 如图,在△ABC中,已知AB=AC,将△ABC绕点A按逆时针方向旋转100°,得到△ADE,连接BD,CE交于点F.(1)求证:△ABD≌△ACE;(2)求∠ACE的度数.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共7题;共52分)16-1、16-2、17-1、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、。

2020-2021学年江西省九江市九年级(上)期中数学试卷-解析版

2020-2021学年江西省九江市九年级(上)期中数学试卷-解析版

2020-2021学年江西省九江市九年级(上)期中数学试卷一、选择题(本大题共6小题,共18.0分)1.一元二次方程x2−9=0的根是()A. x=9B. x=±9C. x=3D. x=±32.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在0.15和0.45,则口袋中白色球的个数很可能是()个.A. 12B. 24C. 36D. 483.下列几何图形中,即是轴对称图形,又是中心对称图形的是()A. 等边三角形B. 平行四边形C. 菱形D. 对角线相等的四边形4.为了加强视力保护意识,小明要在书房里挂一张视力表.由于书房空间狭小,他想根据测试距离为5m的大视力表制作一个测试距离为3m的小视力表.如图,如果大视力表中“E”的高度是3.5cm,那么小视力表中相应“E”的高度是()A. 3cmB. 2.5cmC. 2.3cmD. 2.1cm5.生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a与全身b的高度比值接近0.618,可以增加视觉美感.若图中b为2米,则a约为()A. 1.24米B. 1.38米C. 1.42米D. 1.62米6.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A. 485B. 325C. 245D. 125二、填空题(本大题共6小题,共18.0分)7.顺次连接一个对角线互相垂直的四边形各边中点,所得的四边形是______形.8.现有四张正面分别标有数字−1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m,n.则点P(m,n)在第二象限的概率为______.9.已知一元二次方程x2−x+k=0的一根为1,则另一根为______.10.在Rt△ABC中,∠C=90°,∠A=30°,点P为AC中点,经过点P的直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有______条.11.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是______.12.如图,在平行四边形ABCD中,AB=8,BC=12,∠B=120°,E是BC的中点,点P在平行四边形ABCD的边上,若△PBE为等腰三角形,则EP的长为______.三、计算题(本大题共1小题,共6.0分)13.(1)用配方法解方程x2+4x−5=0;(2)用因式分解法解方程(x−3)2+4x(x−3)=0.四、解答题(本大题共10小题,共78.0分)14.在图1、2中,点E是矩形ABCD边AD上的中点,现要求仅用无刻度的直尺分别按下列要求画图.[保留画(作)图痕迹,不写画(作)法](1)在图1中,以BC为一边画△PBC,使△PBC面积=矩形ABCD面积;(2)在图2中,以BE、ED为邻边作▱BEDK.15.如图,点E,F分别在菱形ABCD的边BC,CD上,且BE=DF.求证:∠BAE=∠DAF.16.已知关于x的方程x2−(m+1)x+2(m−1)=0(1)求证:无论m取何值时,方程总有实数根;(2)若等腰三角形一边长为4,另两边恰好是此方程的根,求此三角形的另两边长.17.小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排,志愿者被随机分到A组(体温检测)、B组(便民代购)、C组(环境消杀).(1)小红的爸爸被分到B组的概率是______;(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)18.如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE//AC,EF//AB.(1)求证:△BDE∽△EFC;(2)若BC=12,AFFC =12,求线段BE的长.19.某商店将进价为30元的商品按每件40元出售,每月可出售600件,现在采用提高商品售价减少销售量的办法增加利润,这种商品每件的销售价每提高1元,其销售量就减少10件,商店想在月销售成本不超过1万元的情况下,使每月总利润为10000元,那么此时每件商品售价应为多少元?20.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.21.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG//EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.22.已知x1,x2是一元二次方程x2−2x+k+2=0的两个实数根.(1)求k的取值范围.(2)是否存在实数k,使得等式1x1+1x2=k−2成立?如果存在,请求出k的值;如果不存在,请说明理由.23.如图1,已知四边形ABCD是矩形,点E在BA的延长线上,AE=AD,EC与BD相交于点G,与AD相交于点F,AF=AB.(1)求证:BD⊥EC;(2)若AE=2,求AB的长;(3)如图2,连接AG,请探究线段EG、AG、DG之间的数量美系,并说明理由.答案和解析1.【答案】D【解析】解:x2−9=0,移项得:x2=9,两边直接开平方得:x=±3,故选:D.首先把−9移到方程的右边,然后两边直接开平方即可.此题主要考查了直接开方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.2.【答案】B【解析】解:∵小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在0.15和0.45,∴估计摸到红色、黑色球的概率分别为0.15和0.45,∴摸到白球的概率为1−0.15−0.45=0.4,∴口袋中白色球的个数为60×0.4=24,即口袋中白色球的个数很可能24个.故选B.根据频率估计概率得到摸到红色、黑色球的概率分别为0.15和0.45,则摸到白球的概率为0.4,然后利用概率公式计算即可.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.3.【答案】C【解析】解:A、等边三角形是轴对称图形,不是中心对称图形,故此选项不合题意;B、平行四边形不是轴对称图形,是中心对称图形,故此选项不合题意;C、菱形即是轴对称图形,也是中心对称图形,故此选项符合题意;D、对角线相等的四边形不是轴对称图形,也不是中心对称图形,故此选项不合题意;故选:C.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.【答案】D【解析】解:由题意得:CD//AB,∴CDAB =DEBE,∵AB=3.5cm,BE=5m,DE=3m,∴CD3.5=35,∴CD=2.1cm,故选:D.直接利用平行线分线段成比例定理列比例式,代入可得结论.本题考查了相似三角形的应用,比较简单;根据生活常识,墙与地面垂直,则两张视力表平行,根据平行相似或平行线分线段成比例定理列比例式,可以计算出结果.5.【答案】A【解析】解:∵雕像的腰部以下a与全身b的高度比值接近0.618,∴ab=0.618,∵b为2米,∴a约为1.24米.故选:A.根据雕像的腰部以下a与全身b的高度比值接近0.618,因为图中b为2米,即可求出a 的值.本题考查了黄金分割,解决本题的关键是掌握黄金分割定义.6.【答案】C【解析】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AO=DO=12AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=12AO×EO+12DO×EF,∴12=12×5×EO+12×5×EF,∴5(EO+EF)=24,∴EO+EF=245,故选:C.依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD=S△AOE+S△DOE,即可得到OE+EF的值.本题主要考查了矩形的性质,解题时注意:矩形的四个角都是直角;矩形的对角线相等且互相平分.7.【答案】矩【解析】解:矩形.理由如下:∵E、F、G、H分别为各边的中点,∴EF//AC,GH//AC,EH//BD,FG//BD,(三角形的中位线平行于第三边)∴四边形EFGH是平行四边形,(两组对边分别平行的四边形是平行四边形)∵AC⊥BD,EF//AC,EH//BD,∴∠EMO=∠ENO=90°,∴四边形EMON是矩形(有三个角是直角的四边形是矩形),∴∠MEN=90°,∴四边形EFGH是矩形(有一个角是直角的平行四边形是矩形).根据三角形中位线的性质,可得到这个四边形是平行四边形,再由对角线垂直,能证出有一个角等于90°,则这个四边形为矩形.本题考查的是矩形的判定方法,常用的方法有三种:①一个角是直角的平行四边形是矩形.②三个角是直角的四边形是矩形.③对角线相等的平行四边形是矩形.8.【答案】316【解析】解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,.所以点P(m,n)在第二象限的概率=316.故答案为316画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点P(m,n)在第二象限的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了点的坐标.9.【答案】0【解析】解:设方程的另一个根是x2,则:1+x2=1,解得x2=0.所以另一根为0,故答案为0.根据根与系数的关系由两根之和可以求出另一个根.是解题的关键.本题考查了根与系数的关系,熟练掌握两根之和等于−ba10.【答案】3【解析】解:过点P作PE//AB交AB于点E,△CPE∽△CAB.过点P作PF//BC交AB于点F,△APF∽△ACB.过点P作PG⊥AB交AB于点G,△PGA∽△BCA.故满足条件的直线有3条,故答案为:3.根据相似三角形的判定方法,画出图形判断即可.本题考查相似三角形的判定,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.11.【答案】8√5【解析】解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA−AE=OC−CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,=2,∵AC=BD=8,OE=OF=8−42由勾股定理得:DE=√OD2+OE2=√42+22=2√5,∴四边形BEDF的周长=4DE=4×2√5=8√5,故答案为:8√5.连接BD交AC于点O,则可证得OE=OF,OD=OB,可证四边形BEDF为平行四边形,且BD⊥EF,可证得四边形BEDF为菱形;根据勾股定理计算DE的长,可得结论.本题主要考查正方形的性质、菱形的判定和性质及勾股定理,掌握对角线互相垂直平分的四边形为菱形是解题的关键.12.【答案】6或6√3或√57【解析】解:当P点在BA上,BP=BE=6,作BH⊥PE于H,如图1,则PH=EH,∵∠B=120°,∴∠BPE=∠BEP=30°,在Rt△BEH中,BH=1BE=3,EH=√3BH=23√3,∴PE=2EH=6√3;当P点在AD上,BP=PE,作BG⊥AD于G,PF⊥BE于F,如图2,则BF=EF=3,∵四边形ABCD为平行四边形,∴AD//BC,∵∠ABC=120°,∴∠A=60°,AB=4,BG=√3AG=4√3,在Rt△ABG中,AG=12∴PF=4√3,在Rt△PEF中,PE=√32+(4√3)2=√57;当点P在CD上,如图3,EB=EP=6,综上所述,PE的长为6或6√3或√57.故答案为6或6√3或√57.当P点在BA上,BP=BE=6,作BH⊥PE于H,如图1,根据等腰三角形的性质得PH=EH,再计算出∠BPE=∠BEP=30°,然后利用含30度的直角三角形三边的关系计算出EH,从而得到此时的PE的长;当P点在AD上,BP=PE,作BG⊥AD于G,PF⊥BE于F,如图2,所以BF=EF=3,先求出BG=4√3,从而得到PF=4√3,然后利用勾股定理计算出此时PE的长;当点P在CD上,如图3,EB=EP=6.本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.平行线间的距离处处相等.也考查了等腰三角形的性质.13.【答案】解:(1)x2+4x=5.∴x2+4x+4=9,∴(x+2)2=9,∴x+2=±3,∴x1=−5,x2=1;(2)原方程因式分解得:(x−3)(5x−3)=0,∴x−3=0或5x−3=0,∴x1=3,x2=3.5【解析】(1)利用配方法求解即可.(2)利用因式分解法求解即可.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.14.【答案】解:(1)如图所示,△PBC即为所求;(2)如图所示,平行四边形BEDK即为所求.【解析】(1)连接CE并延长,交BA的延长线于P,根据△APE≌△DCE,可得△PBC面积=矩形ABCD面积;(2)连接矩形ABCD的对角线,交于点O,可得BO=DO,再连接EO并延长,交BC于K,根据△BOK≌△DOE,可得EO=KO,连接DK,即可得到▱BEDK.本题主要考查了复杂作图,平行四边形的判定,矩形的性质的运用,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.解题时注意:对角线互相平分的四边形是平行四边形.15.【答案】证明:四边形ABCD是菱形,∴∠B=∠D,AB=AD,在△ABE和△ADF中,{AB=AD ∠B=∠D BE=DF,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF.【解析】根据菱形的性质可得∠B=∠D,AB=AD,再证明△ABE≌△ADF,即可得∠BAE=∠DAF.本题考查了菱形的性质、全等三角形的判定与性质,解决本题的关键是掌握菱形的性质.16.【答案】解:(1)证明:∵Δ=[−(m+1)]2−4×2(m−1)=m2−6m+9=(m−3)2≥0,∴无论m取何值,这个方程总有实数根;(2)若腰长为4,将x=4代入原方程,得:16−4(m+1)+2(m−1)=0,解得:m=5,∴原方程为x2−6x+8=0,解得:x1=2,x2=4.组成三角形的三边长度为2、4、4;若底边长为4,则此方程有两个相等实数根,∴Δ=0,即m=3,此时方程为x2−4x+4=0,解得:x1=x2=2,由于2+2=4,不能构成三角形,舍去;所以三角形另外两边长度为4和2.【解析】本题考查了根的判别式、三角形三边关系、等腰三角形的性质以及解一元二次方程,解题的关键是:(1)牢记“当Δ≥0时,方程有实数根”;(2)代入x=4求出m值.(1)根据方程的系数结合根的判别式,即可得出Δ=(m−3)2≥0,由此即可证出:无论m取何值,这个方程总有实数根;(2)分腰长为4和底边长度为4两种情况分别求解可得.17.【答案】13【解析】解:(1)共有3种可能出现的结果,被分到“B组”的有1中,因此被分到“B ;组”的概率为13(2)用列表法表示所有可能出现的结果如下:共有9种可能出现的结果,其中“他与小红的爸爸”在同一组的有3种,∴P(他与小红爸爸在同一组)=39=13.(1)共有3种可能出现的结果,被分到“B组”的有1中,可求出概率.(2)用列表法表示所有可能出现的结果,进而计算“他与小红的爸爸”分到同一组的概率.本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确求解的前提.18.【答案】证明:(1)∵DE//AC,∴∠DEB=∠FCE,∵EF//AB,∴∠DBE=∠FEC,∴△BDE∽△EFC;(2)∵EF//AB,∴BEEC =AFFC=12,∵EC=BC−BE=12−BE,∴BE12−BE =12,解得:BE=4.【解析】(1)由平行线的性质可得∠DEB=∠FCE,∠DBE=∠FEC,可得结论;(2)由平行线分线段成比例可得BEEC =AFFC=12,即可求解.本题考查了相似三角形的判定和性质,平行线分线段成比例,掌握相似三角形的判定是本题的关键.19.【答案】解:设每件商品售价应为x元,每月的销量为[600−10(x−40)]件,由题意,得[600−10(x−40)](x−30)=10000,解得:x1=50,x2=80.当x=50时,600−10(50−40)=500件,销售成本为:500×30=15000>10000舍去,当x=80时,600−10(80−40)=200件,销售成本为:200×30=6000<10000舍去,答:此时每件商品售价应为80元.【解析】设每件商品售价应为x元,根据利润=售价−进价建立方程求出其解并检验即可.本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,利润率问题的数量关系的运用,解答时根据利润=售价−进价建立方程是关键.20.【答案】证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF//AB,DE//AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.【解析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF//AB,DE//AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半的性质,平行四边形的判定与性质,熟记各性质并准确识图是解题的关键.21.【答案】解:(1)∵四边形ABCD是菱形,∴BD⊥AC,∠DAO=∠BAO,∵E是AD的中点,AD,∴AE=OE=12∴∠EAO=∠AOE,∴∠AOE=∠BAO,∴OE//FG,∵OG//EF,∴四边形OEFG是平行四边形,∵EF⊥AB,∴∠EFG=90°,∴四边形OEFG是矩形;(2)∵四边形ABCD是菱形,∴BD⊥AC,AB=AD=10,∴∠AOD=90°,∵E是AD的中点,AD=5;∴OE=AE=12由(1)知,四边形OEFG是矩形,∴FG=OE=5,∵AE=5,EF=4,∴AF=√AE2−EF2=3,∴BG=AB−AF−FG=10−3−5=2.AD,推【解析】(1)根据菱形的性质得到BD⊥AC,∠DAO=∠BAO,得到AE=OE=12出OE//FG,求得四边形OEFG是平行四边形,根据矩形的判定定理即可得到结论;AD=5;由(1)知,(2)根据菱形的性质得到BD⊥AC,AB=AD=10,得到OE=AE=12四边形OEFG是矩形,求得FG=OE=5,根据勾股定理得到AF=√AE2−EF2=3,于是得到结论.本题考查了矩形的判定和性质,菱形的性质,勾股定理,直角三角形的性质,正确的识别图形是解题的关键.22.【答案】解:(1)∵一元二次方程x2−2x+k+2=0有两个实数根,∴△=(−2)2−4×1×(k+2)≥0,解得:k≤−1.(2)∵x1,x2是一元二次方程x2−2x+k+2=0的两个实数根,∴x1+x2=2,x1x2=k+2.∵1x1+1x2=k−2,∴x1+x2x1x2=2k+2=k−2,∴k2−6=0,解得:k1=−√6,k2=√6.又∵k≤−1,∴k=−√6.∴存在这样的k值,使得等式1x1+1x2=k−2成立,k值为−√6.【解析】本题考查了根与系数的关系以及根的判别式,(1)根据方程的系数结合△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;(2)根据根与系数的关系可得出x1+x2=2,x1x2=k+2,结合1x1+1x2=k−2,即可得出关于k的方程,解之即可得出k值,再结合(1)即可得出结论.23.【答案】解:(1)∵四边形ABCD是矩形,点E在BA的延长线上,∴∠EAF=∠DAB=90°,又∵AE=AD,AF=AB,∴△AEF≌△ADB(SAS),∴∠AEF=∠ADB,∴∠GEB+∠GBE=∠ADB+∠ABD=90°,即∠EGB=90°,故BD⊥EC;(2)∵四边形ABCD是矩形,∴AE//CD,∴∠AEF=∠DCF,∠EAF=∠CDF,∴△AEF∽△DCF,∴AECD =AFDF,即AE⋅DF=AF⋅DC,设AE=AD=a(a>0),则有a⋅(a−1)=1,化简得a2−a−1=0,解得a=√5−1或a=−√5−1(舍去),∴AB=√5−1;(3)如图,在线段EG上取点P,使得EP=DG,在△AEP与△ADG中,AE=AD,∠AEP=∠ADG,EP=DG,∴△AEP≌△ADG(SAS),∴AP=AG,∠EAP=∠DAG,∴∠PAG=∠PAD+∠DAG=∠PAD+∠EAP=∠DAE=90°,∴△PAG为等腰直角三角形,∴EG−DG=EG−EP=PG=√2AG.【解析】(1)证明△AEF≌△ADB(SAS),则∠AEF=∠ADB,∠GEB+∠GBE=∠ADB+∠ABD=90°,即可求解;(2)证明△AEF∽△DCF,则AECD =AFDF,设AB=a(a>0),则有22−2a=a2,即可求解;(3)证明△AEP≌△ADG(SAS),则△PAG为等腰直角三角形,故EG−DG=EG−EP= PG=√2AG.本题是四边形综合题,考查了矩形的性质,相似三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.。

江西省九江市九年级上学期数学期中试卷

江西省九江市九年级上学期数学期中试卷

江西省九江市九年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2020九上·交城期中) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .【考点】2. (2分) (2020八上·常州期中) 下列各数中,无理数是()A . 0.121221222B .C .D .【考点】3. (2分)反比例函数y=的图象如图所示,则k的值可能是()A . -1B .C . 1D . 2【考点】4. (2分) (2017九上·下城期中) 如图,圆为的外接圆,其中点在上,且,已知,,则的度数为().A .B .C .D .【考点】5. (2分)如图,在△ABC中,∠CAB=70º,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB, 则∠BAD的度数为()A . 30°B . 35°C . 40°D . 50°【考点】6. (2分) (2017七下·黔南期末) 已知关于x的不等式组有且只有1个整数解,则a的取值范围是()A . a>0B . 0≤a<1C . 0<a≤1D . a≤1【考点】7. (2分)(2017·河北模拟) 绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC 为5m,则水面宽AB为()A . 4mB . 5mC . 6mD . 8m【考点】8. (2分)(2019·井研模拟) 如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y 轴的正半轴上,反比例函数y= (k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k 的值为()A .B .C . 3【考点】9. (2分) (2019九上·东河月考) 下列结论正确的个数是()⑴一个多边形的内角和是外角和的3倍,则这个多边形是六边形;(2)如果一个三角形的三边长分别为6、8、10,则最长边上的中线长为5;(3)若△ABC∽△DEF,相似比为1:4,则S△ABC:S△DEF=1:4;(4)若等腰三角形一个角为80°,则底角为80°或50°.A . 1B . 2C . 3D . 4【考点】10. (2分) (2018九上·临沭期末) 如图,在△ABC中,将△ABC在平面内绕点A逆时针旋转50º角后得到△AB′C′的位置,若此时恰有CC′∥AB,则∠CAB′的度数为()A . 15°B . 40°C . 50°D . 65°【考点】11. (2分)如图,正方形ABCD满足∠AEB=90°,AE=12,BE=16,则阴影部分的面积是()A . 400C . 208D . 304【考点】12. (2分) (2020·高新模拟) 在同一平面直角坐标系中,二次函数y1=ax²+bx与一次函数y2=ax+b的大致图象可能是()A .B .C .D .【考点】二、填空题 (共6题;共6分)13. (1分)(2019·宣城模拟) 分解因式:a2-5a =________.【考点】14. (1分)计算: ________.【考点】15. (1分)(2016·贵阳) 现有50张大小、质地及背面图案均相同的《西游记》任务卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为________.【考点】16. (1分) (2020八下·重庆期末) 如图,∠XOY=45°,一把直角三角尺△ABC的两个顶点A、B分别在OX,OY上移动,其中AB=10,那么点O到顶点A的距离的最大值为________.【考点】17. (1分)(2018·舟山) 如图,量角器的0度刻度线为AB,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C,直尺另一边交量角器于点A,D,量得AD=10cm,点D在量角器上的读数为60°,则该直尺的宽度为________ cm。

江西省九江市九年级上学期数学期中考试试卷

江西省九江市九年级上学期数学期中考试试卷

江西省九江市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2016九上·岳池期末) 下列成语故事中所描述的事件为必然发生事件的是()A . 水中捞月B . 瓮中捉鳖C . 拔苗助长D . 守株待兔2. (2分) (2019九上·马山月考) 把抛物线y=﹣ x2向右平移2个单位,则平移后所得抛物线的解析式为()A . y=﹣ x2+2B . y=﹣(x+2)2C . y=﹣ x2﹣2D . y=﹣(x﹣2)23. (2分)已知AB、CD是两个不同圆的弦,如AB=CD,那么与的关系是()A . =B . >C . <D . 不能确定4. (2分)(2018·丹棱模拟) 有一个不透明的盒子中装有个除颜色外完全相同的球,这个球中只有3个红球,若每次将球充分搅匀后,任意摸出一个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则的值大约是()A . 12B . 15C . 18D . 215. (2分)抛物线y=ax2+4ax﹣5的对称轴为()A . x=﹣2aB . x=4C . x=2aD . x=﹣26. (2分) (2018七上·故城期末) 如图,阴影部分的面积是()A . ab﹣π() 2B . ab﹣C . ab﹣ 2D . ab﹣() 27. (2分) (2015八上·广州开学考) 掷一枚骰子,掷出向上的点数为奇数与偶数的可能性是()A .B .C .D . 无法确定8. (2分)(2017·蜀山模拟) 如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是()A . 2B . 4C . 4D . 89. (2分)若二次函数(a≠0)的图象与x轴有两个交点,坐标分别为(x1 , 0),(x2 , 0),且x1<x2 ,图象上有一点M (x0 , y0)在x轴下方,则下列判断正确的是A . a>0B . b2-4ac≥0C . x1<x0<x2D . a(x0-x1)( x0-x2)<010. (2分)如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于()A . 8B . 4C . 10D . 511. (2分)如图示是二次函数y=ax2+bx+c(a≠0)图象的一部分,图象经过A(3,0) ,二次函数图象对称轴为x=l,给出四个结论:①b2>4ac ②bc<0 ③2a+b=0 ④a+b+c=0.其中正确的是()A . ②④B . ①③C . ②③D . ①④12. (2分)一元二次方程x²=x的解是()A . x=0B . x=1C . x1=0,x2=1D . x=±1二、填空题 (共7题;共12分)13. (1分)(2019·嘉善模拟) 在矩形ABCD中,∠ABC的平分线交边AD于点E,∠BED的平分线交直线CD 于点F.若AB=3,CF=1,则BC=________.14. (1分) (2017九上·莘县期末) 如图,⊙O是△ABC的内切圆,切点分别为D、E、F,∠A=80°,点P 为⊙O上任意一点(不与E、F重合),则∠EPF=________.15. (1分)(2017·红桥模拟) 一个盒子中装有2个白球,5个红球,从这个盒子中随机摸出一个球,是红球的概率为________.16. (1分) (2017九上·哈尔滨期中) 如图,AB为⊙O的直径,弦CD⊥AB于点E,若AE=8,BE=2,则CD=________.17. (1分)如图,△ABC中,∠C是直角,AB=12cm,∠ABC=60°,将△ABC以点B为中心顺时针旋转,使点C旋转到AB的延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是________.18. (1分)(2017·浦东模拟) 如果抛物线y=mx2+(m﹣3)x﹣m+2经过原点,那么m=________.19. (6分) (2017八上·云南期中) 为进一步普及足球知识,传播足球文化,某区在中小学举行了“足球在身边”知识竞赛,各类获奖学生人数的比例情况如图所示,其中获得三等奖的学生共50名,请结合图中信息,解答下列问题:(1)获得一等奖的学生人数;(2)在本次知识竞赛活动中,A,B,C,D四所学校表现突出,现决定从这四所学校中随机选取两所学校举行一场足球友谊赛,请用画树状图或列表的方法求恰好选到A,B两所学校的概率.三、解答题 (共7题;共81分)20. (11分)二次函数与直线交于点P(1,b).(1)求a、b的值;(2)写出二次函数的关系式,并指出x取何值时,该函数的y随x的增大而减小.21. (10分)(2015·金华) 如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.(1)求证:DE=AB.(2)以D为圆心,DE为半径作圆弧交AD于点G.若BF=FC=1,试求的长.22. (10分)(2019·遵义) 如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.(1)求抛物线C2的解析式;(2)在抛物线C2的对称轴上是否存在点P,使PA+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;(3) M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.23. (10分) (2018九上·宁城期末) 如图,两个以点O为圆心的同心圆,图1 图2(1)如图1,大圆的弦AB交小圆于C,D两点,试判断AC与BD的数量关系,并说明理由.(2)如图2,将大圆的弦AB向下平移使其为小圆的切线,切点为C,证明:AC=BC.(3)在(2)的基础上,已知AB=20cm,直接写出圆环的面积.24. (10分)(2017·惠阳模拟) 已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O 于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为5,sinA= ,求BH的长.25. (15分) (2019八下·桂林期末) 蒙蒙和贝贝都住在M小区,在同一所学校读书.某天早上,蒙蒙7:30从M小区站乘坐校车去学校,途中停靠了两个站点才到达学校站点,且每个站点停留2分钟,校车在每个站点之间行驶速度相同;当天早上,贝贝7:38从M小区站乘坐出租车沿相同路线出发,出租车匀速行驶,结果比蒙蒙乘坐的校车早2分钟到学校站点.他们乘坐的车辆从M小区站出发所行驶路程y(千米)与校车离开M小区站的时间x (分)之间的函数图象如图所示.(1)求图中校车从第二个站点出发时点B的坐标;(2)求蒙蒙到达学校站点时的时间;(3)求贝贝乘坐出租车出发后经过多少分钟追上蒙蒙乘坐的校车,并求此时他们距学校站点的路程.26. (15分) (2016九上·庆云期中) 探究:如图1和2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能证得EF=BE+DF,请写出推理过程;②如图2,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有EF=BE+DF;(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=2 ,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共7题;共12分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、19-2、三、解答题 (共7题;共81分)20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-2、。

江西省九江市九年级上学期期中数学试卷

江西省九江市九年级上学期期中数学试卷

江西省九江市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)一元二次方程2x2-3x=4的二次项系数是A . 2B . -3C . 4D . -42. (2分)用配方法解方程x2+4x=﹣2下列配方正确的是()A . (x+4)2=14B . (x+2)2=6C . (x+2)2=2D . (x﹣2)2=23. (2分)下列说法正确的是()A . 平行四边形是轴对称图形B . 平行四边形的对角线互相垂直平分C . 一组对边平行,另一组对边相等的四边形是平行四边形D . 两组对角分别相等的四边形是平行四边形4. (2分)一元二次方程x2+5x=6的一次项系数、常数项分别是()A . 1,5B . 1,﹣6C . 5,﹣6D . 5,65. (2分)在平面直角坐标系中,将点(﹣2,3)关于原点的对称点向右平移2个单位长度得到的点的坐标是()A . (4,﹣3)B . (﹣4,3)C . (0,﹣3)D . (0,3)6. (2分) (2020九下·北碚月考) 二次函数y=ax2+bx+c(a,b,c为常数,a≠0,c>0)的自变量x与函数值y的部分对应值如表:x…﹣10123…y=ax2+bx+c…p t n t0…有下列结论:①b>0;②关于x的方程ax2+bx+c=0的两个根是0和3;③p+2t<0;④m(am+b)≤﹣4a﹣c (m为任意实数).其中正确结论的个数是()A . 1B . 2C . 3D . 47. (2分) (2020八上·江汉期末) 如图,,,则下列结论不一定成立的是()A . ⊥B .C .D .8. (2分)把抛物线y=-x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A . y=-(x-1)2-3B . y=-(x+1)2-3C . y=-(x-1)2+3D . y=-(x+1)2+39. (2分) (2017九下·建湖期中) 如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的正弦值是()A .B .C .D .10. (2分)函数y=ax+b的图象经过一、二、三象限,则二次函数y=ax2+bx的大致图象是()A .B .C .D .二、填空题 (共6题;共10分)11. (1分)(2017·仪征模拟) 关于的一元二次方程kx2﹣x+1=0有两个实数根,则k的取值范围是________.12. (1分)抛物线的部分图象如图所示,若,则X的取值范围是________ .13. (1分) (2019九上·费县月考) 抛物线的对称轴是________.14. (1分)如图,某校的围墙由一段相同的凹曲拱组成,其拱状图形为抛物线的一部分,栅栏的跨径AB间,按相同间隔0.2米用5根立柱加固,拱高OC为0.36米,则立柱EF的长为________米.15. (1分)(2016·常德) 如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是________.16. (5分) (2019七上·汽开区期中) 用同样大小的黑色棋子按如图所示的规律摆放,则第n个图共有__枚棋子,(用含n的代数式表示).三、解答题 (共8题;共80分)17. (10分)解方程(1) = +1(2) x2﹣3x﹣1=0.18. (10分)(2019·河北模拟) 如图,将直角三角板ACB的直角边AC放在半圆O的直径DE上,直角顶点C 与直径端点D重合,已知∠BAC=30°且△ACB的直角边C与半圆O的半径OD长均为2.现将直角三角板ACB沿直径D呢的方向向右平移,将三角板ACB平移后的三角形记为△A’B’C’.(1)如图,当△ACB平移到斜边与半圆相切时,试求弧的长度(结果保留π):(2)设平移距离为a,在直角三角板ABC平移过程中,折线CBA(包括端点)与半圆弧共有3个交点时,求a 的取值范围。

江西省九江市修水县2024届九年级上学期期中考试数学试卷(含答案)

江西省九江市修水县2024届九年级上学期期中考试数学试卷(含答案)

2023—2024学年度上学期其中考试试题卷九年级数学说明:1.全卷满分120分,考试时间120分钟.2.请将答案写在答题卡上,否则不给分.一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1.下列关于x的方程中,一定是一元二次方程的为()A.B.C.D.2.下列说法中错误的是()A.对角线互相平分的四边形是平行四边形B.对角线相等的平行四边形是矩形C.对角线互相垂直的四边形是菱形D.有一组邻边相等的矩形是正方形3.如图,在中,点在边上,过点作,交于点.若,,则的值是()A.B.C.D.第3题图4.某校举办文艺会演,在主持人选拔环节中,有一名男同学和三名女同学表现优异.若从以上四名同学中随机抽取两名同学担任主持人,则刚好抽中一名男同学和一名女同学的概率是()A.B.C.D.5.如图,四边形是正方形,延长到点,使,则的度数是()A.B.C.D.第5题图6.两千多年前,我国学者墨子和他的学生做了小孔成像的实验.他们的做法是:在一间黑暗屋子里的一面墙上开一个小孔,小孔对面的墙上就会出现外面景物的倒像.小宇在学习了小孔成像的原理后,利用如图所示装置来观察小孔成像的现象.已知一根点燃的蜡烛距小孔(P)20cm,光屏在距小孔30cm处,小宇测得蜡烛的火焰高度为4cm,则光屏上火焰所成像的高度为()A.8cm B.6cm C.5cm D.4cm第6题图二、填空题(本大题共6小题,每小题3分,共18分)7.一元二次方程配方后得,则的值是______.8.已知,若,则______.9.一个不透明的布袋中装有红色、蓝色、白色球共60个,这些球除颜色外其他完全相同.小明通过多次摸球试验后发现,摸到红色球的频率稳定在,则布袋中红色球可能有______个.10.如图,和是以点为位似中心的位似图形,相似比为,则和的面积比是______.11.已知关于x的一元二次方程的两个实数根分别为,则的值为______.12.在菱形中,,点在上,.若点是菱形四条边上异于点的一点,,则的长为______.三、(本大题共5小题,每小题6分,共30分)13.解方程:(1);(2).14.已知关于x的方程,当该方程的一个根为时,求m的值及方程的另一个根.15.为了落实“双减”政策,弘扬非遗(非物质文化遗产)传统文化,某校拟组织课外兴趣班的同学参观以下项目:A(修水陶艺),B(修水采茶戏),C(九江山歌),D(德安潘公戏).小明和小涵随机报名参观其中一项.(1)“小明参观九江山歌”这一事件是______;(请将正确答案的序号填写在横线上)①必然事件;②不可能事件;③随机事件.(2)请用列表或画树状图的方法,求小明和小涵参观的项目都是修水的非物质文化遗产的概率.16.如图,在矩形中,分别是的中点,请仅用无刻度的直尺按下列要求作图.(1)在图1中,作出的边上的中线;(2)在图2中,以为边作一个菱形.图1图217.台风“杜苏芮”牵动着全国人民的心.某单位开展了“一方有难,八方支援”赈灾捐款活动,第一天收到捐款3000元,第三天收到捐款4320元.(1)如果第二天、第三天收到的捐款的增长率相同,求捐款的增长率.(2)按照(1)中收到的捐款的增长速度,第四天该单位能收到多少捐款?四、(本大题共3小题,每小题8分,共24分)18.如图,,交于点,且.(1)求的长.(2)求证:.19.如图,在中,,为的中线,,,连接.(1)求证:四边形为菱形.(2)连接,若,,求的长.20.如图,在中,,为的中点,四边形是平行四边形,相交于点.(1)求证:四边形是矩形.(2)若,,求的长.五、(本大题共2小题,每小题9分,共18分)21.已知关于x的方程.(1)求证:无论取何实数值,方程总有实数根.(2)若等腰三角形的一边长,另两边长恰好是这个方程的两个根,求的周长.22.如图,,,是边上一点,且.(1)求证:.(2)若,求的长.(3)当时,请写出线段之间的数量关系,并说明理由.六、(本大题共12分)23.将正方形与正方形按图1所示方式放置,点在同一条直线上,点在边上,,连接.(1)线段的关系为______.(2)将正方形绕点顺时针旋转一个锐角后,如图2,(1)中的结论是否仍然成立?请说明理由.(3)在正方形绕点顺时针旋转一周的过程中,是否存在的时刻?若存在,请直接写出此时AE 的长;若不存在,请说明理由.图1图22023—2024学年度上学期期中考试九年级数学参考答案1.C2.C3.A4.A5.D6.B7.18.209.910.11.212.13.解:(1),配方得.∴或.∴.(2),.因式分解得.∴.14.解:将代入原方程,得,∴.∴方程为.由根与系数的关系可知,∴方程的另一个根为1.∴的值为,方程的另一个根为1.15.解:(1)③(2)根据题意,列表如下:A B C DABCD由表可知,共有16种等可能的结果,其中小明和小涵参观的项目都是修水的非物质文化遗产的结果有4种.∴(小明和小涵参观的项目都是修水的非物质文化遗产).16.解:(1)如图1,即为所求.(2)如图2,四边形即为所求.图1图217.解:(1)设捐款的增长率为,根据题意可列方程.解得(不合题意,舍去).因此,捐款的增长率为20%.(2).因此,第四天该单位能收到5184元捐款.18.(1)解:∵,∴.∵,∴易得.∴.∴.(2)证明:∵,,∴.∵,∴.19.(1)证明:∵,,∴四边形为平行四边形.∵,为的中线,∴.∴四边形为菱形.(2)解:连接,交于点,如图.∵四边形为菱形,,∴,,.∵,∴.∴.∴.∴.20.(1)证明:∵四边形是平行四边形,∴.∵为的中点,∴.∴四边形是平行四边形.∵,为的中点,∴.∴平行四边形是矩形.(2)解:∵四边形是矩形,∴.∵,,∴是等边三角形.∴.∵,∴.21.(1)证明:∵,∴无论取何值,方程总有实数根.(2)解:①若为底边长,则为腰长,则.∴,解得.此时原方程化为,∴,即.此时的三边长为6,2,2,不能构成三角形,故舍去.②若为腰长,则中一个为腰长,不妨设,代入方程得,∴.则原方程化为,,∴,即.此时的三边长为6,6,2,能构成三角形.综上所述,的三边长为6,6,2.∴周长为.22.(1)证明:∵,∴.∵,∴.∴.∴.∴.(2)解:在中,∵,∴.∵,∴.由(1)得,∴.∴.∴.(3)解:线段之间的数量关系是.理由:过点作于点.∵,∴.∵,,∴∴.同理可得,∴.∴.23.解:(1)(2)结论仍然成立.理由如下:如图,设交于点.∵四边形和四边形是正方形,∴.∴,即.∴.∴,.∵,∴.∴,即.∴.∴(1)中的结论仍然成立.(3)存在的时刻,此时或.提示:①如图,当点旋转到线段上时,过点作于点.∵,,.∴是等腰直角三角形.∴.在中,,∴.∴.②如图,当点旋转到线段的延长线上时,过点作于点,则.∵,∴.∴是等腰直角三角形.∴.在中,,∴.∴.∵,∴.综上所述,的长为或.。

江西省九江市九年级上学期数学期中联考试卷

江西省九江市九年级上学期数学期中联考试卷

江西省九江市九年级上学期数学期中联考试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共10分)1. (1分) (2020八下·南京期末) 下列事件是必然事件的是()A . 抛出的篮球会下落B . 抛掷一个均匀硬币,正面朝上C . 打开电视机,正在播广告D . 买一张电影票,座位号是奇数号2. (1分)已知线段d是线段a、b、c的第四比例项,其中a=2cm,b=4cm,c=5cm,则d等于().A . 1cmB . 10cmC . 2.5cmD . 1.6cm3. (1分)(2017·和平模拟) 已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④ 的最小值为3.其中,正确结论的个数为()A . 1个B . 2个C . 3个D . 4个4. (1分) (2019七下·吴江期末) 下列命题中的假命题是()A . 同旁内角互补B . 三角形的一个外角等于与它不相邻的两个内角之和C . 三角形的中线,平分这个三角形的面积D . 全等三角形对应角相等5. (1分) (2018九上·淮南期末) 将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A . y=(x-1)2+1B . y=(x+1)2+1C . y=2(x-1)2+1D . y=2(x+1)2+16. (1分)如图,在平行四边形ABCD中,EF∥AB交AD于E,交BD于F,DE:EA=3:4,EF=6,则CD的长为()A . 14B . 17C . 8D . 127. (1分)已知扇形AOB的半径为6㎝,圆心角的度数为120°,若将此扇形围成一个圆锥,则围成的圆锥的侧面积为()A .B .C .D .8. (1分) (2019九上·镇原期末) 以坐标原点为圆心,以2个单位为半径画⊙O,下面的点中,在⊙O上的是()A . (1,1)B . ( , )C . (1,3)D . (1, )9. (1分)如图,二次函数的图象开口向上,图象经过点(-1,2)和(1,0),且与轴相交于负半轴.给出四个结论:①;②;③;④.其中结论正确的个数为()A . 1B . 2C . 3D . 410. (1分)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,若AC=2,则AD的长是()A .B .C . ﹣1D . +1二、填空题 (共6题;共6分)11. (1分) (2019九上·崇明期末) 已知线段b是线段a、c的比例中项,且a=1,c=4,那么b=()12. (1分) (2019九上·黄石期中) 抛物线y=(x﹣2)2的对称轴是________.13. (1分)某中学的铅球场如图所示,已知扇形OAB的面积是72π米2 ,弧AB的长度为6π米,那么圆心角为________度.14. (1分)(2017·黄冈模拟) 一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了0.2m,则此时排水管水面宽CD等于________ m.15. (1分)如图,已知二次函数的图象与y轴交于点A,MN是该抛物线的对称轴,点P 在射线MN上,连结PA,过点A作交x轴于点B,过A作于点C,连结PB,在点P的运动过程中,抛物线上存在点Q,使,则点Q的横坐标为________.16. (1分) (2019九下·温州竞赛) 如图,在等腰三角形纸片ABC中,AB=AC=4,BC=6,沿底边BC上的高AD 剪成两个三角形,用这两个直角三角形拼成一个平行四边形,并且这个平行四边形的一边长为4,则这个平行四边形较长的对角线的长是________.三、解答题 (共8题;共16分)17. (2分) (2016九上·永嘉月考) 二次函数y=x2+bx+c的图象经过点(4,3),(3,0).(1)求b、c的值;(2)求该二次函数图象与y轴的交点.18. (2分)(2012·北海) 为了纪念中国共产主义青年团成立90周年,某校初三(1)、(2)班团支部组织了一次联欢会,小乐为活动设计了一个游戏:把两个可以自由转动的转盘各等分成三个扇形,分别标上1,2,3和4,5,6,每班级各派一名选手参加,每人同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,指针指向的数字之和为偶数时(1)班获胜,数字之和为奇数时(2)班获胜,小乐设计的游戏规则公平吗?请用树状图或列表分析说明,若认为不公平,请修改规则使游戏变得公平.19. (1分)如图,Rt△ABC中,∠C=90°、∠BAC=30°,在AC边上取点O画圆使⊙O经过A、B两点,延长BC交⊙O于D;求证:A、B、D是⊙O的三等分点.20. (2分)以点A为旋转中心,将△ABC按逆时针方向旋转90°,画出旋转后的△A1B1C1 .21. (2分) (2018九上·温州期中) 如图,点A是二次函数y=﹣x2+2bx(b>0)图像的顶点, B(4,4),C(4,8)是线段BC的两个端点.(1)若∠ACB=90°,求b的值.(2)若二次函数y=-x2+2bx图像与线段BC有公共点,求b的取值范围.22. (2分) (2017·永嘉模拟) 如图,在矩形ABCD中,AD=10,E为AB上一点,且AE= AB=a,连结DE,F是DE中点,连结BF,以BF为直径作⊙O.(1)用a的代数式表示DE2=________,BF2=________;(2)求证:⊙O必过BC的中点;(3)若⊙O与矩形ABCD各边所在的直线相切时,求a的值;(4)作A关于直线BF的对称点A′,若A′落在矩形ABCD内部(不包括边界),则a的取值范围________.(直接写出答案)23. (2分) (2018九上·温州期中) 某农场拟建两间矩形饲养室,一面靠现有墙(墙长足够长),中间用一道墙隔开(如图1所示).已知计划中的材料可建墙体总长46米,设两间饲养室合计长x(米),总占地面积为y(米2).(1)求y关于x的函数表达式和自变量x的取值范围.(2)现需要设计这两间饲养室各开一扇门(如图2所示),每扇门宽1米,门不采用计划中的材料.①求总占地面积最大为多少米2?②如图3所示,离墙10米外饲养室一侧准备修一条平行于墙的小路,若拟建的饲养室面积尽量大,饲养室的门口与小路的间隔为多少米?24. (3分)(2016·济南) 如图1,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1 ,△AEN的周长为C2 ,若 = ,求m的值;(3)如图2,在(2)条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E′A+ E′B的最小值.参考答案一、选择题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共16分)17-1、17-2、18-1、19-1、20-1、21-1、21-2、22-1、22-2、22-3、22-4、23-1、23-2、24-1、24-2、24-3、。

江西省九江市九年级上学期数学期中考试试卷

江西省九江市九年级上学期数学期中考试试卷

江西省九江市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若关于x的方程一元二次方程,则m的取值范围是()A .B .C .D . . .2. (2分)如图,△ACD和△ABC相似需具备的条件是()A . =B . =C . AC2=AD•ABD . =AD•BD3. (2分)已知方程3x2+4x=0,下列说法正确的是()A . 只有一个根B . 只有一个根x=0C . 有两个根,x1=0,x2= -D . 有两个根,x1=0,x2=4. (2分)下列说法正确的是()A . 两个多边形的对应角相等则它们是相似形B . 两个多边形的对应边的比相等则两个多边形相似C . 所有的等腰直角三角形是相似形D . 有两组对应边相等的两个等腰三角形是相似形.5. (2分) (2018八下·瑶海期中) 用配方法解方程x2﹣10x﹣1=0,正确变形是()A . (x﹣5)2=1B . (x+5)2=26C . (x﹣5)2=26D . (x﹣5)2=246. (2分)如图,圆O的内接四边形ABCD中,BC=DC,∠BOC=130°,则∠BAD的度数是()A . 120°B . 130°C . 140°D . 150°7. (2分)若方程x2-c=0的一个根为-3,则方程的另一个根为()A . 3B . -3C . 9D . -8. (2分)(2019·贵阳) 如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于 BD长为半径画弧,两弧相交于点M,作射线CM交AB于点E.若AE=2,BE=1,则EC的长度是()A . 2B . 3C .D .9. (2分)一个正方形的边长增加了2 ,面积相应增加了32 ,则原正方形的边长为()A .B .C .D .10. (2分)如图,矩形ABCD中,AB=4,BC=2,把矩形ABCD沿过点A的直线AE折叠点D落在矩形ABCD内部的点D处,则CD′的最小值是()A . 2B .C . 2 -2D . 2 +2二、填空题 (共8题;共18分)11. (1分) (2019九上·高邮期末) 在比例尺为1:2000000的地图上,港珠澳大桥的主桥图上距离为1.48cm,则港珠澳大桥的主桥长度为________km.12. (5分) (2016九上·中山期末) 一元二次方程 +px-2=0的一个根为2,则p的值________.13. (1分) (2018九上·西峡期中) 已知,则=________.14. (2分) (2017九上·慈溪期中) 已知线段AB=2cm,点C是AB的黄金分割点,且AC>BC,则AC=________.15. (2分)(2019·汇川模拟) 如图,已知半圆与四边形的边都相切,切点分别为,半径,则 ________.16. (1分) (2018九上·郴州月考) 某班有一人患了流感,经过两轮传染后,班上有人被传染患上了流感,按这样的传染速度,若人患了流感,则第一轮传染后患上流感的人数是________.17. (1分) (2016九上·苍南期末) 如图,Rt△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,∠ACB=90°.若AF=4,CF=1.则BD的长是________.18. (5分)已知△ABC的三边长分别为6、8、10,则最长边上的中线长为________.三、解答题 (共10题;共74分)19. (20分) (2019九上·东台月考) 解方程(1)(2);20. (10分)(2018·枣庄) 如图1,已知二次函数y=ax2+ x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+ x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.21. (10分)已知关于x的一元二次方程x2﹣2x+k=0.(1)若方程有实数根,求k的取值范围;(2)如果k是满足条件的最大的整数,且方程x2﹣2x+k=0一根的相反数是一元二次方程(m﹣1)x2﹣3mx﹣7=0的一个根,求m的值及这个方程的另一根.22. (10分) (2018九上·哈尔滨月考) 如图,⊙O是△ABC的外接圆,直线DE是⊙O的切线,点A为切点,DE∥BC;(1)如图1.求证:AB=AC;(2)如图2.点P是弧AB上一动点,连接PA、PB,作PF⊥PB,垂足为点P,PF交⊙O于点F,求证:∠BAC=2∠APF;(3)如图3.在(2)的条件下,连接PC,PA= ,PB= ,PC= ,求线段PF的长.23. (2分)如图,已知∠AOB=20°.(1)若射线OC⊥OA,射线OD⊥OB,请你在图中画出所有符合要求的图形;(2)请根据(1)所画出的图形,求∠COD的度数.24. (2分)(2017·重庆) 某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同,该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.25. (5分) (2017七下·濮阳期中) 已知点A(﹣5,0),B(3,0).(1)在y轴上找一点C,使之满足S△ABC=16,求点C的坐标(要有必要的步骤);(2)在直角坐标平面上找一点C,能满足S△ABC=16的C有多少个?这些点有什么特征?26. (2分) (2017七下·东城期中) 已知:直线,点、分别在直线,上,点为平面内一点.(1)如图,,,的数量关系是________.(2)利用()的结论解决问题:如图,已知,平分,平分,,求得度数.(3)如图,点为上一点,,,交于点,直接写出,,之间的数量关系.(用含的式子表示)27. (11分) (2017九上·召陵期末) 旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多能出租一次,且每辆车的日租金x(元)是5的倍数,发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆,已知所有观光车每天的管理费是1100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入﹣管理费)(2)设每日净收入为w元,请写出w与x之间的函数关系式;(3)若某日的净收入为4420元,且使游客得到实惠,则当天的观光车的日租金是多少元?28. (2分) (2017·天津模拟) 如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y= x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①点B的坐标为(________、________),BK的长是________,CK的长是________;②求点F的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M 的运动过程中,S1•S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共18分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共74分)19-1、19-2、20-1、20-2、20-3、20-4、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、28-1、28-2、。

九江市九年级上学期期中数学试卷

九江市九年级上学期期中数学试卷

九江市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)数x,y在数轴上的对应点的位置如图所示,则化简|x+y|-|y-x|的结果是()A . 0B . 2xC . 2yD . 2x-2y2. (2分) (2019九下·温州模拟) “瓦当”是中国古建筑中覆盖檐头筒瓦前端的遮挡,主要有防水、排水、保护木制飞檐和美化屋面轮廓的作用.下面“瓦当”图案中既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分) (2019八下·宁明期中) 用配方法将方程变形,正确的是()A .B .C .D .4. (2分) (2019九上·义乌月考) 与形状相同的抛物线解析式为()A .B .C .D .5. (2分)关于x的一元二次方程:有两个实数根x1、x2,则 =()A .B .C . 4D . ﹣46. (2分)如图,将绕点顺时针方向旋转得,若,则等于().A .B .C .D .7. (2分) (2016九上·仙游期末) 如图,是⊙ 的直径, ,则等于()A . 70°B . 55°C . 35°D . 25°8. (2分)(2017·台湾) 已知坐标平面上有一长方形ABCD,其坐标分别为A(0,0),B(2,0),C(2,1),D(0,1),今固定B点并将此长方形依顺时针方向旋转,如图所示.若旋转后C点的坐标为(3,0),则旋转后D点的坐标为何()A . (2,2)B . (2,3)C . (3,3)D . (3,2)9. (2分)在羽毛球比赛中,某次羽毛球的运动路线可以看做是抛物线y=- x2+bx+c的一部分(如图),其中出球点B离地面O点的距离是1m,球落地点A到O点的距离是4m,那么这条抛物线的表达式是()A . y=- x2+ x+1B . y=- x2+ x-1C . y=- x2- x+1D . y=- x2- x-110. (2分) (2020·沈阳模拟) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,c<﹣1,其对称轴为直线x =﹣1,与x轴的交点为(x1 , 0)、(x2 , 0),其中0<x1<1,有下列结论:①abc>0;②﹣3<x2<﹣2;③4a ﹣2b+c<﹣1;④a﹣b>am2+bm(m≠﹣1);其中,正确的结论个数是()A . 1个B . 2个C . 3个D . 4个11. (2分)已知二次函数y=a(x-1)2+b有最小值-1,则a,b的大小关系为()A . a>bB . a=bC . a<bD . 大小不能确定12. (2分)(2018·平南模拟) 如图,将函数y= (x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A .B .C .D .二、填空题 (共6题;共6分)13. (1分) (2019九上·天台月考) 若关于x2+2x+m=0的一元二次方程有两个不相等的实数根,则m的取值范围是________;14. (1分)如图,已知四边形ABCD内接于半径为4的⊙O中,且∠C=2∠A,则BD=________.15. (1分)(2020·青浦模拟) 小明学习完《相似三角形》一章后,发现了一个有趣的结论:在两个不相似的直角三角形中,分别存在经过直角顶点的一条直线,把直角三角形分成两个小三角形后,如果第一个直角三角形分割出来的一个小三角形与第二个直角三角形分割出来的一个小三角形相似,那么分割出来的另外两个小三角形也相似.他把这样的两条直线称为这两个直角三角形的相似分割线.如图1、图2,直线CG、DH分别是两个不相似的Rt△ABC和Rt△DEF的相似分割线,CG、DH分别与斜边AB、EF交于点G、H,如果△BCG与△DFH相似,AC=3,AB =5,DE=4,DF=8,那么AG=________.16. (1分)如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),扇形的圆心角是60°,若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数取值范围是________17. (1分)如图,在矩形ABCD中,AB=1,BC=7,将矩形ABCD绕点C逆时针旋转90°得到矩形A′B′CD′,点E、F分别是BD、B′D′的中点,则EF的长度为________cm.18. (1分)如图,从内到外,边长依次为2,4,6,8,…的所有正六边形的中心均在坐标原点,且一组对边与x轴平行,它们的顶点依次用A1、A2、A3、A4、A5、A6、A7、A8、A9、A10、A11、A12…表示,那么顶点A62的坐标是________三、解答题 (共8题;共82分)19. (10分)(2016·南通)(1)计算:|﹣2|+(﹣1)2+(﹣5)0﹣;(2)解方程组:.20. (10分)(2017·苏州模拟) 关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2 .(1)求k的取值范围;(2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值.21. (10分) (2016七下·迁安期中) △ABC与△A′B′C′在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A′________;B′________;C′________;(2)说明△A′B′C′由△ABC经过怎样的平移得到?________.(3)若点P(a,b)是△ABC内部一点,则平移后△A′B′C′内的对应点P′的坐标为________;(4)求△ABC的面积.22. (7分) (2019八下·北流期末) 今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t(分),所走的路程为s(米),s与t之间的函数关系如图所示,(1)小明中途休息用了________分钟.(2)小明在上述过程中所走的过程为________米(3)小明休息前爬山的平均速度和休息后爬山的平均速度各是多少?23. (10分)(2017·重庆模拟) 某文具店今年1月份购进一批笔记本,共2290本,每本进价为10元,该文具店决定从2月份开始进行销售,若每本售价为11元,则可全部售出;且每本售价每增长0.5元,销量就减少15本.(1)若该种笔记本在2月份的销售量不低于2200本,则2月份售价应不高于多少元?(2)由于生产商提高造纸工艺,该笔记本的进价提高了10%,文具店为了增加笔记本的销量,进行了销售调整,售价比中2月份在(1)的条件下的最高售价减少了 m%,结果3月份的销量比2月份在(1)的条件下的最低销量增加了m%,3月份的销售利润达到6600元,求m的值.24. (10分) (2016九上·平南期中) 如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子.(1)以水平的地面为x轴,两棵树间距离的中点O为原点,建立如图所示的平面直角坐标系,求出抛物线的解析式;(2)求绳子的最低点离地面的距离.25. (15分)(2017·临沂模拟) 如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、N、G为顶点的四边形是正方形时,请求出点M的坐标.26. (10分)如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.(1)判断直线AC与圆O的位置关系,并证明你的结论;(2)若AC=8,cos∠BED=,求AD的长.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共82分)19-1、19-2、20-1、20-2、21-1、21-2、21-3、21-4、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、。

江西省九江市九年级上学期数学期中试卷

江西省九江市九年级上学期数学期中试卷

江西省九江市九年级上学期数学期中试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2019九上·融安期中) 一元二次方程x2-4x-9=0的二次项系数、一次项系数、常数项分别是()A . 1;4;9B . 1;4;-9C . 1;-4;-9D . -1:-4:-72. (2分) (2017九上·孝义期末) 将抛物线y= x2+1向左平移2个单位,再向下平移3个单位,得到的抛物线的函数表达式为()A . y= (x-2)2+4B . y= (x-2)2-2C . y= (x+2)2+4D . y= (x+2)2-23. (2分)(2019·济宁模拟) 将抛物线向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是()A .B .C .D .4. (2分) (2020九上·营口月考) 如图是二次函数y=ax2+bx+c的部分图象,使y≥﹣1成立的x的取值范围是()A . x≥﹣1B . x≤﹣1C . ﹣1≤x≤3D . x≤﹣1或x≥35. (2分) (2018九上·拱墅期末) 在平面直角坐标系中有两点A(﹣2,4)、B(2,4),若二次函数y=ax2﹣2ax﹣3a(a≠0)的图象与线段AB只有一个交点,则()A . a的值可以是B . a的值可以是C . a的值不可能是﹣1.2D . a的值不可能是16. (2分)如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(-1,0),半径为1.若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是()A . 2B . 1C . 2-D . 2-二、填空题 (共6题;共6分)7. (1分) (2017八下·福州期中) 关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根为0,则a的值为________.8. (1分)(2020·黄石模拟) 抛物线开口向下,且经过原点,则 ________.9. (1分)在平面直角坐标系中,点P(1,1),N(2,0),△MNP和△M1N1P1的顶点都在格点上,△MNP与△M1N1P1是关于某一点中心对称,则对称中心的坐标为________.10. (1分) (2019九上·南昌期中) 烟花厂为国庆70周年庆祝晚会特别设计制作一种新型礼炮,这种礼炮的升空高h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要时间为________.11. (1分)(2020·岱岳模拟) 如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x 轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(,0)、B(0,4),则点B2020的横坐标为________.12. (1分) (2017九上·琼中期中) 抛物线y=﹣x2﹣2x+1,其图象的开口________,当x=________时,y 有最________值是________.三、解答题 (共13题;共96分)13. (5分) (2019九上·东明月考) 解方程:(1) x2-4x+2=0;(2) x2+3x+2=0;(3) 3x2-7x+4=0.14. (2分) (2018九上·东莞期中) 解方程:3+2x2- x=015. (5分) (2018九上·黔西期中) 解方程:(1) 2x2+x﹣2=0(用公式法)(2)(x+3)2﹣2x(x+3)=0.16. (5分) (2020九上·南安月考) 解方程:17. (10分) (2016八上·吴江期中) 已知关于x的一元二次方程x2﹣6x﹣k2=0(k为常数).(1)求证:方程有两个不相等的实数根;(2)设x1 , x2为方程的两个实数根,且x1+2x2=14,试求出方程的两个实数根和k的值.18. (10分)如图,一场篮球赛中,球员甲跳起投篮,已知球出手时离地面 m,与篮圈中心的水平距离为7 m,当球水平运行4 m时达到离地面的最大高度4 m.设篮球运行的轨迹为抛物线的一部分,篮圈距地面3 m,在篮球比赛中,当进攻方球员要投篮时,防守方球员常借身高优势及较强的弹跳封杀对方,这就是平常说的盖帽.(注:盖帽应在球达到最高点前进行,否则就是“干扰球”,属犯规.)(1)问:此球能否投中?(2)此时,防守方球员乙前来盖帽,已知乙的最大摸球高度为3.19 m,则他如何做才能成功?19. (10分) (2019九上·西安期中) 因抖音等新媒体的传播,西安已成为最著名的网红旅游城市之一,2016年“十一”黄金周期间,西安接待游客近1000万人次,2018年“十一”黄金周期间,接待游客已达1690万人次,古城西安美食无数,一家特色小面店希望在长假期间获得较好的收益,经测算知,该小面的成本价为每碗6元,借鉴以往经验;若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗(1)求出2016年至2018年十一长假期间游客人次的年平均增长率;(2)为了维护城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天盈利6300元?20. (10分) (2020八下·扬州期中) 如图,在边长为1个单位长度的小正方形组成的网格中,点A、B、C 都是格点.①作△ABC绕点C顺时针旋转得到△A1B1C1;②作△ABC关于点O成中心对称的△A2B2C2.21. (10分) (2019九上·南昌期中) 如图,隧道的截面由抛物线和长方形构成,长方形的长为16m,宽为6m,抛物线的最高点C离地面AA1的距离为8m.(1)按如图所示的直角坐标系,求表示该抛物线的函数表达式.(2)一大型汽车装载某大型设备后,高为7m,宽为4m,如果该隧道内设双向行车道,那么这辆贷车能否安全通过?22. (15分) (2019九上·马山期中) 如图,学校准备在教学楼后面搭建一个简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为19 m),另外三边利用学校现有总长38 m的铁栏围成.(1)若围成的面积为180 m2 ,试求出自行车车棚的长和宽;(2)能围成面积为200 m2的自行车车棚吗?如果能,请你给出设计方,如果不能,请说明理由.23. (10分)(2018·鄂州) 某商场经营某种品牌的玩具,进价是20元,根据市场调查:在一段时间内,销售单价是30元时,销售量是500件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)问条件下,若商场获得了8000元销售利润,求该玩具销售单价x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于35元,且商场要完成不少于350件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?24. (2分)(2020·海南) 四边形是边长为的正方形,是的中点,连结,点是射线上一动点(不与点重合),连结,交于点 .(1)如图1,当点是边的中点时,求证:;(2)如图2,当点与点重合时,求的长;(3)在点运动的过程中,当线段为何值时,?请说明理由.25. (2分)(2018·沈阳) 如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B (﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共6题;共6分)7-1、8-1、9-1、10-1、11-1、12-1、三、解答题 (共13题;共96分)13-1、13-2、13-3、14-1、15-1、15-2、16-1、17-1、17-2、18-1、18-2、19-1、19-2、20-1、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、。

【解析版】九江市初中数学九年级上期中经典测试卷(培优提高)

【解析版】九江市初中数学九年级上期中经典测试卷(培优提高)

一、选择题1.题目文件丢失!2.题目文件丢失!3.题目文件丢失!4.题目文件丢失!5.题目文件丢失!6.题目文件丢失!7.题目文件丢失!8.题目文件丢失!9.题目文件丢失!10.题目文件丢失!11.题目文件丢失!12.题目文件丢失!13.题目文件丢失!14.题目文件丢失!15.题目文件丢失!二、填空题16.题目文件丢失!17.题目文件丢失!18.题目文件丢失!19.题目文件丢失!20.题目文件丢失!21.题目文件丢失!22.题目文件丢失!23.题目文件丢失!24.题目文件丢失!25.题目文件丢失!三、解答题26.题目文件丢失!27.题目文件丢失!28.题目文件丢失!29.题目文件丢失!30.题目文件丢失!【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.C3.B4.D5.C6.B7.D8.B9.D10.B11.A12.D13.B14.C15.C二、填空题16.【解析】【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数据此用绿灯亮的时间除以三种灯亮的总时间求出抬头看信号灯时是绿灯的概率为多少即可【详解】抬头看信号灯时是绿灯的概率17.【解析】【分析】根据旋转的性质可得AC=CD再判断出△ACD是等腰直角三角形然后根据等腰直角三角形的性质求出∠CAD=45°由∠BAD=∠BAC+∠CAD可得答案【详解】∵Rt△ABC绕其直角顶点C18.8【解析】【分析】连接AD根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°故可得出AD=BD再由AB是⊙O的直径可知△ABD是等腰直角三角形利用勾股定理求出AB 的长在Rt△ABC中利用勾股定19.【解析】【分析】根据题意使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目根据概率的计算方法计算可得答案【详解】根据题意从有4根细木棒中任取3根有234;345;2320.π﹣24【解析】【分析】要求阴影部分的面积即是半圆的面积减去直角三角形的面积根据AB=10BC:AC=3:4可以求得ACBC的长再根据半圆的面积公式和直角三角形的面积公式进行计算【详解】∵AB为直径21.x<-1或x>3【解析】【分析】根据二次函数的增减性求解即可【详解】由题意得二次函数的对称轴为故当时y随x的增大而增大当时y随x的增大而减小∵∴当函数值y>0时x的取值范围是x<-1或x>3故答案为22.(60532)【解析】【分析】根据前四次的坐标变化总结规律从而得解【详解】第一次P1(52)第二次P2(81)第三次P3(101)第四次P4(131)第五次P5(172)…发现点P的位置4次一个循环23.【解析】【分析】根据关于x的一元二次方程2x2-x+m=0有两个相等的实数根结合根的判别式公式得到关于m的一元一次方程解之即可【详解】根据题意得:△=1-4×2m=0整理得:1-8m=0解得:m=故24.【解析】【分析】根据扇形的弧长等于圆锥的底面周长利用扇形的弧长公式即可求得圆锥的底面周长然后根据圆的周长公式即可求解【详解】解:圆锥的底面周长是:=6π设圆锥底面圆的半径是r则2πr=6π则r=3故25.【解析】试题分析:连结BC因为AB是⊙O的直径所以∠ACB=90°∠A+∠ABC=90°又因为BDCD分别是过⊙O上点BC的切线∠BDC=110°所以CD=BD所以∠BCD=∠DBC=35°又∠AB三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:解析丢失2.C解析:解析丢失3.B解析:解析丢失4.D解析:解析丢失5.C解析:解析丢失6.B解析:解析丢失7.D解析:解析丢失8.B解析:解析丢失9.D解析:解析丢失10.B解析:解析丢失11.A解析:解析丢失12.D解析:解析丢失13.B解析:解析丢失14.C解析:解析丢失15.C解析:解析丢失二、填空题16.【解析】【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数据此用绿灯亮的时间除以三种灯亮的总时间求出抬头看信号灯时是绿灯的概率为多少即可【详解】抬头看信号灯时是绿灯的概率解析:解析丢失17.【解析】【分析】根据旋转的性质可得AC=CD再判断出△ACD是等腰直角三角形然后根据等腰直角三角形的性质求出∠CAD=45°由∠BAD=∠BAC+∠CAD可得答案【详解】∵Rt△ABC绕其直角顶点C解析:解析丢失18.8【解析】【分析】连接AD根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°故可得出AD=BD再由AB是⊙O的直径可知△ABD是等腰直角三角形利用勾股定理求出AB的长在Rt△ABC中利用勾股定解析:解析丢失19.【解析】【分析】根据题意使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目根据概率的计算方法计算可得答案【详解】根据题意从有4根细木棒中任取3根有234;345;23解析:解析丢失20.π﹣24【解析】【分析】要求阴影部分的面积即是半圆的面积减去直角三角形的面积根据AB=10BC:AC=3:4可以求得ACBC的长再根据半圆的面积公式和直角三角形的面积公式进行计算【详解】∵AB为直径解析:解析丢失21.x<-1或x>3【解析】【分析】根据二次函数的增减性求解即可【详解】由题意得二次函数的对称轴为故当时y随x的增大而增大当时y随x的增大而减小∵∴当函数值y>0时x的取值范围是x<-1或x>3故答案为解析:解析丢失22.(60532)【解析】【分析】根据前四次的坐标变化总结规律从而得解【详解】第一次P1(52)第二次P2(81)第三次P3(101)第四次P4(131)第五次P5(172)…发现点P的位置4次一个循环解析:解析丢失23.【解析】【分析】根据关于x的一元二次方程2x2-x+m=0有两个相等的实数根结合根的判别式公式得到关于m的一元一次方程解之即可【详解】根据题意得:△=1-4×2m=0整理得:1-8m=0解得:m=故解析:解析丢失24.【解析】【分析】根据扇形的弧长等于圆锥的底面周长利用扇形的弧长公式即可求得圆锥的底面周长然后根据圆的周长公式即可求解【详解】解:圆锥的底面周长是:=6π设圆锥底面圆的半径是r则2πr=6π则r=3故解析:解析丢失25.【解析】试题分析:连结BC因为AB是⊙O的直径所以∠ACB=90°∠A+∠ABC=90°又因为BDCD分别是过⊙O上点BC的切线∠BDC=110°所以CD=BD所以∠BCD=∠DBC=35°又∠AB解析:解析丢失三、解答题26.解析丢失27.解析丢失28.解析丢失29.解析丢失30.解析丢失。

江西省九江市六校联考2024-2025学年九年级上学期期中考试数学试题

江西省九江市六校联考2024-2025学年九年级上学期期中考试数学试题

江西省九江市六校联考2024-2025学年九年级上学期期中考试数学试题一、单选题1.下列方程中为一元二次方程的是()A .21x =B .()()221x x x +-=C .21230x x +-=D .2104y x =2.在菱形ABCD 中,80ABC ∠=︒,BA BE =,则BAE ∠=()A .70︒B .40︒C .75︒D .30︒3.一个不透明的袋中装有除颜色外均相同的9个红球、3个白球,若干个绿球,每次摇均匀后随机摸出一个球,记下颜色后再放回袋中,经大量实验,发现摸到绿球的概率稳定在0.2,则袋中的绿球数为()A .3个B .4个C .5个D .6个4.如图,下列条件中不能判定ACD ABC △∽△的是()A .ADC ACB∠=∠B .AB AC BC CD =C .ACD B ∠=∠D .2AC AD AB=⋅5.已知m ,n 是一元二次方程x 2+2x -2022=0的两个实数根,则代数式m 2+4m +2n 的值等于()A .2024B .2022C .2020D .20186.如图,OABC 的顶点(0,0)O ,(1,2)A ,点C 在x 轴的正半轴上,延长BA 交y 轴于点D .将ODA V 绕点O 顺时针旋转得到OD A ''△,当点D 的对应点D ¢落在OA 上时,D A ''的延长线恰好经过点C ,则点C 的坐标为()A .B .C .1,0)D .1,0)+二、填空题7.一元二次方程x (x+2)=0的解是.8.菱形有一个内角为120︒,较长的对角线长为,则它的面积为.9.通常情况下紫色石蕊试液遇酸性变红色,遇碱性溶液变蓝色.老师让学生用紫色石蕊试液检测四瓶因标签污损无法分辨的无色溶液的酸碱性,已知这四种溶液分别是A .盐酸(呈酸性),a .白醋(呈酸性),B .氢氧化钠溶液(呈碱性),b .氢氧化钙溶液(呈碱性)中的一种.学生小徐同时任选两瓶溶液,将紫色石蕊试液滴入其中进行检测,则两瓶溶液恰好都变蓝的概率为.10.如图,测量小玻璃管口径的量具ABC 上,AB 的长为10毫米,AC 被分为60等份,如果小管口中DE 正好对着量具上20份处(DE ∥AB ),那么小管口径DE 的长是毫米.11.如图,Rt ABC △中,903cm 4cm C AC BC ∠=︒==,,,D 是AB 上一点,DE AC ⊥于点E ,DF BC ⊥于点F ,边接EF ,则EF 的最小值为cm .12.如图,已知点()1,0A ,点()(),01B b b >,点P 是第一象限内的动点,且点P 的纵坐标为4b ,若POA 和PAB 相似,则符合条件的P 点坐标为.三、解答题13.解方程:(1)()()53210x x --=.(2)23510x x -+=.14.如图,ABCD AEFG ≌,C B E F 、、、点在同一条线上,请仅用无刻度的直尺按下列要求画图.(1)在下图中,画出线段AB 的中点;(2)在下图中,画出菱形AMNQ ,使点M N Q 、、分别在AB BE AE 、、上.15.2024年巴黎奥运会新增了四个项目:霹雳舞,滑板,冲浪,运动攀岩,依次记为A ,B ,C ,D ,浔阳体育队的小明同学把这四个项目写在了背面完全相同的卡片上.将这四张卡片背面朝上,洗匀放好.(1)小明想从中随机抽取一张,去了解该项目在奥运会中的得分标准,恰好抽到是B (滑板)的概率是______.(2)体育老师想从中选出来两个项目,让小明做成手抄报给大家普及一下,他先从中随机抽取一张不放回,再从中随机抽取一张,请用列表法或画树状图法表示出所有可能的结果,并求体育老师抽到的两张卡片恰好是B (滑板)和D (运动攀岩)的概率.16.如图,在矩形ABCD 中,过点B 作BE ∥AC 交DA 的延长线于E ,求证:BE=BD .17.如图,在ABC V 中,AB AC =,D ,E 分别是BC ,AC 上的点,且ADE B ∠=∠,求证:ABD DCE ∽△△.18.已知关于x 的一元二次方程()22210x m x m -++-=.(1)求证:方程有两个不相等的实数根;(2)若该方程有一根为1,求m 的值和该方程的另一个根.19.如图,在四边形ABCF 中,BA BC =,连接AC ,BF ,且BF 经过AC 的中点D ,点E 在BD 上,且DE DF =,连接AE ,CE .(1)求证:四边形AECF 是菱形(2)若8AC BD ==,且EBC ECB ∠=∠,求菱形AECF 的面积.20.小左同学想利用影长测量学校旗杆的高度,如图,她在某一时刻立一长度为1米的标杆,测得其影长为0.8米,同时旗杆投影的一部分在地上,另一部分在某一建筑物的墙上,测得旗杆与建筑物的距离为10米,旗杆在墙上的影高为2米,请帮小左同学算出学校旗杆的高度.21.为参加学校的“我爱古诗词”知识竞赛,王晓所在班级组织了一次古诗词知识测试,并将全班同学的分数(得分取正整数,满分为100分)进行统计,以下是根据这次测试成绩制作的不完整的频率分布表和频率分布直方图.请根据以上频率分布表和频率分布直方图,回答下列问题:组别分组频数频率150≤x<6090.18260≤x<70a b370≤x<80210.42480≤x<90m0.06590≤x≤1002n(1)求出a、b、m、n的值;(2)老师说:“王晓的测试成绩是全班同学成绩的中位数”,那么王晓的测试成绩在什么范围内?(3)若要从小明、小敏等几位成绩优秀(分数在80≤x≤100范围内为优秀)的同学中随机选取两位参加竞赛,请用“列表法”或“树状图”求出小明、小敏同时被选中的概率.(注:几位同学请用A、B、C、D…表示,其中小明为A,小敏为B)22.如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.(1)求证:△ABE≌△DAF;(2)若AF=1,四边形ABED的面积为6,求EF的长.23.如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C同时出发,沿矩形的边按逆时针方向移动,点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第ts时,△EFG的面积为Scm2.(1)当t=1s时,S的值是多少?(2)写出S与t之间的函数解析式,并指出自变量t的取值范围;(3)若点F在矩形的边BC上移动,当t为何值时,以点B、E、F为顶点的三角形与以C、F、G为顶点的三角形相似?请说明理由.。

江西省九江市2022-2023学年九年级上学期期中考试数学试题

江西省九江市2022-2023学年九年级上学期期中考试数学试题

江西省九江市2022-2023学年九年级上学期期中考试数学试

学校:___________姓名:___________班级:___________考号:___________
AB AC AB BC
A.4 B.3 C.2 D.1 二、填空题
三、解答题 13.解方程:
(1)2210x x -+=
(2)23520x x -+=
14.已知关于x 的一元二次方程220x kx +-=的一个根为2,求k 的值及方程的另一根. 15.将一块正方形铁皮的四角各减去一个边长为6cm 的小正方形,做成一个无盖的盒子,已知盒子的容积是3216cm ,求原正方形铁皮的边长.
16.如图,等腰Rt ABC △与等腰Rt GAF V 全等,BC 分别交AF AG 、于点D 、E ,请在图中找出一对相似而不全等的三角形并证明.
17.如图,等边ABC V 沿AC 翻折到ADC △,E 为AB 中点,请你仅用无刻度的直尺按下列要求作图.
(1)在图1中以AE 为边画出一个等边三角形;
(2)在图2中画一个以点E 为一个顶点的菱形.
18.如图,在正方形ABCD 中,E 、F 分别是AB 、BC 上的点,且AE BF =.求证:CE 与DF 垂直且相等.。

江西省九江市永修县2023-2024学年九年级上学期期中数学试题

江西省九江市永修县2023-2024学年九年级上学期期中数学试题

江西省九江市永修县2023-2024学年九年级上学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.3.5cm B.3.数学兴趣小组做“任意抛掷一枚图钉重复试验次数1050钉尖朝上次数515由此可以估计任意抛掷一次图钉,钉尖朝上的概率约为(A.0.50B.Y中,E4.如图,在ABCD则BD的长为()A.10B.125.春季是流感的高发时期,某校流感,假设每轮传染中平均每人传染A.2x x+149++=B.2x xx x+D.(A.3B.二、填空题∥∥7.如图,直线AB CD8.箱子中装有除颜色外完全相同的三个小球,其中摸出两个球,这两个球的颜色相同的概率是9.如图,已知矩形ABCD∽10.设m,n分别为一元二次方程23--=.m m n11.如图,在平面直角坐标系中点,则OP的最小值是12.如图,在坐标系中,正方形的两边所组成的角的度数之比为三、解答题13.(1)解方程:()()2323x x -=-.(2)若关于x 的方程2210x x m ++-=有两个相等的实数根,求m 的值.14.如图,Rt ABC ∆中,90B Ð=°,3AB =,4BC =,12CD =,13AD =,点E 是AD 的中点,求CE 的长.15.第31届世界大学生夏季运动会于2023年7月28日-8月8日在成都举行.彬彬和明明申请足球A 、篮球B 、排球C 、乒乓球D .四项赛事中某一项的志愿者,他们被随机分配到这四项赛事中的任意一项的可能性相同.(1)“彬彬被分配到乒乓球D .赛事做志愿者”是___________事件(填“必然”、“不可能”或“随机”).(2)请用画树状图法或列表法,求彬彬和明明被分配到同一项赛事做志愿者的概率.16.如图正方形ABCD ,正方形GCEF 如图,并排放置,G 不是CD 中点.请用无刻度直尺完成下列作图.(1)在图1中作平行四边形BDMC ;(2)在图2中边AD 上寻找点P ,使得PD CG =.17.如图所示,E 是正方形ABCD 的边AB 上的一点,EF ⊥DE 交BC 于点F .(1)求证:△ADE ∽△BEF ;(2)若AE :EB=1:2,求DE :EF 的比值.18.已知关于x 的一元二次方程220x ax a ++-=.(1)证明:不论a 取任何实数,该方程都有两个不相等的实数根;(2)若1x ,2x 为方程220x ax a ++-=的两个根,且满足1212223x x x x ++=,求a 的值.19.如图,矩形ABCD 中,点P ,Q 分别为,AD BC 边上的点,AP CQ =.BD 平分PDQ ∠.(1)求证:四边形PDQB 为菱形;(2)若4AB =,8AD =,求四边形PDQB 的面积.20.利客来超市销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,经过一段时间销售,发现销售单价每降低2元,平均每天可多售出4件.(1)若降价6元,则平均每天销售数量为___________件;(2)为了让顾客更实惠,每件商品降价多少元时,该商店每天销售利润为1200元?21.综合与实践问题情景:小琴在延时服务剪纸课上发现了奇妙的数学知识,可以利用方程解决剪纸问(1)在图1中,判断四边形EFGH 的形状,并说明理由;(2)在图2中,P 为四边形ABCD 内一点,且满足90APB DPC ∠=∠=︒,∠断四边形EFGH 的形状,并说明理由.23.课本再现:如图正方形ABCD 对角线AC 与BD 相交于点O ,E 为与B ,C 重合),作OF OE ⊥交CD 于点F .(1)在图1中解答下列问题:Ⅰ.求证:BE CF=Ⅱ.当正方形ABCD 的面积为4时,小明发现以下结论:①2EC CF +=;②1OECF S =四边形;③2222EC CF OF +=.其中正确的是(填序号)(2)如图2,当点P 为线段OC 上任意点时(P 不与O ,C 重合),E ,F 为分别为边上两点,且PE PF ⊥.问:,,EC CF CP 之间有何数量关系,并说明理由.(3)如图3,将图2中正方形ABCD 改成矩形ABCD ,且:1:2CD BC =,其它条件不变,直接写出,,EC CF CP 之间的数量关系.。

江西省九江市永修县多校2024-2025学年上学期期中九年级数学试题

江西省九江市永修县多校2024-2025学年上学期期中九年级数学试题

江西省九江市永修县多校2024-2025学年上学期期中九年级数学试题一、单选题1.下列说法正确的是( )A .有一组邻边相等的平行四边形是菱形B .有一个角是直角的平行四边形是菱形C .对角线相等的平行四边形是菱形D .对角线互相垂直且相等的四边形是菱形2.关于x 的一元二次方程2440+-=x ax 的根的情况是( )A .有两个不相等的实数根B .只有一个实数根C .有两个相等的实数根D .没有实数根3.将分别标有“中”、“考”、“必”、“胜”汉字的四张卡片装在一个不透明的盒子中,这些卡片除汉字外无其他差别,随机抽出其中两张,抽出的卡片上的汉字能组成“必胜”的概率是( )A .12B .14C .16D .184.如图,ABC V 中,DE BC ∥,2AD =,1DB =,4AE =,则AC 的长度为( )A .2B .6C .3D .45.劳动教育已被纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.设平均每年增产的百分率为x ,则可列方程为( )A .()3001363x +=B .()23003001300(1)363x x ++++=C .2300300363x +=D .2300(1)363x +=6.如图,点O 为正方形ABCD 的对角线BD 的中点,点E 为线段OB 上一点,连接CE ,CDE 是以CE 为底边的等腰三角形,若4AB =,则OE 的长为( )A .4B .2C D .4-二、填空题7.一个直角三角形斜边上的中线和高分别是6和5,它的面积= .8.用配方法解方程2230x x +-=时,配方后得到的方程为 .9.老师为帮助学生正确理解物理变化与化学变化,将4种生活现象制成4张无差别的卡片:A 冰化成水,B 酒精燃烧,C 牛奶变质,D 衣服晾干.将卡片背面朝上,小明同学从中随机抽取2张卡片,则所抽取的2张卡片刚好都是化学变化的概率是 .10.如图,已知,90ACB ADC ∠=∠= ,3BC =,4AC =,要使ABC ACD ∽,只要CD = .11.设m ,n 是方程220240x x +-=的两个实数根,则22m m n ++的值为 .12.如图,若点K 为正方形ABCD 边CD 上一点,AD=3,∠DAK=30°,点M 为AK 的中点,过点M 的直线分别交AD 边,BC 边于点P ,Q ,且PQ=AK ,则AP 的长为 .三、解答题13.(1)用配方法解方程:24320x x --=;(2)用公式法解方程:2236x x +=.14.如图,在ABCD 中,E 、F 分别是BA 、DA 延长线上的点,连接DE 、BF ,且AE AF =,E F ∠=∠.求证:四边形ABCD 是菱形.15.早茶作为广东餐饮文化的重要组成部分,以其小吃精美、种类繁多、口味独特、价格实惠而闻名.张帆在广州旅游期间,决定在“A .虾饺,B .干蒸烧卖,C .艇仔粥,D .蜜汁叉烧包”四种茶点中选择喜欢的进行品尝.(选到每种茶点的可能性相同)(1)如果只选其中一种茶点品尝,张帆选到“蜜汁叉烧包”的概率是______________;(2)如果选择两种茶点品尝,请用画树状图或列表的方法求张帆选到“虾饺”和“艇仔粥”的概率.16.如图,在正方形网格中,正方形OABC 的顶点均为格点,将OA 绕点O 逆时针旋转某一角度后,得到OD .(1)在图1中,请仅用无刻度的直尺补全正方形OABC 绕点O 旋转后的对应图形ODEF ;(2)在图2中,请仅用无刻度的直尺作出DOC ∠的平分线.17.如图,,CA AD ED AD ⊥⊥,点B 是线段AD 上的一点,且CB BE ⊥,求证:ABC DEB ∽△△.18.已知:如图,在菱形ABCD 中,点E ,O ,F 分别为AB ,AC ,AD 的中点,连接CE ,CF ,OE ,OF .(1)求证:BCE DCF △≌△;(2)当AB BC ⊥时,请判断四边形AEOF 的形状,并说明理由.19.已知关于x 的方程2229x kx k +-=.(1)求证:此方程有两个不相等的实数根;(2)若方程有一个根为2,试求23122022k k +-的值.20.如图,点D 是ABC V 边AC 的上一点,且ABD C ∠=∠ ,(1)求证:ABD ACB∽△△(2)如果1,4AD AC ==,求AB 的值.21.某水果商场经销一种高档水果,原价每千克50元,连续两次降价后每千克32元,若每次下降的百分率相同.(1)求每次下降的百分率.(2)若每千克盈利10元,每天可售出500千克经市场调查发现,在进货价不变的情况下,商场决定采取适当的涨价措施,但商场规定每千克涨价不能超过8元,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,且要尽快减少库存,那么每千克应涨价多少元?22.如图,在ABC V 中,68AB AC BC ===,,点D 是BC 边上的一个动点,点E 在AC 上,点D 在运动过程中始终保持1B ∠=∠,设BD 的长为()08x x <<.(1)求证:DCE ABD ∽;(2)当2CE =时,求x 的值.23.如图1,边长为4的正方形ABCD 与边长为a (14a <<)的正方形CFEG 的顶点C 重合点E 在对角线AC 上.(1)【问题发现】如图1,AE 与BF 的数量关系为______.(2)【类比探究】如图2,将正方形CFEG 绕点C 顺时针旋转α度(045α<<),问题发现中的结论是否还成立?如成立写出推理过程,如不成立,说明理由.(3)【拓展延伸】在图1中,若点F 为BC 的中点,将正方形CFEG 绕点C 顺时针旋转,在旋转过程中,当点A ,F ,G 在一条直线上时,直接写出此时线段AG 的长度.。

江西省九江市九年级上学期数学期中考试试卷

江西省九江市九年级上学期数学期中考试试卷

江西省九江市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九上·淮北月考) 下列函数不属于二次函数的是()A .B .C .D .【考点】2. (2分)函数(m是常数)的图像与x轴的交点个数为()A . 0个B . 1个C . 2个D . 1个或2个【考点】3. (2分) (2020九上·吴兴月考) 如图,直线y1=mx+n和抛物线y2=ax2+bx+c交于A(﹣3,1)和B (1,2)两点,使得y1>y2的x的取值范围是()A . x>1B . x>﹣3C . ﹣3<x<1D . x>1或x<﹣3【考点】4. (2分)已知,则 =()A . 6B .C .D .【考点】5. (2分) (2019九上·澧县月考) 已知反比例函数的图象上有两点A(x1 , y1)、B(x2 , y2),若y1>y2 ,则x1-x2的值是()A . 正数B . 负数C . 非正数D . 不能确定【考点】6. (2分)已知抛物线y=-2(x-3)2+5,则此抛物线()A . 开口向下,对称轴为直线x=-3B . 顶点坐标为(-3,5)C . 最小值为5D . 当x>3时y随x的增大而减小【考点】7. (2分)(2018·吉林模拟) 如图,四个二次函数的图像中,分别对应的是①y = ax2;②y = bx2;③y = cx2;④y = dx2 .则a、b、c、d的大小关系为()A . a>b>c>dB . a>b>d>cC . b>a>c>dD . b>a>d>c【考点】8. (2分)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限【考点】9. (2分)若,则等于()A . 2:5B . 4:25C . 5:2D . 25:4【考点】10. (2分) (2016九上·嵊州期中) 当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m 的值为()A . ﹣B . 或﹣C . 2或﹣D . 2或或﹣【考点】二、填空题 (共4题;共4分)11. (1分) (2019九上·宝应期末) 已知线段AB=10cm,点P是线段AB的黄金分割点,且PA>PB,则PA =________cm.(精确到0.1)【考点】12. (1分) (2020九上·陆丰月考) 若将抛物线y=(x﹣2)2+3向右平移2个单位,再向上平移3个单位,则所得抛物线的一般式是________.【考点】13. (1分) (2017八下·辉县期末) 若点(﹣5,y1),(﹣3,y2),(2,y3)都在反比例函数y= (m<0)的图象上,则y1 , y2 , y3由小到大排列为________.【考点】14. (1分)(2017·承德模拟) 定义:在平面直角坐标系中,点A、B为函数L图象上的任意两点,点A坐标为(x1 , y1),点B坐标为(x2 , y2),把式子称为函数L从x1到x2的平均变化率;对于函数K:y=2x2﹣3x+1图象上有两点A(x1 , y1)和B(x2 , y2),当x1=1,x2﹣x1= 时,函数K从x1到x2的平均变化率是________;当x1=1,x2﹣x1= (n为正整数)时,函数K从x1到x2的平均变化率是________.【考点】三、解答题 (共9题;共80分)15. (5分) (2020九上·新余期末) 如图,平面直角坐标系中,以点A(2,)为圆心,以2为半径的圆与x轴交于B,C两点.若二次函数y=x2+bx+c的图象经过点B,C,试求此二次函数的顶点坐标.【考点】16. (5分) (2015九上·宁波月考) 如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,那么,当以A、P、Q为顶点的三角形与△ABC相似时,运动时间是多少?【考点】17. (10分) (2017九上·天门期中) 已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式.【考点】18. (10分)(2018·深圳模拟) 已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂直为D,若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式;kx+b≤ 的解集.【考点】19. (10分)(2020·温州模拟) 如图,在平面直角坐标系中,抛物线y=ax²-4ax交x轴于点A,直线y=x+3与x轴交于点B,与y轴交于点C,与抛物线交于点D,E(点D在点E的右侧)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省九江市九年级上学期期中数学试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分)(2020·晋中模拟) 下列图形中,既是轴对称图形,又是中心对称图形的是()
A .
B .
C .
D .
2. (2分) (2020九上·宁波月考) 如图,在⊙O中,如果,那么()
A . AB=AC
B . AB=2AC
C . AB<2AC
D . AB>2AC
3. (2分) (2018九上·宁江期末) 二次函数y=-2x2+1的图象如图所示,将其绕坐标原点O旋转180°,则旋转后的抛物线的解析式为()
B . y=2x2+1
C . y=2x2
D . y=2x2-1
4. (2分)抛物线y=,y=﹣2018x2+2019,y=2018x2共有的性质是()
A . 开口向上
B . 对称轴是y轴
C . 当x>0时,y随x的增大而增大
D . 都有最低点
5. (2分) (2019九上·德惠月考) 已知关于x的一元二次方程(x+1)2-m=0有两个实数根,则m的取值范围是()
A . m≥
B . m≥2
C . m≥1
D . m≥0
6. (2分)若A(﹣2,y1),B(﹣1,y2),C(﹣3,y3)为二次函数y=ax2(a<0)的图象上的三点,则y1 ,y2 , y3的大小关系是()
A . y1<y2<y3
B . y2<y1<y3
C . y3<y1<y2
D . y1<y3<y2
7. (2分)(2020·南充模拟) 将抛物线向左平移1个单位后的解析式为()
A .
B .
C .
D .
8. (2分)已知一元二次方程x2+bx﹣3=0的一根为﹣3,在二次函数y=x2+bx﹣3的图象上有三点(-,y1)、(-,y2)、(,y3),y1、y2、y3的大小关系是()
A . y1<y2<y3
C . y3<y1<y2
D . y1<y3<y2
9. (2分) (2017九上·重庆开学考) 在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2﹣m的图象可能是()
A .
B .
C .
D .
10. (2分) (2020九上·萍乡期末) 如图所示,在矩形中,,点在边上,
平分,,垂足为,则等于()
A .
B . 1
C .
D . 2
11. (2分) (2017八下·嘉兴期中) 如图,在平行四边形ABCD中,∠B=60度,AB=5cm,则下面结论正确的是()
A . BC=5cm,∠D=60度
B . ∠C=120度,CD=5cm
C . AD=5cm,∠A=60度
D . ∠A=120度,AD=5cm
12. (2分)如图,已知AB=AC,AD=AE,∠BAC=∠DAE.下列结论不正确的是()
A . ∠BAD=∠CAE
B . △ABD≌△ACE
C . AB=BC
D . BD=CE
二、填空题 (共8题;共9分)
13. (1分) (2019九上·虹口期末) 如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E ,如果AC=2,BC=4,那么cot∠CAE=________.
14. (1分) (2019九上·湖里期中) 一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是57,每个支干长出________个小分支.
15. (1分) (2020九上·醴陵期末) 如图,AB//CD,,E为BC上一点,且.若,
,,则DE的长为________.
16. (1分)(2017·安徽模拟) 如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,
17. (1分)如图,正六边形ABCDEF内接于⊙O,向⊙O内任意投点,则所投的点落在正六边形ABCDEF内的概率是________ .
18. (1分) (2020九上·椒江月考) 用半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆的半径为________.
19. (2分) (2019七下·景县期中) 如图,弹性小球从点P(0,3)出发,沿所示方向运动,每当小球碰到长方形OABC的边时反弹,反弹时反射角等于入射角、当小球第1次碰到矩形的边时的点为P1 ,第2次碰到长方形的边时的点为P2……第n次碰到矩形的边时的点为Pn.则点P4的坐标是________,点P2019的坐标是________.
20. (1分) (2020九上·丹东月考) 甲乙两人在玩转盘游戏时,把转盘A.B分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定,转动两个转盘停止后,指针必须指到某一数字,否则重转.甲、乙二人分别转动A.B转盘一次,则指针所指的两个数字都是方程x2−4x+3=0的解的概率是________.
三、解答题 (共6题;共56分)
21. (6分) (2018九上·前郭期末) 如图,平面直角坐标系中,每个小正方形边长都是1.
(1)按要求作图:
①以坐标原点O为旋转中心,将△ABC逆时针旋转90°得到△A1B1C1;
②作出△A1B1C1关于原点成中心对称的中心对称图形△A2B2C2 .
(2)△A2B2C2中顶点B2坐标为________.
22. (5分)如图,在平面直角坐标系xoy中,的外接圆与y轴交于点,
,求OC的长.
23. (15分) (2019九上·鄞州月考) 如图,抛物线交x轴于A、B两点,直线y=kx+b经过点A,与这条抛物线的对称轴交于点M(1,2),且点M与抛物线的顶点N关于x轴对称.
(1)求抛物线的函数关系式;
(2)设题中的抛物线与直线的另一交点为C,已知P(x,y)为线段AC上一点,过点P作PQ⊥x轴,交抛物线于点Q.求线段PQ的最大值及此时P坐标;
24. (10分) (2019九上·枣庄月考) 如图,在正方形ABCD中,点M是边BC上的一点(不与B、C重合),点N在CD边的延长线上,且满足∠MAN=90°,联结MN、AC , N与边AD交于点E .
(1)求证;AM=AN;
(2)如果∠CAD=2∠NAD ,求证:AM2=AC•AE .
25. (10分)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.
(1)写出y与x中间的函数关系式和自变量x的取值范围;
(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?
26. (10分)(2017·平谷模拟) 如图,⊙O为等腰三角形ABC的外接圆,AB=AC.AD是⊙O的直径,切线DE 与AC的延长线相交于点E.
(1)求证:DE∥BC;
(2)若DF=n,∠BAC=2a,写出求CE长的思路.
参考答案一、选择题 (共12题;共24分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、考点:
解析:
答案:10-1、考点:
解析:
答案:11-1、考点:
解析:
答案:12-1、考点:
解析:
二、填空题 (共8题;共9分)答案:13-1、
考点:
解析:
答案:14-1、
考点:
解析:
答案:15-1、考点:
解析:
答案:16-1、
考点:
解析:
答案:17-1、考点:
解析:
答案:18-1、考点:
解析:
答案:19-1、考点:
解析:
答案:20-1、考点:
解析:
三、解答题 (共6题;共56分)
答案:21-1、
答案:21-2、
考点:
解析:
答案:22-1、考点:
解析:
答案:23-1、
答案:23-2、答案:23-3、考点:
解析:
答案:24-1、
答案:24-2、考点:
解析:
答案:25-1、
答案:25-2、考点:
解析:
答案:26-1、答案:26-2、
考点:解析:。

相关文档
最新文档