八上数学线段的垂直平分线的性质练习题(附答案新人教版)

合集下载

人教版2021年八年级数学上册课时作业本 轴对称与等腰三角形-线段的垂直平分线(含答案)

人教版2021年八年级数学上册课时作业本 轴对称与等腰三角形-线段的垂直平分线(含答案)

人教版2021年八年级数学上册课时作业本轴对称与等腰三角形-线段的垂直平分线一、选择题1.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5,则△ACE的周长为( )A.8 B.11 C.16 D.172.如图,已知AB=AC,∠A=36°,AC的垂直平分线MN交AB于D,AC于M.以下结论:①△BCD是等腰三角形;②射线CD是△ACB的角平分线;③△BCD的周长C△BCD=AB+BC;④△ADM≌△BCD.正确的有()A.①②B.①③C.②③D.③④3.如图,已知线段AB,分别以点A、点B为圆心,以大于AB的长为半径画弧,两弧交于点C和点D,作直线CD,在CD上取两点P、M,连接PA、PB、MA、MB,则下列结论一定正确的是( )A.PA=MAB.MA=PEC.PE=BED.PA=PB4.如图,在△ABC中,直线MN为BC的垂直平分线,交BC于点E,点D在直线MN上,且在△ABC的外面,连接BD,CD,若CA平分∠BCD,∠A=65°,∠ABC=85°,则△BCD是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形5.在Rt△ABC中,∠A=40°,∠B=90°,AC的垂直平分线MN分别与AB,AC交于点D,E,则∠BCD的度数为()A.10°B.15°C.40°D.50°6.如图所示,在△ABC中,AB+BC=10,AC的垂直平分线分别交AB、AC于点D和点E,则△BCD 的周长是()A.6B.8C.10D.无法确定7.如图,在已知的△ABC中,按以下步骤作图:②分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB的度数为()A.90°B.95°C.100°D.105°8.到三角形三个顶点的距离都相等的点是这个三角形的()A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点9.如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC 的周长是()A.10cmB.12cmC.15cmD.17cm10.△ABC中,AB=AC≠BC,在△ABC所在平面内有点P,且使得△ABP、△ACP、△BCP均为等腰三角形,则符合条件的点P共有( )A.1个B.4个C.6个D.8个二、填空题11.如图,在Rt△ABC中,∠C=90°,边AB的垂直平分线交BC点D,AD平分∠BAC,则∠B度数为.12.如图,△ABC中,AB+AC=8cm,BC的垂直平分线l与AC相交于点D,则△ABD的周长为.13.如图,DE是△ABC边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为.14.如图,在△ABC中,按以下步骤作图:①分别以点B,C为圆心,以大于BC的长为半径作弧,两弧交于M,N两点;②作直线MN交AB于点D,连接CD.如果已知CD=AC,∠B=25°,则∠ACB的度数为.15.如图,在△ABC中,AB>AC,按以下步骤作图:分别以点B和点C为圆心,大于BC一半的长为半径作圆弧,两弧相交于点M和点N,作直线MN交AB于点D;连结CD.若AB=8,AC=3,则△ACD的周长为.16.如图,△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C 沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.三、作图题17.在一次军事演习中,红方侦查员发现蓝方的指挥部P设在S区.到公路a与公路b的距离相(不等,并且到水井M与小树N的距离也相等,请你帮助侦查员在图上标出蓝方指挥部P的位置.写作法,保留作图痕迹)四、解答题18.在ΔABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D点,交AC于点E.(1)若∠ABE=38°,求∠EBC的度数;(2)若ΔABC的周长为36cm,一边为13cm,求ΔBCE的周长.19.如图,已知△ABC,AB=AC,AD是△ABC角平分线,EF垂直平分AC,分别交AC,AD,AB于点E,O,F.若∠CAD=20°,求∠OCD的度数.20.如图,在△ABC中,°,AD是∠BAC的角平分线,EF垂直平分AD,交BC的延长线于点F.求∠FAC的大小.21.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M.(1)若∠B=70°,则∠MNA的度数是.(2)连接NB,若AB=8cm,△NBC的周长是14cm.①求BC的长;②在直线MN上是否存在P,使由P、B、C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.22.如图,直线a、b相交于点A,C、E分别是直线b、a上两点且BC⊥a,DE⊥b,点M、N是EC、DB的中点.求证: MN⊥BD.参考答案1.答案为:B.2.答案为:B3.答案为:D.4.A5.A6.C7.D8.D.9.C10.答案为:C;解析:①作三边的垂直平分线必在三角形内交于一点,这点就是符合要求的P点,②作BC的垂直平分线,以B点为圆心、AB长为半径画弧,与BC的垂直平分线有两个交点,其中一点是点A,另一点为符合要求的P点;③作BC的垂直平分线,以A点为圆心、AB长为半径画弧,与BC的垂直平分线有两个交点,这两点为符合要求的P点;④在△ABC的左边作一个△APB,使△APB≌△ABC,这点也是符合要求的P点;⑤同理在△ABC的右边作一个△APC,使△APC≌△ACB,这点也是符合要求的P点.所以共有6个符合条件的点P.11.答案为:30°12.答案为:8cm.13.答案为:28cm.14.答案为:105°;15.答案为:11.16.答案为:100°17.解:如图所示,①作公路a与公路b的交角AOB的平分线OC,②连接MN,作线段MN的中垂直平分线EF,EF和OC的交点P就是所求的点.18.∵DE是AB的垂直平分线,∴AE=BE,∴∠A=∠ABE=38°∵AB=AC,∴∠ABC=∠C=71°∴∠EBC=∠ABC-∠ABE=71°-38°=33°由ΔABC的周长为36cm AB>BC AB=AC可知AB=AC=13cm BC=10cmΔBCE的周长=BE+CE+BC=AC+BC=13+10=23(cm)19.50°20.解:∵EF垂直平分AD ∴FA=FD ∴∠ADF=∠DAF又∵∠ADF=∠B+∠BAD,∠DAF=∠FAC+∠DAC,∠BAD=∠DAC ∴∠FAC=∠B=45°21.解:(1) 50(2) ①∵MN垂直平分AB.∴NB=NA,又∵△NBC的周长是14cm,∴AC+BC=14cm,∴BC=6cm.②当点P与点N重合时,由点P、B、C构成的△PBC的周长值最小,最小值是14cm.22.证明:∵BC⊥a,DE⊥b,点M是EC的中点,∴2DM=EC,2BM=EC,∴DM=BM,∵点N是BD的中点,∴MN⊥BD.。

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质作业复习题(含答案) (90)

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质作业复习题(含答案) (90)

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质作业复习题(含答案)如图1,直线AB∥CD,直线EF交AB于点E,交CD于点F,点G和点H 分别是直线AB和CD上的动点,作直线GH,EI平分∥AEF,HI平分∥CHG,EI与HI交于点I.(1)如图,点G在点E的左侧,点H在点F的右侧,若∠AEF=70°,∠CHG=60°,求∠ETH的度数.(2)如图,点G在点E的右侧,点H也在点F的右侧,若∠AEF=α,∠CHG=β,其他条件不变,求∠ETH的度数.(3)如图,点G在点E的右侧,点H也在点F的右侧,∠GHC的平分线HJ交∠KEG的平分线EJ于点J.其他条件不变,若∠AEF=α,∠CHG=β,求∠EJH的度数.【答案】(1)65°;(2)1122αβ+;(3)1118022αβ︒--. 【解析】【分析】(1)过点I 作IM ∥AB ,由角平分线的性质得到∠AEI=35°,∠CHI=30°,根据平行线的性质,由IM ∥AB 得到∠MIE=∠AEI=35°,由AB ∥CD ,IM ∥AB可得∠MIH=∠CHI=30°,再由∠EIH=∠MIE+∠MIH 计算即可得到答案;(2)过点I 作IM ∥AB ,由角平分线的性质得到∠AEI=1α2,∠CHI=1β2,根据平行线的性质由IM ∥AB 可得∠MIE=∠AEI=1α2,由AB ∥CD ,IM ∥AB 得到IM ∥CD ,结合题意得到∠EIH=∠MIE+∠MIH 计算即可得到答案;(3)过点J 作MN ∥AB ,由角平分线的性质得到∠JEG=1α2,∠JHF=1β2,根据平行线的性质由MN ∥AB 得到∠MJE=∠JEG =1α2,由AB ∥CD ,MN ∥AB 得到MN ∥CD ,结合题意得到∠EJH=180°-∠MJE-∠NJH ,计算即可得到答案.【详解】(1)解:过点I 作IM ∥AB∵EI 平分∠AEF ,HI 平分∠CHG ,∠AEF=70°,∠CHG=60°,∴∠AEI=35°,∠CHI=30°∵IM ∥AB∴∠MIE=∠AEI=35°∵AB∥CD,IM∥AB∴IM∥CD∴∠MIH=∠CHI=30°∴∠EIH=∠MIE+∠MIH=35°+30°=65°(2)解:过点I作IM∥AB∵EI平分∠AEF,HI平分∠CHG,∠AEF=α,∠CHG=β,∴∠AEI=1α2,∠CHI=1β2∵IM∥AB∴∠MIE=∠AEI=1α2∵AB∥CD,IM∥AB ∴IM∥CD∴∠MIH=∠CHI=1β2∴∠EIH=∠MIE+∠MIH=1α2+1β2(3)解:过点J作MN∥AB∵∠AEF=α∴∠KEB=α∵EJ 平分∠KEB ,HJ 平分∠CHG ,∠KEB =α,∠CHG=β,∴∠JEG=1α2,∠JHF=1β2 ∵MN ∥AB∴∠MJE=∠JEG =1α2∵AB ∥CD ,MN ∥AB∴MN ∥CD∴∠NJH=∠CHJ=1β2∴∠EJH=180°-∠MJE-∠NJH=180°-1α2-1β2. 【点睛】本题考查平行线的性质和角平分线的性质,解题的关键是掌握平行线的性质和角平分线的性质的综合使用.92.材料阅读:如图①所示的图形,像我们常见的学习用品—圆规.我们不妨把这样图形叫做“规形图”.解决问题:(1)观察“规形图”,试探究BDC ∠与A ∠,B ,C ∠之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下两个问题:Ⅰ.如图②,把一块三角尺DEF 放置在ABC △上,使三角尺的两条直角边DE ,DF 恰好经过点B ,C ,若40A ∠=︒,则ABD ACD +=∠∠_____︒.Ⅱ.如图③,BD 平分ABP ∠,CD 平分ACP ∠,若40A ∠=︒,130BPC ∠=︒,求BDC ∠的度数.【答案】(1)详见解析;(2)50︒;BDC ∠=85︒【解析】【分析】(1)连接AD 并延长至点F ,根据三角形外角性质即可得到BDC ∠与A ∠,B ,C ∠之间的数量关系;(2)Ⅰ、由(1)可得,BDC ABD ACD A ∠=∠+∠+∠,再根据40A ∠=︒,90D ∠=︒,即可得出ABD ACD ∠+∠的度数;Ⅱ、根据(1),可得BPC BAC ABP ACP ∠=∠+∠+∠,BDC BAC ABD ACD ∠=∠+∠+∠,再根据BD 平分ABP ∠,CD 平分ACP ∠,即可得出BDC ∠的度数.【详解】解:(1)如图①,连接AD 并延长至点F ,根据外角的性质,可得BDF BAD B ∠=∠+∠,CDF C CAD ∠=∠+∠,又BDC BDF CDF ∠=∠+∠,BAC BAD CAD ∠=∠+∠,BDC A B C ∴∠=∠+∠+∠;(2)Ⅰ.由(1),可得BDC ABD ACD A ∠=∠+∠+∠;又40A ∠=︒,90D ∠=︒,904050ABD ACD ∴∠+∠=︒-︒=︒,故答案为:50︒;Ⅱ.由(1),可得BPC BAC ABP ACP ∠=∠+∠+∠,BDC BAC ABD ACD ∠=∠+∠+∠,1304090ABP ACP BPC BAC ∴∠+∠=∠-∠=︒-︒=︒,又BD 平分ABP ∠,CD 平分ACP ∠,()1452ABD ACD ABP ACP ∴∠+∠=∠+∠=︒, 454085BDC ∴∠=︒+︒=︒.【点睛】本题考查三角形内角和定理、三角形外角性质及角平分线的定义的运用,熟知三角形的内角和等于180°、三角形的一个外角等于和它不相邻的两个内角的和是解答此题的关键.93.已知:如图,P 是OC 上一点,PD ⊥OA 于D ,PE ⊥OB 于E ,F 、G 分别是OA 、OB 上的点,且PF =PG ,DF =EG .(1)求证:OC 是∠AOB 的平分线.(2)若PF ∥OB ,且PF =4,∠AOB =30°,求PE 的长.【答案】(1)证明见解析;(2)PE =2.【解析】【分析】(1)利用“HL ”证明Rt △PFD 和Rt △PGE 全等,根据全等三角形对应边相等可得PD =PE ,再根据到角的两边距离相等的点在角的平分线上证明即可;(2)在Rt △PFD 中,求出PD 即可解决问题.【详解】(1)证明:在Rt △PFD 和Rt △PGE 中,PF PG DF EG =⎧⎨=⎩, ∴Rt △PFD ≌Rt △PGE (HL ),∴PD =PE ,∵P 是OC 上一点,PD ⊥OA ,PE ⊥OB ,∴OC 是∠AOB 的平分线;(2)∵PF ∥OB ,∠AOB =30°,∴∠PFD =∠AOB =30°,在Rt △PDF 中,PD =12PF =2,∴PE =PD =2.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,直角三角形的性质等知识,熟记性质并求出全等三角形是解题的关键.94.如图,D ,E ,F ,G ,H ,I 是三角形ABC 三边上的点,连结EI ,//EF BC ,//GH AC ,//DI AB .(1)判断GHC ∠与FEC ∠是否相等,并说明理由.(2)若EI 平分FEC ∠,56C ∠=︒,50B ∠=︒,求EID ∠的度数.【答案】(1)相等,理由见解析;(2)12∠=︒EID【解析】【分析】(1)根据平行线的性质得到∠FEC +∠C =180°,∠GHC +∠C =180°,根据余角的性质即可得到结论;(2)根据平行线的性质得到∠FEC +∠C =180°,求得∠FEC =180°−∠C=124°,根据角平分线的定义得到∠FEI =12∠FEC =62°,由平行线的性质得到∠DIC =∠B =50°,即可得到结论.【详解】(1)GHC FEC ∠=∠,理由://EF BC ,180FEC C ∴∠+∠=︒,//GH AC ,180GHC C ∴∠+∠=︒,GHC FEC ∴∠=∠;(2)//EF BC ,56C ∠=︒180FEC C ∴∠+∠=︒,180124∴∠=︒-∠=︒FEC C EI 平分FEC ∠,1622∴∠=∠=︒FEI FEC 62∴∠=∠=︒FEI EIC//DI AB ,50B ∠=︒50∴∠=∠=︒DIC B12∴∠=∠-∠=︒EID EIC DIC【点睛】本题考查了平行线的性质,角平分线的定义,同旁内角的定义,熟练掌握平行线的性质是解题的关键.95.如图,在△ABC 中,∠BAC=20°,∠ABC=30°.(1)画出BC边上的高AD和角平分线AE;(2)求∠EAD的度数.【答案】(1)见解析;(2)50°【解析】【分析】从三角形的一个顶点向它的对边作一条垂线,画出的这条线段就是三角形的高,注意钝角三角形较短边上的高在三角形的外部,再结合尺规作角平分线的方法即可解答第(1)问;(2)根据已知条件,在△ABD中运用三角形内角和定理可得到∠BAD的度数,然后由角平分线的定义可得∠BAE=10°,再结合∠EAD=∠BAD-∠BAE即可得到答案.【详解】(1)如图所示,AD为BC边上的高,AE为角平分线.(2)∵AD⊥BD,∴∠ADB=90°.∵在△ABD中,∠ADB=90°,∠B=30°,∴∠BAD=180°-90°-30°=60°.∵∠BAC=20°,AE为∠BAC的平分线,∴∠BAE=10°.∵∠BAD=60°,∠BAE=10°,∴∠EAD=∠BAD-∠BAE=60°-10°=50°.【点睛】此题考查三角形的角平分线、中线和高,解题关键在于掌握作图法则.96.(1)如图1,AC平分∠DAB,∠1=∠2,试说明AB与CD的位置关系,并予以证明:(2)如图2,在(1)的结论下,AB的下方点P满足∠ABP=30︒,G是CD上任一点,PQ平分∠BPG,PQ∥GN,GM平分∠DGP,下列结论:①∠DGP-∠MGN的值不变;②∠MGN的度数不变.可以证明,只有一个是正确的,请你做出正确的选择并求值.【答案】(1)见详解;(2)②正确,∠MGN的度数为15°,理由见详解.【解析】【分析】(1)由AC平分∠DAB,∠1=∠2,可得∠2=∠BAC,进而即可得到结论;(2)由角平分线的定义和三角形外角的性质,可得∠MGP=12(∠BPG+∠B),由PQ∥GN,得∠NGP=∠GPQ=12∠BPG,进而由∠MGN=∠MGP-∠NGP,即可得到结论.【详解】(1)AB∥CD,理由如下:∵AC平分∠DAB,∴∠1=∠BAC,∵∠1=∠2,∴∠2=∠BAC,∴AB∥CD;(2)②∠MGN的度数不变是正确的,理由如下:∵PQ平分∠BPG,GM平分∠DGP,∴∠GPQ=12∠BPG,∠MGP=12∠DGP,∵AB∥CD,∴∠1=∠DGP,∵∠1=∠BPG+∠B,∴∠MGP=12∠1=12(∠BPG+∠B),∵PQ∥GN,∴∠NGP=∠GPQ=12∠BPG,∴∠MGN=∠MGP-∠NGP=12(∠BPG+∠B)-12∠BPG=12∠B=12×30°=15°,∴∠MGN的度数不变,度数为15°.【点睛】本题主要考查角平分线的性质定理与平行线的性质和判定定理,理清角的和差倍分关系,是解题的关键.97.已知:在△ABC中,∠ABC=60°,CD平分∠ACB交AB于点D,点E在线段CD上(点E不与点C.D重合),且∠EAC=2∠EBC.(1)如图1,若∠EBC=27°,且EB=EC,则∠DEB=___°,∠AEC=___°.(2)如图2,①求证:AE+AC=BC;②若∠ECB=30°,且AC=BE,求∠EBC的度数。

八年级数学重点题型强化训练05 线段垂直平分线专题(解析版)

八年级数学重点题型强化训练05 线段垂直平分线专题(解析版)

八年级数学重点题型强化训练5——线段垂直平分线专题第1题第2题【分析】本题考查的是线段垂直平分线的性质:熟记:线段垂直平分线上的点到这条线段两个端点的距离第3题可证BEF CED ≌△△,可得EF =BC 的中点,第5题第6题第7题第8题 第9题【答案】B 【分析】利用全等三角形的判定以及垂直平分线的性质得出OBC Ð,以及40,OBC OCB Ð=Ð=°,再利用翻折变换的性质得出,CEF FEO =Ð进而求出即可.50,BAC BAC Ð=°ÐQ 12OAB CAO \Ð=Ð=25OAB ABO Ð=Ð=∵在等腰ABC V 中,DG Q 是BC 的垂直平分线,BD CD \=,AD Q 是BAC Ð的平分线,DE DF \=,在Rt BDE △和Rt CDF △中,C .60°D 【分析】先根据线段垂直平分线的性质得到BE CE =,则AC EC =,再根据等腰三角形的性质和三角形内,接着利用三角形外角性质计算出EBC Ð=Ð的度数.故选:C .题型2:线段垂直平分线的判定11.如图,AD AC =,BD BC =,则下列判断一定正确的是( )A .AB 垂直平分CDB .CD 垂直平分ABC .CD 平分ACB ÐD .以上都不正确第11题第12题【答案】A【分析】根据线段垂直平分线的判定求解即可.【详解】解:∵AD AC =,BD BC =,∴点A 、B 在线段CD 的垂直平分线上,即AB 垂直平分CD ,故选:A .12.如图,ABC AB AC BC >>V ,,边AB 上存在一点P ,使得PA PC AB +=.下列描述正确的是( )A .P 是AC 的垂直平分线与AB 的交点B .P 是ACB Ð的平分线与AB 的交点C .P 是BC 的垂直平分线与AB 的交点D .P 是AB 的中点【答案】C【分析】根据线段垂直平分线的判定解答即可.【详解】解:PA PC AB PA BP AB +=+=Q ,,PC BP \=,∴P 是BC 的垂直平分线与AB 的交点.故选:C .13.如图,将长方形纸片沿AC 折叠后点B 落在点E 处,则下列关于线段BE 与AC 的关系描述正确的是( )A .AC BE =B .AC 和BE 相互垂直平分C .AC BE ^且AC BE=D .AC BE ^且AC 平分BE【答案】D 【分析】只要证明AC 是线段BE 的垂直平分线即可解决问题.【详解】解:ACE QV 是由ACB △翻折得到,AE AB \=,CB CE =,AC EB \^,AC 平分EB ,故选:D .14.如图,已知:AB AC =,MB MC =.求证:直线AM 是线段BC 的垂直平分线.下面是小彬的证明过程,则正确的选项是( )证明:∵AB AC=∴点A 在线段BC 的垂直平分线上①∵MB MC=∴点M 在线段BC 的垂直平分线上②∴直线AM 是线段BC 的垂直平分线③A .①处的依据是:线段垂直平分线上的点与这条线段两个端点的距离相等B .②处的依据是:与线段两个端点距离相等的点在这条线段的垂直平分线上C .③处的依据是:与线段两个端点距离相等的点在这条线段的垂直平分线上D .以上说法都不对【答案】B【分析】根据垂直平分线的判定方法逐项判断即可.【详解】解:①处的依据是:与线段两个端点距离相等的点在这条线段的垂直平分线上,故A 选项错误,不合题意;②处的依据是:与线段两个端点距离相等的点在这条线段的垂直平分线上,故B 选项正确,符合题意;③处的依据是:两点确定一条直线;故C 选项错误,不合题意;综上可知,选项D 错误,不合题意;故选B .15.下列说法错误的是( )A .若点P 是线段AB 的垂直平分线上的点,则PA PB=B .若PA PB =,QA QB =,则直线PQ 是线段AB 的垂直平分线C .若PA PB =,则点P 在线段AB 的垂直平分线上D .若PA PB =,则过点P 的直线是线段AB 的垂直平分线【答案】D【分析】根据线段垂直平分线的判定方法,即可一一判定.【详解】解:A.若点P 是线段AB 的垂直平分线上的点,则PA PB =,故该说法正确,不符合题意;B.若PA PB =,QA QB =,则直线PQ 是线段AB 的垂直平分线,故该说法正确,不符合题意;C.若PA PB =,则点P 在线段AB 的垂直平分线上,故该说法正确,不符合题意;D.若PA PB =,则过点P 的直线不一定是线段AB 的垂直平分线,故该说法错误,符合题意;故选:D .16.如图,AD 是ABC V 的角平分线,交BC 于D ,DE DF 、分别是ABD △和ACD V 的高,分别交AB AC 、于E 、F ,连接EF 交AD 于G .下列结论:①AD 垂直平分EF ;②EF 垂直平分AD ;③AED AFD V V ≌;④当BAC Ð为60°时,AEF △是等边三角形,其中正确的结论的个数为( )A .4个B .3个C .2个D .1个第16题第17题【答案】B 【分析】根据角平分线性质求出DE DF =,证AED AFD V V ≌,推出AE AF =,再逐个判断即可.【详解】解:∵AD 是ABC V 的角平分线,DE DF 、分别是ABD △和ACD V 的高,∴DE DF =,90AED AFD Ð=Ð=°,在Rt AED △和Rt AFD △中,AD AD DE DF =ìí=î,∴()Rt Rt HL AED AFD ≌△△,故③正确;∴AE AF =,∴AD 垂直平分EF ,①正确;②错误;∵60BAC Ð=°,且AE AF =,∴AEF △是等边三角形,④正确.综上,①③④正确,共3个.故选:B .17.如图,在△ABC 中,AD 是△ABC 的角平分线,点E 、F 分别是AD 、AB 上的动点,若∠BAC =50°,当BE +EF 的值最小时,∠AEB 的度数为( )A .105°B .115°C .120°D .130°【答案】B【分析】过点B 作BB ′⊥AD 于点G ,交AC 于点B ′,过点B ′作B ′F ′⊥AB 于点F ′,与AD 交于点E ′,连接BE ′,证明AD 垂直平分BB ′,推出BE =BE ′,由三角形三边关系可知,BE EF B E EF B F B F ¢¢¢¢+=+³³,即BE +EF 的值最小为B F ¢¢,通过证明△ABE ′≌△AB ′E ′,推出∠AE ′B =AE ′B ′,因此利用三角形外角的性质求出AE ′B ′即可.【详解】解:过点B 作BB ′⊥AD 于点G ,交AC 于点B ′,过点B ′作B ′F ′⊥AB 于点F ′,与AD 交于点E ′,连接BE ′,如图:此时BE +EF 最小.∵AD 是△ABC 的角平分线,∠BAC =50°,∴∠BAD =∠B ′AD =25°,∵BB ′⊥AD ,∴∠AGB =∠AGB ′=90°,在△ABG 和△AB ′G 中,BAG B AG AG AGAGB AGB Ð=Ðìï=íïТ=Ðî¢,∴△ABG ≌△AB ′G (ASA ),∴BG =B ′G , AB =AB ′,∴AD 垂直平分BB ′,∴BE =BE ′,在△ABE ′和△AB ′E ′中,BE BE AE AE AB AB ¢¢¢¢ìï=íï=î=,∴△ABE ′≌△AB ′E ′(SSS ),∴∠AE ′B =AE ′B ′,∵AE ′B ′=∠BAD + AF ′E ′=25°+90°=115°,∴∠AE ′B =115°.即当BE +EF 的值最小时,∠AEB 的度数为115°.故选B .18.如图,点P 是AOB Ð内的一点,PC OA ^于点C ,PD OB ^于点D ,连接OP ,CD .若PC PD =,则下列结论不一定成立的是( )A .AOP BOPÐ=ÐB .OPC OPD Ð=ÐC .PO 垂直平分CD D .PD CD=【答案】D【分析】根据角平线的判定定理可判断A ,证明Rt COP Rt DOP V V ≌,可判断B ,根据Rt COP Rt DOP V V ≌,可得OC =OD ,进而可判断C ,根据等边三角形的定义,可判断D .【详解】解:∵点P 是AOB Ð内的一点,PC OA ^于点C ,PD OB ^于点D ,PC PD =,∴OP 是∠AOB 的平分线,即AOP BOP Ð=Ð,故A 成立,不符合题意;∵OP =OP ,AOP BOP Ð=Ð,第19第20题=,利用ASA Ð,再根据E是CD的中点可求出ECECF=,结合已知可得BE的垂直平分线,根据线段垂直AE EF=+,进而即可求解.即可证得AB BC AD故答案为:70.题型3:与线段垂直平分线相关的尺规作图21.如图,在ABC V 直线MN ,交BC A .9【答案】B 【分析】由题意可得MN ADC C AC BC =+V ,求解即可.【详解】解:由题意可得,A.3B 【答案】B【分析】利用基本作图得到V的周长为20再利用ABC【详解】解:由作法得DE \==,,DA DB AE BEA .①③B .①④C .②④D .③④【答案】B 【分析】依次对各个图形的作图痕迹进行分析即可.【详解】 由图①知AD AC =,AB AD >,AB AC \>,故图①能说明AB AC >;由图②知射线BD 是ABC Ð的平分线,不能说明AB AC >;由图③知CD AB ^,不能说明AB AC >;由图④知DE 是BC 的垂直平分线,DB DC \=.ADC QV 中AD DC AC +>,AD DB AC \+>,即AB AC >.故图④能说明AB AC >.故选:B24.如图所示,在Rt ABC △中,90C Ð=°,以B 为圆心,以任意长度为半径作弧,与BA ,BC 分别交于A.20°B.36【答案】C【分析】由作图可知:BO为=,再根据等腰三角形的性质得AD BD和定理即可求出AÐ的度数.【详解】解:由作图可知:平分EAC Ð;③AC CD =;④ABC S V C .①③DA .只有甲的答案正确B .甲和乙的答案合在一起才正确C .甲和丙的答案合在一起才正确D .甲乙丙的答案合在一起才正确【答案】D 【分析】分四种情况讨论:当APB Ð为锐角时,当APB Ð为钝角时,当APB Ð为直角时,当135APB Ð=°时,分别画出图形,求出x 与y 的关系,即可得出答案.【详解】解:当APB Ð为锐角时,如图所示:∵AD BP ^,∴90ADP Ð=°,∴90PAD APD Ð+Ð=°,即90x y +=;当APB Ð为钝角时,如图所示:∵AD BP ^,∴90ADP Ð=°,∵APB Ð为ADP △的外角,∴APB ADP DAP Ð=Ð+Ð,∴90x y =+,即90x y -=;当APB Ð为直角时,如图所示:此时直线n 与PA 重合,∴此时直线n 与PA 所夹的角为0°,即90x y +=或90x y -=;当135APB Ð=°时,如图所示:18013545DPA Ð=°-°=°,∵AD BP ^,∴90ADP Ð=°,∴904545DAP Ð=°-°=°,∴45135180DAP APB Ð+Ð=°+°=即180x y +=;1AB 的长为半径作弧,两弧相交于AM ;的长为半径作弧,与BC 边相交于点N ,连接C.9AC,根据中垂线的定义和性质找到相等的边,进而由AC,A .15B .16C .18D .20【答案】A 【分析】根据题意得到MN 是线段AB 的垂直平分线,进而得到点D 是AB 的中点,根据三角形的面积公式计算,得到答案.【详解】解:由尺规作图可知,MN 是线段AB 的垂直平分线,\点D 是AB 的中点,ACD BCD S S \=△△,ADE CDE CDB S S S \+=V V V ,Q CDB △的面积为12,ADE V 的面积为9,1293CDE CDB ADE S S S \=-=-=V V V ,\四边形EDBC 的面积为:12315CDE CDB EDBC S S S =+=+=V V 四边形,故选:A .30.如图,在ABC V 中,根据尺规作图痕迹,下列说法不一定正确的是( ).A .AF BF=B .90AFD FBC Ð+Ð=°C .DF AB^D .BAF CAFÐ=Ð【答案】D 【分析】由图中尺规作图痕迹可知,BE 为ABC Ð的平分线,DF 为线段AB 的垂直平分线,结合角平分线的定义和垂直平分线的性质逐项分析即可.【详解】解:由图中尺规作图痕迹可知, BE 为ABC Ð的平分线,DF 为线段AB 的垂直平分线.上求作点D ,使;,若点D 在边上,在上求作点E ,使.)作BC 的垂直平分线与BC 的交点即为所求;)如图:由题意得,只要作12BDE ABC S S △△=即可,由第(1)问得,12ABP ABC S S △△=,只要作BC ABD ACD S S =V V AB BC BDE ADEC S S △四边形=作BC 的垂直平分线与BC 交于D 点,BD CD \=,ABD QV 与ACD V 高相同,ABD ACD S S \=V V .如图1:点D 即为所求;(2)如图:由题意得,只要作12BDE ABC S S △△=即可,作BC 的垂直平分线交BC 于P 点,由第(1)问得,12ABP ABC S S △△=,故只要作BDE ABP S S △△=即可,连接D 、P ,要使得BDE ABP S S △△=,只要作根据“夹在平行线之间的垂线段相等”,即,高相等,如图2:点E 即为所求.32.如图,在中,点E 在上且.(1)请用尺规作图的方法在边上确定点D ,使得;(保留作图痕迹,不写作法)(2)在(1)的条件下,若的周长为,求的长.【分析】(1)线段AB 的垂直平分线与BC 边的交点即为所求;(2)根据线段垂直平分线的性质,通过等量代换求解.【详解】(1)解:如图所示,线段AB 的垂直平分线与BC 边交于点D ,点D 即为所求;(2)解:Q ADE V 的周长为12cm ,\12AD AE DE ++=,Q BD AD =,AE CE =,\12BC BD CE DE AD AE DE =++=++=,即BC 的长为12cm .题型4:与线段垂直平分线相关的计算与证明33.如图,在ABC V 中,AB 、AC 边的垂直平分线相交于点O ,分别交BC 边于点M 、N ,连接AM ,AN .(1)若AMN V 的周长为6,求BC 的长;(2)若30B Ð=°,25C Ð=°,求MAN Ð的度数;(3)若MON a Ð=,请用a 表示MAN Ð的度数(直接写出即可).ABC V BC AE CE =BC BD AD =ADE V 12cm BC【答案】(1)6(2)70°(3)1802MAN aÐ=°-【分析】(1)由垂直平分线的性质可得,AM BM AN CN ==,再由BC AM MN AN =++可得结论;(2)由垂直平分线的性质可得30,30,B BAM C CAN Ð=Ð=°Ð=Ð=°,再根据三角形内角和定理可得结论;(3)根据三角形内角和定理可得()1802MAN B C Ð=°-Ð+Ð,再由四边形内角和定理可得180B C MAN O Ð+Ð=°-Ð-Ð,代入求解即可【详解】(1),OM ON Q 分别是AB 、AC 边的垂直平分线,,,AM BM AN CN \==6AM MN AN ++=Q 6BM MN CN \++=,即6BC =(2),,AM BM AN CN ==Q 30,25,BAM B CAN C \Ð=Ð=°Ð=Ð=°180,B BAC C Ð+Ð+Ð=°Q 且BAC BAM MAN CANÐ=Ð+Ð+Ð180,B BAM MAN CANC \Ð+Ð+Ð+Ð+Ð=°即180,B B MANC C Ð+Ð+Ð+Ð+Ð=°18022180605070MAN B C \Ð=°-Ð-Ð=°-°-°=°(3)如图,180,B BAC C Ð+Ð+Ð=°Q 且BAC BAM MAN CAN Ð=Ð+Ð+Ð180,B BAM MAN CANC \Ð+Ð+Ð+Ð+Ð=°即180,B B MANC C Ð+Ð+Ð+Ð+Ð=°()1802MAN B C \Ð=°-Ð+Ð,,OM ON Q 分别是AB 、AC 边的垂直平分线,90AEO AFO \Ð=Ð=360AEO EAF AFO FOE \Ð+Ð+Ð+Ð=°180EAF O \Ð+Ð=°180,BAF MAN CAN O \Ð+Ð+Ð+Ð=°180,B C MAN O \Ð+Ð+Ð+Ð=°180B C MAN O\Ð+Ð=°-Ð-Ð()()180********MAN B C MAN O \Ð=°-Ð+Ð=°-°-Ð-Ð\解得,1802MAN aÐ=°-34.如图,在Rt ABC △中,45,90,ACB BAC AB AC Ð=°Ð=°=,点D 是AB 的中点,AF CD ^于H 交BC 于F ,BE AC ∥交AF 的延长线于E .求证:BC 垂直且平分DE .【答案】见解析【分析】根据全等三角形的判定证明(ASA)ABE CAD ≌V V ,在再证明(SAS)DBP EBP ≌V V 即可解决问题;【详解】证明:由题意可知,9090DAH ADH ACH ADH ÐÐÐÐ+=°+=°,,∴DAH ACH ÐÐ=,∵90BAC Ð=°,BE AC ∥,∴90CAD ABE ÐÐ==°.又∵AB CA =,∴在ABE V 与CAD V 中,DAH ACH AB AC CAD ABE Ð=Ðìï=íïÐ=Ðî,∴(ASA)ABE CAD ≌V V .∴AD BE =,又∵AD BD =,∴BD BE =,在Rt ABC V 中,45,90,ACB BAC AB AC ÐÐ=°=°=,故45ABC Ð=°.∵90ABE Ð=°,∴904545EBF Ð=°-°=°,∴(SAS)DBP EBP ≌V V ,∴DP EP =,∴BC 垂直且平分DE .35.如图,ABC V 中,AD 平分BAG Ð,DG 垂直平分BC ,DE AB ^于E ,DF AC ^于F .(1)求证:BE CF =;(2)如果9AB =,5AC =,求BE 的长.【答案】(1)见解析;(2)2BE =.【分析】(1)由DG 垂直平分BC 可得DB DC =,由AD 平分BAG Ð, DE AB ^,DF AC ^,可得DE DF =,90DEB DFC Ð=Ð=°,从而证得()Rt Rt HL DBE DCF V V ≌,得证BE CF =;(2)易证()Rt Rt HL ADE ADF ≌△△,得到AE AF =,又BE CF =,因此2AB AE BE AF BE AC CF AC BE =+=+=+=+,代入即可解答.【详解】(1)连接DB ,DC ,∵DG 垂直平分BC ,∴DB DC =,∵AD 平分BAG Ð,DE AB ^,DF AC ^,∴DE DF =,90DEB DFC Ð=Ð=°,∴在Rt DBE V 和Rt DCF V 中DB DC DE DF=ìí=î∴()Rt Rt HL DBE DCF V V ≌,∴BE CF =.(2)∵DE AB ^,DF AC ^,∴在Rt ADE △和Rt ADF V 中AD AD DE DF=ìí=î∴()Rt Rt HL ADE ADF ≌△△,∴AE AF=∵BE CF=∴2AB AE BE AF BE AC CF AC BE =+=+=+=+,∵9AB =,5AC =,∴952BE =+,∴2BE =.36.如图,AB AC >,BAC Ð的平分线与BC 边的垂直平分线GD 相交于点D ,过点D 作DE AB ^于点E ,DF AC ^于点F ,求证:BE CF =.【答案】见解析【分析】连接DC ,根据GD 是BC 边的垂直平分线,得到DC DB =,根据AD 是BAC Ð的平分线,且DE AB ^,DF AC ^,得到DE DF =,根据DE DF DB DC =ìí=î,得到()HL DEB DFC V V ≌即可得证.【详解】如图,连接DC ,∵GD 是BC 边的垂直平分线,∴DC DB =,∵AD 是BAC Ð的平分线,且DE AB ^,DF AC ^,∴DE DF =,∵DE DF DB DC =ìí=î,∴()HL DEB DFC V V ≌∴BE CF =.37.如图,在ABC V 中,BAC Ð的平分线与BC 的中垂线DE 交于点E ,过点E 作AC 边的垂线,垂足N ,过点E 作AB 延长线的垂线,垂足为M .(1)求证:BM CN =;(2)若2AB =,8AC =,求BM 的长.【分析】(1)连接BE ,CE ,由题意易得BE CE =,EM EN =,进而可证Rt Rt BME CNE ≌V V ,然后问题得解;(2)由(1)得:EM EN =,进而可证Rt Rt AME ANE ≌V V ,则有AB BM AC CN +=-,然后根据线段的和差关系可求解.【详解】(1)证明:连接BE ,CE ,DE Q 是BC 的垂直平分线,BE CE \=,AE Q 是BAC Ð的平分线,EM AB ^,EN AC ^,EM EN \=,在Rt BME △和Rt CNE △中,BE CE EM EN=ìí=î()Rt Rt BME CNE HL \V V ≌,BM CN \=;(2)由(1)得:EM EN =,在Rt AME △和Rt ANE △中,AE AE EM EN=ìí=îRt Rt AME ANE \≌V V ,请根据所给教材内容,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:V中,AB、AC的垂直平分线分别交BC于点D、E,垂足分别为M,N,已知)如图②,在ABC的周长为20,则BC的长为__________.∵AB AC AD BC ^=,,的周长为7,可得∴19712AB BE +=-=,∴6AB BE ==;(2)∵30ABC Ð=°,45C Ð=°,∴1803045105BAC Ð=°-°-°=°,在BAD V 和BED V 中,BA BE BD BD DA DE =ìï=íï=î,∴()SSS BAD BED V V ≌,∴105BED BAC Ð=Ð=°,∴1054560CDE BED C Ð=Ð-Ð=°-°=°.40.如图,在ABC V 中,点E 在AB 上,点D 在BC 上,BD BE =,BAD BCE Ð=Ð,AD 与CE 相交于F .(1)求证:AF CF =;(2)连接,试判断与的位置关系,并说明理由.【分析】(1)根据全等三角形的判定与性质,可得BA BC =,BDA BEC Ð=Ð,根据补角的性质,可得FDC FEA Ð=Ð,根据全等三角形的判定与性质,可得答案.(2)由AB CB =,AF CF =可得点B ,F 在AC 的垂直平分线,即可得出结论【详解】(1)在BAD V 和BCE V 中,∵B B BAD BCE BD BE Ð=ÐìïÐ=Ðíï=î,∴BAD V ≌BCE V ,∴AB CB =,BF BF AC与点A 重合,则 , .,四边形的直角沿直线l 折叠后(如图2),点B 落在四边形的边与AB 相交于点F ,猜想OF 、EF 、AB 三者数量关系,并证明.若折叠后点D 恰为AB 的中点(如图3),求的度数;45°,8数量关系为:AB OF EF =+;证明见解析q ==a OABC OCB ÐOABC q∴E O D FO D Ð=Ð.由折叠可得FOD EOC EOD q Ð=Ð=Ð=,∴390COA q Ð==°,∴30q =°.。

人教版数学八年级上册 第十三章 13.1.2 线段的垂直平分线的性质 同步练习 (含答案)

人教版数学八年级上册 第十三章 13.1.2 线段的垂直平分线的性质 同步练习 (含答案)

人教版数学八年级上册第十三章13.1.2 线段的垂直平分线的性质同步练习一、选择题1.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCDC.AB=BD D.△BEC≌△DEC2. 如图所示,线段AB,AC的垂直平分线相交于点P,则PB与PC的关系是()A.PB>PC B.PB=PCC.PB<PC D.PB=2PC3. 如图,在△ABC中,△ACB=90°,△B=22.5°,AB边的垂直平分线交BC于点D,则下列结论中错误的是()A.△ADC=45° B.△DAC=45°C.BD=AD D.BD=DC4. 在数学课上,老师提出如下问题:如图,已知△ABC中,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PB=BC.下面是四名同学的作法,其中正确的是()5. 如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,△B =60°,△C =25°,则△BAD 为( )A .50°B .70°C .75°D .80°6. 如图,在△ABC 中,DE 垂直平分AB ,交AB 于点E ,交BC 于点D ,若AD=4,BC=3DC ,则BC 等于 ( )A.4B.4.5C.5D.67. 如图,C ,E 是直线l 两侧的点,以点C 为圆心,CE 的长为半径画弧交直线l于A ,B 两点.又分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧交于点D ,连接CA ,CB ,CD ,则下列结论不一定正确的是 ( )A .CD△直线lB .点A ,B 关于直线CD 对称C .点C ,D 关于直线l 对称D .CD 平分△ACB 8. 如图,在Rt ABC 中,90ACB ∠=︒,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于D E ,两点,作直线DE 交AB 于点F ,交BC 于点G ,连接CF .若3AC =,2CG =,则CF 的长为( )A .52 B .3 C .2 D .72 9. 如图,在△ABC 中,AB 的垂直平分线交AB 于点D ,交BC 于点E ,若BC=6,AC=5,则△ACE 的周长为( )A .8B .11C .16D .1710. 如图,在△ABC 中,直线MN 为BC 的垂直平分线,交BC 于点E ,点D 在直线MN 上,且在△ABC 的外面,连接BD ,CD ,若CA 平分△BCD ,△A=65°,△ABC=85°,则△BCD 是( )A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形二、填空题11. 如下图,△ABC 中,AB=AC=14cm ,D 是AB 的中点,DE△AB 于D 交AC 于E ,△EBC 的周长是24cm ,则BC= .12. 如图,在Rt△ABC中,△C=90°,边AB的垂直平分线交BC点D,AD平分△BAC,则△B度数为.13. 如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为________.14. 如图,DE是△ABC的边AC的垂直平分线,若BC=9,AD=4,则BD=________.15. 如图,在△ABC中,△C=90°,DE是AB的垂直平分线,AD恰好平分△BAC.若DE=1,则BC的长是________.三、解答题16.现要在三角地带ABC内(如图)建一座中心医院,使医院到A,B两个居民小区的距离相等,并且到公路AB和AC的距离也相等,请你确定这座中心医院的位置.17. 如图,已知△ABC.(1)用直尺和圆规分别作出AB,AC边的垂直平分线l1,l2;(2)若直线l1,l2的交点为O,连接OB,OC.求证:OB=OC.18. 如图,在△ABE中,AD△BE于点D,C是BE上一点,DC=BD,且点C在AE的垂直平分线上.若△ABC的周长为22 cm,求DE的长.19. 如图,在△ABC中,AB边的垂直平分线DE分别与AB边和AC边交于点D 和点E,BC边的垂直平分线FG分别与BC边和AC边交于点F和点G,若△BEG 的周长为16,GE=3,求AC的长.20. 如图,点P是△AOB外的一点,点Q与P关于OA对称,点R与P关于OB 对称,直线QR分别交OA、OB于点M、N,若PM=PN=4,MN=5.(1)求线段QM、QN的长;(2)求线段QR的长.21. 如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M. (1)若∠B=70°,则∠MNA的度数是.(2)连接NB,若AB=8cm,△NBC的周长是14cm.①求BC的长;②在直线MN上是否存在P,使由P、B、C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.22. 如图,△ABC中,△ABC=30°,△ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出△BAC的度数;(2)求△DAF的度数,并注明推导依据;(3)若△DAF的周长为20,求BC的长.人教版数学八年级上册第十三章13.1.2 线段的垂直平分线的性质同步练习--参考答案一、选择题1.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCDC.AB=BD D.△BEC≌△DEC【答案】C2. 如图所示,线段AB,AC的垂直平分线相交于点P,则PB与PC的关系是()A.PB>PC B.PB=PCC.PB<PC D.PB=2PC【答案】B[解析] 如图,连接AP.△线段AB,AC的垂直平分线相交于点P,△AP=PB,AP=PC.△PB=PC.3. 如图,在△ABC中,△ACB=90°,△B=22.5°,AB边的垂直平分线交BC于点D,则下列结论中错误的是()A.△ADC=45° B.△DAC=45°C.BD=AD D.BD=DC【答案】D[解析] △AB的垂直平分线交BC于点D,△AD=BD,故C正确;△AD=BD,△△B=△BAD=22.5°.△△ADC=45°,故A正确;△DAC=90°-△ADC=90°-45°=45°,故B正确.故选D.4. 在数学课上,老师提出如下问题:如图,已知△ABC中,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PB=BC.下面是四名同学的作法,其中正确的是()【答案】C[解析] △PA+PB=BC,而PC+PB=BC,△PA=PC.△点P为线段AC的垂直平分线与BC的交点.显然只有选项C符合题意.5. 如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,△B=60°,△C=25°,则△BAD为()A.50°B.70°C.75°D.80°【答案】B6. 如图,在△ABC中,DE垂直平分AB,交AB于点E,交BC于点D,若AD=4,BC=3DC,则BC等于()A.4B.4.5C.5D.6【答案】D[解析] △DE垂直平分AB,AD=4,△BD=AD=4.△BC=3DC,△BD=2CD.△CD=2.△BC=BD+CD=6.故选D.7. 如图,C,E是直线l两侧的点,以点C为圆心,CE的长为半径画弧交直线l于A,B两点.又分别以点A,B为圆心,大于12AB的长为半径画弧,两弧交于点D,连接CA,CB,CD,则下列结论不一定正确的是()A .CD△直线lB .点A ,B 关于直线CD 对称C .点C ,D 关于直线l 对称D .CD 平分△ACB 【答案】C [解析] 由作法可知CD 垂直平分AB ,故选项A ,B 正确; △CD 垂直平分AB ,△CA =CB.设CD 与AB 交于点G ,易证Rt△ACG△Rt△BCG ,△△ACG =△BCG , 即CD 平分△ACB ,故选项D 正确;△AB 不一定平分CD ,故选项C 错误.故选C.由线段垂直平分线的性质可得PA =PB ,但不能得到OP =OF.8. 如图,在Rt ABC 中,90ACB ∠=︒,分别以点B 和点C 为圆心,大于12BC 的长为半径作弧,两弧相交于D E ,两点,作直线DE 交AB 于点F ,交BC 于点G ,连接CF .若3AC =,2CG =,则CF 的长为( )A .52B .3C .2D .72【答案】A【解析】由作法得GF 垂直平分BC ,∴FB FC =,2CG BG ==,FG BC ⊥, ∵90ACB ∠=︒,∴FG AC ∥,∴BF CF =,∴CF 为斜边AB 上的中线,∵5AB ==,∴1522CF AB ==.故选A . 9. 如图,在△ABC 中,AB 的垂直平分线交AB 于点D ,交BC 于点E ,若BC=6,AC=5,则△ACE 的周长为( )A.8B.11C.16D.17【答案】答案为:B.10. 如图,在△ABC中,直线MN为BC的垂直平分线,交BC于点E,点D在直线MN上,且在△ABC的外面,连接BD,CD,若CA平分△BCD,△A=65°,△ABC=85°,则△BCD是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形【答案】A二、填空题11. 如下图,△ABC中,AB=AC=14cm,D是AB的中点,DE△AB于D交AC 于E,△EBC的周长是24cm,则BC=.【答案】10cm12. 如图,在Rt△ABC中,△C=90°,边AB的垂直平分线交BC点D,AD平分△BAC,则△B度数为.【答案】答案为:30°13. 如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为________.【答案】13【解析】△DE垂直平分AB,△AE=BE,△AE+EC=8,△EC+BE=8,△△BCE的周长为BE+EC+BC=13.14. 如图,DE是△ABC的边AC的垂直平分线,若BC=9,AD=4,则BD=________.【答案】515. 如图,在△ABC中,△C=90°,DE是AB的垂直平分线,AD恰好平分△BAC.若DE=1,则BC的长是________.【答案】3[解析] △AD平分△BAC,且DE△AB,△C=90°,△CD=DE=1.△DE是AB的垂直平分线,△AD=BD.△△B=△DAB.△△DAB=△CAD,△△CAD=△DAB=△B.△△C=90°,△△CAD+△DAB+△B=90°.△△B=30°.△BD=2DE=2.△BC=BD+CD=2+1=3.三、解答题16.现要在三角地带ABC内(如图)建一座中心医院,使医院到A,B两个居民小区的距离相等,并且到公路AB和AC的距离也相等,请你确定这座中心医院的位置.【答案】解:作线段AB的垂直平分线EF,作△BAC的平分线AM,EF与AM相交于点P,则点P处即为这座中心医院的位置.17. 如图,已知△ABC.(1)用直尺和圆规分别作出AB,AC边的垂直平分线l1,l2;(2)若直线l1,l2的交点为O,连接OB,OC.求证:OB=OC.【答案】解:(1)如图所示.(2)证明:如图,连接OA.△l1是AB的垂直平分线,△OA=OB.同理,OA=OC.△OB=OC.18. 如图,在△ABE中,AD△BE于点D,C是BE上一点,DC=BD,且点C在AE的垂直平分线上.若△ABC的周长为22 cm,求DE的长.【答案】解:△BD=DC,AD△BE,△AB=AC.△点C在AE的垂直平分线上,△AC=CE.△△ABC的周长是22 cm,△AC+AB+BD+CD=22 cm.△AC+CD=11 cm.△DE=CD+CE=CD+AC=11 cm.19. 如图,在△ABC中,AB边的垂直平分线DE分别与AB边和AC边交于点D 和点E,BC边的垂直平分线FG分别与BC边和AC边交于点F和点G,若△BEG 的周长为16,GE=3,求AC的长.【答案】解:△DE垂直平分线段AB,GF垂直平分线段BC,△EB=EA,GB=GC.△△BEG的周长为16,△EB+GB+GE=16.△EA+GC+GE=16.△GA+GE+GE+GE+EC=16.△AC+2GE=16.△GE=3,△AC=10.20. 如图,点P是△AOB外的一点,点Q与P关于OA对称,点R与P关于OB对称,直线QR分别交OA、OB于点M、N,若PM=PN=4,MN=5.(1)求线段QM、QN的长;(2)求线段QR的长.【答案】【解答】解:(1)△P,Q关于OA对称,△OA垂直平分线段PQ,△MQ=MP=4,△MN=5,△QN=MN﹣MQ=5﹣4=1.(2)△P,R关于OB对称,△OB垂直平分线段PR,△NR=NP=4,△QR=QN+NR=1+4=5.21. 如图,在△ABC中,AB=AC,AB的垂直平分线交AB于N,交AC于M. (1)若∠B=70°,则∠MNA的度数是.(2)连接NB,若AB=8cm,△NBC的周长是14cm.①求BC的长;②在直线MN上是否存在P,使由P、B、C构成的△PBC的周长值最小?若存在,标出点P的位置并求△PBC的周长最小值;若不存在,说明理由.【答案】解:(1) 50(2) ①∵MN垂直平分AB.∴NB=NA,又∵△NBC的周长是14cm,∴AC+BC=14cm,∴BC=6cm.②当点P与点N重合时,由点P、B、C构成的△PBC的周长值最小,最小值是14cm.22. 如图,△ABC中,△ABC=30°,△ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出△BAC的度数;(2)求△DAF的度数,并注明推导依据;(3)若△DAF的周长为20,求BC的长.【答案】【解答】解:(1)△△ABC+△ACB+△BAC=180°,△△BAC=180°﹣30°﹣50°=100°;(2)△DE是线段AB的垂直平分线,△DA=DB,△△DAB=△ABC=30°,同理可得,△FAC=△ACB=50°,△△DAF=△BAC﹣△DAB﹣△FAC=100°﹣30°﹣50°=20°;(3)△△DAF的周长为20,△DA+DF+FA=20,由(2)可知,DA=DB,FA=FC,△BC=DB+DF+FC=DA+DF+FA=20.。

新人教版八年级上册数学13.1.2_线段的垂直平分线的性质[2]

新人教版八年级上册数学13.1.2_线段的垂直平分线的性质[2]

聚焦中考
• △ABC中,AB>AC ,∠A的平分线与BC的 垂直平分线DM相交于D,过D作DE ⊥AB 于E,作DF⊥AC于F,求证:BE=CF
A
C
E
M
F
B
D
随堂练习
1、如图,已知AB是线段CD的垂直 平分线,E是AB上的一点,如果 EC=7cm,那么ED= 7 cm;如果 ∠ECD=600,那么∠EDC= 60 0.
C
AE
B D
A 2、如图所示,
在△ABC中,
AB=AC=32, MN是AB的垂
M
直平分线,且
N
有BC=21,求
△BCN的周长。 B
C

已知:P为MON内一点。P与A关于ON对称,
P与B关于OM对称。若AB长为15cm
求:PCD的周长.
解: P与A关于ON对称
N A
ON为PA的中垂线(
反过来,如果PA=PB,那麽点P是否在线段 AB的垂直平分线上呢?
通过探究可以得到:
与一条线段两个端点距离相等的点,在这条 l
线段的垂直平分线上。
∵PA=PB
P
∴点P在线段AB的垂直平分线上
A
C
B
已知:PA=PB
求证:点P在线段AB的垂直平分线上
证明:作PC⊥AB,垂足为C
l
∴∠ACP=∠BCP= 90
13.1.2线段的垂直平分线的性质
A
A
M PP1 P2 P3
C
B
B
•已,MAN如 AA是知C上BB=左l :任B钉 ,的如C图在 P意,点,图1M一,一、N木⊥起分P点条2A,别、.BLL,量与PP垂3一木是直…量条于…点 求P证1、:PPA2=、PBP.3……到A与

部编数学八年级上册专题08线段的垂直平分线性质问题(解析版)含答案

部编数学八年级上册专题08线段的垂直平分线性质问题(解析版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!2023--2024学年度人教版数学八年级上册期末复习核心考点三种题型精炼专题08 线段的垂直平分线性质问题一、选择题1. (2023长春)如图,用直尺和圆规作MAN Ð的角平分线,根据作图痕迹,下列结论不一定正确的是( )A. AD AE= B. AD DF = C. DF EF = D. AF D E^【答案】B 【解析】根据作图可得,AD AE DF EF ==,进而逐项分析判断即可求解.根据作图可得,AD AE DF EF ==,故A ,C 正确;∴,A F 在DE 的垂直平分线上,∴AF D E ^,故D 选项正确,而DF EF =不一定成立,故B 选项错误,故选:B .【点睛】本题考查了作角平分线,垂直平分线的判定,熟练掌握基本作图是解题的关键.2.如图所示,底边BC 为2,顶角A 为120°的等腰△ABC 中,DE 垂直平分AB 于D ,则△ACE 的周长为( )A .2+2B .2+C .4D .3【答案】A 【解析】本题考查了线段垂直平分线性质,三角形的内角和定理,等腰三角形的性质,含30度角的直角三角形性质等知识点,主要考查运用性质进行推理的能力.过A作AF⊥BC于F,根据等腰三角形的性质得到∠B=∠C=30°,得到AB=AC=2,根据线段垂直平分线的性质得到BE=AE,即可得到结论.过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+23.如图,BD是△ABC 的角平分钱,AE⊥BD ,垂足为F. 若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°【答案】C【解析】本题考查角平分线的性质,因为BD平分∠ABC,AE⊥BD,所以△ABF≌△EBF,所以BD是线段AE的垂直平分线,所以AD=ED,所以∠BAD=∠BED=180°-35°-50°=95°,所以∠CDE=180°-∠C=95°-50°=45°,故选C.1. (2023湖北荆州)如图,60AOB Ð=°,点C 在OB 上,OC =P 为AOB Ð内一点.根据图中尺规作图痕迹推断,点P 到OA 的距离为___________.【答案】1【解析】首先利用垂直平分线的性质得到12OQ OC ==,利用角平分线,求出BOP Ð,再在POQ △中用勾股定理求出1PQ =,最后利用角平分线的性质求解即可.【详解】如图所示,由尺规作图痕迹可得,PQ 是OC 的垂直平分线,∴12OQ OC ==,∴1302BOP BOA Ð=Ð=°,设PQ x =,则2PO x =,∵222PQ OQ OP +=,∴()2222x x +=,∴1x =,由尺规作图痕迹可得,PO 是AOB Ð的平分线,∴点P 到OA 的距离等于点P 到OB 的距离,即PQ 的长度,∴点P 到OA 的距离为1.故答案为:1 .【点睛】本题考查角平分线和垂直平分线的性质,勾股定理,数形结合思想是关键.2. (2023四川广元)如图,a b ∥,直线l 与直线a ,b 分别交于B ,A 两点,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧相交于点E ,F ,作直线EF ,分别交直线a ,b 于点C ,D ,连接AC ,若34CDA Ð=°,则CAB Ð的度数为 _____.【答案】56°##56度【解析】先判断EF 为线段AB 的垂直平分线,即可得CAB CBA Ð=Ð,ACD BCD Ð=Ð,再由a b ∥,可得34CDA BCD Ð=Ð=°,即有34ACD BCD Ð=Ð=°,利用三角形内角和定理可求CAB Ð的度数.【详解】由作图可知EF 为线段AB 的垂直平分线,∴AC BC =,∴CAB CBA Ð=Ð,ACD BCD Ð=Ð,∵a b ∥,∴34CDA BCD Ð=Ð=°,∴34ACD BCD Ð=Ð=°,∵180ACD BCD CAB CBA Ð+Ð+Ð+Ð=°,∴56CAB Ð=°,故答案为:56°.【点睛】本题考查了垂直平分线的作图、垂直平分线的性质、平行线的性质以及三角形内角和定理等知识,判断EF 为线段AB 的垂直平分线是解答本题的关键.3.如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC.(1)∠ECD的度数为 ;(2)若CE=5,求BC长为 .【答案】(1)∠ECD的度数是36°;(2)BC长是5.【解析】(1)∵DE垂直平分AC∴CE=AE,∴∠ECD=∠A=36°(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∴∠BEC=∠A+∠ECD=72°,∴∠BEC=∠B,∴BC=EC=5.4.如图,在Rt V ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为________.【答案】40°【解析】根据直角三角形的性质求得∠AEB=80°;根据线段垂直平分线的性质得AE=CE,则∠C=∠EAC,再根据三角形的外角的性质即可求解.∵∠B=90°,∠BAE=10°,∴∠BEA=80°.∵ED是AC的垂直平分线,∴AE=EC,EB ∴∠C=∠EAC .∵∠BEA=∠C+∠EAC ,∴∠C=40°.故答案为:40°.【点睛】此题考查了线段垂直平分线性质,涉及到三角形的外角的性质以及等腰三角形的性质的知识,难度适中.三、解答题1.如图,在直角△ABC 中,∠C=90°,∠CAB 的平分线AD 交BC 于D ,若DE 垂直平分AB ,求∠B 的度数.【答案】30°.【解析】∵DE 垂直平分AB ,∴∠DAE=∠B ,∵在直角△ABC 中,∠C=90°,∠CAB 的平分线AD 交BC 于D ,∴∠DAE=(90°﹣∠B )/2=∠B ,∴3∠B=90°,∴∠B=30°.2.如图,在ABC D 中,CD 是AB 边上的高,BE 是AC 边上的中线,且BD CE =。

最新人教版数学八年级上册第十三章1.2 线段的垂直平分线的性质(第2课时)

最新人教版数学八年级上册第十三章1.2 线段的垂直平分线的性质(第2课时)

个公共汽车站.使两个小区到车站的路程一样长,该公共汽
车站应建在什么地方?
分析:增设的公共汽车站要满足到两个小 区的路程一样长,应在线段AB的垂直平分 线上,又要在公路边上,所以找到AB垂直 A 平分线与公路的交点即可.
B 公共汽车站
探究新知
13.1 轴对称/
素养考点 1 利用线段的垂直平分线的性质作图
l B
用同样的方法,可以找出五条对 称轴,所以五角星有五条对称轴.
探究新知
归纳总结
13.1 轴对称/
方法总结:对于轴对称图形,只要找到任意一 组对称点,作出对称点所连线段的垂直平分线, 即能得此图形的对称轴.
探究新知
13.1 轴对称/
素养考点 作轴对称图形的对称轴
例 如图,△ABC和△A′B′C′关于直线l对称,请用无刻度的直尺
巩固练习
13.1 轴对称/
如图,在△ABC中,分别以点A,B为圆心,大于 1 AB长为半
2
径画弧,两弧分别交于点D,E,则直线DE是( D ) A.∠A的平分线 B.AC边的中线 C.BC边的高线 D.AB边的垂直平分线
探究新知
13.1 轴对称/
素养考点 2 利用作图解决实际问题
例2 如图,某地有两所大学和两条交叉的公路.图中点M, N表示大学,OA,OB表示公路,现计划修建一座物资仓库, 希望仓库到两所大学的距离相等,到两条公路的距离也相等, 你能确定出仓库P应该建在什么位置吗?请在图中画出你的 设计.(尺规作图,不写作法,保留作图痕迹)
M A
O N
B
探究新知
解:如图所示:
A
M
P
O
N
13.1 轴对称/
B
方法总结:到角两边距离相等的点在角的平分线上,到 两点距离相等的点在两点连线的垂直平分线上.两线的交 点即为所求.

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质习题(含答案) (64)

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质习题(含答案) (64)

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质考试复习题(含答案)如图,OC平分∠AOB,点D,E分别在OA,OB上,点P在OC上且有PD=PE.求证:∠PDO =∠PEB.【答案】证明见解析;【解析】试题分析:过点P作AO、BO的垂线,利用直角三角形全等的判定可证出结论.试题解析:过P做PM垂直OA于M PN垂直OB于N因为OC平分∠AOB所以PM="PN" (角平分线上的点到2边的距离相等)因为PD=PE所以∠PDM全等于∠PEN(HL)所以∠PDO=∠PEB考点:1.角平分线的性质;2.直角三角形全等的判定与性质.32.已知:如图,CD∠AB于D,BE∠AC于E,∠1=∠2.求证:OB=OC.【答案】证明见解析【解析】试题分析:又CD∠AB,BE∠AC,∠1=∠2,可得OE=OD,∠BDO=∠CEO=90°,再由∠BOD=∠COE,可得∠BOD∠∠COE,从而OB=OC.试题解析:∠CD∠AB,BE∠AC,∠1=∠2,∠OE=OD,∠BDO=∠CEO=90°,又∠∠BOD=∠COE,∠∠BOD∠∠COE,∠OB=OC.考点:1.角平分线的性质;2.三角形全等的判定与性质.33.如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,AB=16,BC=12.(1)△ABD与△CBD的面积之比为;(2)若△ABC的面积为70,求DE的长.【答案】4:3;5.【解析】AB求出BC两个三角形的面积之比等于底的比求出△ABD与△CBD的面积之比;根据(1)求出的△ABD与△CBD的面积之比,得到△ABD的面积,根据三角形的面积公式求出DE.试题解析:(1)、∵BD是△ABC的角平分线,ABBC =43,∴△ABD与△CBD的面积之比为4:3;(2)、∵△ABC的面积为70,△ABD与△CBD的面积之比为4:3,∴△ABD的面积为40,又AB=16,则DE=5.考点:角平分线的性质34.根据图中尺规作图的痕迹,先判断得出结论:.然后证明你的结论(不要求写出已知、求证).【答案】OM平分∠BOA.【解析】试题分析:根据角作图的画法得出三角形全等,从而说明角平分线.试题解析:OM是∠AOB的角平分线连接CM、DM∠OC=OD,CM=DM,OM=OM,∠∠OCM∠∠OCD,∠∠BOM=∠AOM,∠OM是∠AOB的角平分线.考点:(1)、尺规作图;(2)、三角形全等35.(8分)已知:如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠BAD;(2)试说明线段DM与AM有怎样的位置关系?(3)线段CD、AB、AD间有怎样的关系?直接写出结果.【答案】(1)见解析(2)DM⊥AM,(3)CD+AB=AD【解析】试题分析:(1)首先要作辅助线,ME⊥AD则利用角的平分线上的点到角的两边的距离相等可知ME=MC,再利用中点的条件可知ME=MB,再利用到角两边距离相等的点在角的平分线上的逆定理证明AM平分∠DAB.(2)根据平行线性质得出∠CDA+∠BAD=180°,求出∠1+∠3=90°,根据三角形内角和定理求出即可.(3)证Rt△DCM≌Rt△DEM,推出CD=DE,同理得出AE=AB,即可得出答案.试题解析:(1)证明:作ME⊥AD于E,∵MC⊥DC,ME⊥DA,MD平分∠ADC,∴ME=MC,∵M为BC中点,∴MB=MC,又∵ME=MC,∴ME=MB,又∵ME⊥AD,MB⊥AB,∴AM平分∠DAB.(2)解:DM⊥AM,理由是:∵DM平分∠CDA,AM平分∠DAB,∴∠1=∠2,∠3=∠4,∵DC∥AB,∴∠CDA+∠BAD=180°,∴∠1+∠3=90°,∴∠DMA=180°﹣(∠1+∠3)=90°,即DM⊥AM.(3)解:CD+AB=AD,理由是:∵ME⊥AD,MC⊥CD,∴∠C=∠DEM=90°,在Rt△DCM和Rt△DEM中DM DM EM CM=⎧⎨=⎩ ∴Rt △DCM ≌Rt △DEM (HL ),∴CD=DE ,同理AE=AB ,∵AE+DE=AD ,∴CD+AB=AD .考点:角平分线的性质;全等三角形的判定与性质36.如图,在∠ABC 中,∠ACB=90°,AC=BC=AD(1)作∠A 的平分线交CD 于E ;(2)过B 作CD 的垂线,垂足为F ;(3)请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.【答案】(1)作图见试题解析;(2)作图见试题解析;(3)∠ACE ∠∠ADE ,∠ACE ∠∠CFB .【解析】试题分析:(1)利用角平分线的作法得出∠A的平分线;(2)利用钝角三角形高线的作法得出BF;(3)利用等腰三角形的性质及全等三角形的判定得出答案.试题解析:(1)如图所示:AE即为所求;(2)如图所示:BF即为所求;(3)如图所示:∠ACE∠∠ADE,∠ACE∠∠CFB,∠AC=AD,AE平分∠CAD,∠AE∠CD,EC=DE,在∠ACE和∠ADE中,∠AE=AE,∠AEC=∠AED,EC=ED,∠∠ACE∠∠ADE(SAS).考点:1.作图—复杂作图;2.全等三角形的判定.37.(8分)如图,在∠ABC中,∠B=90°,AB=BC=4,点E在BC上,将∠ABC沿AE折叠,使点B落在AC边上的点F处.(1)求BE的长;(2)判断∠CEF是什么特殊三角形.【答案】BE=4√2-4【解析】试题分析:(1)先由勾股定理求出AC的长,由折叠可得∠CEF为直角三角形,BE="EF," 设BE=,根据勾股定理可得;(2)由(1)可得EF=FC=,所以直角三角形CEF是等腰直角三角形.试题解析:在∠ABC中,∠B=90°,AB=BC=4,∠AC=42分将∠ABC沿AE折叠,使点B落在AC边上的点F处.所以BE=EF,∠∠CEF为直角三角形EC2=EF2+FC2 4分设BE=,(4-)2=2+(4-4)24分∠6分EF=FC=7分∠∠CEF是等腰直角三角形8分考点:1.勾股定理;2. 图形折叠的性质;3.等腰直角三角形的判定.38.如图,AD⊥BC于点D,EG⊥BC于点G,⊥E=⊥3.请问:AD平分⊥BAC吗?若平分,请说明理由.【答案】平分,理由见解析.【解析】【分析】先利用平面内垂直于同一条直线的两条直线互相平行,得到AD∥EG,再利用平行线的性质和已知条件求出∥1=∥2即可.【详解】解:平分.证明:∥AD∥BC于D,EG∥BC于G,(已知)∥∥ADC=∥EGC=90°,(垂直的定义)∥AD∥EG,(同位角相等,两直线平行)∥∥2=∥3,(两直线平行,内错角相等)∥E=∥1,(两直线平行,同位角相等)又∥∥E=∥3(已知)∥∥1=∥2(等量代换)∥AD平分∥BAC(角平分线的定义).【点睛】本题考查平行线的判定与性质;角平分线的定义.39.画图说明题,试用几何方法说明你所得结果的正确性.(1)作∠AOB=90°;(2)在∠AOB的内部任意画一条射线OP;(3)画∠AOP的平分线OM以及∠BOP的平分线ON;(4)用量角器量得∠MON= 度.【答案】45,理由见解析【解析】【分析】首先根据题意画出图形,再根据角平分线的性质可得∠POM=1∠POB,2∠PON=12∠POA,然后可得∠POM+∠PON=12(∠POB+∠POA),进而可得答案.【详解】如图所示:∥OM是∥AOP的平分线,ON是∥BOP的平分线,∥∥POM=12∥POA,∥PON=12∥POB,∥∥POB+∥POA=∥AOB=90°,∥∥POM+∥PON=12(∥POB+∥POA)=12∥AOB=12×90°=45°.【点睛】考查了基本作图,以及角平分线的作法,关键是掌握角平分线的画法.40.(本题满分10分)如图,把∠EFP按图所示的方式放置在菱形ABCD 中,使得顶点E、F、P分别在线段AB、AD、AC上.已知EP=FP=,EF=,∠BAD=60°,且AB.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若∠EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.【答案】(1)∠EPF=120°;(2)AE+AF=;(3)AP的最大值为8,AP 的最小值为4.【解析】试题分析:(1)过点P作PG∠EF,垂足为G,在RtFPG中,利用锐角三角函数求得∠FPG=60°,即可得∠EPF的度数.(2)作PM∠AB,PN∠ND,垂足分别为M、N,可证RtPME∠RtPNF,可得FN=EM;在RtPMA中,利用锐角三角函数求得AM的长,同样的方法求得AN的长,根据AE+AF=(AM-EM)+(AN+NF)=AM+AN即可求得AE+AF的值.(3)当PE∠AB,PF∠AD时,AP的值最大为8,当点A与点E(或点F)重合时,PA的值最小为4.试题解析:解:(1)过点P作PG∠EF,垂足为G,∠PE=PF,PG∠EF,∠FG=EG=,∠FPG=∠EPG=∠EPF.在RtFPG中,,∠∠FPG=60°∠∠EPF=2∠FPG=120°.作PM∠AB,PN∠ND,垂足分别为M、N,在菱形ABCD中,∠AD=AB,,DC=BC,AC=AC,∠∠ABC∠∠ADC,∠∠DAC=∠BAC∠点P到AB、CD两边的距离相等,即PM=PN.在RtPME和RtPNF中,∠PM=PN,PE=PF,∠RtPME∠RtPNF∠FN=EM在RtPMA中,∠PMA=90°,∠PAM=∠DAB=30°,∠AM=同理,AN=∠AE+AF=(AM-EM)+(AN+NF)=AM+AN=.(3)AP的最大值为8,AP的最小值为4.考点:菱形的性质;角平分线的性质;全等三角形的判定及性质.。

人教版_部编版八年级数学上册第十三章第一节线段的垂直平分线的性质考试复习题一(含答案) (64)

人教版_部编版八年级数学上册第十三章第一节线段的垂直平分线的性质考试复习题一(含答案) (64)

人教版_部编版八年级数学上册第十三章第一节线段的垂直平分线的性质考试复习题一(含答案) 如图,已知△ABC,按下列要求作图(第(1)、(2)小题用尺规作图,第(3)小题不限作图工具,保留作图痕迹).(1)作∠B的角平分线;(2)作AC的中垂线;(3)以BC边所在直线为对称轴,作△ABC的轴对称图形.【答案】(1)答案见解析(2)答案见解析(3)答案见解析【解析】【分析】根据角平分线、中垂线和轴对称图形的作图方法进行解答.【详解】解:(1)如图,射线BD即为所求;(2)如图所示,直线EF 即为所求;(3)如图所示,△GBC 即为所求.【点睛】本题的解题关键是掌握角平分线、中垂线和轴对称图形的作图方法.32.如图,在边长为2的正方形ABCD 中,求作BC 边的中点E ,连接DE ,在边BC 的延长线上求作点F ,使DE =EP ,并求出CF BC的值.(要求,尺规作图,保留作图痕迹,不写作法)【答案】作图见解析12CF BC = 【解析】【分析】 根据线段垂直平分线和线段的作法画出图形,再利用正方形的性质和勾股定理解答即可.【详解】如图所示:点E ,F 即为所求:∵边长为2的正方形ABCD 中,∴CD=BC=2,∠DCB=90°,∵BE=EC=1,∴=,∴CF=EF ﹣EC=DE ﹣,∴CF BC =. 【点睛】本题考查了作图-复杂作图,解题的关键是根据线段垂直平分线和线段的作法画出图形.33.如图,在△ABC 中,△ACB =90°,D 是BC 的延长线上一点,EH 是BD 的垂直平分线,DE 交AC 于F ,求证:E 在AF 的垂直平分线上.【答案】见解析【解析】【分析】根据线段垂直平分线的性质得到BE=DE,根据等腰三角形的性质得到∠BEH=∠DEH,根据平行线的性质得到∠BEH=∠BAC,∠DEH=∠AFE,等量代换得到∠EAF=∠AFE,根据得到结论.【详解】证明:∵EH垂直平分BD,∴BE=DE,∴∠BEH=∠DEH,∵∠ACB=90°,∴EH∥AC,∴∠BEH=∠BAC,∠DEH=∠AFE,∴∠EAF=∠AFE,∴AE=EF,∴点E在AF的垂直平分线上.【点睛】本题考查了线段的垂直平分线的性质平行线的性质,熟练掌握线段垂直平分线的性质是解题的关键.34.已知,线段a,直线1及1外一点A,求作:△ABC,使AB=AC,BC=a,且点B、C在直线1上.【答案】见解析.【解析】【分析】先做线段a的垂直平分线,再过点A作l的垂线AO,O点为垂足,然后以点O为圆心,1a为半径画弧交l于B、C两点,则△ABC满足条件.2【详解】如图所示,△ABC即为所求.【点睛】本题考查的知识点是作图—复杂作图,等腰三角形的性质,解题关键是熟记作图的步骤.35.如图,在△ABC中,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,连接AD,AE.(1)若∠BAC=110°,求∠DAE的度数;(2)若∠BAC=θ(0°<θ<180°),求∠DAE的度数.(用含θ的式子表示)【答案】(1) 40°;(2) ①∠DAE=2θ-180°,②∠DAE=180°-2θ.【解析】【分析】(1)根据线段的垂直平分线的性质得到DB=DA,EC=EA,根据等腰三角形的性质解答即可;(2)分两种情况进行讨论,先根据线段垂直平分线的性质,得到∠B=∠BAD,∠C=∠CAE,进而得到∠BAD+∠CAE=∠B+∠C=180°-α,再根据角的和差关系进行计算即可.【详解】(1)∵AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,∴DB=DA,EC=EA.∵∠BAC=110°,∴∠B+∠C=70°.∵DB=DA,EC=EA,∴∠DAB=∠B,∠EAC=∠C,∴∠DAB+∠EAC=70°,∴∠DAE=110°-70°=40°.(2)分两种情况:①如答图1所示,当∠BAC≥90°时,∵DM垂直平分AB,∴DA=DB,∴∠B=∠BAD.同理可得,∠C=∠CAE,∴∠BAD+∠CAE=∠B+∠C=180°-θ,∴∠DAE=∠BAC-(∠BAD+∠CAE)=θ-(180°-θ)=2θ-180°.答图1 答图2②如答图2所示,当∠BAC<90°时,∵DM垂直平分AB,∴DA=DB,∴∠B=∠BAD.同理可得,∠C=∠CAE,∴∠BAD+∠CAE=∠B+∠C=180°-θ,∴∠DAE=∠BAD+∠CAE-∠BAC=180°-θ-θ=180°-2θ.【点睛】本题考查的知识点是线段垂直平分线的定义,等腰三角形的性质,勾股定理的应用,解题关键是熟记性质.36.按要求用尺规作图(要求:不写作法,但要保留作图痕迹,并写出结论)已知:线段AB求作:线段AB的垂直平分线MN.【答案】作图见解析.【解析】【分析】根据垂直平分线的作法即可解题,见详解.【详解】解:作法:(1)分别以A,B点为圆心,以大于的长为半径作弧,两弧相交于M,N两点;(2)作直线MN,MN即为线段AB的垂直平分线.【点睛】本题考查了基本作图,属于简单题,熟知线段垂直平分线的做法是解题关键.37.用圆规、直尺作图,不写作法,但要保郎画图痕迹.已知:线段a,a∠∠=∠.求作:菱形ABCD,使BD a=,ABCα【答案】详见解析【解析】【分析】①作MBN α.②∠∠=作MAN ∠的平分线BE ,在射线BE 上截取BD a.=③作线段BD 的垂直平分线交BM 于点A ,交BN 于点C ,连接AD ,CD ,菱形ABCD 即为所求.【详解】解:①作MBN α∠∠=②作MAN ∠的平分线BE ,在射线BE 上截取BD a =.③作线段BD 的垂直平分线交BM 于点A ,交BN 于点C ,连接AD ,CD . 菱形ABCD 即为所求.【点睛】本题考查作图-复杂作图,菱形的判定等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.38.如图,△ABC (△B >△A ).(1)在边AC 上用尺规作图作出点D ,使△CDB=2△A (保留作图痕迹);(2)在(1)的情况下,连接BD ,若CB=CD ,△A=35°,求△C 的度数.【答案】(1)详见解析;(2)∠C=40°.【解析】【分析】(1)作AB的垂直平分线交AC于点D,则DA=DB;(2)由(1)得∠CDB=2∠A,因为CB=CD,所以∠CBD=∠CDB,再根据三角形内角和定理即可求解.【详解】解:(1)如图,点D为所作;(2)由(1)得∠CDB=2∠A=2×35°=70°,∠CB=CD,∠∠CBD=∠CDB=70°,∠∠C=180°﹣70°﹣70°=40°.【点睛】此题主要考查了基本作图、等腰三角形的性质以及三角形内角和定理,正确掌握线段垂直平分线的性质是解题关键.39.已知∠AOB,用直尺和圆规作图:(1)作∠AOB的平分线;(2)过∠AOB边OA上一点P分别作边OA、OB的垂线.(不写作法,保留作图痕迹)【答案】作图见解析.【解析】【分析】(1)根据角平分线的做法作图即可;(2)分别过已知点作已知直线的垂线即可.【详解】(1)(2)如图:【点睛】考查角平分线及线段垂线的基本作图;掌握基本作图的作法是解决本题的关键.40.已知:如图,∠ABC ,射线BC 上一点D .(1)求作:等腰△PBD ,使线段BD 为等腰△PBD 的底边,点P 在∠ABC 内部,且点P 到∠ABC 两边的距离相等.(2)在(1)的条件下,若DP ⊥AB ,求∠ABC 的度数.【答案】(1)作图见解析;(2)60°.【解析】【分析】(1)作∠ABC 的平分线BK ,线段BD 的垂直平分线MN ,射线BK 与直线MN 的交点P 即为所求;(2)根据DP ⊥AB ,可知BAD Rt ∆∆为,根据线段BD 的垂直平分线MN ,可知,PBD PDB ∠=∠ 根据BP 是∠ABC 的平分线,可知,ABP PBD ∠=∠等量代换可知,ABP PBD PDB ∠=∠=∠直角三角形两锐角互余,30,ABP PBD PDB ∠=∠=∠=从面求得∠ABC 的度数.【详解】(1)如图所示;点P 是∠ABC 的平分线与线段BD 的垂直平分线的交点,如图点P 即为所求;(2) 在(1)的条件下,若DP ⊥AB ,如图:由(1)可知:∠ABC 的平分线BK ,线段BD 的垂直平分线MN ,射线BK 与直线MN 的交点P ,ABP PBD ∴∠=∠(角平线的定义)PBD PDB ∠=∠(垂直平分线的性质),ABP PBD PDB ∴∠=∠=∠DP ⊥AB,90ABD PDB ∴∠+∠=ABD ABP PBD ∠=∠+∠,且ABP PBD PDB ∠=∠=∠(已证) 19030,3ABP PBD PDB ∴∠=∠=∠=⨯= ABC ABP PBD ∠=∠+∠,303060.ABC ∴∠=+=【点睛】本题考查复杂作图,角平分线的性质,线段垂直平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.。

人教版八年级数学上角平分线和线段垂直平分线(一)教案导学案教学设计同步练习课时作业试卷含答案解析

人教版八年级数学上角平分线和线段垂直平分线(一)教案导学案教学设计同步练习课时作业试卷含答案解析

角平分线和线段垂直平分线【要点梳理】知识点1. 角的平分线的性质及判定定理:1.如图∵OP 平分∠AOB ,点P 在射线OP 上,PC ⊥OA 于C ,PD ⊥OB 于D∴ ( )2.∵PC ⊥OA 于C ,PD ⊥OB 于D ,PC = PD ,∴ ( ) 答案:PC=PD (角平分线上的点到角两边的距离相等) OP 平分∠AOB (到角两边距离相等的点在角的平分线上)知识点2. 线段的垂直平分线的性质及判定定理:1.线段垂直平分线性质:线段垂直平分线上的点与这条线段两个端点的 .2.线段垂直平分线的判定:与一条线段两个端点 的点,在这条线段的垂直平分线上.3.线段的垂直平分线是到这条线段两端点距离相等的点的集合.答案:1、距离相等 2、距离相等知识点3. 角的平分线和线段的垂直平分线的应用:1.三角形的三条 交于一点,并且这一点到三条边的距离相等。

2.三角形的 交于一点,这点到三角形三个顶点的距离相等。

3.如图,321l l l 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有( )A 、一处B 、二处C 、三处D 、四处4.如图,在△ABC 中,AB =AC ,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F .下列推理中正确的个数是 .①AD 上任意一点到点C ,B 的距离相等;②AD 上任意一点到AC ,AB 的距离相等;③BD =CD ,AD ⊥BC ;④∠BDE =∠CDF答案:1、角平分线2、三条边的垂直平分线3、A 4、4【例题选析】例1 如图4,AB=AD ,BC=CD ,AC 、BD 相交于点E .由这些条件可以得出若干结论,请你写出其中三个正确结论(不要添加字母和辅助线,不要求证明).答案:∠DAE=∠BAE;DE=BE; ∠DCE=∠BCEl 3l 2l 1P D C BOA F D E CB AG NC FB D E A例2.如图,∠A =∠B =90°,M 是AB 的中点,DM 平分∠ADC ,求证:CM 平分∠BCDMDB C A答案:如图:过点M 作MN 与CD 垂直,先用AAS 证明△AMD 与△NMD 全等,得MN=AM,由M 为AB 中点可知,AM=BM,所以BM=NM ,又因为CM 是公共边,根据HL 可证明△MBC 与△MNC 全等,所以CM 平分∠BCD 。

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质作业复习题(含答案) (54)

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质作业复习题(含答案) (54)

人教版_部编版八年级数学上册第十二章第三节角的平分线的性质作业复习题(含答案)如图1,△ABC中,AB=AC,∠BAC=90°,CD平分∠ACB,BE⊥CD,垂足E在CD的延长线上.请解答下列问题:(1)图中与∠DBE相等的角有:;(2)直接写出BE和CD的数量关系;(3)若△ABC的形状、大小不变,直角三角形BEC变为图2中直角三角形BED,∠E=90°,且∠EDB=1∠C,DE与AB相交于点F.试探究线段BE2与FD的数量关系,并证明你的结论.【答案】(1)∠ACE和∠BCD;CD;(2)BE=12DF,证明见解析(3)BE=12【解析】【分析】(1)根据三角形内角和定理得到∠DBE=∠ACE,根据角平分线的定义得到∠BCD=∠ACE,得到答案;(2)延长BE交CA延长线于F,证明△CEF≌△CEB,得到FE=BE,证明△ACD≌△ABF,得到CD=BF,证明结论;(3)过点D作DG∥CA,交BE的延长线于点G,与AE相交于H,分别证明△BGH ≌△DFH 、△BDE ≌△GDE ,根据全等三角形的性质解答即可.【详解】解:(1)∵BE ⊥CD ,∴∠E =90°,∴∠E =∠BAC ,又∠EDB =∠ADC ,∴∠DBE =∠ACE ,∵CD 平分∠ACB ,∴∠BCD =∠ACE ,∴∠DBE =∠BCD ,故答案为:∠ACE 和∠BCD ;(2)延长BE 交CA 延长线于F ,∵CD 平分∠ACB ,∴∠FCE =∠BCE ,在△CEF 和△CEB 中,FCE BCE CE CECEF CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CEF ≌△CEB (ASA ),∴FE =BE ,在△ACD 和△ABF 中,ACD ABF AC ABCAD BAF 90︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴△ACD ≌△ABF (ASA ),∴CD =BF ,∴BE =12CD ; (3)BE =12DF 证明:过点D 作DG ∥CA ,交BE 的延长线于点G ,与AE 相交于H ,∵DG ∥AC ,∴∠GDB =∠C ,∠BHD =∠A =90°,∵∠EDB =12∠C , ∴∠EDB =∠EDG =12∠C , ∵BE ⊥ED ,∴∠BED =90°,∴∠BED =∠BHD ,∵∠EFB =∠HFD ,∴∠EBF =∠HDF ,∵AB =AC ,∠BAC =90°,∴∠C =∠ABC =45°,∵GD ∥AC ,∴∠GDB =∠C =45°,∴∠GDB =∠ABC =45°,∴BH =DH ,在△BGH 和△DFH 中,HBG HDF BH DHBHG DHF 90︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴△BGH ≌△DFH (ASA )∴BG =DF ,∵在△BDE 和△GDE 中,BDE GDE DE DEBED GED 90︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴△BDE ≌△GDE (ASA )∴BE =EG ,∴BE =11BG DP 22=. 【点睛】本题考查了三角形内角和定理,角平分线的意义,三角形全等的判定和性质等相关知识,解决本题的关键是:①熟练掌握三角形内角和定理,理清角与角之间存在的关系;②正确理解角平分线的性质③熟练掌握三角形全等的判定方法。

人教版_部编版八年级数学上册第十三章第一节线段的垂直平分线的性质考试复习题一(含答案) (63)

人教版_部编版八年级数学上册第十三章第一节线段的垂直平分线的性质考试复习题一(含答案) (63)

人教版_部编版八年级数学上册第十三章第一节线段的垂直平分线的性质考试复习题一(含答案)如图,△ABC 中,∠BAC =90°,AB =5,AC =10,分别以点 B 和点 C 为圆心,大于12BC 的长为半径作弧,两弧相交于 D 、E 两点,连接 DE 交 BC 于点H ,连接 AH ,则 AH 的长为( )A .5B .5CD .5【答案】C【解析】【分析】 先利用勾股定理计算出 BC = BH =CH ,然后根据直角三角形斜边上的中线等于斜边的一半求解.【详解】∵∠BAC =90°,AB =5,AC =10,∴BC = = 由作法得 DE 垂直平分 BC ,∴BH =CH ,∴AH 为 Rt △ABC 斜边上的中线,∴AH = 12BC = . 故选:C . 【点睛】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段; 作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了直角三角形斜边上的中线性质.22.如图,MN是线段AB的垂直平分线,C在MN外,且与A点在MN 的同一侧,BC交MN于P点,则( )A.BC>PC+AP B.BC<PC+AP C.BC=PC+APD.BC≥PC+AP【答案】C【解析】【分析】从已知条件进行思考,根据垂直平分线的性质可得PA=PB,结合图形知BC=PB+PC,通过等量代换得到答案.【详解】∵点P在线段AB的垂直平分线上,∴PA=PB.∵BC=PC+BP,∴BC=PC+AP.故选C.【点睛】本题考查了垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等;结合图形,进行线段的等量代换是正确解答本题的关键.23.下列说法:①线段AB、CD互相垂直平分,则AB是CD的对称轴,CD是AB的对称轴;②如果两条线段相等,那么这两条线段关于直线对称;③角是轴对称图形,对称轴是这个角的平分线.其中错误的个数有()A.0个B.1个C.2个D.3个【答案】D【解析】【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】①线段AB、CD互相垂直平分,则线段AB所在的直线是线段CD的对称轴,线段CD所在的直线是线段AB的对称轴,故错误;②如平行四边形的一组对边符合两条线段相等,但不关于任何一条直线对称,错误;③角是轴对称图形,对称轴是这个角的平分线所在的直线,错误.错误的个数是3个,故选D.【点睛】掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.并且注意对称轴一定是直线.24.如图,在△ABC中,∠C=90°,AB的垂直平分线交BC于点D,交AB于点E,已知∠CAD:∠DAB=1:2,则∠B=()A.34°B.36°C.60°D.72°【答案】B【解析】【分析】先根据线段垂直平分线及等腰三角形的性质得出∠B=∠DAB,再根据∠DAE与∠DAC的度数比为2:1可设出∠B的度数,再根据直角三角形的性质列出方程,求出∠B的度数即可.【详解】∵D是线段AB垂直平分线上的点,∴AD=BD,∴△DAB是等腰三角形,∠B=∠DAB,∵∠CAD:∠DAB=1:2,∴设∠DAC=x,则∠B=∠DAB=2x,∴x+2x+2x=90°,∴x=18°,即∠B=36°,故选B.【点睛】本题考查的是线段垂直平分线的性质,直角三角形的性质,熟练掌握线段垂直平分线的性质是解题的关键.25.在△ABC 中,边AC,BC 的垂直平分线的交点O 落在边AB 上,则△ABC 的形状是()A.钝角三角形B.直角三角形C.锐角三角形D.任意三角形【答案】B【解析】【分析】由边AC,BC 的垂直平分线的交点O,可得O为△ABC的外心,由O落在边AB 上,可得△ABC的形状.【详解】解:方法一:如图OE,OD是边AC,BC的垂直平分线,则OA=OC=OB,∴∠1=∠2,∠3=∠4又∵∠1+∠2+∠3+∠4=180°所以∠1+∠3=90°∴△ABC是直角三角形.方法二:在△ABC 中,边AC,BC 的垂直平分线的交点O 落在边AB 上,可得O为△ABC的外心,其中锐角三角形的外心在三角形内, 钝角三角形是在三角形外, 直角三角形是在斜边的中点上,故答案为:B.【点睛】本题主要考查三角形外心的性质.26.如图,已知△ABC,△ACB=90°,BC=3,AC=4,小红按如下步骤作图:①分别以A、C为圆心,以大于12AC的长为半径在AC两边作弧,交于两点M、N;②连接MN,分别交AB、AC于点D、O;③过C作CE△AB交MN于点E,连接AE、CD.则四边形ADCE的周长为()A.10 B.20 C.12 D.24【答案】A【解析】【分析】根据题意得:MN是AC的垂直平分线,即可得AD=CD,AE=CE,然后由CE∥AB,可证得CD∥AE,继而证得四边形ADCE是菱形,再根据勾股定理求出AD,进而求出菱形ADCE的周长.【详解】AC的长为半径在AC两边作弧,交于:∵分别以A、C为圆心,以大于12两点M、N,∴MN是AC的垂直平分线,∴AD=CD,AE=CE,∴∠CAD=∠ACD,∠CAE=∠ACE,∵CE∥AB,∴∠CAD=∠ACE,∴∠ACD=∠CAE,∴CD∥AE,∴四边形ADCE是平行四边形,∴四边形ADCE是菱形;∴OA=OC=12AC=2,OD=OE,AC⊥DE,∵∠ACB=90°,∴DE∥BC,∴OD是△ABC的中位线,∴OD=12BC=12×3=1.5,∴,∴菱形ADCE的周长=4AD=10.故选A.【点睛】本题考查了作图-复杂作图,线段垂直平分线的性质,菱形的判定与性质,三角形中位线的性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.27.如图,在△ABC中,∠BAC=120∘,点D是BC上一点,BD的垂直平分线交AB于点E,将△ACD沿AD折叠,点C恰好与点E重合,则∠B等于()A.15∘B.28∘C.25∘D.20∘【答案】D【解析】【分析】根据折叠的性质得出∠C=∠AED,再利用线段垂直平分线的性质得出BE=DE,进而得出∠B=∠EDB,进而得出∠C=2∠B,利用三角形内角和解答即可.【详解】解:∵将△ACD沿AD折叠,点C恰好与点E重合,∴∠C=∠AED,∵BD的垂直平分线交AB于点E,∴BE=DE,∴∠B=∠EDB,∴∠C=∠AED=∠B+∠EDB=2∠B,在△ABC中,∠B+∠C+∠BAC=∠B+2∠B+120°=180°,解得:∠B=20°,故选:D.【点睛】本题考查了折叠的性质和线段垂直平分线上的点到线段两端点的距离相等的性质,是基础题,熟记性质是解题的关键.二、解答题28.在一次军事演习中,红方侦查员发现蓝方的指挥部P设在S区.到公路a与公路b的距离相等,并且到水井M与小树N的距离也相等,请你帮助侦查员在图上标出蓝方指挥部P的位置.(不写作法,保留作图痕迹)【答案】作图见解析.【解析】【分析】作公路a与公路b的交角AOB的平分线OC,连接MN,作线段MN的中垂直平分线EF,两线的交点就是所求.【详解】如图所示;【点睛】本题考查角平分线的性质和线段垂直平分线性质的应用,主要考查学生的动手操作能力和理解能力.29.尺规作图(不写作法,保留作图痕迹):如图,在△MON的内部,求作点P,使得点P到OM、ON的距离相等,且点P到点A、B的距离也相等.【答案】见解析【解析】【分析】作∠MON的平分线和AB的垂直平分线,它们的交点即为P点.【详解】如图,点P为所作.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.30.如图,在矩形ABCD中,M是BC中点,请你仅用无刻度直尺按要求作图.(1)在图1中,作AD的中点P;(2)在图2中,作AB的中点Q.【答案】(1)画图见解析;(2)画图见解析.【解析】【分析】(1)先连接矩形的对角线交于点O,再连接MO并延长,交AD于P,则点P即为AD的中点;(2)先运用(1)中的方法,画出AD的中点P,再连接BP,交AC于点K,则点E,再连接DK并延长,交AB于点Q,则点Q即为AB的中点.【详解】(1)如图点P即为所求;(2)如图点Q即为所求;【点睛】本题考查的是作图的应用,掌握矩形的性质和三角形中位线定理、正确作出图形是解题的关键.。

人教版_部编版八年级数学上册第十三章第一节线段的垂直平分线的性质考试复习题一(含答案) (45)

人教版_部编版八年级数学上册第十三章第一节线段的垂直平分线的性质考试复习题一(含答案) (45)

人教版_部编版八年级数学上册第十三章第一节线段的垂直平分线的性质考试复习题一(含答案)已知,ABC 中,ACB 90∠=,AC BC >.()1在AC 上找一点D ,使得DA DB =:(尺规作图,保留痕迹) ()2在()1的条件下,若点D 恰在ABC ∠的平分线上,试求A ∠的度数.【答案】(1)见解析(2)30【解析】【分析】()1先线段中垂线的性质和尺规作图求解可得;()2由DA DB =知A ABD ∠∠=,结合角平分线知ABD CBD ∠∠=,根据A ABD CBD 90∠∠∠++=可得答案.【详解】()1如图所示,点D 即为所求.()2由()1知DA DB =,A ABD ∠∠∴=,又BD 平分ABC ∠,ABD CBD ∠∠∴=,A ABD CBD 90∠∠∠++=,A 30∠∴=.【点睛】本题主要考查作图-复杂作图,解题的关键是掌握线段中垂线的性质和尺规作图.42.如图,在△ABC 中,AD 是∠BAC 的平分线,AD 的垂直平分线分别交AB 于点F,交BC 的延长线于点E.求证:(1)∠EAD=∠EDA;(2)DF ∥AC .【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)由AD 的垂直平分线分别交AB 、BC 延长线于F 、E ,根据线段垂直平分线的性质,易得AE=DE ,又由等边对等角的性质,证得∠EAD=∠EDA(2)由AD 的垂直平分线分别交AB 、BC 延长线于F 、E ,可得AF=DF ,又由AD 是∠BAC 平分线,易得∠FDA=∠CAD ,即可判定DF ∥AC ;【详解】证明:(1)∵EF是AD的垂直平分线,∴AE=DE,∴∠EAD=∠EDA.(2)∵EF是AD的垂直平分线,∴AF=DF,∴∠FAD=∠FDA,∵AD是∠BAC的平分线,∴∠FAD=∠CAD,∴∠FDA=∠CAD,∴DF∥AC.【点睛】此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想的应用.43.如图,已知线段a,h.求作:△ABC,使AB=AC,BC=a,高AD =h(不写作法,保留作图痕迹,写出结论)【答案】见解析【解析】【分析】根据等腰三角形的性质及垂直平分线的做法即可作图.【详解】如图,△ABC为所作.【点睛】此题主要考查尺规作图,解题的关键是熟知等腰三角形的性质及垂直平分线的性质.44.如图,直线AO,BO交于点O,过点P作PC⊥AO于点C,PD⊥BO 于点D,画出图形.【答案】见解析.【解析】【分析】分别作∠ACP=90°,∠PDB=90°即可【详解】作∠ACP=90°,作∠PDB=90°,则直线PC,PD即为所求.【点睛】本题考查了作图-垂线,熟练掌握定义是解题的关键.45.如图,BD 为平行四边形ABCD 的对角线,按要求完成下列各题. ()1用直尺和圆规作出对角线BD 的垂直平分线交AD 于点E ,交BC 于点F ,垂足为O ,连接BE 和DF ,(保留作图痕迹;不要求写作法)()2在()1的基础上,求证:EO FO =.【答案】(1)见解析;(2)见解析【解析】【分析】()1根据线段垂直平分线的性质画出图形即可;()2根据题意得出DOE ≌△()BOF ASA ,即可得出EO FO =.【详解】 ()1如图所示,所作即为所求.()2在平行四边形ABCD 中,AD //BC ,ADB CBD ∠∠∴=,又EF 垂直平分BD ,BO DO ∴=,EOD FOB 90∠∠==,在DOE 与BOF 中,ADB CBD BO DO EOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩, DOE ∴≌()BOF ASA ,EO FO ∴=.【点睛】本题考查的是作图-基本作图及全等三角形的判定,熟知线段垂直平分线的作法是解答此题的关键.46.如图,A 、B 两点在射线OM 、ON 上,CF 垂直平分AB ,垂足为F ,CD OM ⊥,CE ON ⊥,垂足分别为D 、E ,且AD BE =.()1求证:OC 平分MON ∠;()2如果AO 10=,BO 4=,求OD 的长.【答案】(1)见解析(2)7【解析】【分析】()1连接CA 、CB ,证明Rt ACD ≌Rt BCE ,得到CD CE =,即可说明OC为角平分线; ()2设BE x =,用x 表示出OA ,借助OA 10=构造方程求解.【详解】()1如图,连接CA ,CB CF 垂直平分AB ,AC CB ∴=CD OM ⊥,CE ON ⊥,ODA CEB 90∠∠∴==在Rt ACD 与Rt BCE 中{AC BCAD BE == Rt ACD ∴≌()Rt BCE HL .CD CE ∴=在Rt ODC 与Rt OEC 中{DC CEOC OC == Rt ODC ∴≌()Rt OEC HL .DOC EOC ∠∠∴=OC ∴平分MON ∠;()2有()1得OE OD =设BE x OB 4OE OD 4x AD BE x OA 42x 10x 3==∴==+==∴=+=∴=OD 437∴=+=.【点睛】本题考查了角平分线的定义和判定、全等三角形的判定和性质,会运用方程思想解题是解决线段长度的捷径.47.如图,已知△ABC ,AC <BC ,(1)尺规作图:作△ABC 的边BC 上的高AD(不写作法,保留作图痕迹).(2)试用尺规作图的方法在线段BC上确定一点P,使PA+PC=BC,并说明理由.【答案】(1)见解析;(2)作图见解析,证明见解析.【解析】【分析】(1)直接利用过一点作已知直线的垂线的作法即可得出答案;(2)利用线段垂直平分线的作法与性质得出答案.【详解】(1)如图所示:AD即为所求;(2)如图所示:点P即为所求.理由:∵MN垂直平分线段AB,∴AP=BP,∴PA+PC=BP+PC=BC.【点睛】此题主要考查了复杂作图,正确应用线段垂直平分线的性质是解题关键.48.尺规作图(保留作图痕迹):如图,已知直线l及其两侧两点A、B.()1在直线l上求一点P,使到A、B两点距离之和最短;()2在直线l上求一点Q,使QA QB=;()3在直线l上求一点M,使l平分AMB∠.【答案】(1)见解析;(2)见解析;(3)见解析.【解析】【分析】()1连接AB,交直线l于点P,则P点即为所求;()2作线段AB的垂直平分线,交直线l于点Q,则点Q即为所求;()3作点A关于直线l的对称点A',连接BA'并延长交直线l于点M即可.【详解】解:()1如图,连接AB,交直线l于点P,点P即为所求;()2如图,作线段AB的垂直平分线,交直线l于点Q,点Q即为所求;()3如图,作点A关于直线l的对称点A',连接BA'并延长交直线l于点M,点M即为所求.【点睛】本题考查作图-复杂作图,两点之间线段最短、线段垂直平分线的性质及角平分线的性质,熟知各小题的知识点是解答此题的关键.49.如图所示,在Rt ABC △中,90ACB ∠=︒,(1)用尺规在边BC 上求作一点P ,使PA PB =;(不写作法,保留作图痕迹)(2)连接AP 当B 为多少度时,AP 平分CAB ∠.【答案】(1)详见解析;(2)30°.【解析】【分析】(1)根据线段垂直平分线的作法作出AB 的垂直平分线即可;(2)连接PA ,根据等腰三角形的性质可得PAB B ∠=∠,由角平分线的定义可得PAB PAC ∠=∠,根据直角三角形两锐角互余的性质即可得∠B 的度数,可得答案.【详解】(1)如图所示:分别以A 、B 为圆心,大于12AB 长为半径画弧,两弧相交于点E 、F ,作直线EF ,交BC 于点P ,∵EF 为AB 的垂直平分线,∴PA=PB ,∴点P 即为所求.(2)如图,连接AP ,∵PA PB =,∴PAB B ∠=∠,∵AP 是角平分线,∴PAB PAC ∠=∠,∴PAB PAC B ∠=∠=∠,∵90ACB ∠=︒,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴当30B ∠=︒时,AP 平分CAB ∠.【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键.50.如图,直线AB ∥CD ,直线l 与直线AB ,CD 相交与点E ,F ,点P是射线EA上的一个动点(不包括端点E),将△EPF沿PF折叠,使顶点E落在点Q处.①若∠PEF=48°,则∠EFC的度数为______.②若∠PEF=48°,点Q恰好落在其中一条平行线上,则∠EFP的度数为______.③若∠PEF=75°,∠CFQ=12∠PFC,则∠EFP的度数为______.【答案】①132°;②42°或66°;③35°或63°.【解析】【分析】①依据平行线的性质,即可得到∠EFC的度数;②如图1,当点Q落在AB上,根据三角形的内角和即可得到结论;如图2,当点Q落在CD上,由折叠的性质得到PF垂直平分EQ,得到∠1=∠2,根据平行线的性质即可得到结论;③如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x根据平行线的性质即可得到结论;如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=12PFC得,∠PFC=2x根据平行线的性质即可得到结论.【详解】解:①∵AB∥CD,∴∠PEF+∠EFC=180°,∴∠EFC=132°;②分两种情况:如图1,当点Q落在AB上时,FP⊥AB∴∠EFP=90°-∠PEF=42°;如图2,当点Q落在CD上,∵将△EPF沿PF折叠,使顶点E落在点Q处,∴PF垂直平分EQ,∴∠1=∠2,∵AB∥CD,∴∠QFE=180°-∠PEF=132°,∴∠PFE=12∠QFE=66°;③分两种情况:如图3,当点Q在平行线AB,CD之间时,设∠PFQ=x,由折叠可得∠EFP=x,∵∠CFQ=∠PFC,∴∠PFQ=∠CFQ=x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴75°+x+x+x=180°,∴x=35°,∴∠EFP=35°;如图4,当点Q在CD的下方时,设∠CFQ=x,由∠CFQ=1∠PFC得,∠PFC=2x,2∴∠PFQ=3x,由折叠得,∠PFE=∠PFQ=3x,∵AB∥CD,∴∠AEF+∠CFE=180°,∴2x+3x+75°=180°,∴x=21°,∠EFP=3x=63°;综上所述,∠EFP的度数是35°或63°.故答案为①132°;②42°或66°;③35°或63°.【点睛】本题主要考查了平行线的性质以及翻折问题的综合应用,正确的作出图形,运用分类思想是解题的关键.。

数学人教版(五四学制)八年级上册20.1.2线段的垂直平分线 同步练习(解析版)

数学人教版(五四学制)八年级上册20.1.2线段的垂直平分线 同步练习(解析版)

数学人教版(五四学制)八年级上册20一、选择题1.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,AB的垂直平分线交BC于点D,衔接AD,那么△ACD的周长是〔〕A. 7B. 8C. 9D. 102.如图,是的角平分线,是的垂直平分线,,,那么的长为〔〕A. 6B. 5C. 4D.3.如图,在△ABC中,DE垂直平分AB,交边AC于点D,交边AB于点E,衔接BD.假定AC=6,△BCD的周长为10,那么BC的长为〔〕A. 2B. 4C. 6D. 84.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点.△PAB的周长为14,PA=4,那么线段AB的长度为( )A. 6B. 5C. 4D. 35.点P在线段的中垂线上,点Q在线段的中垂线外,那么〔〕.A. B. C. D. 不能确定 6.如图,∠AOB 和线段CD ,假设P 点到OA ,OB 的距离相等,且PC=PD ,那么P 点是〔 〕A. ∠AOB 的平分线与CD 的交点B. CD 的垂直平分线与OA 的交点C. ∠AOB 的平分线与CD 的垂直平分线的交点D. CD 的中点7.如图,在中, , 的平分线AD 交BC 于点D ,假定DE 垂直平分AB ,那么 的度数为〔 〕A. B. C. D.8.如图,在△ABC 中,区分以点A 和点C 为圆心,大于 21AC 长为半径画弧,两弧相交于点M ,N ,作直线MN 区分交BC ,AC 于点D ,E .假定AE=3cm ,△ABD 的周长为13cm ,那么△ABC 的周长为〔 〕A. 16cmB. 19cmC. 22cmD. 25cm9.如图,DE 是△ABC 中AC 边的垂直平分线,假定BC=8,AB=10,那么△EBC 的周长为〔 〕.A. 16B. 18C. 26D. 2810.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,衔接BD.有以下结论:①∠C=2∠A;②BD平分∠ABC;③S△BCD=S△BOD.其中正确的选项是〔〕A. ①③B. ②③C. ①②③D. ①②二、填空题11.小军做了一个如下图的风筝,其中EH=FH,ED=FD,小军说不用测量就知道DH是EF的垂直平分线.其中包括的道理是________12.如图,CD是线段AB的垂直平分线,假定AC=2cm,BD=4cm,那么四边形ACBD的周长是________cm.13.如图,△ABC中,BC的垂直平分线l与AC相交于点D,假定△ABD的周长为6cm,那么AB+AC=________cm.14.如下图,在△ABC中,DM,EN区分垂直平分AB和AC,交BC于点D,E,假定△ADE的周长为19 cm,那么BC=________15.如图,在△ABC 中,按以下步骤作图:①区分以B ,C 为圆心,以大于 21BC 的长为半径作弧,两弧相交于M ,N 两点;②作直线MN 交AB 于点D ,衔接CD.假定CD =AC ,∠B =25°,那么∠ACB 的度数为________.16.如下图,线段AB=6,现依照以下步骤作图:①区分以点A ,B 为圆心,以大于21AB 的长为半径画弧,两弧相交于点C 和点D ; ②连结CD 交AB 于点P .那么线段PB 的长为________.三、解答题17.:OC 平分∠AOB ,点P 、Q 都是OC 上不同的点,PE ⊥OA ,PF ⊥OB ,垂足区分为E 、F ,衔接EQ 、FQ.求证:FQ =EQ18.如图,在△ABC 中,AB 的垂直平分线ED 交AC 于D ,假设AC=7,BC=5,求△BDC 的周长.19.如图,∠BAC=60° ,∠B=80° ,DE垂直平分AC交BC于点D,交AC于点E.〔1〕求∠BAD的度数;〔2〕假定AB=10,BC=12,求△ABD的周长.20.如图,P点是∠AOB平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D.〔1〕求证:∠PCD=∠PDC;〔2〕求证:OP是线段CD的垂直平分线.21.如图,在△ABC中,AB=AC,点D在AB边上,点D到点A的距离与点D到点C的距离相等.〔1〕应用尺规作图作出点D,不写作法但保管作图痕迹.〔2〕假定△ABC的底边长5,周长为21,求△BCD的周长.答案解析局部一、选择题1.【答案】A【考点】线段垂直平分线的性质【解析】【解答】解:∵AB的垂直平分线交AB于E,∴AD=BD,∵AC=3,BC=4∴△ACD的周长为:AC+CD+AD=AC+BC=7.故答案为:A【剖析】依据垂直平分线的性质得出AD=BD,依据三角形周长的计算方法及等量代换线段的和差即可算出答案。

八年级数学线段的垂直平分线的性质和判定(人教版)(基础)(含答案)

八年级数学线段的垂直平分线的性质和判定(人教版)(基础)(含答案)

线段的垂直平分线的性质和判定(人教版)(基础)一、单选题(共11道,每道9分)1.下列说法:①若直线PE是线段AB的垂直平分线,则EA=EB,PA=PB;②若PA=PB,EA=EB,则直线PE垂直平分线段AB;③若PA=PB,则点P必是线段AB的垂直平分线上的点;④若EA=EB,则过点E的一条直线垂直平分线段AB.其中不正确的个数有( )A.1个B.2个C.3个D.4个答案:A解题思路:根据线段垂直平分线的性质定理和判定定理,①若直线PE是线段AB的垂直平分线,则EA=EB,PA=PB,符合性质定理,是正确的;②若PA=PB,EA=EB,则直线PE垂直平分线段AB,符合判定定理,是正确的;③若PA=PB,则点P必是线段AB的垂直平分线上的点,符合判定定理,是正确的;④若EA=EB,则点E在AB垂直平分线上,但是平面内过一点的直线有无数条,不能确定是垂直平分线,所以错误;综上④错误,故选A试题难度:三颗星知识点:略2.如图,AC=AD,BC=BD,则有( )A.CD垂直平分ABB.AB垂直平分CDC.AB与CD互相垂直平分D.CD平分∠ACB答案:B解题思路:AC=AD,根据到线段两个端点距离相等的点在这条线段的垂直平分线上,所以A在CD的垂直平分线上;BC=BD,所以B在CD的垂直平分线上.两点确定一条直线,则AB垂直平分CD.故选B.试题难度:三颗星知识点:略3.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C,D,下列结论不一定成立的是( )A.DE=CEB.OE平分∠DECC.OE垂直平分CDD.CD垂直平分OE答案:D解题思路:A:因为OE平分∠AOB,EC⊥OA,ED⊥OB,所以DE=CE成立;B:由题可知∠DOE=∠COE,∠ODE=∠OCE=90°,可证△DOE≌△COE(AAS)所以∠OED=∠OEC,故OE平分∠DEC成立;C:由选项A,B可知DE=CE,OD=OC,所以点E和点O分别在线段CD的垂直平分线上,所以OE垂直平分CD成立;D:点C和点D均不在线段OE的垂直平分线上,所以CD垂直平分OE不成立;故选D试题难度:三颗星知识点:略4.平面内,过直线外一点作已知直线的垂线最终都转化为下列哪一种基本作图( )A.作一个角等于已知角B.作一条线段等于已知线段C.作已知角的角平分线D.作已知线段的垂直平分线答案:D解题思路:过直线外一点作已知直线的垂线可以先在直线上作一条线段,使直线外的一点在这条线段的垂直平分线上,再作这条线段的垂直平分线.故选D.试题难度:三颗星知识点:略5.如图1,已知A为直线MN外一点,求作直线AB,使AB⊥MN.如图2用尺规作图作出直线AB,下列叙述:①任取一点P;②以点A为圆心,AP长为半径作弧,交MN于C,D两点;③分别以点C,点D为圆心,以大于长为半径作弧,两弧交MN下方于一点B;④作直线AB.直线AB即为所求.其中错误的是( )A.①B.②C.③D.④答案:A解题思路:过点A作直线AB,使AB⊥MN的作法为:①任取一点P,使点P和点A位于直线MN的异侧;②以点A为圆心,AP长为半径作弧,交MN于C,D两点;③分别以点C,点D为圆心,以大于长为半径作弧,两弧交MN下方于一点B;④作直线AB.直线AB即为所求.要保证以AP为半径的弧与直线MN有交点,点P与点A应位于直线MN异侧,①错误.故选A.试题难度:三颗星知识点:略6.如图1,已知线段MN,在MN上求作一点O,使OM=ON.如图2用尺规作图作出了点O,下列作图语言叙述正确的是( )A.分别以点M,点N为圆心,任意长为半径作弧,两弧相交于点A和点B;作直线AB交MN于点O,点O即为所求.B.分别以点M,点N为圆心,以大于长为半径作弧,两弧相交于点A和点B;作直线AB交MN于点O,点O即为所求.C.以点M为圆心,任意长为半径作弧,再以点N为圆心,大于长为半径作弧,两弧相交于点A和点B;作直线AB交MN于点O,点O即为所求.D.分别以点M,点N为圆心,任意长为半径作弧,两弧相交于点A和点B;作直线AB,直线AB即为所求.答案:B解题思路:在MN上求作一点O,使OM=ON可以转化为作线段MN的垂直平分线,与MN的交点即为点O.正确作法为:分别以点M,点N为圆心,以大于长为半径作弧,两弧相交于点A和点B;作直线AB交MN于点O,点O即为所求;要找到MN垂直平分线上的两点,需要保证以相同长为半径作弧,且两弧有交点,所以此半径应大于,故选项A,C,D错误.故选B.试题难度:三颗星知识点:略7.如图,以C为圆心,以大于点C到AB的距离为半径作弧交AB于点D,E,再以D,E为圆心,以大于DE为半径作弧,两弧交于点F,作射线CF,则( )A.CF平分∠ACBB.CF垂直平分DEC.CF平分ABD.CF垂直平分AB答案:B解题思路:由题意可知,点C到D,E两点的距离相等,点F到D,E两点的距离相等,所以点C和点F 均在线段DE的垂直平分线上,所以CF垂直平分DE;故选B试题难度:三颗星知识点:略8.如图,某地由于居民增多,要在公路边增加一个公共汽车站,A,B是路边两个新建小区,要使两个小区到车站的路程一样长,这个公共汽车站C应建在( )A.点A到l的垂线与l的交点处B.线段AB的垂直平分线上任意某点处C.线段AB的垂直平分线和l的交点处D.点B到l的垂线与l的交点处答案:C解题思路:由题意可得,点C到A,B两点的距离相等,所以C在AB的垂直平分线上,因为C在l上,所以这个公共汽车站C应建在线段AB的垂直平分线和l的交点处.故选C试题难度:三颗星知识点:略9.如图,某公园的三个出口A,B,C构成△ABC,想要在公园内修建一个公共厕所,要求到三个出口距离都相等,则公共厕所应该在( )A.三条边的垂直平分线的交点B.三个角的角平分线的交点C.三角形三条高的交点D.三角形三条中线的交点答案:A解题思路:∵公共厕所到出口A,B的距离相等∴公共厕所在线段AB的垂直平分线上,同理,公共厕所在线段BC的垂直平分线上所以,公共厕所应该在三条边的垂直平分线的交点故选A试题难度:三颗星知识点:略10.电信部门要在S区修建一座手机信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条高速公路OC,OD的距离也必须相等,则发射塔应建在( )A.∠COD的平分线上任意某点处B.线段AB的垂直平分线上任意某点处C.∠COD的平分线和线段AB的交点处D.∠COD的平分线和线段AB垂直平分线的交点处答案:D解题思路:由题意可得,发射塔到两个城镇A,B的距离相等,所以发射塔要建在AB的垂直平分线上,又因为发射塔到两条高速公路OC,OD的距离也相等,所以发射塔要建在∠COD的平分线上,所以发射塔应建在线段AB垂直平分线和∠COD的平分线的交点处;故选D试题难度:三颗星知识点:略11.如图,△ABC,AB>AC>BC,边AB上存在一点P,使得PA+PC=AB,下列描述正确的是( )A.P是AC的垂直平分线与AB的交点B.P是BC的垂直平分线与AB的交点C.P是∠ACB的平分线与AB的交点D.P是以点B为圆心,AC长为半径的弧与边AB的交点答案:B解题思路:因为PA+PB=AB,要使PA+PC=AB即PB=PC,即点P在BC的垂直平分线上所以点P为线段BC的垂直平分线与AB的交点故选B试题难度:三颗星知识点:略。

人教版_部编版八年级数学上册第十三章第一节线段的垂直平分线的性质考试复习题三(含答案) (54)

人教版_部编版八年级数学上册第十三章第一节线段的垂直平分线的性质考试复习题三(含答案) (54)

人教版_部编版八年级数学上册第十三章第一节线段的垂直平分线的性质考试复习题三(含答案)已知30AOB ∠=,点P 在AOB ∠的内部,点C 和点P 关于OA 对称,点P 关于OB 的对称点是D ,连接CD 交OA 于M ,交OB 于N ,15CD =(1)补全图,并且保留作图痕迹.(2)写出COD ∠= °. PMN ∆的周长为 .【答案】(1)见详解;(2)60,15.【解析】【分析】(1)依据过直线外一点作直线的垂线的作图方法作出过点P 的OA 的垂线,再由P 与点C 到OA 的距离相等即可确定C 点位置,同理可确定点D 位置,连接CD 即可;(2)由对称的定义可知AO 垂直平分CP ,BO 垂直平分DP ,由角平分线的性质可得,COM MOP DON NOP ∠=∠∠=∠,结合30AOB ∠=可得的度数,根据线段垂直平分线上的点到线段两端的距离相等,可得,MC MP ND NP ==,结合15CD =,易得PMN ∆的周长.【详解】解:(1)如图即为所求(2)连接OC 、OD 、OP 、MP 、NP ,由对称的定义可知AO 垂直平分CP ,BO 垂直平分DP ,易得OM 平分COP ∠,ON 平分DOP ∠ ,,COM MOP DON NOP ∴∠=∠∠=∠30COM DON MOP NOP AOB ︒∴∠+∠=∠+∠=∠=303060COD COM DON MOP NOP ︒︒︒∴∠=∠+∠=∠+∠=+=点M 在AO 上,点N 在BO 上,MC MP ND NP ∴==15PMN C MP NP MN MC ND MN CD ∆∴=++=++==所以60COD ︒∠=, PMN ∆的周长为15.【点睛】本题考查了垂线的画法,线段垂直平分线的性质,熟练掌握过直线外一点作已知直线的垂线是解题的关键.32.如图,△ABC 中,△ABC 的周长为38cm ,∠BAC=140°,AB+AC=22cm,AB、AC的垂直平分线分别交BC于E、F,与AB、AC分别交于点D、G.(1)求∠EAF的度数.(2)求△AEF的周长.【答案】(1)100°;(2)16cm.【解析】【分析】(1)先根据线段垂直平分线的性质得出EA=EB,FA=FC,所以∠EBA=∠EAB,∠FAC=∠FCA,设∠EBA=∠EAB=α,∠FAC=∠FCA=β,由三角形内角和定理得出α+β的度数,进而可得出结论;(2)根据△AEF的周长=AE+AF+EF=BE+EF+FC=BC即可得出结论.【详解】(1)∵DE、FG分别垂直平分AB、AC,∴EA=EB,FA=FC,∴∠EBA=∠EAB,∠FAC=∠FCA.设∠EBA=∠EAB=α,∠FAC=∠FCA=β∵∠BAC=140°,∴α+β=40°,∴∠BAE+∠FAC=40°,∴∠EAF=140°−40°=100°;(2)△AEF的周长=AE+AF+EF=BE+EF+FC=BC=38−22=16cm.【点睛】本题考查的是线段垂直平分线的性质,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.33.如图,△ABC.(1)尺规作图:过点C作AB的垂线交AB于点O.不写作法,保留作图痕迹;(2)分别以直线AB,OC为x轴,y轴建立平面直角坐标系,使点B,C 均在正半轴上.若AB=7.5,OC=4.5,∠A=45°,写出点B关于y轴的对称点D 的坐标;(3)在(2)的条件下,求△ACD的面积..【答案】(1)见解析;(2)D(-3,0);(3)278【解析】【分析】(1)根据题意画出图形即可;(2)先根据题意建立平面直角坐标系,得出A,B,C的坐标,从而可写出点B关于y轴的对称点D的坐标;(3)根据三角形面积计算公式可得出△ACD的面积.【详解】(1)如图所示,(2)建立平面直角坐标系,如图所示,∵∠AOC=90°,∠A=45°,原式∴∠ACO=45°=∴AO=CO,∵OC=4.5,∴AO=4.5,∵AB=7.5,∴OB=AB-AO=7.5-4.5=3,∴B(3,0),∵点B与点D关于y轴对称,∴D(-3,0);(3)连接CD,如图所示,∵AO=4.5,DO=3,∴AD=32, ∴13927==2228ACD S ⨯⨯△. 【点睛】本题考查了作图-基本作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.34.尺规作图:如图ABC ∆中,CD AB ⊥于D ,在AC 上求作一点P ,使CDP CBD S S ∆∆=(保留作图痕迹,不写作法)【答案】见详解【解析】【分析】要使CDP CBD S S ∆∆=,需要根据同底等高的三角形面积相等来作图即可.【详解】方法一:如图1①在AD 上截取DE DB =②作DEP BDC ∠=∠,EP 交AC 于P ,则点P 为所求图1方法二:如图2①在AD上截取DE DB②过E作AD垂线交AC于P,则点P为所求图2【点睛】本题考查的是尺规作图,作一条线段等于已知线段,作角等于已知角或过一点作已知直线的垂线.35.请用三角尺、圆规或直尺等工具,在图中按下列要求画图。

八年级数学上册《第二章 线段的垂直平分线》同步练习题及答案(青岛版)

八年级数学上册《第二章 线段的垂直平分线》同步练习题及答案(青岛版)

八年级数学上册《第二章线段的垂直平分线》同步练习题及答案(青岛版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.如图,MN是线段AB的垂直平分线,C在MN外,且与A点在MN的同一侧,BC交MN于P点,则( )A.BC>PC+APB.BC<PC+APC.BC=PC+APD.BC≥PC+AP2.如图,AC=AD,BC=BD,则有( )A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB3.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是( )4.如图所示,在△ABC中,AB+BC=10,AC的垂直平分线分别交AB、AC于点D和点E,则△BCD的周长是( )A.6B.8C.10D.无法确定5.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对6.在锐角△ABC内的一点P满足PA=PB=PC,则点P是△ABC( ).A.三条角平分线的交点B.三边垂直平分线的交点C.三条高的交点D.三条中线的交点7.如图,∠BAC=110°若MP和NQ分别垂直平分AB和AC,则∠PAQ的度数是( ).A.20°B.40°C.50°D.60°8.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连结AD,交BC延长线于点H.下列叙述正确的是( )A.BH垂直平分线段ADB.AC平分∠BAD=BC·AH D.AB=ADC.S△ABC二、填空题9.小军做了一个如图所示的风筝,其中EH=FH,ED=FD,小军说不用测量就知道DH是EF的垂直平分线.其中蕴含的道理是 .10.如图,△ABC中,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于E.若AB=10cm,△ABC的周长为27cm,则△BCE的周长为.11.如图,△ABC中,AB=AC=13cm,AB的垂直平分线交AB于D,交AC于E,若△EBC的周长为21cm,则BC= cm.12.如图,△ABC的边AB,AC的垂直平分线相交于点P,连接PB,PC,若∠A=70°,则∠PBC 的度数是______度.13.如图,△ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为.三、解答题14.如图,在△ABC中,∠A>∠B.(1)作边AB的垂直平分线DE,与AB、BC分别相交于点D、E(用尺规作图,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连接AE,若∠B=50°,求∠AEC的度数.15.如图所示,在△ABC中,∠BAC的平分线AD交BC于点D,DE垂直平分AC,垂足为点E,∠BAD=29°,求∠B的度数.16.如图,已知P是线段CD的垂直平分线上一点,PC⊥OA,PD⊥OB,垂足为C、D.求证:(1)OC=OD;(2)OP平分∠AOB.17.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E.求证:直线AD是线段CE的垂直平分线.18.已知:Rt△ABC中,∠ACB是直角,D是AB上一点,BD=BC,过D作AB的垂线交AC于E. 求证:CD⊥BE.19.如图,在△ABC中,AB=AC,点D在AB边上,点D到点A的距离与点D到点C的距离相等.(1)利用尺规作图作出点D,不写作法但保留作图痕迹.(2)若△ABC的底边长5,周长为21,求△BCD的周长.20.如图1,已知△ABC中,AB=AC,点D是△ABC外一点(与点A分别在直线BC两侧),且DB=DC,过点D作DE∥AC,交射线AB于E,连接AE交BC于F.(1)求证:AD垂直BC;(2)如图1,点E在线段AB上且不与B重合时,求证:DE=AE;(3)如图2,当点E在线段AB的延长线上时,写出线段DE,AC,BE的数量关系.答案1.C.2.A3.D.4.C5.D.6.A.7.B8.A9.答案为:与线段两个端点距离相等的点在这条线段的垂直平分线线上.10.答案为:17.11.答案为:8cm.12.答案为:2013.答案为:100°14.解:(1)如解图,DE是边AB的垂直平分线;作法提示:①分别以点A、B为圆心,大于12AB长为半径画弧,在线段AB两侧交于点M、N;②作直线MN,分别交AB、BC于点D、E. DE即为边AB的垂直平分线;(2)如解图,连接AE∵DE是AB的垂直平分线∴AE=BE∴∠BAE=∠B=50°.∵∠AEC是△ABE的外角∴∠AEC=∠BAE +∠B=100°.15.解:∵AD平分∠BAC∴∠BAD=∠DAE∵∠BAD=29°∴∠DAE=29°∴∠BAC=58°∵DE垂直平分AC∴AD=DC∴∠DAE=∠DCA=29°∵∠BAC+∠DCA+∠B=180°∴∠B=93°.16.证明:(1)∵P在CD的垂直平分线上∴PC=PD.又∵OP=OP∴Rt△OPC≌Rt△OPD(HL).∴OC=OD.(2)由(1)Rt△OPC≌△OPD知∠AOP=∠BOP.17.证明:∵DE⊥AB∴∠AED=90°=∠ACB又∵AD平分∠BAC∴∠DAE=∠DAC∵AD=AD∴△AED≌△ACD∴AE=AC∵AD平分∠BAC∴AD⊥CE即直线AD是线段CE的垂直平分线.18.证明:∵DE⊥AB∴∠BDE=90°∵∠ACB=90°∴在Rt△DEB中与Rt△CEB中BD=BC,BE=BE∴Rt△DEB≌Rt△CEB(HL)∴DE=EC又∵BD=BC∴E、B在CD的垂直平分线上即BE⊥CD.19.解:(1)点D如图所示;(2)∵DE垂直平分线线段AC∴AD=DC∴△CDB的周长=BC+BD+CD=BC+BD+AD=BC+AB ∵AB+AC+BC=21,BC=5∴AB=AC=8∴△CDB的周长为13.20.证明:(1)∵AB=AC,DB=DC∴直线AD是BC的垂直平分线∴AD垂直BC;(2)证明:在△ABD和△ACD中∴△ABD≌△ACD∴∠BAD=∠CAD∵DE∥AC∴∠EDA=∠CAD∴∠BAD=∠EDA∴DE=AE;(3)DE=AC+BE.由(2)得,∠BAD=∠CAD ∵DE∥AC∴∠EDA=∠CAD∴∠BAD=∠EDA∴DE=AE∵AB=AC∴DE=AB+BE=AC+BE.。

人教版_部编版八年级数学上册第十三章第一节线段的垂直平分线的性质考试复习题三(含答案) (78)

人教版_部编版八年级数学上册第十三章第一节线段的垂直平分线的性质考试复习题三(含答案) (78)

人教版_部编版八年级数学上册第十三章第一节线段的垂直平分线的性质考试复习题三(含答案)如图,Rt ABC ∆中,90BAC ∠=︒,25B ∠=︒一同学利用直尺和圆规完成如下操作:①以点A 为圆心,以适当的长为半径画弧,交AB 于点P ,交AC 的延长线于点Q ;分别以点P 、Q 为圆心,以大于12PQ 的长为半径画弧,两弧交于点G , ②分别以点B 、C 为圆心,以大于12BC 的长为半径画弧,两弧交于点M ,N 两点,直线MN 交AG 于D .请你观察图形,根据操作结果解答下列问题:(1)ADM ∠的度数为______;(2)作DE AB ⊥于E ,DF AC ⊥交AC 的延长线于F ,求证:BE CF =.【答案】(1)20︒;(2)见解析.【解析】【分析】(1)如图,根据尺规作图可得AD 为∠BAC 的角平分线,得到∠BAD=12∠BAC =45°,又MN 是BC 的垂直平分线,根据25B ∠=︒,得到∠BHD=90°-65B ∠=︒,再根据外角定理即可求解;(2)连接BD 、CD,根据垂直平分线的性质得到BD=CD ,由DE AB ⊥,DF AC ⊥可证明∠BDE ≌△DCF ,故可求解.【详解】(1)如图,根据尺规作图可得AD 为∠BAC 的角平分线,∴∠BAD=12∠BAC =45°, 又MN 是BC 的垂直平分线,∴MN ⊥BC ,设AB 与MN 交于H 点, ∵25B ∠=︒,∴∠BHD=90°-65B ∠=︒,∴ADM ∠=∠BHD-∠BAD=20°;(2)连接BD 、CD,∵MN 垂直平分BC ,∴BD=CD ,由DE AB ⊥,DF AC ⊥,AD 平分∠BAC∴DE=DF ,∠BED=∠CFD∴∠BDE ≌△DCF (HL )∴BE CF =【点睛】此题主要考查三角形的证明,解题的关键是熟知垂直平分线与角平分线的性质.72.如图,在Rt△ABC中,AB=3,BC=4,动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点P,Q的运动速度均为每秒1个单位长度,当点P 到达点C时停止运动,点Q也同时停止运动,连接PQ,设它们的运动时间为t (t>0)秒.(1)设△CBQ的面积为S,请用含有t的代数式来表示S;(2)线段PQ的垂直平分线记为直线l,当直线l经过点C时,求AQ的长.【答案】(1)S=12﹣2t;(2)1.5【解析】【分析】(1)分0<t≤3和3<t≤5两种情况,表示出BQ的长度,根据三角形的面积公式可得;(2)根据线段的垂直平分线的性质求出AP=AQ,得出3﹣t=t,求出即可.【详解】解:(1)如图1,当0<t≤3时,BQ=t,BC=4,∴S=12×4×t=2t;如图2,当3<t≤5时,,AQ=t﹣3,则BQ=3﹣(t﹣3)=6﹣t,∴S=12×4×(6﹣t)=12﹣2t;(2)如图3,∵QP的垂直平分线过A,∴AP=AQ,∴3﹣t=t,解得t=1.5;或t﹣3=t,显然不成立;∴AP=AQ=1.5.【点睛】本题考查线段的垂直平分线的性质和三角形的面积公式,解题的关键是分情况讨论,掌握线段的垂直平分线的性质和三角形的面积公式.=,73.如图1所示是一个用四根木条钉成的作图工具,其中AB AD=,两根木条的连接处是可以转动的,几名同学在一起讨论这个工具的BC DC用途.(1)小明发现用这个工具可以快速作出角平分线在下面的几种用法中,能作∠的平分线的有_______.(写出所有正确的序号)出MON①OC 是MON ∠的平分线; ②OB 是MON ∠的平分线; ③OA 是MON ∠的平分线(2)对于这个工具的其它用途,小兰发现可以用它作线段的垂直平分线. 请结合图2补全结论并给出证明.已知:如图2,AB AD =,BC DC =.求证:________垂直平分__________.(3)对于这个工具的其它用途,小红认为通过多次操作可以用它作平行线.你同意吗?如果同意,请画示意图说明如何操作;如果不同意,请说明理由.【答案】(1)见解析;(2)见解析;(3)见解析.【解析】【分析】(1)根据全等三角形的判定SSS 判断即可;(2)根据垂直平分线的判定解答即可;(3)根据角平分线的性质及平行线的性质解答即可.【详解】解:①如图所示;在△ABC 和△ADC 中AD AB CD CB AC AC =⎧⎪=⎨⎪=⎩, ∴△ABC ≌△ADC, ∴∠DAC=∠BAC 即∠MOC=∠NOC, ∴OC 是MON ∠的平分线;故①正确;②中△AOB 和△COM 不全等,不能得出∠AOB=∠COB,故②错误;类比①的证法,可得出③中△BAC ≌△DAC,进而得出∠MOA=∠NOA,即OB 是MON ∠的平分线.②求证:AC 垂直平分BD;证明:连接AC,BD,∵AB=AD,∴点A 在线段BD 的垂直平分线上,∵BC=DC,∴点C 在线段BD 的垂直平分线上,∴AC 垂直平分BD.③同意;理由:如图所示:首先利用(1)中的方法做、作∠MON 的平分线OC,再用同样的方法作∠CBN 的角平分线BF ,根据∠COB=∠FBE=12∠MON,所以OC ∥BF.【点睛】本题考查了角平分线的性质,线段垂直平分线的判定及平行线的性质,解题的关键是灵活运用这些性质.74.如图,己知ABC ∆,按下列要求画图.(1)画出ABC ∆的高线AD .(2)画出ABC ∆的角平分线BE .(3)画出ABC ∆的中线CF .【答案】(1)见解析;(2)见解析;(3)见解析.【解析】【分析】(1)依据过一点作一条直线的垂线的作法,过点A 作AD ⊥CB 交CB 的延长线于D ,则AD 为高;(2)作∠ABC 的平分线交AC 于E ,则BE 为△ABC 的平分线;(3)作AB 的垂直平分线交AB 于F ,连接CF ,则CF 为△ABC 的中线.【详解】解:(1)ABC ∆的高线AD 如图所示;(2)ABC ∆的角平分线BE 如图所示;(3)ABC ∆的中线CF 如图所示.【点睛】本题考查作图——复杂作图,三角形的角平分线、中线和高.会用尺、圆规过直线外一点作一条直线的垂线是解决(1)的关键,会作角的角平分线和线段的垂直平分线是解决(2)(3)的关键.75.如图所示,在Rt ABC ∆中,90ACB ∠=,AC BC =,D 为BC 边上的中点,CE AD ⊥于点E ,//BF AC 交CE 的延长线于点F .(1)求证:ACD CBF ∆∆≌;(2)求证:AB 垂直平分DF .【答案】(1)见详解;(2)见详解【解析】【分析】(1)根据ASA 判定△ACD ≌△CBF 即可;(2)由(1)得到BF=CD ,由D 为BC 中点,根据中点定义得到CD=BD ,等量代换得到BF=BD ,再根据角度之间的数量关系求出∠ABC=∠ABF ,即BA是∠FBD的平分线,从而利用等腰三角形三线合一的性质求证即可.【详解】解:(1)∵∠BCE+∠ACE=90°,∠ACE+∠CAE=90°,∴∠BCE=∠CAE.∵AC⊥BC,BF∥AC.∴BF⊥BC.∴∠ACD=∠CBF=90°,∵AC=CB,∴△ACD≌△CBF;(2)连接DF,由(1)得CD=BF∵D为BC边上的中点∴CD=BD=12 BC∴BF=BD∴△BFD为等腰直角三角形∵∠ACB=90°,CA=CB,∴∠ABC=45°.∵∠FBD=90°,∴∠ABF=45°.∴∠ABC=∠ABF ,即BA 是∠FBD 的平分线.∴根据等腰三角形三线合一的性质有BA ⊥FD ,BA 平分边FD ,即AB 垂直平分DF .【点睛】主要考查了三角形全等的判定和角平分线的定义以及线段的垂直平分线的性质等几何知识.要注意的是:线段的垂直平分线上的点到线段的两个端点的距离相等.76.如图,已知ABC △的外角FAC ∠的平分线交BC 边的垂直平分线于点P .PD AB ⊥于点D ,PE AC ⊥于点E .(1)求证:BD CE =(2)若6AB =,12AC =,求AD 的长【答案】(1)见解析;(2)3.【解析】【分析】(1)连接PB 、PC ,根据线段垂直平分线的性质得到PB=PC ,根据角平分线的性质得到PD=PE ,证明Rt △BPD ≌Rt △CPE ,根据全等三角形的性质可得BD CE =;(2)证明Rt △ADP ≌Rt △AEP ,得到AD=AE ,根据题意列出方程,解方程即可.【详解】(1)证明:连接PB 、PC ,∵PQ 是BC 边的垂直平分线,∴PB=PC ,∵AP 平分∠DAC ,PD ⊥AB ,PE ⊥AC ,∴PD=PE ,在Rt △BPD 和Rt △CPE 中,PB=PC PD=PE ⎧⎨⎩, ∴Rt △BPD ≌Rt △CPE ,∴BD=CE ;(2)解:在Rt △ADP 和Rt △AEP 中,PD=PE AP=AP ⎧⎨⎩, ∴Rt △ADP ≌Rt △AEP ,∴AD=AE ,∵BD=CE ,6AB =,12AC =,∴AD+6=12-AD ,解得,AD=3.【点睛】本题考查线段垂直平分线的性质、角平分线的性质、全等三角形的判定和性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.77.如图所示,在BC 上找一点D ,使得DE DF =,且有DE AB ⊥交AB 于点D ,DF AC ⊥交AC 于点F ,求证:AD 垂直平分EF .【答案】见解析.【解析】【分析】求出DE=DF ,∠AED=∠AFD=90°,根据HL 证Rt △AED ≌Rt △AFD ,推出AE=AF ,根据等腰三角形性质推出即可.【详解】证明:∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DE=DF,∠AED=∠AFD=90°,在Rt △AED 和Rt △AFD 中AD AD DE DF =⎧⎨=⎩,∴Rt△AED≌Rt△AFD(HL),∴AE=AF,∵AD是∠BAC的平分线,∴AD垂直平分EF.【点睛】本题考查全等三角形的判定(HL)与性质、角平分线的性质和线段垂直平分线的性质,解题的关键是掌握全等三角形的判定(HL)与性质、角平分线的性质和线段垂直平分线的性质.78.如图,已知:AB=AD,BC=CD,∠ABC=∠ADC,AC是否是线段BD的垂直平分线?请说明理由.【答案】AC是线段BD的垂直平分线.具体见解析.【解析】【分析】由AB=AD,BC=CD,根据线段垂直平分线的判定,可得:点A在BD的垂直平分线上,点C在BD的垂直平分线上,又由两点确定一条直线,即可证得结论.【详解】AC是线段BD的垂直平分线.理由:∵AB=AD,BC=CD,∴点A在BD的垂直平分线上,点C在BD的垂直平分线上,∴AC是线段BD的垂直平分线.【点睛】本题考查线段垂直平分线的性质,解题的关键是掌握线段垂直平分线的性质.79.如右图,已知点P是线段MN外一点,请利用直尺和圆规画一点Q,使得点Q到M、N两点的距离相等,且点Q与点M、P在同一条直线上.(保留作图痕迹)【答案】作图见解析【解析】【分析】先作出MN的垂直平分线,然后连接P,M两点,并延长交MN的垂直平分线于一点,则交点为所求.【详解】解:先作MN垂直平分l,连接P,M两点,延长PM交l于点Q,则Q点为所求.【点睛】此题主要考查线段的垂直平分线的作法,熟知线段垂直平分线上到线段两个端点的距离相等是解题关键.的平分线交于点80.如图,在△ABC中,BC边上的垂直平分线DE与AE.EF⊥AB交AB的延长线于点F.EG⊥AC于点G.求证:BF=CG.【答案】见解析.【解析】【分析】根据线段垂直平分线求出BE=CE,根据角平分线性质求出EF=GE,证出Rt△BFE≌Rt△CGE即可;【详解】证明:(1)连接BE和CE,∵DE是BC的垂直平分线,∴BE=CE,∵AE平分∠BAC,EF⊥AB,EG⊥AC,∴∠BFE=∠EGC=90°,EF=EG,在Rt△BFE和Rt△CGE中BE=ECEF=EG∴Rt△BFE≌Rt△CGE(HL),∴BF=CG;【点睛】本题考查了全等三角形的性质和判定,角平分线性质,线段垂直平分线性质的应用,综合运用性质进行推理是解此题的关键.。

人教版_部编版八年级数学上册第十三章第一节线段的垂直平分线的性质考试复习题一(含答案) (131)

人教版_部编版八年级数学上册第十三章第一节线段的垂直平分线的性质考试复习题一(含答案) (131)

人教版_部编版八年级数学上册第十三章第一节线段的垂直平分线的性质考试复习题一(含答案)一、单选题1.如下图,CD是AB的垂直平分线,AC=1. 6cm,BD=2.3cm,则四边形ACBD的周长为A.3.9cm B.8.8cm C.7.8cm D.无法计算【答案】C【解析】∵CD垂直平分线段BA∵AD=DB=2.3,BC=CA=1.6∵四边形ABCD的周长=AD+DB+BC+CA=7.8cm.故选C2.如图,△ABC是等边三角形,P是△ABC的平分线BD上一点,PE△AB 于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为()A .2B .2C .D .3【答案】C【解析】【详解】 解析:∵∵ABC 是等边三角形P 是∵ABC 的平分线,∵∵EBP=∵QBF=30°,∵BF=2,FQ ∵BP ,∵BQ=BF •cos30°=2 ∵FQ 是BP 的垂直平分线,∵在Rt ∵BEF 中,∵∵EBP=30°,∵PE=12 故选C .3.如图,点P 是△ABC 内的一点,若PB =PC ,则( )A .点P 在∠ABC 的平分线上B .点P 在∠ACB 的平分线上C .点P 在边AB 的垂直平分线上D .点P 在边BC 的垂直平分线上【答案】D【解析】根据到线段两端点的距离相等的点在这条线段的垂直平分线上由PC=PB即可得出P在线段BC的垂直平分线上.解答:解:∵PB=PC,∵P在线段BC的垂直平分线上,故选D.4.如图,在△ABC中,AB=AC=10cm,DE是AB的中垂线,△BDC的周长为16cm,•则BC的长为()A.5cm B.6cm C.8cm C.10cm【答案】B【解析】因为DE是AB的中垂线,所以AD=BD,∵BDC的周长为16cm,所以BD+CD+BC=AD+CD+BC=AC+BC=16cm,因为AC=10cm,所以BC=6cm,故选B.5.如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于1AB)为半径作弧,两弧相交于点M和点N,作直线MN交2AB于点D,交BC于点E.若AC=3,AB=5,则DE等于()A .2B .103C .158D .152【答案】C【解析】 根据勾股定理求出BC ,根据线段垂直平分线性质求出AE=BE ,根据勾股定理求出AE ,再根据勾股定理求出DE 即可.解:在RtABC 中,由勾股定理得:连接AE ,从作法可知:DE 是AB 的垂直评分线,根据性质AE=BE ,在Rt △ACE 中,由勾股定理得:AC 2+CE 2=AE 2,即32+(4-AE )2=AE 2,解得:AE=258, 在Rt △ADE 中,AD=12AB=52,由勾股定理得:DE 2+(52)2=(258)2, 解得:DE=158. 故选C. “点睛”:本题考查了线段垂直平分线性质,勾股定理的应用,能灵活运用勾股定理得出方程是解此题的关键.6.如图,已知:图1,在ABC ∆中,AB AC =.小明的作法如图2所示,则他作出的两条线的交点O 是ABC ∆的( )A.中心B.内心C.外心D.垂心【答案】C【解析】【分析】由垂直平分线的性质,等腰三角形的性质进行判断,即可得到答案.【详解】解:由图可知,MN垂直平分AB,AD是∠BAC的角平分线,∵AB=AC,∴AD是BC的垂直平分线,∴点O是两条垂直平分线的交点,即点O为三角形的外心;故选:C.【点睛】本题考查了垂直平分线的性质和等腰三角形的性质,解题的关键是掌握垂直平分线的交点是三角形的外心.7.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE等于()A.40°B.70°C.60°D.50°【答案】D【解析】【分析】根据线段垂直平分线性质得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.【详解】∵DE垂直平分AC交AB于E,∴AE=CE,∴∠A=∠ACE,∵∠A=30°,∴∠ACE=30°,∵∠ACB=80°,∴∠BCE=∠ACB-∠ACE=50°,故选D.【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.8.下列四种基本尺规作图分别表示:①作一个角等于已知角;②作一个角的平分线;③过直线外一点作已知直线的垂线;④作一条线段的垂直平分线,则对应作法错误的是()A.①B.②C.③D.④【答案】D【解析】【分析】根据作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过直线外一点P作已知直线的垂线的作法,即可判断得出答案.【详解】解:①作一个角等于已知角的方法正确;②作一个角的平分线的作法正确;③过直线外一点P作已知直线的垂线的作法正确;④作一条线段的垂直平分线,两弧缺少另一个交点,作法错误;故选:D.【点睛】此题主要考查了尺规作图,正确把握作图方法是解题关键.9.如图,在Rt△ABC中,∠ABC=90°,分别以点A和点B为圆心,大AB的长为半径作弧相交于点D和点E,直线DE交AC于点F,交AB于于12点G,连接BF,若BF=3,AG=2,则BC=()A .5B .C .D .【答案】C【解析】【分析】 利用线段垂直平分线的性质得到FB FA =,2AG BG ==,再证明3FC FB FA ===,利用勾股定理即可解决问题.【详解】解:由作图方法得GF 垂直平分AB ,∴FB FA =,2AG BG ==,∴FBA A ∠=∠,∵90ABC ∠=︒,∴90A C ∠+∠=︒,90FBA FBC ∠+∠=︒,∴C FBC ∠=∠,∴FC FB =,∴3FB FA FC ===,∴6AC =,4AB =,∴BC ==故选:C .【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线)方法是解题关键,同时还考查了线段垂直平分线的性质.10.如图,在ABC 中,90C ∠=︒.用直尺和圆规在边BC 上确定一点P ,使点P 到点A 、点B 的距离相等,则符合要求的作图痕迹是( )A .B .C .D .【答案】C【解析】【分析】点P 到点A 、点B 的距离相等知点P 在线段AB 的垂直平分线上,据此可得答案.【详解】解:∵点P 到点A 、点B 的距离相等,∴点P 在线段AB 的垂直平分线上,故选:C .【点睛】本题主要考查作图−复杂作图,解题的关键是掌握线段中垂线的性质与尺规作图.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八上数学线段的垂直平分线的性质练习题(附答案新人教版)
一、选择题(共8小题)
1.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为()
A.6 B.5 C.4 D.3
2.如图,AC=AD,BC=BD,则有()
A.AB垂直平分CD B.CD垂直平分AB
C.AB与CD互相垂直平分D.CD平分∠ACB
3.下列说法中错误的是()
A.过“到线段两端点距离相等的点”的直线是线段的垂直平分线
B.线段垂直平分线的点到线段两端点的距离相等
C.线段有且只有一条垂直平分线
D.线段的垂直平分线是一条直线
4.到△ABC的三个顶点距离相等的点是△ABC的()
A.三边垂直平分线的交点B.三条角平分线的交点
C.三条高的交点D.三边中线的交点
5.如图,∠ABC=50°,AD垂直平分线段BC于点D,∠ABC的平分线交AD于E,连接EC;则∠AEC等于()
A.100°B.105°C.115°D.120°
6.如图,△ABC中,AD是BC的中垂线,若BC=8,AD=6,则图中阴影部分的面积是()A.48 B.24 C.12 D.6
7.如图,△ABC中,AB=AC,AB的垂直平分线DE交BC的延长线于E,交AC于F,交AB 于D,连接BF.若BC=6cm,BD=5cm,则△BCF的周长为()
A.16cm B.15cm C.20cm D.无法计算
8.如图△ABC中,∠B=40°,AC的垂直平分线交AC于点D,交BC于点E,且∠EAB:∠CAE=3:1,则∠C=( )
A.28°B.25°C.22.5°D.20°
二、填空题(共10小题)
9.到线段AB两个端点距离相等的点的轨迹是_________ .
10.如图,有A、B、C三个居民小区是位置成三角形,现决定在三个小区之间修建一个休闲广场,使广场到三个小区的距离相等,则广场应建在_________ .
11.在阿拉伯数字中,有且仅有一条对称轴的数字是____________.
12、如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE= _________ 度.
13、如图,△ABC的周长为19cm,AC的垂直平分线DE交BC于D,E为垂足,AE=3cm,则△ABD的周长为_________ cm.
14.如图,已知在△ABC中,AB=AC=10,DE垂直平分AB,垂足为E,DE交AC于D,若△BDC 的周长为16,则BC= _________ .
15.如图,在△ABC中,∠B=30°,直线CD垂直平分AB,则∠ACD的度数为_________ .16.已知如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC与E,则△ADE 的周长等于_________ .
17.如图,AB=AC,AC的垂直平分线DE交AB于D,交AC于E,BC=6,△CDB的周长为15,则AC= _________ .
18.如图,△ABC中,AB=AC,∠A=40°,AC的垂直平分线分别交AB,AC于D,E两点,连接CD.则∠BCD=_________ 度.
第10题图第12题图第13题图第14题图
第15题图第16题图第17题图第18题图
三、解答题(共5小题)
19.如图,四边形ABCD中,AC垂直平分BD于点O.
(1)图中有多少对全等三角形?请把它们都写出来;
(2)任选(1)中的一对全等三角形加以证明.
20.如图,在△ABC中,AB=AC,D是AB的中点,且DE⊥AB,△BCE的周
长为8cm,且AC﹣BC=2cm,求AB、BC的长.
中,AB、BC边上的垂直平分线相交于点P.
21.如图,已知:在ABC
求证:点P在AC的垂直平分线上.
22.如图,△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F.求证:AD垂直平分EF.
23.如图,已知∠C=∠D=90°,AC与BD交于O,AC=BD.
(1)求证:BC=AD;
(2)求证:点O在线段AB的垂直平分线上.
13.1.2 线段的垂直平分线的性质
一、选择题(共8小题)
1.B 2.A 3.A 4.A 5.C 6.C 7.A 8.A
二.填空题(共10小题)
9. 线段AB的中垂线;10. 三边垂直平分线的交点处; 11. 3; 12. 50;3. 13 ;14. 6 15. 60°;16. 8 ;17. 9 ;18.35°
三.解答题(共5小题)
19.(1)解:图中有三对全等三角形:△AOB≌△AOD,△COB≌△COD,△ABC≌△ADC;(2)证明△ABC≌△ADC.
证明:∵AC垂直平分BD,
∴AB=AD,C B=CD(中垂线的性质),
又∵AC=AC,
∴△ABC≌△ADC.
20. 解:∵△ABC中,AB=AC,D是AB的中点,且DE⊥AB,∴AE=BE,
∵△BCE的周长为8cm,即BE+CE+BC=8cm,
∴AC+BC=8cm…①,
∵AC﹣BC=2cm…②,
①+②得,2AC=10cm,即AC=5cm,故AB=5cm;
①﹣②得,2BC=6cm,BC=3cm.
故AB=5cm、BC=3cm.
21. 证明:∵P在AB、BC的垂直平分线上
∴AP=BP,BP=CP
∴AP=CP,
∴P点在AC的垂直平分线上.
22. 证:∵AD是∠BAC的平分线,
DE⊥AB,DF⊥AC,
∴DE=DF,∠AED=∠AFD=90°,
在Rt△A ED和Rt△AFD中
∴Rt△AED≌Rt△AFD(HL),
∴AE=AF,
∵AD是∠BAC的平分线,
∴AD垂直平分EF(三线合一)
23. 证明:(1)∵∠C=∠D=90°,
∴在Rt△ACB和Rt△BDA中,

∴Rt△ACB≌Rt△BDA,
∴AD=BC;
(2)∵Rt△ACB≌Rt△BDA,
∴∠CAB=∠DBA,
∴OA=OB,
∴点O在线段AB的垂直平分线上.。

相关文档
最新文档