膨胀系数的测定

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因此,材料的平均线膨胀系数应标明温度范围, 如:
α( 0~300 ) = 5.7×10-7 / k α( 0~1000 ) = 5.8×10-7 / k
五.实验过程 试样 切割
试样 研磨
试样加工
实验过程关键操作
试样安装
六.主要影响因素讨论 1. 试样加工与安装
2. 玻璃的热历史对玻璃线膨胀系数的影响
Ⅰ. 加热速度5℃/分钟 Ⅱ. 加热速度8℃/分钟 Ⅲ. 加热速度?℃/分钟
Leabharlann Baidu
• 加热速度减慢, Tg下降。 • 对于“碱-钙-硅玻璃”,M-符尔达(M.Fulda) 得到下列数据:
加热速度 ℃/分钟 转变温度 ℃
0.5 468
1 479
5 493
9 499
这是由于玻璃快速加热时,性质来不及反 映该温度下的最终值。
七.实验数据处理
绘制膨胀曲线、计算平均线膨胀系数、求特征点的温度。
实验数据处理
在图上求玻璃的转变温度Tg和软化点温度Tf。
以3个试样的平均值表示实验结果
理论讲述结束
大家动手做实验
• • •
根据原子热振动概念的热容理论,格留涅辛进行计算。在没有相变时,膨 胀系数随温度的升高连续增大。 但对铁、钴、镍等铁磁金属,在温度靠近居里温度时,膨胀系数出现明显 的反常。 其中镍和钴的膨胀系数实验值高于理论值,如图5-17所示,称为正反常, 而铁的实验值低于理论值,称为负反常。


1.
降低材料的线膨胀系数,提高材料的热稳定性,提高材料的使用 安全性。
• 提高材料的强度 如果层状物由两种材料迭置连接而成,则温度变化时,由于两种 材料膨胀值不同,若仍连接在一起,体系中要采用一中间膨胀值,从 而使一种材料中产生压应力而另一种材料中产生大小相等的张应力, 恰当地利用这个特性,可以增加制品的强度。
三.材料热膨胀系数的检测方法
人类很早(十八世纪)就测定固体的热膨胀。当时的测定装置很原 始:水平放置约15厘米长的试样,下面点燃几支蜡烛加热,通过齿轮机 构放大来确定试样长度的变化。 十九世纪到现在,人们创造了许多测定方法。上世纪60年代出现了 激光法,出现了用计算机控制或记录处理测定数据的测量仪器。

一.目的意义

二.材料的热膨胀系数 三.材料热膨胀系数的检测方法
四.示差法的测定原理
五.实验过程 六.主要影响因素讨论 七.实验数据处理
一.目的意义
• 热膨胀 物体的体积或长度随温度的升高而增大的现象称为热膨胀。热膨 胀系数是材料的主要物理性质之一,它是衡量材料的热稳定性好坏的 一个重要指标。 • 提高材料的热稳定性
电磁感应热机械法是将顶杆的移动通过天平传递到差动变压 器,变换成电讯号,经放大转换,从而测量出试样的伸长量。 根据试样的伸长量就可计算出线膨胀系数。 ΔL / L0 = al Δt 试样规格为直径3-8mm,长度10-20mm的圆棒。
立式膨胀仪是将试样 安放在一端封闭的石英管 底部,使其保持良好的接 触,试样的另一端通过一 个石英顶杆将膨胀引起的 位移传递到千分表上,即 可读出不同温度下的膨胀 量。
自制立式膨胀仪
自制立式膨胀仪(智能型)
卧式膨胀仪
四.示差法的测定原理(石英膨胀仪)
图43-3 示差法测定材料膨胀系数的装置 1— 测温热电偶;2—膨胀仪电炉;3—电热丝;4—电流表;5—调压器; 6—电炉铁壳;7—铜柱电炉芯;8—待测试棒;9—石英玻璃棒; 10—石英玻璃管;11—遮热板;12—铁制支承架;13—千分表; 14—水瓶;15—水银温度计; 16—电位差计。
例:夹层玻璃
目的意义
• 焊接或熔接
当两种不同的材料彼此焊接或熔接时,都要求二种材料具备相近 的膨胀系数。
如两种不同金属的焊接,玻璃仪器的焊接加工,在电真空工业和 仪器制造工业中广泛地将非金属材料(玻璃、陶瓷)与各种金属焊接, 也要求两者有相适应的热膨胀系数。
如果选择材料的膨胀系数相差比较大,焊接时由于膨胀的速度不
加热速度对玻璃线膨胀系数的影响
• 加热速度是个极重要的因素。玻 璃快速加热时,性质来不及反映 该温度的最终值。 • 柯尔纳(O.Koeyner)和沙尔芒 (H.Salmang)在研究硅酸盐的 玻璃时发现,只有以 5 ℃/分钟 的加热速度,加热试样时,才能 清楚地看到Tg 。 • 同样试样,如果以 8 ℃/分钟的 加热速度,加热试样时, Tg根 本不显现。在这种情况下,玻璃 在略低于Tg 温度下就开始软化, 在膨胀曲线上没有突变。
2.
相变研究是材料科学中的一项 基础研究工作,而相变临界点 的测定对于每一个新钢种(或 合金)总是不可缺少的。 以钢铁为例,由于在加热和冷 却过程中存在同素异构转变, 产生明显的体积效应,因而采 用膨胀的测量来确定变相温度 是一个很有效的方法。根据膨 胀曲线来确定钢中a r 转变 温度。 取热膨胀曲线上偏离纯热膨胀 的点a、c 对应的温度为转变点。 b、d对应的温度为转变点。 取加热与冷却曲线上的四个极 值点a’、 b’ 、d’ 、 c’对应的温 度为转变点。
由于膨胀系数一般比较小,可忽略高阶无穷小。取一级近似:
β= 3α 在测量技术上,体膨胀比较难测,通常应用以上关系来 估算材料的体膨胀系数β,已足够精确。
2. 线膨胀系数(αL):
在实际工作中一般都是测定材料的线热膨胀系数。所以对于普 通材料,通常所说膨胀系数是指线膨胀系数。
线膨胀系数是指温度升高1℃后,物体的相对伸长。
淬火:玻璃成形后快速冷却 精密退火:玻璃成形后缓慢冷却
2. 加热速度对玻璃线膨胀系数的影响
在测定玻璃 线膨胀系数时的升温速度。
玻璃的热历史对玻璃线膨胀系数的影响
玻璃的热历史对 其膨胀系数有重要的 影响。 退火玻璃曲线发 生曲折是由于温度超 过 Tg 以 后 , 伴 随 玻 璃转变发生结构变化, 膨胀更加剧烈。 至于急冷玻璃, 是由于试样存在热应 变,在某温度以上开 始出现弛豫的结果。
测定无机非金属材料热膨胀系数常用:千分表法、热机 械法(光学法、电磁感应法)、体积法 等。 它们的共同点都是试样在加热炉中受热膨胀,通过顶杆 将膨胀传递到检测系统。不同之处在于检测系统。
千分表法是用千分表直接测量试样的伸长量。
光学热机械法是通过顶杆的伸长量来推动光学系统内的反 射镜转动经光学放大系统而使光点在影屏上移动来测定试样的 伸长量。
同,在焊接处产生应力,降低了材料的机械强度和气密性,严重时会 导致焊接处脱落、炸裂、漏气或漏油。
目的意义
• 合理使用材料
精密仪器(小型、大型),选用膨胀系数小的材料
例:大型加工机械 水泥路面
钢铁大桥
水泥大桥 大型建筑物 „ „
因此,测定材料的热膨胀系数具有重要的意义。
二.材料的热膨胀系数
材料的体积或长度随温度的升高而增大的现象称为热膨 胀。热膨胀通常用热膨胀系数表示。 1. 体积膨胀系数(αV):
示差法的测定原理
由于玻璃的膨胀系数一般是 石英的膨胀系数一般是 两者的膨胀差可以测定。
图43-1 石英膨胀仪内部结构热膨胀分析图
因为 α玻璃 ﹥ 所以 ΔL1 ﹥ ΔL2
α石英
千分表的指示为 ΔL = ΔL1 – ΔL2 玻璃的净伸长 ΔL1 = ΔL – ΔL2 按定义,玻璃的膨胀系数
注:只要材料的膨胀系数小于石英的膨胀系数的处理,如: 金属、
无机非金属、有机材料„„,都可用这种膨胀仪测定。
玻璃的线膨胀系数与温度有关。 石英玻璃的平均线膨胀系数(按下列温度范围取值); 5.7×10-7度-1 5.9×10-7度-1 5.8×10-7度-1 (0~300℃) (0~400℃) (0~1000℃)
5.97×10-7度-1
(200~700℃)
几种无机材料的热膨胀曲线

如果金属在加热或冷却的过 程中发生相变,由于不同组 成的比容差异,将引起热膨 胀的异常,这种异常的膨胀 系数为研究材料中的组织转 变提供了重要的信息。 研究金属热膨胀的另一方面 兴趣来自于仪表对材料热膨 胀性能的特殊要求。

例如,作为尺寸稳定零件的微 波设备谐振腔、精密计时器 和宇宙航行雷达天线等,都 要求在气温变动范围内具有 一定的膨胀系数的合金;电 真空技术中为了与玻璃、陶 瓷、云母、人造宝石等气密 封接要求具有很低膨胀系数 的合金;用于制造热敏性元 件的双金属却要求高膨胀合 金。 这就需要研究化学成分和组织 结构对合金膨胀系数的影响。
设试体在一个方向的长度为L 。当温度从T1上升到T2时,长
度也从L1上升到L2 ,则平均线膨胀系数
实际上,无机非金属材料的体积膨胀系数αV 、线
膨胀系数αL并不是一个常数,而是随温度稍有变化,
通常随温度升高而增大。 瞬时线膨胀系数为
无机材料的线膨胀系数一般都不大, 数量级约为10-5-10-6/K。
相当于温度升高1时物体体积的相对增 大值。 由于总有内能存在,物质的每个粒子 都在振动。
当物质受热时,由于温度升高,每个粒子 的热能增大,导致振幅也随之增大,由(非简谐) 力相互结合的两个原子之间的距离也随之增大, 物质就发生膨胀。
物质的热膨胀是由非简谐(非线性) 振动引起的。
设试体为一立方体,边长为L 。当温度从T1上升到T2时, 体积也从V1上升到V2 ,体膨胀系数
相关文档
最新文档