2017年安徽高考文科数学试题含答案(Word版)

合集下载

安徽省2017届高三上学期10月联考数学试卷(文科) Word版含解析

安徽省2017届高三上学期10月联考数学试卷(文科) Word版含解析

2016-2017学年安徽省高三(上)10月联考数学试卷(文科)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.已知集合A={y|y=x2﹣2x﹣1,x∈R},B={y|y=x+,x∈R且x≠0},则(∁R B)∩A=()A.(﹣2,2] B.[﹣2,2)C.[﹣2,+∞)D.(﹣2,2)2.在复平面内,复数z=(i为虚数单位)的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.下列推理过程是演绎推理的是()A.由平面三角形的性质推测空间三棱锥的性质B.某校高二1班有55人,2班有52人,由此得高二所有班人数都超过50人C.两条直线平行,同位角相等;若∠A与∠B是两条平行直线的同位角,则∠A=∠B D.在数列{a n}中,a1=2,a n=2a n+1(n≥2),由此归纳出{a n}的通项公式﹣14.已知tanα<0,则()A.sinα<0 B.sin2α<0 C.cosα<0 D.cos2α<05.已知α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,直线l与α1,α2,α3分别相交于P1,P2,P3.那么“P1P2=P2P3”是“d1=d2”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件6.设a=log36,b=log510,c=log714,则()A.c>b>a B.b>c>a C.a>c>b D.a>b>c7.设动点P(x,y)满足,则z=x+y的最大值是()A.10 B.30 C.20 D.908.一个直棱柱被一个平面截去一部分后所剩几何体的三视图如图所示,则该几何体的体积为()A.9 B.11 C.10 D.9.已知函数y=sinx+acosx的图象关于x=对称,则函数y=asinx+cosx的图象的一条对称轴是()A.x=B.x=C.x=D.x=10.在整数Z中,被7除所得余数为r的所有整数组成的一个“类”,记作[r],即[r]={7k+r|k ∈Z},其中r=0,1,2,…6.给出如下五个结论:①2016∈[1];②﹣3∈[4];③[3]∩[6]=Ø;④z=[0]∪[1]∪[2]∪[3]∪[4]∪[5]∪[6];⑤“整数a,b属于同一“类””的充要条件是“a﹣b∈[0].”其中,正确结论的个数是()A.5 B.4 C.3 D.211.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.212.对区间I上有定义的函数f(x),记f(I)={y|y=f(x),x∈I},已知函数y=f(x)的定义域为[0,3],自变量x与因变量y一一对应,且f([1,2])=[0,1),f([0,1])=[2,4),若方程f(x)﹣x=0有解x0,则x0=()A.1 B.2 C.3 D.4二、填空题(本大题共4小题,每小题5分,共20分).13.已知||=1,||=2,( +)⊥,则与夹角为.14.已知p:方程x2+mx+1=0有两个不等的正实数根,若¬p是真命题,则实数m的取值范围为.15.已知数列{a n},{b n}满足a1=,a n+b n=1,b n=,n∈N*,则b2016=.+116.已知函数f(x)=sinx,若存在x1,x2,…,x m满足0≤x1<x2<…x m≤6π,且|f(x1))﹣f(x n)|=12,(m≥2,m∈N*),则m的最﹣f(x2)|+|f(x2)﹣f(x3)|+…|f(x n﹣1小值为.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.设函数f(x)=cos(2x+)+2cos2x.(Ⅰ)求f(x)的最大值,并写出f(x)取最大值时x取值构成的集合;(Ⅱ)已知△ABC中,角A,B,C的对边分别为a,b,c,若f(B+C)=,a=1,求△ABC周长的最大值.18.某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,(2)为了能选拔出最优秀的学生,该高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求第四组至少有一名学生被考官A面试的概率?19.如图,在三棱柱ABC﹣A1B1C1中,已知侧棱与底面垂直,∠CAB=90°,且AC=1,AB=2,E为BB1的中点,M为AC上的一点,=.(Ⅰ)证明:CB1∥平面A1EM;(Ⅱ)若A1A的长度为,求三棱锥E﹣C1A1M的体积.=2S n+1(n∈N*),等差数列{b n}中,b2=5,20.已知数列{a n}的前n项和为S n,a1=1,a n+1且公差d=2.(1)求数列{a n},{b n}的通项公式;(2)是否存在正整数n,使得a1b1+a2b2+…+a n b n>60n?若存在,求n的最小值,若不存在,说明理由.21.已知椭圆C: +=1(a>b>0)的左右焦点分别为F1,F2,抛物线y2=4x与椭圆C有相同的焦点,点P为抛物线与椭圆C在第一象限的交点,且|PF1|=.(Ⅰ)求椭圆C的方程;(Ⅱ)探照灯的轴截面是一抛物线,如图所示表示平行于x轴的光线于抛物线上的点P,Q 的反射情况,光线PQ过焦点F,如图所示,若抛物线y2=4x,设点P的纵坐标为a(a>0),问a取何值时,从入射点P到反射点Q的光线的路程PQ最短.22.已知函数f(x)=x﹣alnx(a∈R).(Ⅰ)当a=2时,求曲线f(x)在x=1处的切线方程;(Ⅱ)设函数h(x)=f(x)+,求函数h(x)的单调区间;(Ⅲ)若g(x)=﹣,在[1,e](e=2.71828…)上存在一点x0,使得f(x0)≤g(x0)成立,求a的取值范围.2016-2017学年安徽省高三(上)10月联考数学试卷(文科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的.)1.已知集合A={y|y=x2﹣2x﹣1,x∈R},B={y|y=x+,x∈R且x≠0},则(∁R B)∩A=()A.(﹣2,2] B.[﹣2,2)C.[﹣2,+∞)D.(﹣2,2)【考点】交、并、补集的混合运算.【分析】求出集合A中二次函数的值域,确定出集合A,当x大于0时,利用基本不等式求出集合B中函数的值域;当x小于0时,﹣x大于0,同理利用基本不等式求出函数的值域,综上,求出两解集的并集确定出集合B,根据全集为R,求出集合B的补集得到C R B,然后找出C R B与集合A的公共部分即可得到所求的集合.【解答】解:由集合A中的函数y=x2﹣2x﹣1=(x﹣1)2﹣2≥﹣2,∴集合A=[﹣2,+∞),由集合B中的函数y=x+,当x>0时,x+≥2;当x<0时,﹣x>0,﹣(x+)=(﹣x)+(﹣)≥2,此时x+≤﹣2,综上,集合B=(﹣∞,﹣2]∪[2,+∞),又全集为R,∴C R B=(﹣2,2),则(C R B)∩A=(﹣2,2).故选D2.在复平面内,复数z=(i为虚数单位)的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】复数的代数表示法及其几何意义.【分析】利用复数的运算法则、共轭复数的定义、几何意义即可得出.【解答】解:复数z===的共轭复数对应的点位于第三象限.故选:C.3.下列推理过程是演绎推理的是()A.由平面三角形的性质推测空间三棱锥的性质B.某校高二1班有55人,2班有52人,由此得高二所有班人数都超过50人C.两条直线平行,同位角相等;若∠A与∠B是两条平行直线的同位角,则∠A=∠B D.在数列{a n}中,a1=2,a n=2a n+1(n≥2),由此归纳出{a n}的通项公式﹣1【考点】演绎推理的基本方法.【分析】根据三种推理的定义及特点,逐一分析四个答案中的推理过程,可得结论.【解答】解:A中,由平面三角形的性质推测空间三棱锥的性质是类比推理;B中,某校高二1班有55人,2班有52人,由此得高二所有班人数都超过50人,是归纳推理;C中,两条直线平行,同位角相等;若∠A与∠B是两条平行直线的同位角,则∠A=∠B,是演绎推理;D中,在数列{a n}中,a1=2,a n=2a n+1(n≥2),由此归纳出{a n}的通项公式,是归纳推理.﹣1故选:C4.已知tanα<0,则()A.sinα<0 B.sin2α<0 C.cosα<0 D.cos2α<0【考点】三角函数值的符号.【分析】化切为弦,然后利用二倍角的正弦得答案.【解答】解:∵tanα<0,∴<0,∴sinα与cosα异号,∴2sinα•cosα=sin2α<0.故选:B.5.已知α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,直线l与α1,α2,α3分别相交于P1,P2,P3.那么“P1P2=P2P3”是“d1=d2”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断;空间中直线与平面之间的位置关系.【分析】由已知中α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,直线l与α1,α2,α3分别相交于P1,P2,P3,结合面面平行的性质,我们分别判断“P1P2=P2P3”⇒“d1=d2”及“d1=d2”⇒“P1P2=P2P3”的真假,结合充要条件的定义,即可得到答案.【解答】解:由已知中α1,α2,α3是三个相互平行的平面,且平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,又由直线l与α1,α2,α3分别相交于P1,P2,P3.则“P1P2=P2P3”⇒“d1=d2”为真命题且“d1=d2”⇒“P1P2=P2P3”是真命题故“P1P2=P2P3”是“d1=d2”的充分必要条件故选C.6.设a=log36,b=log510,c=log714,则()A.c>b>a B.b>c>a C.a>c>b D.a>b>c【考点】对数值大小的比较;不等关系与不等式.【分析】利用log a(xy)=log a x+log a y(x、y>0),化简a,b,c然后比较log32,log52,log72大小即可.【解答】解:因为a=log36=1+log32,b=log510=1+log52,c=log714=1+log72,因为y=log2x是增函数,所以log27>log25>log23,∵,,所以log32>log52>log72,所以a>b>c,故选D.7.设动点P(x,y)满足,则z=x+y的最大值是()A.10 B.30 C.20 D.90【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.【解答】解:作出不等式对应的平面区域,由z=x+y,得y=﹣x+z,平移直线y=﹣x+z,由图象可知当直线y=﹣x+z经过点A时,直线y=﹣x+z的截距最大,此时z最大.由,得,即A(10,20),此时z的最大值为z=10+20=30,故选:B.8.一个直棱柱被一个平面截去一部分后所剩几何体的三视图如图所示,则该几何体的体积为()A.9 B.11 C.10 D.【考点】由三视图求面积、体积.【分析】三视图中长对正,高对齐,宽相等;由三视图想象出直观图,一般需从俯视图构建直观图,该几何体为一个长方体截去一个三棱锥.【解答】解:该几何体为一个长方体截去一个三棱锥,其长方体的体积为2×2×3=12,三棱锥的体积××1×2×3=1,故该几何体的体积V=12﹣1=11,故选B.9.已知函数y=sinx+acosx的图象关于x=对称,则函数y=asinx+cosx的图象的一条对称轴是()A.x=B.x=C.x=D.x=【考点】三角函数中的恒等变换应用.【分析】函数y=sinx+acosx变为y=sin(x+φ),tanφ=a又图象关于x=对称,+φ=kπ+,k∈z,可求得φ=kπ+,由此可求得a=tanφ=tan(kπ+)=,将其代入函数y=asinx+cosx化简后求对称轴即可.【解答】解:y=sinx+acosx变为y=sin(x+φ),(令tanφ=a)又∵图象关于x=对称,∴+φ=kπ+,k∈z,可求得φ=kπ+,由此可求得a=tanφ=tan(kπ+)=,∴函数y=sinx+cosx=sin(x+θ),(tanθ=)其对称轴方程是x+θ=kπ+,k∈z,即x=kπ+﹣θ又tanθ=,故θ=k1π+,k1∈z故函数y=asinx+cosx的图象的对称轴方程为x=(k﹣k1)π+﹣=(k﹣k1)π+,k﹣k1∈z,当k﹣k1=0时,对称轴方程为x=,故选:D.10.在整数Z中,被7除所得余数为r的所有整数组成的一个“类”,记作[r],即[r]={7k+r|k ∈Z},其中r=0,1,2,…6.给出如下五个结论:①2016∈[1];②﹣3∈[4];③[3]∩[6]=Ø;④z=[0]∪[1]∪[2]∪[3]∪[4]∪[5]∪[6];⑤“整数a,b属于同一“类””的充要条件是“a﹣b∈[0].”其中,正确结论的个数是()A.5 B.4 C.3 D.2【考点】整除的定义.【分析】根据“类”的定义分别进行判断即可.【解答】解:①∵2016÷7=288,∴2016∈[0],故①不正确;②∵﹣3=7×(﹣1)+4,∴﹣3∈[4],故②正确;③[3]∩[6]=Ø,正确④∵整数集中的数被7除的数可以且只可以分成7类,故Z=[0]∪[1]∪[2]∪[3]∪[4]∪[5]∪[6],故④正确;⑤∵整数a,b属于同一“类”,∴整数a,b被5除的余数相同,从而a﹣b被5除的余数为0,反之也成立,故当且仅当“a﹣b∈[0]”整数a,b属于同一“类”.故⑤正确.正确的结论为②③④⑤.故选:B.11.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【考点】双曲线的简单性质.【分析】设F(c,0),渐近线方程为y=x,运用点到直线的距离公式可得焦点到渐近线的距离为b,即为圆F的半径,再由MF垂直于x轴,可得a=b,运用a,b,c的关系和离心率公式,即可得到所求值.【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.12.对区间I上有定义的函数f(x),记f(I)={y|y=f(x),x∈I},已知函数y=f(x)的定义域为[0,3],自变量x与因变量y一一对应,且f([1,2])=[0,1),f([0,1])=[2,4),若方程f(x)﹣x=0有解x0,则x0=()A.1 B.2 C.3 D.4【考点】映射.【分析】根据互为反函数的两函数定义域、值域互换可判断:当x∈[0,1)时,x∈[1,2)时f(x)的值域,进而可判断此时f(x)=x无解;由f(x)在定义域[0,3]上存在反函数可知:x∈[2,3]时,f(x)的取值集合,再根据方程f(x)=x有解即可得到x0的值.【解答】解:因为g(I)={y|y=g(x),x∈I},f﹣1([0,1))=[1,2),f﹣1(2,4])=[0,1),所以对于函数f(x),当x∈[0,1)时,f(x)∈(2,4],所以方程f(x)﹣x=0即f(x)=x无解;当x∈[1,2)时,f(x)∈[0,1),所以方程f(x)﹣x=0即f(x)=x无解;所以当x∈[0,2)时方程f(x)﹣x=0即f(x)=x无解,又因为方程f(x)﹣x=0有解x0,且定义域为[0,3],故当x∈[2,3]时,f(x)的取值应属于集合(﹣∞,0)∪[1,2]∪(4,+∞),故若f(x0)=x0,只有x0=2,故选B.二、填空题(本大题共4小题,每小题5分,共20分).13.已知||=1,||=2,( +)⊥,则与夹角为.【考点】数量积表示两个向量的夹角.【分析】设向量与夹角为θ,由题意可得:(+)•=0,即+cosθ=0,代入已知可得答案.【解答】解:设向量与夹角为θ,则由题意可得:(+)•=0,即+cosθ=0,代入可得:1+1×2×cosθ=0,解得cosθ=,又θ∈[0,π],故θ=故答案为:14.已知p:方程x2+mx+1=0有两个不等的正实数根,若¬p是真命题,则实数m的取值范围为[﹣2,+∞).【考点】命题的真假判断与应用.【分析】借助一元二次函数图象,分析命题p为真的等价条件,求出m的范围;即可求解¬p是真命题,实数m的取值范围.【解答】解:∵方程x2+mx+1=0有两个不等的正实数根,∴⇒m<﹣2,∴若¬p是真命题,m的取值范围是m≥﹣2;故答案为:[﹣2,+∞).15.已知数列{a n},{b n}满足a1=,a n+b n=1,b n=,n∈N*,则b2016=.+1【考点】数列递推式.=,n∈N*,可得b1=1﹣a1=,【分析】数列{a n},{b n}满足a1=,a n+b n=1,b n+1==.求出b2,b3,b4,…,猜想:b n=,即可得出.b n+1=,n∈N*,【解答】解:∵数列{a n},{b n}满足a1=,a n+b n=1,b n+1==.∴b1=1﹣a1=,b n+1∴b2=,b3=,b4=,…,猜想:b n=,=成立.经过验证:b n+1则b2016=.故答案为:.16.已知函数f(x)=sinx,若存在x1,x2,…,x m满足0≤x1<x2<…x m≤6π,且|f(x1))﹣f(x n)|=12,(m≥2,m∈N*),则m的最﹣f(x2)|+|f(x2)﹣f(x3)|+…|f(x n﹣1小值为8.【考点】数列的求和.【分析】由正弦函数的有界性可得,对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,然后作图可得满足条件的最小m值.【解答】解:∵y=sinx对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,)﹣f(x m)考虑0≤x1<x2<…<x m≤6π,|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1|=12,按下图取值即可满足条件,∴m的最小值为8.故答案为:8.三、解答题:(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17.设函数f(x)=cos(2x+)+2cos2x.(Ⅰ)求f(x)的最大值,并写出f(x)取最大值时x取值构成的集合;(Ⅱ)已知△ABC中,角A,B,C的对边分别为a,b,c,若f(B+C)=,a=1,求△ABC周长的最大值.【考点】余弦定理;余弦函数的图象.【分析】化简函数f(x),(Ⅰ)根据三角函数的图象与性质求出f(x)的最大值以及对应x 的取值集合;(Ⅱ)根据题意求出A的值,再利用正弦定理求出b、c的解析式,写出△ABC的周长L,求出它的最大值.【解答】解:函数f(x)=cos(2x+)+2cos2x=cos2xcos﹣sin2xsin+2×=﹣sin2x+cos2x+1=﹣sin(2x﹣)+1;(Ⅰ)令2x﹣=﹣+2kπ,k∈Z,解得x=﹣+kπ,k∈Z,∴f(x)的最大值为1+1=2,且f(x)取最大值时x的取值集合是{x|x=﹣+kπ,k∈Z};(Ⅱ)△ABC中,f(B+C)=,∴﹣sin[2(B+C)﹣]+1=,sin[2(B+C)﹣]=﹣,∵0<B+C<π,∴﹣<2(B+C)﹣<,∴2(B+C)﹣=,∴B+C=,∴A=;又∵a=1,∴====,∴b=sinB,c=sinC,∴△ABC的周长为:L=a+b+c=1+sinB+sinC=1+sin(﹣C)+sinC=1+cosC+sinC=1+2sin(C+),∵0<C<,∴<C+<,∴当C+=,即C=时,△ABC的周长取最大值为1+2=3.18.某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,(2)为了能选拔出最优秀的学生,该高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求第四组至少有一名学生被考官A面试的概率?【考点】列举法计算基本事件数及事件发生的概率;频率分布表.【分析】(1)由频率=可求其数据,频率分布直方图时注意纵轴;(2)用分层抽样的方法获取样本中的比例;(3)用古典概型求概率.【解答】解:(1)①位置上的数据为=35,②位置上的数据为=0.3;频率分布直方图如右图:(2)6×≈2.47,6×≈2.11,6×≈1.41.故第3、4、5组每组各抽取3,2,1名学生进入第二轮面试.(3)其概率模型为古典概型,设第3、4、5组抽取的学生分别为:a,b,c,1,2,m.则其所有的基本事件有:(a,b),(a,c),(a,1),(a,2),(a,m),(b,c),(b,1),(b,2),(b,m),(c,1),(c,2),(c,m),(1,2),(1,m),(2,m).共有15个,符合条件的有9个;故概率为=0.6.19.如图,在三棱柱ABC﹣A1B1C1中,已知侧棱与底面垂直,∠CAB=90°,且AC=1,AB=2,E为BB1的中点,M为AC上的一点,=.(Ⅰ)证明:CB1∥平面A1EM;(Ⅱ)若A1A的长度为,求三棱锥E﹣C1A1M的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(Ⅰ)连接AB1,交A1E于点N,连接MN,由E为BB1的中点,且=,得MN∥CB1,再由线面平行的判定得CB1∥平面A1EM;(Ⅱ)由题意可得,结合棱锥体积公式求解.【解答】(Ⅰ)证明:如图,连接AB1,交A1E于点N,连接MN,∵E为BB1的中点,∴,又=,∴MN∥CB1,在△ACB1中,∵MN∥CB1,MN⊂面A1EM,CB1⊄面A1EM,∴CB1∥平面A1EM;(Ⅱ)解:由AA1∥BB1,得,由AA1⊥面A1B1C1,得AA1⊥A1B1,又C1A1⊥A1B1,AA1∩C1A1=A1,∴A1B1⊥面AA1C1C,∴=.20.已知数列{a n}的前n项和为S n,a1=1,a n+1=2S n+1(n∈N*),等差数列{b n}中,b2=5,且公差d=2.(1)求数列{a n},{b n}的通项公式;(2)是否存在正整数n,使得a1b1+a2b2+…+a n b n>60n?若存在,求n的最小值,若不存在,说明理由.【考点】数列的求和.【分析】(1)根据等差数列的通项公式,建立方程关系即可求数列{a n},{b n}的通项公式;(2求出数列{a n b n}的前n项和Sn,即可解不等式.【解答】解:(1)∵a n+1=2S n+1,∴当n≥2时,a n=2S n﹣1+1两式相减得:a n+1=3a n(n≥2)又a2=2a1+1=3=3a1,∴a n+1=3a n(n∈N*).∴数列{a n}是以1为首项,3为公比的等比数列,∴a n=3n﹣1.又b1=b2﹣d=5﹣2=3,∴b n=b1+(n﹣1)d=2n+1.(2)令…①则3T n=3×3+5×32+7×33+…+(2n﹣1)×3n﹣1+(2n+1)×3n…②①﹣②得:∴T n=n×3n>60n,即3n>60,∵33=27,34=81,∴n的最小正整数为4.21.已知椭圆C: +=1(a>b>0)的左右焦点分别为F1,F2,抛物线y2=4x与椭圆C有相同的焦点,点P为抛物线与椭圆C在第一象限的交点,且|PF1|=.(Ⅰ)求椭圆C的方程;(Ⅱ)探照灯的轴截面是一抛物线,如图所示表示平行于x轴的光线于抛物线上的点P,Q 的反射情况,光线PQ过焦点F,如图所示,若抛物线y2=4x,设点P的纵坐标为a(a>0),问a取何值时,从入射点P到反射点Q的光线的路程PQ最短.【考点】椭圆的简单性质.【分析】(I)求得抛物线的焦点,可得c=1,设P为(,m),由椭圆的焦半径公式可得|PF1|=a+•=,由椭圆和抛物线的定义可得,2a=++1,解方程可得a=2,由a,b,c的关系,可得b,进而得到椭圆方程;(Ⅱ)设PQ方程为x=my+1,代入抛物线方程,由韦达定理求得y1+y2=4m,y1•y2=﹣4,由弦长公式可知丨PQ丨=•=4(1+m2),即当m=0时,即a=2时,丨PQ丨取得最小值,最小值为4.【解答】解:(Ⅰ)由抛物线y2=4x焦点坐标为(1,0),即c=1,设P为(,m),由椭圆的焦半径公式可得,|PF1|=a+•=,由椭圆和抛物线的定义可得,2a=++1,解得:a=2,b==,即有椭圆的方程为;(Ⅱ)由F(1,0),设直线PQ方程为x=my+1,,整理得:y2﹣4my﹣4=0,由韦达定理可知:y1+y2=4m,y1•y2=﹣4,丨PQ丨=•=•,=4(1+m2),∴当m=0时,即a=2时,丨PQ丨取得最小值,最小值为4.22.已知函数f(x)=x﹣alnx(a∈R).(Ⅰ)当a=2时,求曲线f(x)在x=1处的切线方程;(Ⅱ)设函数h(x)=f(x)+,求函数h(x)的单调区间;(Ⅲ)若g(x)=﹣,在[1,e](e=2.71828…)上存在一点x0,使得f(x0)≤g(x0)成立,求a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求出切点(1,1),求出,然后求解斜率k,即可求解曲线f(x)在点(1,1)处的切线方程.(Ⅱ)求出函数的定义域,函数的导函数,①a>﹣1时,②a≤﹣1时,分别求解函数的单调区间即可.(Ⅲ)转化已知条件为函数在[1,e]上的最小值[h(x)]min≤0,利用第(Ⅱ)问的结果,通过①a≥e﹣1时,②a≤0时,③0<a<e﹣1时,分别求解函数的最小值,推出所求a的范围.【解答】解:(Ⅰ)当a=2时,f(x)=x﹣2lnx,f(1)=1,切点(1,1),∴,∴k=f′(1)=1﹣2=﹣1,∴曲线f(x)在点(1,1)处的切线方程为:y﹣1=﹣(x﹣1),即x+y﹣2=0.(Ⅱ),定义域为(0,+∞),,①当a+1>0,即a>﹣1时,令h′(x)>0,∵x>0,∴x>1+a令h′(x)<0,∵x>0,∴0<x<1+a.②当a+1≤0,即a≤﹣1时,h′(x)>0恒成立,综上:当a>﹣1时,h(x)在(0,a+1)上单调递减,在(a+1,+∞)上单调递增.当a≤﹣1时,h(x)在(0,+∞)上单调递增.(Ⅲ)由题意可知,在[1,e]上存在一点x0,使得f(x0)≤g(x0)成立,即在[1,e]上存在一点x0,使得h(x0)≤0,即函数在[1,e]上的最小值[h(x)]min≤0.由第(Ⅱ)问,①当a+1≥e,即a≥e﹣1时,h(x)在[1,e]上单调递减,∴,∴,∵,∴;②当a+1≤1,即a≤0时,h(x)在[1,e]上单调递增,∴[h(x)]min=h(1)=1+1+a≤0,∴a≤﹣2,③当1<a+1<e,即0<a<e﹣1时,∴[h(x)]min=h(1+a)=2+a﹣aln(1+a)≤0,∵0<ln(1+a)<1,∴0<aln(1+a)<a,∴h(1+a)>2此时不存在x0使h(x0)≤0成立.综上可得所求a的范围是:或a≤﹣2.2017年1月11日。

2017年全国卷1高考文科数学真题及答案解析(完整版)

2017年全国卷1高考文科数学真题及答案解析(完整版)

2017年全国卷1高考文科数学真题及答案解析(完整版)
高考是人生的一大考试,成败与否,心态最为重要。

希望大家能保持一颗平常的心态,积极迎战!请大家谨记,为理想奋斗的宝贵过程其意义远远大于未知的结果。

高考频道会及时为广大考生提供[2017年全国卷1高考文科数学真题及答案解析(完整版)],更多高考分数线、高考成绩查询、高考志愿填报、高考录取查询信息等信息请关注我们网站的更新!
2017年高考全国卷1文科数学真题及答案解析(完整版)
适用地区:河南、河北、山西、江西、湖北、湖南、广东、安徽、福建
下载2017年高考全国卷1文科数学真题及答案解析(完整版)。

2017年全国高考文科数学试题及答案-全国卷

2017年全国高考文科数学试题及答案-全国卷

绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。

考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,监考员将试题卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}|2x x <,B ={}|320x x ->,则A .A IB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A I B =∅C .A U B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A U B=R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数3.下列各式的运算结果为纯虚数的是A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .14 B .π8C .12D .π 45.已知F是双曲线C:x2-2 3y=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3).则△APF的面积为A.13B.12C.23D.326.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是7.设x,y满足约束条件33,1,0,x yx yy+≤⎧⎪-≥⎨⎪≥⎩则z=x+y的最大值为A.0 B.1 C.2 D.38..函数sin21cosxyx=-的部分图像大致为9.已知函数()ln ln(2)f x x x=+-,则A.()f x在(0,2)单调递增B.()f x在(0,2)单调递减C.y=()f x的图像关于直线x=1对称D.y=()f x的图像关于点(1,0)对称10.如图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +211.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。

(word完整版)2017年全国高考文科数学试题及答案-全国卷2(2),推荐文档

(word完整版)2017年全国高考文科数学试题及答案-全国卷2(2),推荐文档

绝密★启用前2017年普通高等学校招生全国统一考试(全国卷2)文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{1,2,3},{2,3,4}A B ==,则A B =UA.{}123,4,,B.{}123,,C.{}234,,D.{}134,,2.(1)(2)i i ++=A.1i -B.13i +C.3i +D.33i + 3.函数()sin(2)3f x x π=+的最小正周期为 A.4π B.2π C.π D.2π 4.设非零向量a ,b 满足+=-b b a a 则A.a ⊥bB.=b aC.a ∥bD.>b a5.若1a >,则双曲线2221x y a-=的离心率的取值范围是 A.2+∞(,)B.22(,) C.2(1,) D.12(,)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90πB.63πC.42πD.36π7.设,x y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。

则2z x y =+的最小值是A.-15B.-9C.1 D9 8.函数2()ln(28)f x x x =--的单调递增区间是A.(-∞,-2)B.(-∞,-1)C.(1,+∞)D.(4,+∞)9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则 A.乙可以知道两人的成绩 B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩 10.执行右面的程序框图,如果输入的1a =-,则输出的S=A.2B.3C.4D.511.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为 A.110B.15C.310D.25 12.过抛物线2:4C y x =的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为A.5B.22C.23D.33二、填空题,本题共4小题,每小题5分,共20分.13.函数()2cos sin f x x x =+的最大值为.14.已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时,32()2f x x x =+,则(2)f =15.长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为16.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B =三、解答题:共70分。

2017全国高考文科数学试题和答案解析_全国1卷

2017全国高考文科数学试题和答案解析_全国1卷

绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。

考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,监考员将试题卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数3.下列各式的运算结果为纯虚数的是A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .14 B .π8C .12D .π 45.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为 A .13B .12C .23D .3 26.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .38..函数sin21cos xy x=-的部分图像大致为9.已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称10.如图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +211.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。

2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)
AUB={xl lx<2) ,故 C, D 错误; 故选: A. 【点评】 本题考查的知识点梨合的父生和并炊运算,难度小大,屈千基础题.
2. 【觥答】 解:在 A 中,平均数是表不一组数据仗中趋势的址数,它是反映数据梊中趋势的一项指标, 故 A 不可以用来评估这种农什物由产量稳定程度; 在 B 中,标准差能反映一个数据集的离散程度,故 B 可以用来评估这种农作物亩产量稳定程度; 在 C 中,最大值是一组数据最大的量,故 C 不可以用来评估这种农作物亩产量稳定程度; 在 D 中,中位数将数据分成前半部分和后半部分,用来代表一组数据的"中等水平”, 故 D 不可以用来评估这种农作物亩产量稳定程度. 故选: B.
尺寸的均值与标准差.(精确到 0.01) n
区 ( xi-x) ( yi-y)
:n11(=:1 云) 2荨了 ' 三=0.09. 附:杆本 (x;, y;) (i=l, 2,..., n) 的相关系数 r=
21. (12 分)已知函数 f (x) =e'(e•-a) -a奴
( 1) 讨论 f (x) 的单调性; ( 2) 若 f (x) ?co, 求 a 的取值范围.
I: (x, - x) (i - 8.5) = - 2.78, 其中 x 为抽取的第 i 个零件的尺寸, i=l, 2,..., 16.
1=1
( 1) 求 (x;, i) (i=l, 2,..., 16) 的相关系数 r, 并回答是否可以认为这一天生产的零件尺寸不随生 产过程的进行而系统地变大或变小(若 I rl <o.2s, 则可以认为零件的尺寸不随生产过程的进行而
-冗
x
-冗
X
A. 1-4
B. 千
c. 1_2
D. 于

2017年全国高考文科数学试题及答案-全国卷1

2017年全国高考文科数学试题及答案-全国卷1

2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。

考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,监考员将试题卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数B .x 1,x 2,…,x n 的标准差C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数3.下列各式的运算结果为纯虚数的是A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π 4 5.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为A .13B .1 2C .2 3D .3 26.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .3 8..函数sin21cos x y x=-的部分图像大致为9.已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称10.如图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +211.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。

2017年高考文科数学试题全国卷1与解析word完美版

2017年高考文科数学试题全国卷1与解析word完美版

2017 年普通高等学校招生全国统一考试 1 卷文科数学一、选择题:本大题共12 小题,每小题 5 分,共60 分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、已知集合A={x|x<2} ,B={x|3–2x>0},则( )A.A∩B={x|x< 3 32} B.A∩B=ΦC.A∪B={x|x< 2} D.A∪B=R2、为评估一种农作物的种植效果,选了n 块地作试验田。

这n 块地的亩产量(单位:kg)分别为x1,x2,⋯,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,⋯,x n 的平均数B.x1,x2,⋯,x n 的标准差C.x1,x2,⋯,x n 的最大值D.x1,x2,⋯,x n 的中位数3、下列各式的运算结果为纯虚数的是( )2 B.i2(1–i) C.(1+i)2 D.i(1+i)A.i(1+i)4、如下左 1 图,正方形ABCD内的图形来自中国古代的太极图。

正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称。

在正方形内随机取一点,则此点取自黑色部分的概率是( )A.14πB.8C.12πD.42y 25、已知F 是双曲线C:x –3 =1 的右焦点,P 是C上一点,且PF与x轴垂直,点 A 的坐标是(1,3)。

则△APF的面积为( )A.13 B.12 C.23 D.326、如上左2–5 图,在下列四个正方体中,A,B 为正方体的两个顶点,M ,N,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )x+3y ≤ 3x–y≥,1则z=x+y 的最大值为( )7、设x,y 满足约束条件y≥ 0A.0 B.1 C.2 D.3sin2x的部分图像大致为( )8、函数y=1–cosx9、已知函数f(x)=lnx+ln(2 –x),则( )A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图像关于直线x=1对称D.y=f(x)的图像关于点(1,0)对称nn>1000 的最小偶数n,那么在和两个空白框中,可以分别填入() 10、如图是为了求出满足 3 –2A.A>1000 和n=n+1 B.A>1000 和n=n+2 C.A≤1000和n=n+1 D.A≤1000和n=n+211、△ABC的内角A、B、C 的对边分别为a、b、c。

2017年全国高考文科数学试题及答案-全国卷2

2017年全国高考文科数学试题及答案-全国卷2

2017年普通高等学校招生全国统一考试文科数学注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}{}123234A B ==,,, ,,, 则=ABA. {}123,4,,B. {}123,,C. {}234,,D. {}134,, 2.(1+i )(2+i )=A.1-iB. 1+3iC. 3+iD.3+3i 3.函数()fx =πsin (2x+)3的最小正周期为A.4πB.2πC. πD. 2π4.设非零向量a ,b 满足+=-b b a a 则A a ⊥b B. =b a C. a ∥b D. >b a5.若>1,则双曲线x y a=222-1的离心率的取值范围是A. 2+∞(,)B. 2(,)C. 2(1,)D. 12(,)6.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90πB.63πC.42πD.36π7.设x 、y 满足约束条件2+330233030x y x y y -≤⎧⎪-+≥⎨⎪+≥⎩。

则2z x y =+ 的最小值是A. -15B.-9C. 1 D 98.函数2()ln(28)f x x x =-- 的单调递增区间是A.(-∞,-2)B. (-∞,-1)C.(1, +∞)D. (4, +∞)9.甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则A.乙可以知道两人的成绩B.丁可能知道两人的成绩C.乙、丁可以知道对方的成绩D.乙、丁可以知道自己的成绩 10.执行右面的程序框图,如果输入的a =-1,则输出的S=A.2B.3C.4D.511.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.2512.过抛物线C:y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l,则M 到直线NF 的距离为A.5B.22C.23D.33二、填空题,本题共4小题,每小题5分,共20分. 13.函数()cos sin =2+fx x x 的最大值为 .14.已知函数()f x 是定义在R 上的奇函数,当x ()-,0∈∞时,()322=+f x x x ,则()2=f15.长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 16.△ABC 的内角A,B,C 的对边分别为a,b,c,若2b cosB=a cosC+c cosA,则B= 三、解答题:共70分。

(完整版)2017年全国1卷高考文科数学试题及答案-,推荐文档

(完整版)2017年全国1卷高考文科数学试题及答案-,推荐文档

2019 年第四次文数练一、选择题:大题共12 小题,每小题 5 分,共60 分。

在每小题给出的四个选项中,有一项是符合题目要求的。

1.已知集合A= x|x 2 ,B= x|3 2x 0 ,则A.A B=3x|x B.A B 2C.A B3x|x D.A B= R 22.为评估一种农作物的种植效果,选n 块地作验.这n 块地的亩产量单位:kg)分x1,x2,⋯,x n,下面给出的指标中可以用来评估这种农作物亩产量定度的是A.x1,x2,⋯,x n 的平均数B.x1,x2,⋯,x n 的标准差C.x1,x2,⋯,x n 的最大D.x1,x2,⋯,x n 的中位数3.下列各式的运算结果为纯虚数的是A.i(1+i)22B.i (1-i) C.(1+i)2D.i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心称.在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.π8C.12D.π45.已知 F 是双曲C:x2-2-2y3=1 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点 A 的坐标是(1,3).则△APF 的面为A.13B.12C.23D.326.如图,在下列四个正方体中,A,B 为正方体的两个顶点,M,N,Q 为所在棱的中点,则在这四个正方体中,直AB 与平面MNQ 不平行的是x 3y 3,x y 1, 则z= x+y 的最大值为7.设x,y 满足约束条件y 0,A.0 B.1 C.2 D.38..函数ysin2 x1 cosx的部分图像大致为9.已知函数 f (x) lnx ln(2 x) ,则A.f (x) 在(0,2)单调递增B.f (x) 在(0,2)单调递减C.y= f (x) 的图像关于直线x=1 对称D.y= f (x) 的图像关于点(1,0)对称n n10.如图是为了求出满足 3 2 1000的最小偶数n,那么在和两个空白框中,可以分别填入A . A>1000 和 n=n+1B .A>1000 和 n= n +2C . A ≤ 1000和 n= n +1D .A ≤ 1000和 n= n +211.△ABC 的内角 A 、B 、C 的对分为 a 、b 、c 。

2017年高考文科数学试题全国各地高考试卷8套精校Word版真题含答案

2017年高考文科数学试题全国各地高考试卷8套精校Word版真题含答案

2017年全国各地数学高考试题精校Word版目录-2017年全国卷文科数学试题(全国Ⅰ卷)Word版试卷精校版含答案······-2017年全国卷文科数学试题(全国Ⅱ卷)Word版试卷精校版含答案·······-2017年全国卷文科数学试题(全国Ⅲ卷)Word版试卷精校版含答案·······-2017年北京卷文科数学试题Word版试卷精校版含答案·················-2017年天津卷文科数学试题Word版试卷精校版含答案·················-2017年江苏卷数学试题Word版试卷精校版含答案······················-2017年浙江卷数学试题Word版试卷精校版含答案·····················-2017年山东卷文科数学试题Word版试卷精校版含答案··················绝密★启用前2017年普通高等学校招生全国统一考试文科数学本试卷共5页,满分150分。

2017年安徽高考文科数学试题真题及答案

2017年安徽高考文科数学试题真题及答案

2017年普通高等学校招生全国统一考试(安徽卷)数学(文科)第Ⅰ卷(选择题 共50分)一、 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数z 满足(z-2)i =2+ i ,则 z =(A ) -1- i (B )1- i (C ) -1+3 i (D )1-2 i(2)设集合A= 3213x x -≤-≤ ,集合B 为函数y=lg (x-1)的定义域,则A ⋂B= (A ) (1,2) (B )[1, 2](C ) [ 1,2 ) (D )(1,2 ](3)(2l og 9) · (3log 4)=(A )14 (B )12(C ) 2 (D )4(4)命题“存在实数x,,使x > 1”的否定是(A ) 对任意实数x, 都有x > 1 (B )不存在实数x ,使x ≤ 1(C ) 对任意实数x, 都有x ≤ 1 (D )存在实数x ,使x ≤ 1(5)公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a = (A ) 1 (B )2(C ) 4 (D )8(6)如图所示,程序框图(算法流程图)的输出结果是(A)3 (B)4(C)5 (D)8(7)要得到函数y=cos(2x+1)的图象,只要将函数y=cos2x 的图象(A)向左平移1个单位(B)向右平移1个单位(C)向左平移12个单位(D)向右平移12个单位(8)若x ,y满足约束条件2323xx yx y≥⎧⎪+≥⎨⎪+≤⎩则z=x-y的最小值是(A)-3 (B)0(C)32(D)3(9)若直线x-y+1=0与圆(x-a)+y =2有公共点,则实数a取值范围是(A)[-3 , -1 ] (B)[ -1 , 3 ](C)[ -3 , 1 ] (D)(- ∞,-3 ] U [1 ,+ ∞)(10)袋中共有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于(A)15(B)25(C ) 35 (D )452017年普通高等学校招生全国统一考试(安徽卷)数学(文科)第Ⅱ卷(非选择题 共100分)考生注事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效。

2017年全国高考文科数学试题及答案-全国卷1

2017年全国高考文科数学试题及答案-全国卷1

绝密★启用前2017年普通高等学校招生全国统一考试文科数学考生注意:1.答卷前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,监考员将试题卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={}|2x x <,B ={}|320x x ->,则A .AB =3|2x x ⎧⎫<⎨⎬⎩⎭ B .A B =∅ C .AB 3|2x x ⎧⎫=<⎨⎬⎩⎭D .AB=R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数3.下列各式的运算结果为纯虚数的是A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .14 B .π8C .12D .π 45.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF 的面积为 A .13B .1 2C .2 3D .3 26.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z =x +y 的最大值为A .0B .1C .2D .38..函数sin21cos xy x=-的部分图像大致为9.已知函数()ln ln(2)f x x x =+-,则A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y =()f x 的图像关于直线x =1对称D .y =()f x 的图像关于点(1,0)对称10.如图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .A >1000和n =n +1B .A >1000和n =n +2C .A ≤1000和n =n +1D .A ≤1000和n =n +211.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。

2017安徽高考数学真题

2017安徽高考数学真题

2017安徽高考数学真题2017年的安徽高考数学真题是考查学生数学能力的一项重要内容,通过多年对数学知识的积累和理解,学生们有信心迎接这一挑战。

以下是2017年安徽高考数学真题的具体内容。

第一部分:选择题1. 若\( f(x)=\begin{cases}ax+b, & x \geq 0 \\x-3, & x < 0 \end{cases} \) ,且f(2)=7,f’(0)=1,则a+b的值为多少?2. 已知A,B,C,D是4点,满足\( \overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}=\overr ightarrow{0} \),则AC段中点为D的条件是?3. 面积是0.5的三角形顶点在直线3x-y=2,4x+y=10上,这个三角形的面积是多少?4. 设\( a_{n}=(n+3)sin\frac{n\pi}{3} \),那么\( S_{n}=a_{1}+a_{2}+\cdots+a_{6} \)的值为?5. 三角函数为\( y=\frac{1}{2}sin(1.5x+\frac{\pi}{3}) \) 的振幅为多少?第二部分:解答题1. 平面直角坐标系中,\( y=\sqrt{x} \) 的图形和\( y=-\sqrt{x-6} \) 的图形交于点A和B,求\(\angle AOB\) 的大小。

2. 已知函数y=f(x)在定义域[0,2]上连续,且\( f(x+3)=f(x)+4x+3 \) ,求f(2)+f’(2)的值。

3. 在右下方显示的根号表达式中,先化简确定非负实数\( x,y \) 的最大值(即求\( x^{2}+y^{2} \) 的最大值):\[ \sqrt{2x^{2}+y^{2}}+\sqrt{4x^{2}+3y^{2}}+\sqrt{4x^{2}+9y^{2}} \]4. 某花坛园艺装饰。

2017年全国高考卷文科数学试题及答案详细解析(选择、填空、解答全解全析) 精品

2017年全国高考卷文科数学试题及答案详细解析(选择、填空、解答全解全析)  精品

2017年普通高等学校招生全国统一考试文科数学(必修+选修I)解析版本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至2页。

第Ⅱ卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第Ⅰ卷 注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.第Ⅰ卷共l2小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题 (1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(M N )Ið(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4 【命题意图】本题主要考查集合交并补运算.【解析】{2,3},(){1,4}U M N C M N =∴=【答案】D(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【命题意图】本题主要考查反函数的求法.【解析】由0)y x =≥反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥.【答案】B(3)设向量,a b 满足||||1a b == ,12a b ⋅=-r r ,则2a b +=(A(B(C(D【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+= ,所以2a b +=【答案】B(4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5. 【答案】C(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,只需由P a b ⇒>,且由a b >不能推出P ,可采用逐项验证的方法,对A ,由1a b +>,且1b b +>,所以a b >,但a b >时,并不能得到1a b +>,故答案为A 。

安徽2017数学高考真题

安徽2017数学高考真题

安徽2017数学高考真题2017年的安徽高考数学试题一直备受关注,考生们为了备战这一场考试,都在积极备考。

下面就来看看安徽2017年数学高考真题是怎样的吧。

第一部分:选择题(共12小题,每小题5分,共60分)1.已知等差数列$\{a_n\}$的前n项和为$S_n=a_1+a_2+...+a_n=a_{n-1}+a_n+a_{n+1}$(n为自然数),则$\{a_n\}$等差中项满足的条件是\xa{{C}}\\A. $a_{^{n}}=S_n-S_{n-1}$ \\B. $a_{^{n}}=S_na_{n+1}$\\C. 2$a_{n}$=$a_{n-1}$+$a_{n+1}$\\D. 2$a_{n}$=A_{n-1}+a_{n+1}$\\2.已知log$_{4}$2=$\frac{1}{2}$,log$_{4}$3=b,则log$_{4}$9$\div$log$_{4}$8=\xa{\sqrt{1}$b$($$\sqrt{1}$2-b$)B\\3.下列命题中,其中真命题有\xz{{B}}个数是5的倍数一定是这个数也是10的倍数\\B. 25的约数一定包括1$每个形如$n^{4}-n^{2}$(n为自然数)的数均为9的倍数。

\\4.若函数$f(x)=cos(\pi \frac{x}{3}),g(x)=\frac{2}{3}x-2$那么下(表中的符号表示结合)时表达式为\xa{A}\\A.$(fg)(-\sqrt{3})=-\sqrt{3}$\\B.$(f \circ g)(x)=cos(\frac{2}{3}x-\frac{6}{3})$\\C.$(f-g)(\frac{3}{2})=\frac{cos10}{3}$\\D.$(g \circ f)(x)=\frac{2}{3cos(\pi \frac{x}{3})-2}$\第二部分:填空题(共6小题,每小题5分,共30分)16、设函数f(x)=的,且f[g(2016)]=2,f[3)=2019,则f(x)在g(x)( )\\17、已知命题p:对任意方程$log{_{a}x=a+1}的a取之关集为实数集,则p的否命题q为(a;x)由(a,x)=\\二、解答题(共12分,其中题目10、11每题6分)10.解关方程($\frac{2x+3}{x+2}$ )$-\frac{3x+5}{2}$=$\frac{5x-7}{4}$11.已知数列$\{a_n\}$为等差数列,首项为a1-1$的式,区间$(-\$区间)为,求$S_{10}$以上就是2017年安徽高考数学真题的部分内容,希望对于备战高考的同学有所帮助。

安徽省 高考文科数学试题及答案

安徽省 高考文科数学试题及答案

安徽省2017年高考文科数学试题及答案(W o r d 版)(考试时间:120分钟 试卷满分:150分)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={}|2x x <,B={}|320x x ->,则 A .A I B=3|2x x ⎧⎫<⎨⎬⎩⎭B .A I B =∅C .A U B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A U B=R2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数3.下列各式的运算结果为纯虚数的是 A .i(1+i)2B .i 2(1-i)C .(1+i)2D .i(1+i)4.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .14 B .π8C .12D .π 45.已知F 是双曲线C :x 2-23y =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则△APF的面积为 A .13B .12C .23D .3 26.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是7.设x ,y 满足约束条件33,1,0,x y x y y +≤⎧⎪-≥⎨⎪≥⎩则z=x+y 的最大值为A .0B .1C .2D .38..函数sin21cos xy x=-的部分图像大致为9.已知函数()ln ln(2)f x x x =+-,则 A .()f x 在(0,2)单调递增B .()f x 在(0,2)单调递减C .y=()f x 的图像关于直线x=1对称D .y=()f x 的图像关于点(1,0)对称10.如图是为了求出满足321000n n ->的最小偶数n ,那么在和两个空白框中,可以分别填入A .A>1000和n=n+1B .A>1000和n=n+2C .A ≤1000和n=n+1D .A ≤1000和n=n+211.△ABC 的内角A 、B 、C 的对边分别为a 、b 、c 。

【安徽省阜阳】2017学年高考二数学年(文科)试题答案

【安徽省阜阳】2017学年高考二数学年(文科)试题答案

C. ( 1,1)
D. ( 1,0) (1,+ )
二、填空题 .共 4 小题 ,每小题 5 分 ,共 20 分 .
-2-/ 4
13. “ x0 0 , 2x0 1”的否定是 ________.
14.函数 y sin2 ( 3π x) sin( x π) 的值域 ________. 2
15.已知 A,B,C, D 是球面上不共面的四点 , AB AC 3 , BD CD 2 , BC 6 ,平面 ABC 平面 BCD ,
17. (12 分 )在锐角 △ ABC 中 ,角 A, B,C 所对的边分别是 a,b, c 已知 m ( 3a,c) , n (sin A,cos C) , m 3n .
(Ⅰ )求 C ;
(Ⅱ )求 △ ABC 周长的取值范围 .
18. (12 分 )现阶段全国多地空气质量指数 “爆表 ”.为探究车流量与 PM2.5 浓度是否相关 ,现对北方某中心城市
n
xi yi
i1 n
xi 2
i1
nx y n( x) 2
n
( xi x)( yi y)
i1 n
, a? y bx .
( xi x)2
i1
19. (12 分 )如图所示 ,在四棱锥 P ABCD 中 ,底面 ABCD 为矩形 , PA 平面 ABCD , PA AD , E, F ,分别为
PD , BC 的中点 .
则此球的体积为 ________.
16.已知函数 f ( x)
x2 ,0 x 1 ,若方程 f ( x) kx 2 有两个不相等的实数根
| ln( x 1) |, x 1
,则实数 k 的取值范围是
________. 三、解答题 (共 5 小题 ,共 70 分 .解答应写出文字说明 ,演算步骤或证明过程 .)

(安徽)高三数学-2017年安徽省黄山市高考数学二模试卷(文科) Word版含解析

(安徽)高三数学-2017年安徽省黄山市高考数学二模试卷(文科) Word版含解析

2017年安徽省黄山市高考数学二模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣2,﹣1,0,1,2},∁R B={x|(x﹣1)(x+2)≥0},则A∩B=()A.{﹣1,0,1}B.{﹣1,0}C.{﹣2,﹣1,0}D.{﹣2,1,2}2.复数z=(a+1)+(a2﹣3)i,若z<0,则实数a的值是()A.B.1 C.﹣1 D.﹣3.在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(加增的顺序为从塔顶到塔底).答案应为()A.6 B.5 C.4 D.34.已知函数f(x)=ax2+bx+1,其中a∈{2,4},b∈{1,3},从f(x)中随机抽取1个,则它在(﹣∞,﹣1]上是减函数的概率为()A.B.C.D.05.在△ABC中,B(﹣2,0),C(2,0),A(x,y),给出△ABC满足条件,就能得到动点A的轨迹方程下表给出了一些条件及方程:条件方程①△ABC周长为10C1:y2=25②△ABC面积为10C2:x2+y2=4(y≠0)③△ABC中,∠A=90°C3: +=1(y≠0)则满足条件①,②,③的轨迹方程依次为()A.C3,C1,C2 B.C1,C2,C3 C.C3,C2,C1 D.C1,C3,C26.已知x的取值范围是[0,8],执行如图的程序框图,则输出的y≥3的概率为()A.B.C.D.7.一个几何体的三视图如图所示,则该几何体的体积为()A.4B.4C.4 D.8.若圆(x﹣3)2+y2=1上只有一点到双曲线﹣=1的一条渐近线的距离为1,则该双曲线离心率为()A.B.C.D.9.已知a=﹣2,b=1﹣log23,c=cos,则a,b,c的大小关系是()A.a<b<c B.b<a<c C.c<a<b D.b<c<a10.已知m>1,x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为3,则+()A.有最小值B.有最大值C.有最小值D.有最大值11.函数f(x)=与g(x)=|x+a|+1的图象上存在关于y轴对称的点,则实数a的取值范围是()A.R B.(﹣∞,﹣e]C.[e,+∞)D.∅12.将函数y=sin(x)的图象向左平移3个单位,得函数y=sin(x+φ)(|φ|<π)的图象(如图),点M,N分别是函数f(x)图象上y轴两侧相邻的最高点和最低点,设∠MON=θ,则tan(φ﹣θ)的值为()A.1﹣B.2﹣C.1+D.﹣2+二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知=(,),||=1,|+2|=2,则在方向上的投影为.14.已知抛物线C:y2=8x,点P(0,4),点A在抛物线上,当点A到抛物线准线l的距离与点A到点P的距离之和最小时,延长AF交抛物线于点B,则△AOB 的面积为.15.已知两个等高的几何体在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图将底面直径皆为2b,高皆为a的椭半球体及已被挖去了圆锥体的圆柱体放置于同一平面β上.以平行于平面β的平面于距平面β任意高d处可横截得到S圆及S环两截面,可以证明S圆=S环总成立.则短轴长为4cm,长轴为6cm的椭球体的体积为cm3.16.对正整数n,设曲线y=(2﹣x)x n在x=3处的切线与y轴交点的纵坐标为a n,则数列的前n项和等于.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.△ABC中,角A,B,C所对的边分别为a,b,c,向量=(,1),=(cosA+1,sinA),且•的值为2+.(1)求∠A的大小;(2)若a=,cosB=,求△ABC的面积.18.如图,四棱锥P﹣ABCD中,底面ABCD是矩形,平面PAD⊥底面ABCD,且△PAD是边长为2的等边三角形,PC=,M在PC上,且PA∥面MBD.(1)求证:M是PC的中点;(2)求多面体PABMD的体积.19.全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续n 天监测空气质量指数(AQI),数据统计如下:空气质量指数(μg/m3)0﹣5051﹣100101﹣150151﹣200201﹣250空气质量等级空气优空气良轻度污染中度污染重度污染天数2040m105(1)根据所给统计表和频率分布直方图中的信息求出n,m的值,并完成頻率分布直方图:(2)由頻率分布直方图,求该组数据的平均数与中位数;(3)在空气质量指数分别为51﹣100和151﹣200的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件A“两天空气都为良”发生的概率.20.设F1,F2分别是椭圆D: +=1(a>b>0)的左、右焦点,过F2作倾斜角为的直线交椭圆D于A,B两点,F1到直线AB的距离为2,连接椭圆D的四个顶点得到的菱形面积为2.(1)求椭圆D的方程;(2)设过点F2的直线l被椭圆D和圆C:(x﹣2)2+(y﹣2)2=4所截得的弦长分别为m,n,当m•n最大时,求直线l的方程.21.已知函数f(x)=(ax2+x﹣1)e x.(1)若a<0时,讨论函数f(x)的单调性;(2)若g(x)=e﹣x f(x)+lnx,过O(0,0)作y=g(x)切线l,已知切线l的斜率为﹣e,求证:﹣<a<﹣.[选修4-4:坐标系与参数方程]22.已知曲线C的极坐标方程为ρ=,过点P(1,0)的直线l交曲线C于A,B两点.(1)将曲线C的极坐标方程的化为普通方程;(2)求|PA|•|PB|的取值范围.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2|,g(x)=|x+1|﹣x.(1)解不等式f(x)>g(x);(2)若存在实数x,使不等式m﹣g(x)≥f(x)+x(m∈R)能成立,求实数m的最小值.2017年安徽省黄山市高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={﹣2,﹣1,0,1,2},∁R B={x|(x﹣1)(x+2)≥0},则A∩B=()A.{﹣1,0,1}B.{﹣1,0}C.{﹣2,﹣1,0}D.{﹣2,1,2}【考点】交集及其运算.【分析】根据补集与交集的定义,即可求出运算结果.【解答】解:集合A={﹣2,﹣1,0,1,2},∁R B={x|(x﹣1)(x+2)≥0},∴B={x|(x﹣1)(x+2)<0}={x|﹣2<x<1}.∴A∩B={﹣1,0}.故选:B.2.复数z=(a+1)+(a2﹣3)i,若z<0,则实数a的值是()A.B.1 C.﹣1 D.﹣【考点】复数的基本概念.【分析】根据复数的定义得到虚数部分是0,实数部分小于0,求出a的值即可.【解答】解:由题意得:a2﹣3=0,解得a=±,而a+1<0,故a=﹣,故选:D.3.在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(加增的顺序为从塔顶到塔底).答案应为()A.6 B.5 C.4 D.3【考点】等比数列的前n项和.【分析】设此等比数列为{a n},q=2,S7=381.利用等比数列的求和公式即可得出.【解答】解:设此等比数列为{a n},q=2,S7=381.则=381,解得a1=3.故选:D.4.已知函数f(x)=ax2+bx+1,其中a∈{2,4},b∈{1,3},从f(x)中随机抽取1个,则它在(﹣∞,﹣1]上是减函数的概率为()A.B.C.D.0【考点】列举法计算基本事件数及事件发生的概率;函数单调性的判断与证明.【分析】写出所有基本事件(a,b)的取法,求出满足f(x)在区间(﹣∞,﹣1]上是减函数的(a,b)的个数,然后利用古典概型概率计算公式求得概率;【解答】解:函数f(x)=ax2+bx+1,其中a∈{2,4},b∈{1,3},从f(x)中随机抽取1个,基本事件总数n=2×2=4,即f(x)共有四种等可能基本事件,分别为(a,b)取(2,1)(2,3)(4,1)(4,3),记事件A为“f(x)在区间(﹣∞,﹣1]上是减函数”,由条件知f(x)开口一定向上,对称轴为x=﹣,事件A共有三种(2,1)(4,1)(4,3)等可能基本事件,则P(A)=.∴f(x)在区间(﹣∞,﹣1]上是减函数的概率为.故选:B.5.在△ABC中,B(﹣2,0),C(2,0),A(x,y),给出△ABC满足条件,就能得到动点A的轨迹方程下表给出了一些条件及方程:条件方程①△ABC周长为10C1:y2=25②△ABC面积为10C2:x2+y2=4(y≠0)③△ABC中,∠A=90°C3: +=1(y≠0)则满足条件①,②,③的轨迹方程依次为()A.C3,C1,C2 B.C1,C2,C3 C.C3,C2,C1 D.C1,C3,C2【考点】轨迹方程.【分析】①中可转化为A点到B、C两点距离之和为常数,符合椭圆的定义,利用定义法求轨迹方程;②中利用三角形面积公式可知A点到BC距离为常数,轨迹为两条直线;③中∠A=90°,可用斜率或向量处理.【解答】解:①△ABC的周长为10,即AB+AC+BC=10,∵BC=4,∴AB+AC=6>BC,故动点A的轨迹为椭圆,与C3对应;②△ABC的面积为10,∴BC•|y|=10,即|y|=5,与C1对应;③∵∠A=90°,∴=(﹣2﹣x,﹣y)(2﹣x,﹣y)=x2+y2﹣4=0,与C2对应.故选:A.6.已知x的取值范围是[0,8],执行如图的程序框图,则输出的y≥3的概率为()A.B.C.D.【考点】程序框图.【分析】利用分段函数,求出输出的y≥3时,x的范围,以长度为测度求出相应的概率.【解答】解:由题意,0≤x≤6,2x﹣1≥3,∴2≤x≤6;6<x≤8,,无解,∴输出的y≥3的概率为=,故选B.7.一个几何体的三视图如图所示,则该几何体的体积为()A.4B.4C.4 D.【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体为四棱锥P﹣ABCD,其中PA⊥底面ABCD,底面ABCD为直角梯形,AD∥BC,AD=2,BC=4,AD⊥AB,AP=2,AB=2.即可得出.【解答】解:由三视图可知:该几何体为四棱锥P﹣ABCD,其中PA⊥底面ABCD,底面ABCD为直角梯形,AD∥BC,AD=2,BC=4,AD ⊥AB,AP=2,AB=2.∴该几何体的体积V==4.故选:C.8.若圆(x﹣3)2+y2=1上只有一点到双曲线﹣=1的一条渐近线的距离为1,则该双曲线离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】圆(x﹣3)2+y2=1上只有一点到双曲线﹣=1的一条渐近线的距离为1,圆心到渐近线bx+ay=0的距离d==2,得出a,b的关系,可得a,c的关系,即可求出双曲线的离心率.【解答】解:∵圆(x﹣3)2+y2=1上只有一点到双曲线﹣=1的一条渐近线的距离为1,∴圆心到渐近线bx+ay=0的距离d==2,∴∴b2=a2,∴c2=a2,∴e==,故选A.9.已知a=﹣2,b=1﹣log23,c=cos,则a,b,c的大小关系是()A.a<b<c B.b<a<c C.c<a<b D.b<c<a【考点】对数值大小的比较.【分析】a=﹣2=﹣=﹣,由25>33,可得>log23,﹣<1﹣log23,即a<b.c=cos=﹣,即可得出大小关系.【解答】解:a=﹣2=﹣=﹣,∵25>33,∴>3,∴>log23,∴﹣<﹣log23,∴﹣<1﹣log23,∴a<b.c=cos=﹣<﹣=a,∴c<a<b.故选:C.10.已知m>1,x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为3,则+()A.有最小值B.有最大值C.有最小值D.有最大值【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数可得a+5b=3,然后利用基本不等式求得+有最小值.【解答】解:由约束条件作出可行域如图,联立,解得A(1,5),化目标函数z=ax+by(a>0,b>0)为y=,由图可知,当直线y=过A时,直线在y轴上的截距最大,z有最大值为a+5b=3.∴+=(+)()=.当且仅当a=5b,即a=,b=时,上式等号成立.故选:A.11.函数f(x)=与g(x)=|x+a|+1的图象上存在关于y轴对称的点,则实数a的取值范围是()A.R B.(﹣∞,﹣e]C.[e,+∞)D.∅【考点】函数的图象.【分析】作出f(x)关于y轴对称的函数h(x)和g(x)的函数图象,根据h (x)与g(x)有交点得出a的范围.【解答】解:设y=h(x)与y=f(x)的图象关于y轴对称,则h(x)=f(﹣x)=,作出y=h(x)与y=g(x)的函数图象如图所示:∵f(x)与g(x)图象上存在关于y轴对称的点,∴y=h(x)与y=g(x)的图象有交点,∴﹣a≤﹣e,即a≥e.故选C.12.将函数y=sin(x)的图象向左平移3个单位,得函数y=sin(x+φ)(|φ|<π)的图象(如图),点M,N分别是函数f(x)图象上y轴两侧相邻的最高点和最低点,设∠MON=θ,则tan(φ﹣θ)的值为()A.1﹣B.2﹣C.1+D.﹣2+【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】根据函数图象的变换,求得φ的值,由正弦函数的性质,求得M和N 的坐标,利用余弦定理求得θ的值,即可求得tan(φ﹣θ).【解答】解:函数y=sin(x)的图象向左平移3个单位,可得:y=sin[(x+3)]=sin(x+),则φ=,∴M(﹣1,),N(3,﹣),则丨OM丨=2,丨ON丨=2,丨MN丨=2,cosθ==﹣,由0<θ<π,则θ=,则tan(φ﹣θ)=tan(﹣)=﹣tan=﹣tan(﹣)=﹣=﹣(2﹣)=﹣2+,tan(φ﹣θ)的值﹣2+,故选D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知=(,),||=1,|+2|=2,则在方向上的投影为﹣.【考点】平面向量数量积的运算.【分析】运用向量模的公式和向量的平方即为模的平方,可得•,再由在方向上的投影为,计算即可得到所求.【解答】解:=(,),||=1,|+2|=2,可得||=1,|+2|2=4,即为2+4•+42=4,即有1+4•+4=4,•=﹣,可得在方向上的投影为=﹣.故答案为:﹣.14.已知抛物线C:y2=8x,点P(0,4),点A在抛物线上,当点A到抛物线准线l的距离与点A到点P的距离之和最小时,延长AF交抛物线于点B,则△AOB 的面积为4.【考点】抛物线的简单性质.【分析】先求出抛物线的焦点坐标,再由抛物线的定义可得d=|AF|+|AP|≥|PF|=2,得出直线AB的方程,即可得出结论.【解答】解:设A在抛物线准线的投影为A',抛物线的焦点为F,则F(﹣2,0),由抛物线的定义知:A到该抛物线准线的距离为|AA'|=|AF|,则点A到点P(0,4)的距离与P到该抛物线准线的距离之和d=|AF|+|AP|≥|PF|=2AB的斜率为﹣2,直线方程为y=﹣2(x﹣2),即x=﹣+2代入抛物线C:y2=8x,可得y2+4y﹣16=0,∴y=﹣2±2,∴△AOB的面积为=4.故答案为.15.已知两个等高的几何体在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图将底面直径皆为2b,高皆为a的椭半球体及已被挖去了圆锥体的圆柱体放置于同一平面β上.以平行于平面β的平面于距平面β任意高d处可横截得到S圆及S环两截面,可以证明S圆=S环总成立.则短轴长为4cm,长轴为6cm的椭球体的体积为16πcm3.【考点】旋转体(圆柱、圆锥、圆台).【分析】根据两个等高的几何体在所有等高处的水平截面的面积相等,则这两个几何体的体积相等原理,得出椭球的体积V=2(V圆柱﹣V圆锥)=2()=16π.【解答】解:椭圆的长半轴为3,短半轴为2,现构造一个底面半径为2,根据两个等高的几何体在所有等高处的水平截面的面积相等,则这两个几何体的体积相等原理,得出椭球的体积V=2(V圆柱﹣V圆锥)=2()=16π故答案为:16π.16.对正整数n,设曲线y=(2﹣x)x n在x=3处的切线与y轴交点的纵坐标为a n,则数列的前n项和等于.【考点】利用导数研究曲线上某点切线方程.【分析】先求出x=3时曲线表示函数的导函数,进而可知切线方程,令x=0进而求得数列的通项公式,再由等比数列的求和公式,求得答案.【解答】解:∵y=(2﹣x)x n的导数为y′=﹣x n+n(2﹣x)x n﹣1,y'|x=3=﹣3n﹣n•3n﹣1=﹣3n﹣1(n+3),∴切线方程为:y+3n=﹣3n﹣1(n+3)(x﹣3),令x=0,切线与y轴交点的纵坐标为a n=(n+2)•3n,所以=3n,则数列{}的前n项和S n==.故答案为:.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.△ABC中,角A,B,C所对的边分别为a,b,c,向量=(,1),=(cosA+1,sinA),且•的值为2+.(1)求∠A的大小;(2)若a=,cosB=,求△ABC的面积.【考点】余弦定理;正弦定理.【分析】(1)由已知及平面向量数量积的运算可求sin(A+)=1,结合A的范围即可得解A的值.(2)利用同角三角函数基本关系式可求sinB,进而利用正弦定理可求b的值,根据三角形面积公式即可计算得解.【解答】解:(1)∵=2+.∴.(2)∵,∴,∴由,得,∴.18.如图,四棱锥P﹣ABCD中,底面ABCD是矩形,平面PAD⊥底面ABCD,且△PAD是边长为2的等边三角形,PC=,M在PC上,且PA∥面MBD.(1)求证:M是PC的中点;(2)求多面体PABMD的体积.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(1)连AC 交BD 于E ,连ME .推导出PA ∥ME ,由此能证明M 是PC 的中点.(2)取AD 中点O ,连OC .则PO ⊥AD ,从而PO ⊥面ABCD ,由此能求出多面体PABMD 的体积.【解答】证明:(1)连AC 交BD 于E ,连ME . ∵ABCD 是矩形,∴E 是AC 中点.又PA ∥面MBD ,且ME 是面PAC 与面MDB 的交线, ∴PA ∥ME , ∴M 是PC 的中点.解:(2)取AD 中点O ,连OC .则PO ⊥AD , 由平面PAD ⊥底面ABCD ,得PO ⊥面ABCD , ∴,∴,∴,∴.19.全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续n 天监测空气质量指数(AQI ),数据统计如下:空气质量指数(μg/m 3) 0﹣5051﹣100101﹣150151﹣200 201﹣250空气质量等级空气优空气良轻度污染中度污染重度污染 天数2040m105 (1)根据所给统计表和频率分布直方图中的信息求出n ,m的值,并完成頻率分布直方图:(2)由頻率分布直方图,求该组数据的平均数与中位数;(3)在空气质量指数分别为51﹣100和151﹣200的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件A“两天空气都为良”发生的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】解:(1)由,求出n=100,从而求出m=25,由此能完成频率分布直方图.(2)由频率分布直方图能求出该组数据的平均数与中位数.(3)在空气质量指数为51﹣100和151﹣200的监测天数中分别抽取4天和1天,在所抽収的5天中,将空气质量指数为51﹣100的4天分别记为a,b,c,d;将空气质量指数为151﹣200的1天记为e,利用列举法求出从中任取2天的基本事件和事件A“两天空气都为良”包含的基本事件,由此能求出事件A“两天都为良”发生的概率.【解答】解:(1)∵,∴n=100,∵20+40+m+10+5=100,∴m=25,.由此完成频率分布直方图,如下图:(2)由频率分布直方图得该组数据的平均数为:=25×0.004×50+75×0.008×50+125×0.005×50+175×0.002×50+225×0.001×50=95,∵[0,50)的频率为0.004×50=0.2,[50,100)的频率为:0.008×50=0.4,∴中位数为:50+=87.5.(3)在空气质量指数为51﹣100和151﹣200的监测天数中分别抽取4天和1天,在所抽収的5天中,将空气质量指数为51﹣100的4天分别记为a,b,c,d;将空气质量指数为151﹣200的1天记为e,从中任取2天的基本事件分别为:(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e)共10种,其中事件A“两天空气都为良”包含的基本事件为:(a,b),(a,c),(a,d),(b,c),(b,d),(c,d)共6种,所以事件A“两天都为良”发生的概率是.20.设F1,F2分别是椭圆D: +=1(a>b>0)的左、右焦点,过F2作倾斜角为的直线交椭圆D于A,B两点,F1到直线AB的距离为2,连接椭圆D的四个顶点得到的菱形面积为2.(1)求椭圆D的方程;(2)设过点F2的直线l被椭圆D和圆C:(x﹣2)2+(y﹣2)2=4所截得的弦长分别为m,n,当m•n最大时,求直线l的方程.【考点】椭圆的简单性质.【分析】(1)求得直线AB的方程,利用点到直线的距离公式求得c的值,根据三角形的面积公式ab=,由a2=b2+c2,即可求得a和b的值,求得椭圆方程;(2)设直线l的方程,求得O到直线l的距离d,代入椭圆方程,利用弦长公式,求得m和n,利用基本不等式的性质,即可求得t的值,求得直线l的方程.【解答】解:(1)设F1坐标为(﹣c,0),F2坐标为(c,0),(c>0),则直线AB的方程为,即;又,∴,解得:a2=5,b2=1,∴椭圆D的方程为;(2)易知直线l的斜率不为0,可设直线l的方程为x=ty+2,则圆心C到直线l 的距离为,∴,得(t2+5)y2+4ty﹣1=0,∴,∴(当且仅当,即时,等号成立),∴直线方程为或.21.已知函数f(x)=(ax2+x﹣1)e x.(1)若a<0时,讨论函数f(x)的单调性;(2)若g(x)=e﹣x f(x)+lnx,过O(0,0)作y=g(x)切线l,已知切线l的斜率为﹣e,求证:﹣<a<﹣.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.【分析】(1)求出函数的导数,通过讨论a的范围,求出函数的单调区间即可;(2)求出g(x)的导数,设出切点坐标,表示出切线方程,求出关于a的解析式,根据函数的单调性求出a的范围即可.【解答】解:(1)由已知得:f'(x)=[ax2+(2a+1)x]e x=[x(ax+2a+1)]e x.①若,当或x<0时,f'(x)<0;当时,f'(x)>0,所以f(x)的单调递增区间为;单调递减区间为.②若,故f(x)的单调递减区间为(﹣∞,+∞);③若,当或x>0时,f'(x)<0;当时,f'(x)>0;所以f(x)的单调递增区间为;单调递减区间为.综上,当时,f(x)单调递增区间为;单调递减区间为(﹣∞,0),.当时,f(x)的单调递减区间为(﹣∞,+∞);当时,f(x)单调递增区间为;单调递减区间为,(0,+∞).(2)证明:,设切点,斜率为①,所以切线方程为,将(0,0)代入得:②,由①知代入②得:(e+1)x0+2lnx0﹣3=0,令u(x)=(e+1)x+2lnx﹣3,则恒成立,∴u(x)在(0,+∞)单增,且,∴,∴,令,则1<t<e,则在(1,e)递减,且,∴.[选修4-4:坐标系与参数方程]22.已知曲线C的极坐标方程为ρ=,过点P(1,0)的直线l交曲线C于A,B两点.(1)将曲线C的极坐标方程的化为普通方程;(2)求|PA|•|PB|的取值范围.【考点】简单曲线的极坐标方程.【分析】(1)利用极坐标方程的转化方法,可得结论;(2)直线l的参数方程为为参数),将代入得(cos2α+2sin2α)t2+2tcosα﹣1=0,利用参数的几何意义,即可求|PA|•|PB|的取值范围.【解答】解:(1)由得ρ2(1+sin2θ)=2,得曲线C的普通方程为.(2)由题意知,直线l的参数方程为为参数),将代入得(cos2α+2sin2α)t2+2tcosα﹣1=0,设A,B对应的参数分别为t1,t2,则,∴|PA|•|PB|的取值范围为.[选修4-5:不等式选讲]23.已知函数f(x)=|x﹣2|,g(x)=|x+1|﹣x.(1)解不等式f(x)>g(x);(2)若存在实数x,使不等式m﹣g(x)≥f(x)+x(m∈R)能成立,求实数m的最小值.【考点】函数恒成立问题.【分析】(1)通过讨论x的范围,去掉绝对值,求出各个区间的x的范围,取并集即可;(2)问题转化为m≥(|x﹣2|+|+1|)min,根据绝对值的性质求出m的最小值即可.【解答】解:(1)由题意不等式f(x)>g(x)可化为|x﹣2|+x>|x+1|,当x<﹣1时,﹣(x﹣2)+x>﹣(x+1),解得x>﹣3,即﹣3<x<﹣1;当﹣1≤x≤2时,﹣(x﹣2)+x>x+1,解得x<1,即﹣1≤x<1;当x>2时,x﹣2+x>x+1,解得x>3,即x>3,综上所述,不等式f(x)>g(x)的解集为{x|﹣3<x<1或x>3}.(2)由不等式m﹣g(x)≥f(x)+x(m∈R)可得m≥|x﹣2|+|x+1|,∴m≥(|x﹣2|+|+1|)min,∵|x﹣2|+|x+1|≥|x﹣2﹣(x+1)|=3,∴m≥3,故实数m的最小值是3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年普通高等学校招生全国统一考试(安徽卷)
数学(文科)
第I 卷(选择题 共50分)
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设i 是虚数单位,复数=++i
i i 123( ) A. i - B. i C. 1- D. 1
2. 命题“0||,2≥+∈∀x x R x ”的否定是( )
A.0||,2<+∈∀x x R x
B. 0||,2≤+∈∀x x R x
C. 0||,2000<+∈∃x x R x
D. 0||,2000≥+∈∃x x R x
3.抛物线24
1x y =的准线方程是( ) A. 1-=y B. 2-=y C. 1-=x D. 2-=x
4.如图所示,程序框图(算法流程图)的输出结果是( )
A.34
B.55
C.78
D.89
5.设
,8.0,2,7log 3.33===c b a 则( ) A.c a b << B.b a c << C.a b c << D.b c a <<
6. 过点P )
(1,3--的直线l 与圆12
2=+y x 有公共点,则直线l 的倾斜角的取值范围是( ) A.]60π,( B.]30π,( C.]60[π, D.]3
0[π, 7.若将函数x x x f 2cos 2sin )(+=的图像向右平移ϕ个单位,所得图像关于y 轴对称,则ϕ的最小正值是( ) A.8π B.4π C.83π D.4
3π 8.一个多面体的三视图如图所示,则多面体的体积是( )
A.233
B.476
C.6
D.7
9.若函数()12f x x x a =+++的最小值3,则实数a 的值为( )
A.5或8
B.1-或5
C. 1-或4-
D.4-或8
10.设,a b 为非零向量,2b a =,两组向量1234,,,x x x x 和1234,,,y y y y 均由2个a 和2个b 排列而成,若11223344x y x y x y x y ⋅+⋅+⋅+⋅所有可能取值中的最小值为24a ,则a 与b 的夹角为( )
A.2
3π B.3π C.6
π D.0 第I I 卷(非选择题 共100分)
二.选择题:本大题共5小题,每小题5分,共25分.
11.34
331654+log log 8145-⎛⎫+= ⎪⎝⎭________. 12.如图,在等腰直角三角形
ABC 中,斜边BC =A 作BC 的垂线,垂足为1A ;过点1A 作AC 的垂线,垂足为2A ;过点2A 作1AC 的垂线,
垂足为3A ;…,以此类推,设1BA a =,12AA a =,123A A a =,…,567A A a =
,则7a =________.
13.不等式组20240320x y x y x y +-≥⎧⎪+-≤⎨⎪+-≥⎩
表示的平面区域的面积为________.
(13)若函数()()R x x f ∈是周期为4的奇函数,且在[]2,0上的解析式为
()⎩⎨⎧≤<≤≤-=21,sin 10),1(x x x x x x f π,则_______641429=⎪⎭
⎫ ⎝⎛+⎪⎭⎫ ⎝⎛f f (14)若直线l 与曲线C 满足下列两个条件:
)(i 直线l 在点()00,y x P 处与曲线C 相切;)(ii 曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .
下列命题正确的是_________(写出所有正确命题的编号)
①直线0:=y l 在点()0,0P 处“切过”曲线C :2x y =
②直线1:-=x l 在点()0,1-P 处“切过”曲线C :2)1(+=x y
③直线x y l =:在点()0,0P 处“切过”曲线C :x y sin =
④直线x y l =:在点()0,0P 处“切过”曲线C :x y tan =
⑤直线1:-=x y l 在点()0,1P 处“切过”曲线C :x y ln =
三.解答题:本大题共6小题,共75分.解答应写文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内
16.(本小题满分12分)
设ABC ∆的内角,,A B C 所对边的长分别是,,a b c ,且3,1b c ==,ABC ∆的面积为求cos A 与a 的值.
17、(本小题满分12分)
某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)
(Ⅰ)应收集多少位女生样本数据?
(Ⅱ)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:
.估计该校
学生每周平均体育运动时间超过4个小时的概率.
(Ⅲ)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有
的把握认为“该校学生的每周平均体育运动时
间与性别有关”.
附:
18.(本小题满分12分)
数列{}n a 满足111,(1)(1),n n a na n a n n n N ++==+++∈
(1) 证明:数列{}n a n
是等差数列;
(2) 设3n n b ={}n b 的前n 项和n S
19(本题满分13分)
如图,四棱锥ABCD P -的底面边长为8的正方形,四条侧棱长均为172.点H F E G ,,,分别是棱PC CD AB PB ,,,上共面的四点,平面⊥GEFH 平面ABCD ,//BC 平面GEFH .
(1)证明:;//EF GH
(2)若2=EB ,求四边形GEFH 的面积.
20(本小题满分13分)
设函数23()1(1)f x a x x x =++--,其中0a >
(1) 讨论()f x 在其定义域上的单调性;
(2) 当[0,1]x ∈时,求()f x 取得最大值和最小值时的x 的值.
21(本小题满分13分)
设1F ,2F 分别是椭圆E :22221(0)x y a b a b
+=>>的左、右焦点,过点1F 的直线交椭圆E 于,A B 两点,11||3||AF BF =
(1) 若2||4,AB ABF =∆的周长为16,求2||AF ;
(2) 若23cos 5
AF B ∠=
,求椭圆E 的离心率. 安徽省数学(文)小题解析。

相关文档
最新文档