二次函数综合性质应用

合集下载

中考重点二次函数的性质与应用

中考重点二次函数的性质与应用

中考重点二次函数的性质与应用中考重点:二次函数的性质与应用二次函数是初中数学中的重要内容之一,它在中考中的考查频率较高。

掌握二次函数的性质与应用,能够帮助我们解决与二次函数相关的问题,提高解题能力。

本文将重点讨论二次函数的性质和应用,探索其在数学中的作用。

一、二次函数的定义及一般式表示二次函数是形如y = ax² + bx + c的函数,其中a、b、c为常数且a≠0。

其中,a决定了二次函数的开口方向,b决定了函数的对称轴位置,c表示函数与y轴的交点。

二次函数的一般式表示形式为y = ax² + bx + c,其中a、b、c为实数且a≠0。

一般式可以转化为顶点式表示或者因式分解式表示,从而更方便地研究二次函数的性质。

二、二次函数的性质1. 对称性:二次函数的图像关于对称轴对称。

对称轴的表示为x = -b / (2a),在二次函数图像上即为顶点的横坐标。

2. 开口方向:当a>0时,二次函数开口向上;当a<0时,二次函数开口向下。

3. 极值点与最值:二次函数的极值点即顶点,其横坐标为-x / (2a),纵坐标为f(-x /(2a))。

当a>0时,二次函数的最小值为f(-x / (2a));当a<0时,二次函数的最大值为f(-x / (2a))。

4. 零点:二次函数与x轴的交点称为零点,可以通过求解二次方程ax² + bx + c = 0来确定。

二次函数有两个零点时称为有两个实根,有一个零点时称为有一个实根,没有实根时称为无实根。

三、二次函数的应用1. 求解问题:二次函数常常用于求解与平面图形有关的问题。

例如,已知抛物线y = ax² + bx + c与x轴交于A、B两点,求抛物线经过的最高点的坐标。

通过求解顶点坐标可以得到问题的解。

2. 最值问题:二次函数能够用于解决最值问题。

例如,已知二次函数y = ax² + bx + c,在一定范围内求函数的最值。

中考数学全效复习:专题提升(7) 二次函数的图象和性质的综合运用

中考数学全效复习:专题提升(7) 二次函数的图象和性质的综合运用

专题提升(七) 二次函数的图象和性质的综合运用(人教版九上P47习题第5题)画出函数y =x 2-2x -3的图象,利用图象回答: (1)方程x 2-2x -3=0的解是什么; (2)x 取什么值时,函数值大于0; (3)x 取什么值时,函数值小于0.【思想方法】 二次函数y =ax 2+bx +c(a≠0)的图象与x 轴的交点的横坐标x 1,x 2就是一元二次方程ax 2+bx +c =0(a≠0)的两个根,因此,我们可以通过解方程ax 2+bx +c =0来求抛物线y =ax 2+bx +c 与x 轴交点的横坐标;反过来,也可以由y =ax 2+bx +c 的图象来求一元二次方程ax 2+bx +c =0的解.1.[2019·广安]二次函数y =ax 2+bx +c(a≠0)的部分图象如图所示,图象过点(-1,0),对称轴为直线x =1,下列结论:①abc<0;②b<c ;③3a +c =0;④当y>0时,-1<x<3.其中正确的结论有( )A .1个B .2个C .3个D .4个2.[2019·南充]已知抛物线y =ax 2+bx +c(a,b,c 是常数),a>0,顶点坐标为⎝ ⎛⎭⎪⎫12,m ,有下列结论:①若点(n,y 1)与⎝ ⎛⎭⎪⎫32-2n ,y 2在该抛物线上,当n<12时,则y 1<y 2;②关于x 的一元二次方程ax 2-bx +c -m +1=0无实数解.那么( )A .①正确,②正确B .①正确,②错误C .①错误,②正确D .①错误,②错误3.[2019·遂宁]二次函数y =x 2-ax +b 的图象如图所示,对称轴为直线x =2,下列结论不正确的是 ( )A .a =4B.当b=-4时,顶点的坐标为(2,-8)C.当x=-1时,b>-5D.当x>3时,y随x的增大而增大4.[2019·湖州]已知抛物线y=2x2-4x+c与x轴有两个不同的交点.(1)求c的取值范围;(2)若抛物线y=2x2-4x+c经过点A(2,m)和点B(3,n),试比较m和n的大小,并说明理由.5.[2018·泰州]在平面直角坐标系xOy中,二次函数y=x2-2mx+m2+2m+2的图象与x轴有两个交点.(1)当m=-2时,求二次函数的图象与x轴的交点坐标;(2)过点P(0,m-1)作直线l⊥y轴,二次函数图象的顶点A在直线l与x轴之间(点A不在直线l上),求m的范围;(3)在(2)的条件下,设二次函数图象的对称轴与直线l相交于点B,求△ABO的面积最大时m的值.6.[2019·原创]已知二次函数y=x2-2mx+m2-1.(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式;(2)如图,当m=2时,该抛物线与y轴交于点C,顶点为D,求C,D两点的坐标;(3)在(2)的条件下,x轴上是否存在一点P,使得PC+PD最短?若点P存在,求出点P的坐标;若点P 不存在,请说明理由.7.[2019·东营节选]已知抛物线y=ax2+bx-4经过点A(2,0),B(-4,0),与y轴交于点C.(1)求这条抛物线的解析式;(2)如图,点P是第三象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标.8.[2018·宜宾改编]在平面直角坐标系xOy 中,已知抛物线的顶点坐标为(2,0),且经过点(4,1).如图,直线y =14x 与抛物线交于A,B 两点,直线l 为y =-1.(1)求抛物线的解析式;(2)在l 上是否存在一点P,使PA +PB 取得最小值?若存在,求出点P 的坐标;若不存在,请说明理由.如图,已知抛物线y =ax 2+bx +c 经过A(-1,0),B(3,0),C(0,3)三点,直线l 是抛物线的对称轴. (1)求抛物线的解析式;(2)设点P 是直线l 上的一个动点,当△PAC 的周长最小时,求点P 的坐标.参考答案【教材母题】图象略 (1)x 1=-1,x 2=3 (2)x<-1或x>3 (3)-1<x<3 【中考变形】1.D 2.A 3.C4.(1)c<2 (2)m<n,理由略 5.(1)(-2+2,0)和(-2-2,0) (2)-3<m<-1 (3)m =-326.(1)y =x 2-2x 或y =x 2+2x (2)C(0,3),D(2,-1) (3)存在,P(1.5,0)7.(1)y =12x 2+x -4 (2)P(-2,-4)8.(1)y =14x 2-x +1 (2)存在,P ⎝ ⎛⎭⎪⎫2813,-1 【中考预测】(1)y =-x 2+2x +3 (2)P(1,2)关闭Word 文档返回原板块。

二次函数的性质与应用

二次函数的性质与应用

二次函数的性质与应用二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b和c是实数且a ≠ 0。

二次函数是一种重要的函数类型,在数学和实际问题中具有广泛的应用。

本文将介绍二次函数的性质与应用。

一、二次函数的基本性质1. 解析式:二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b和c分别代表函数的系数。

a控制开口方向和开口程度,正值使函数开口向上,负值使函数开口向下;b决定了函数的对称轴位置,对称轴的横坐标为-x/b;c是函数的常数项,表示函数与y轴的交点y=c。

2. 零点:二次函数的零点是使f(x) = 0的横坐标值。

一般情况下,二次函数有两个零点,可以用求根公式x = (-b±√(b^2-4ac))/(2a)求得。

3. 顶点:二次函数的顶点是函数图像的最高点或最低点。

顶点的横坐标为-x/b,纵坐标为f(-b/2a)。

对于a > 0,函数的图像开口向上,顶点是最低点;对于a < 0,函数的图像开口向下,顶点是最高点。

二、二次函数的图像特征1. 开口方向:二次函数的开口方向由a的正负决定。

当a > 0时,函数图像开口向上;当a < 0时,函数图像开口向下。

2. 开口程度:a的绝对值越大,函数图像开口越窄;a的绝对值越小,函数图像开口越宽。

当|a| < 1时,函数图像会比较平缓;当|a| > 1时,函数图像则会比较陡峭。

三、二次函数的应用1. 最值问题:通过观察二次函数的开口方向和顶点,我们可以判断函数的最值。

对于开口向上的函数,最小值为顶点的纵坐标;对于开口向下的函数,最大值为顶点的纵坐标。

这在实际问题中有很多应用,例如优化问题、成本最小化等。

2. 运动问题:二次函数可以用来描述某些运动的轨迹。

例如,一个物体从某个高度落下,忽略空气阻力的影响,可以用二次函数表示物体的高度随时间的变化。

通过求解函数的零点和顶点,可以确定物体的落地时间和最高高度。

二次函数的性质和应用

二次函数的性质和应用

二次函数的性质和应用二次函数是一种常见的函数形式,在数学中具有重要的地位。

本文将讨论二次函数的性质和应用,希望能帮助读者更好地理解这种函数形式。

一、二次函数的定义和基本性质二次函数的标准形式为f(x)=ax²+bx+c,其中a、b、c都是实数,且a ≠ 0。

它的图象是一个开口向上或向下的抛物线。

1. 对称轴:二次函数的对称轴是垂直于x轴的直线,它的方程式为x=-b/2a。

对称轴把图象分成两个对称的部分。

2. 零点:一个二次函数可以有两个、一个或零个零点。

其中,零点是函数的根,即f(x)=0的解。

3. 最值和顶点:当a>0时,f(x)的最小值为y=c-b²/4a,它位于对称轴上,称为抛物线的最小值。

当a<0时,f(x)的最大值为y=c-b²/4a,它位于对称轴上,称为抛物线的最大值。

最小值或最大值统称为顶点。

4. 函数的增减性:当a>0时,如果x₁<x₂,则f(x₁)<f(x₂)。

当a<0时,如果x₁<x₂,则f(x₁)>f(x₂)。

二、二次函数的应用1. 抛物线的运动学应用:抛物线可以描述物体的抛体运动轨迹,因此它在物理学中经常被使用。

例如,在高尔夫球运动中,运动员需要考虑到地面的摩擦力和空气的阻力等因素,以确定击球的位置和力度。

抛物线方程可以帮助运动员做出更精确的计算,从而提高得分率。

2. 光学应用:抛物线的形状与光的传播有关。

例如,抛物面反射镜常用于望远镜、卫星通信等光学领域中,因为它可以使光线以特定的角度集中在一个点上,从而使视野更宽广。

3. 非线性回归分析:在生物统计学、社会科学、经济学和金融学等领域中,二次函数经常被用于分析非线性回归方程。

非线性回归是指,回归方程中包含二次函数或更高次的函数。

例如,经济学家常用二次函数分析消费者的支出模式,这会帮助他们预测市场的需求变化。

4. 工程应用:二次函数也可以用于工程领域中的计算。

二次函数总结

二次函数总结

二次函数总结二次函数是数学中一种常见且重要的函数形式。

它的一般形式可以表示为f(x) = ax^2 + bx + c,其中a、b和c为常数,且a不等于零。

二次函数是一个拱形曲线,它在数学、物理和经济等领域都有广泛的应用。

在本文中,将对二次函数的性质、图像、方程以及实际问题中的应用进行总结和探讨。

一、二次函数的性质二次函数有一些重要的性质,其中最基本的是二次项的系数a 决定了函数的开口方向。

当a大于零时,二次函数的图像开口向上,形成一个U型;当a小于零时,二次函数的图像开口向下,形成一个倒U型。

另一个重要性质是二次函数的对称轴与顶点。

对称轴是函数图像上对称的线,它通过顶点,并且与x轴垂直。

顶点是二次函数图像的最低点或最高点,它的横坐标可以通过-b/2a来确定。

二、二次函数的图像二次函数的图像是一个拱形曲线,其形状由a的正负决定。

当a大于零时,图像开口向上,当a小于零时,图像开口向下。

图像的形状还与常数b和c的取值相关。

常数b决定了图像在x方向上的平移,即左右移动;常数c决定了图像在y方向上的平移,即上下移动。

通过改变这些常数的取值,可以使图像的位置和形状发生变化,从而满足不同的条件。

三、二次函数的方程解二次函数的方程是一个重要的应用技巧,因为它可以帮助我们找到函数图像与坐标轴的交点。

二次函数的方程可以通过将f(x)设置为零来表示,即ax^2 + bx + c = 0。

解这个方程可以使用公式x = (-b ± √(b^2 - 4ac)) / 2a,也称为二次方程的根式解。

这个解式给出了二次函数与x轴的交点的横坐标。

方程的解有三种情况:当Δ = b^2 - 4ac大于零时,方程有两个不同的实数解;当Δ等于零时,方程有一个实数解;当Δ小于零时,方程没有实数解。

四、二次函数在实际问题中的应用二次函数在实际问题中有广泛的应用。

其中一个常见的应用是抛物线的运动模型。

当我们抛出一个物体时,它的运动轨迹可以用二次函数来描述。

二次函数的性质与应用

二次函数的性质与应用

二次函数的性质与应用二次函数是数学中常见的一类函数,它的特点是含有二次项的多项式函数,通常表示为y=ax^2+bx+c(其中a、b、c为实数且不全为零),在本文中我们将探讨二次函数的性质与应用。

一、二次函数的基本性质二次函数的图像为抛物线,其性质如下:1. 开口方向:由二次项的系数a的正负决定,若a>0,则抛物线开口向上;若a<0,则抛物线开口向下。

2. 顶点坐标:抛物线的顶点坐标为(-b/2a,f(-b/2a)),其中f(x)为二次函数,即抛物线的对称轴为x=-b/2a。

3. 对称性:抛物线关于对称轴对称,即f(x)=f(-b/2a+x)。

4. 零点:二次函数的零点为使得f(x)=0的x值,可以通过解二次方程ax^2+bx+c=0来求得。

二、二次函数的应用由于二次函数具有较为简洁的数学表达式和良好的图像特点,因此在实际问题中有广泛的应用,以下是几个典型的应用场景:1. 物体运动的模拟二次函数可以用来模拟抛体运动的轨迹。

假设一个物体从地面上沿着水平方向射出,经过一段时间后,它的轨迹可以用二次函数表示。

其中,抛物线的开口方向取决于物体的发射角度和初速度大小,而顶点坐标则可以表示物体的最高和最远点。

2. 经济学中的成本和收益问题在经济学中,成本和收益通常与产量或销售额等变量相关。

二次函数可以用来描述成本和收益之间的关系,从而帮助企业或个人做出决策。

例如,一个生产商可以通过分析其成本函数来确定最佳产量,从而实现成本最小化。

3. 工程学中的曲线拟合在工程学中,需要对一些实验数据进行拟合,以找出合适的曲线来描述数据之间的关系。

二次函数可以较好地拟合一些非线性数据,因为它具有一定的弹性和灵活性。

通过拟合二次函数,可以预测未知数据点的取值,并帮助工程师做出正确的决策。

4. 地理学中的地形分析地理学研究中,经常需要对地形进行分析和描述。

二次函数可以用来模拟山脉和河流的起伏曲线,帮助研究人员理解地理变量之间的关系,比如高度和距离之间的关系。

二次函数的性质及应用

二次函数的性质及应用

二次函数的性质及应用二次函数是一类形式为y = ax² + bx + c(a ≠ 0)的函数,它在数学中具有重要的性质和广泛的应用。

本文将介绍二次函数的性质以及它在实际问题中的应用。

一、二次函数的性质1. 函数图像二次函数的图像通常为抛物线,具体的形状取决于a的正负和大小:- 当a > 0时,图像开口向上,形状类似于“U”字型;- 当a < 0时,图像开口向下,形状类似于倒置的“U”字型。

2. 对称性二次函数关于其顶点具有对称性。

设二次函数的顶点坐标为(h, k),则函数图像关于直线x = h对称。

3. 零点与判别式二次函数的零点即为方程ax² + bx + c = 0的解。

一元二次方程的判别式Δ = b² - 4ac可以判断二次函数的零点情况:- 当Δ > 0时,方程有两个不相等的实根,函数图像与x轴有两个交点;- 当Δ = 0时,方程有两个相等的实根,函数图像与x轴有一个切点;- 当Δ < 0时,方程无实根,函数图像与x轴无交点。

4. 极值点二次函数在最高点(开口向下)或最低点(开口向上)取得极值。

当二次函数开口向上时,极小值等于函数的最低点y = k;当二次函数开口向下时,极大值等于函数的最高点y = k。

二、二次函数的应用1. 物理学应用二次函数在物理学中有广泛的应用,例如抛物线运动。

抛物线运动可以用二次函数的形式进行建模,通过分析和解决相关的二次函数问题,可以求得抛物线物体的最高点、运动轨迹等信息。

2. 经济学应用经济学中的一些问题也可以通过二次函数来描述和解决。

比如,成本函数和利润函数常常使用二次函数来表示,通过求解这些二次函数的极值点,可以确定最低成本、最大利润等关键数据。

3. 工程学应用工程学中的一些问题也可以用二次函数进行建模。

比如,在建筑设计中,可以用二次函数来描述一个拱形或穹顶的形状;在电子工程中可以通过二次函数来描述某些电子元件的特性和响应等等。

中考数学 考点系统复习 第三章 函数 第八节 二次函数性质的综合运用

中考数学 考点系统复习 第三章 函数 第八节 二次函数性质的综合运用

∴PQ=-x-3-(x2+2x-3)=-x2-3x=-x+322+94,
3
9
∴当 x=-2时,PQ 取得最大值,最大值为4.
(2)若点 D 是抛物线 L1上 A,C 两点之间的一动点,横坐标为 x(-3<x<0),
求四边形 ABCD 的面积 S 关于点 D 的横坐标 x 的函数解析式,并求 S 的最
(1)将抛物线向左平移 1 个单位长度,再向上平移 2 个单位长度,则平移 后的抛物线的解析式为yy==--xx22++2x2+x+2 2;
(2)将抛物线向左平移,平移后的抛物线过点(0,1),则平移后的抛物线 的解析式为 y=-x22++1 1;
(3)若抛物线平移后顶点一直在直线 y=x+1 上,则可设平移后抛物线的 顶点坐标为((mm,,mm++11)),平移后抛物线的解析式为 yy==--((xx--mm))22++m+m+1 1;
B.-4<a≤-32
(C )
C.-32≤a<0
D.-32<a<0
6.★如图,在“探索函数 y=ax2+bx+c 的系数 a,b,c 与图象的关系”
的活动中,老师给出了直角坐标系中的四个点:A(0,2),B(1,0),C(3,
1),D(2,3),同学们探索了经过其中三个点的二次函数的图象,发现这
些图象对应的函数解析式各不相同,其中 a 的最大值为
(1)若点 P 是线段 AC 上一点,过点 P 作 PQ⊥x 轴交抛物线 L1于点 Q.求 PQ
长的最大值; 解:抛物线 L1 的解析式为 y=x2+2x-3,
将点 A(-3,0)代入 y=kx-3,得-3k-3=0,解得 k=-1,
∴直线 AC 的解析式为 y=-x-3,

二次函数图象性质及其综合应用(原卷版)--中考数学重难点题型专项讲练

二次函数图象性质及其综合应用(原卷版)--中考数学重难点题型专项讲练

回归教材重难点05二次函数图象性质及其综合应用本考点是中考五星高频考点,难度中等及中等偏上,在全国各地市的中考试卷中多有考查。

(2022年枣庄市中考数学试卷第16题)小明在学习“二次函数”内容后,进行了反思总结.如图,二次函数y=ax2+bx+c(a≠0)图象的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图象他得出下列结论:①ab>0且c>0;②a+b+c=0;③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1;④若点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图象上,则y1<y2<y3;⑤3a+c<0,其中正确的结论有.(填序号,多选、少选、错选都不得分)【分析】由抛物线的对称轴的位置以及与y轴的交点可判断①;由抛物线过点(1,0),即可判断②;由抛物线的对称性可判断③;根据各点与抛物线对称轴的距离大小可判断④;对称轴可得b=2a,由抛物线过点(1,0)可判断⑤.【解答】解:∵抛物线对称轴在y轴的左侧,∴ab>0,∵抛物线与y轴交点在x轴上方,∴c>0,①正确;∵抛物线经过(1,0),∴a+b+c=0,②正确.∵抛物线与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,∴另一个交点为(﹣3,0),∴关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1,③正确;∵﹣1﹣(﹣2)<﹣1﹣(﹣4)<3﹣(﹣1),抛物线开口向下,∴y2>y1>y3,④错误.∵抛物线与x轴的一个交点坐标为(1,0),∴a+b+c=0,∵﹣=﹣1,∴b=2a,∴3a+c=0,⑤错误.故答案为:①②③.点评:本题考察二次函数图象与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系二次函数图象与性质是初中数学《二次函数》中的重要内容,在中考函数问题中占比也非常大,需要考生掌握的考点有二次函数的图象、图象与系数的关系、与方程及不等式的关系、图象上点的坐标特征等,复习时需要熟练掌握相关知识,熟悉相关题型,并做到会读图,识图。

二次函数的相关性质与应用

二次函数的相关性质与应用

二次函数的相关性质与应用二次函数是高中数学中比较重要的一类函数,它的图像呈现出U型或者倒U型的形状,具有多种性质和应用。

本文将介绍二次函数的相关性质以及它在现实生活中的应用,并探讨其中的数学原理和实际意义。

一、二次函数的一般形式及相关性质二次函数的一般形式为y=ax^2+bx+c,其中a、b、c为实数,a不等于0。

根据此一般形式,可以了解到以下几个与二次函数相关的性质。

1. 首先,二次函数的图像为抛物线,在坐标系中通常呈现U型或者倒U型。

这一性质决定了二次函数在不同区间内的增减性,以及极值点的存在性。

2. 其次,二次函数的a值决定了抛物线的开口方向。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

这一性质可以通过计算二次函数的导数来进行证明,从而体现出与导数的相关性。

3. 另外,二次函数的顶点坐标可以通过求解二次方程的解来获得。

顶点的横坐标为x=-b/2a,纵坐标为f(x)=-b^2/4a+c。

顶点是抛物线的最低点(当a>0时)或者最高点(当a<0时),具有重要的几何意义。

4. 最后,二次函数的轴对称性是一个重要的性质。

对于任意一个二次函数,它的图像关于直线x=-b/2a对称。

这意味着,当我们确定了图像的一部分时,可以通过轴对称性来得到另一部分的信息。

二、二次函数的应用二次函数在现实生活中具有广泛的应用。

以下列举了几个常见的应用场景。

1. 马鞍形建筑设计二次函数的图像呈现U型或者倒U型的形状,可以用来设计马鞍形建筑物。

比如,体育馆、停车场和演唱会场馆等运用了二次函数的特性,使得空间的设计更加合理,并且能够提供较好的视野和使用效果。

2. 投射运动的轨迹抛体的运动轨迹可以被建模为二次函数。

比如,物体在自由落体运动或者抛体运动下的轨迹都可以使用二次函数来描述。

此外,通过求解二次方程可以计算出物体的最大高度、最大水平距离等重要参数。

3. 线性加速度运动某些物体的运动状态可以通过二次函数来刻画。

二次函数的性质与应用

二次函数的性质与应用

二次函数的性质与应用二次函数是高中数学中的重要内容,它具有独特的性质和广泛的应用。

本文将重点介绍二次函数的性质和应用,从而帮助读者全面了解和掌握二次函数的相关知识。

一、二次函数的基本形式二次函数的一般形式可以表示为 f(x) = ax^2 + bx + c ,其中 a、b、c 分别是二次项系数、一次项系数和常数项。

二次函数的图像通常是一个开口朝上或朝下的抛物线,具体的形状取决于二次项系数 a 的正负情况。

二、二次函数的性质二次函数具有很多重要的性质,下面将对其中几个常见的性质进行详细介绍。

1. 零点:二次函数的零点即其图像与 x 轴的交点,可以通过求解方程 f(x) = 0 来获得。

根据二次函数的性质,若判别式 D = b^2 - 4ac 大于零,则函数有两个不相等的实根;若 D 等于零,则函数有两个相等的实根;若 D 小于零,则函数没有实根。

2. 非负性:二次函数的非负性指函数值大于等于零,可以通过判别式 D 的值来确定。

当 D 大于等于零时,函数的图像在其两个实根之间的部分大于等于零;当 D 小于零时,函数的图像要么完全位于 x 轴上方,要么完全位于 x 轴下方。

3. 极值:二次函数在抛物线的顶点处取得极值,其极值点的横坐标可以通过公式 x = -b / (2a) 来计算。

若 a 大于零,则抛物线开口朝上,极值是最小值;若 a 小于零,则抛物线开口朝下,极值是最大值。

三、二次函数的应用1. 抛物线的建模:许多现实生活中的问题可以通过二次函数来建立模型,并求解相关的问题。

例如,抛物线的形状可以用二次函数来描述,我们可以利用二次函数的性质来分析抛物线的最高点、最远距离等问题。

2. 物体的运动轨迹:在物理学中,许多物体的运动轨迹都可以用二次函数进行描述。

例如,自由落体运动的轨迹可以用二次函数来建模,我们可以通过分析二次函数的性质来研究物体的速度、加速度、运动时间等问题。

3. 经济学中的应用:在经济学中,二次函数可以用来描述成本、利润、需求等与价格相关的关系。

二次函数表达式、性质及其应用

二次函数表达式、性质及其应用

二次函数表达式、性质及其应用
1、二次函数表达式
①一般式:y=ax 2+bx+c(a≠0,a、b 、c 为常数)。

②顶点式:y=a(x-h)2+k(a≠0,h、k 为常数);
③二交点式:y=a(x-x 1)(x-x 2)(a≠0)(适用于抛物线与x 轴有交点的情形)。

3、经典题例
如图,已知二次函数y=ax 2+bx+c (a≠0)的图像与x 轴交于(x 1,0)、(x 2,0),且0<x 1<1, 1<x 2<2与y 轴交于点(0,2)
下列结论
①2a+b>-1 ②3a+b>0 ③a+b<-2 ④a>0 ⑤a-b<0 ⑥8a-b 2<0,其中正确的是①②③④⑥
〖解析〗:对于二次函数图像判断结论,我们一般总结出一句话:一口,二轴,三顶点,交点之后再增减。

由此可判断:
①a>0
②–b/2a>0,b<0
③顶点(-b/2a,(4ac-b2)/4a)
④b2-4ac>0,c=2,代入后得到b2-8a>0
⑤a+b+c<0,故而a+b+2<0
4a+2b+c>0,故而4a+2b+2>0,即2a+b+1>0
由以上两式可以推出3a+b>0
另外,这一题,也可以运用特值法,如x1=0.5, x2=1.5,通过交点解析式代入求得a 和b的值,从而判断各选项。

二次函数图象性质与综合应用(44题)(原卷版)

二次函数图象性质与综合应用(44题)(原卷版)

二次函数图象性质与综合应用(44题)一、单选题A.抛物线的对称轴为直线C.A,B两点之间的距离为2.(2023·浙江台州·统考中考真题)抛物线若120x x+<,则直线A.4个4.(2023·四川自贡·统考中考真题)经过为自变量)与x轴有交点,则线段A.4个B6.(2023·四川泸州·统考中考真题)已知二次函数函数值y均为正数,则aA . . . . .(2023·四川广安·统考中考真题)如图所示,二次函数2y ax bx =++轴交于点()()3,0,1,0AB −0;②若点()12,y −和(50a b c −+=;④4a c + )A.1个B.212.(2023·四川眉山·统考中考真题)如图,二次函数()1,0,对称轴为直线=1x−,2A.1个B.213.(2023·浙江宁波·统考中考真题)已知二次函数A.点(1,2)在该函数的图象上B.当1−≤≤时,a=且13xC.该函数的图象与x轴一定有交点解;③若()11,t −,()24,t 是抛物线上的两点,则12t t <;④对于抛物线,223y ax bx =+−,当23x −<<时,2y 的取值范围是205y <<.其中正确结论的个数是( )A .4个B .3个C .2个D .1个二、填空题417.(2023·四川宜宾物线与y 轴的交点B①当31x −≤≤时,1y ≤;②当ABM 的面积为32③当ABM 为直角三角形时,在AOB 内存在唯一点1893+.三、解答题(1)求抛物线的解析式;(2)设点P是直线BC上方抛物线上一点,求出PBC的最大面积及此时点(3)若点M是抛物线对称轴上一动点,点N为坐标平面内一点,是否存在以点的四边形是菱形,若存在,请直接写出点N的坐标;若不存在,请说明理由.(1)求该抛物线的解析式;(2)点F是该抛物线上位于第一象限的一个动点,直线=时,求CD的长;①当CD CE②若CAD,CDE,CEF△的面积分别为,ABC外接圆的圆心为(1)求抛物线的函数解析式;(2)若直线()50x m m =−<<与抛物线交于点E ,与直线BC 交于点F . ①当EF 取得最大值时,求m 的值和EF 的最大值; ②当EFC 是等腰三角形时,求点E 的坐标.27.(2023·四川成都·统考中考真题)如图,在平面直角坐标系xOy 中,已知抛物线2y ax c =+经过点3(4,)P −,与y 轴交于点(0,1)A ,直线(0)y kx k =≠与抛物线交于B ,C 两点.(1)求抛物线的函数表达式;(2)若ABP 是以AB 为腰的等腰三角形,求点B 的坐标;(3)过点(0,)M m 作y 轴的垂线,交直线AB 于点D ,交直线AC 于点E .试探究:是否存在常数m ,使得OD OE ⊥始终成立?若存在,求出m 的值;若不存在,请说明理由.28.(2023·浙江·统考中考真题)已知点(),0m −和()3,0m 在二次函数23,(y ax bx a b =++是常数,0)a ≠的图像上.(1)当1m =−时,求a 和b 的值;时,求OBD与△(1)如图2,若抛物线经过原点O .①求该抛物线的函数表达式;②求BE EC的值. (2)连接,PC CPE ∠与BAO ∠能否相等?若能,求符合条件的点P 的横坐标;若不能,试说明理由.(1)求抛物线的解析式;(2)如图1,当:3:5BM MQ =时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接设OQE 的面积为1S ,PQE 的面积为2S .求21S S 的最大值.(1)求点A,B的坐标;(1)求抛物线的表达式;(2)当点P在直线AC上方的抛物线上时,连接BP交AC于点D.如图标及PDDB的最大值;≌;.求证:ACB BDEx(1)如果四个点()()()()0,00,21,11,1−、、、中恰有三个点在二次函数2y ax =(a 为常数,且0a ≠)的图象上. ①=a ________;②如图1,已知菱形ABCD 的顶点B 、C 、D 在该二次函数的图象上,且AD y ⊥轴,求菱形的边长; ③如图2,已知正方形ABCD 的顶点B 、D 在该二次函数的图象上,点B 、D 在y 轴的同侧,且点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,试探究n m −是否为定值.如果是,求出这个值;如果不是,请说明理由.(2)已知正方形ABCD 的顶点B 、D 在二次函数2y ax =(a 为常数,且0a >)的图象上,点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,直接写出m 、n 满足的等量关系式.38.(2023年重庆市中考数学真题(A 卷))如图,在平面直角坐标系中,抛物线22y ax bx =++过点()1,3,(1)求抛物线的表达式;(2)点P是直线BC上方抛物线上的一动点,点E,求PDE△周长的最大值及此时点(3)在(2)中PDE△周长取得最大值的条件下,将该抛物线沿射线点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 在抛物线上,点Q 在x 轴上,以B ,C ,P ,Q 为顶点的四边形为平行四边形,求点P 的坐标;(3)如图2,抛物线顶点为D ,对称轴与x 轴交于点E ,过点()1,3K 的直线(直线KD 除外)与抛物线交于G ,H 两点,直线DG ,DH 分别交x 轴于点M ,N .试探究EM EN ⋅是否为定值,若是,求出该定值;若不是,说明理由.40.(2023·四川宜宾·统考中考真题)如图,抛物线2y ax bx c =++与x 轴交于点()4,0A −、()2,0B ,且经过点()2,6C −.(1)求抛物线的表达式;(2)在x 轴上方的抛物线上任取一点N ,射线AN 、BN 分别与抛物线的对称轴交于点P 、Q ,点Q 关于x 轴的对称点为Q ',求APQ '△的面积;(3)点M 是y 轴上一动点,当AMC ∠最大时,求M 的坐标.41.(2023·四川广安·统考中考真题)如图,二次函数2y x bx c =++的图象交x 轴于点A B ,,交y 轴于点C ,点B 的坐标为()1,0,对称轴是直线=1x −,点P 是x 轴上一动点,PM x ⊥轴,交直线AC 于点M ,交抛物线于点N .(1)求这个二次函数的解析式.(2)若点P 在线段AO 上运动(点P 与点A 、点O 不重合),求四边形ABCN 面积的最大值,并求出此时点P 的坐标.(3)若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M 、N C Q 、、为顶点的四边形是菱形?若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.42.(2023·江苏连云港·统考中考真题)如图,在平面直角坐标系xOy 中,抛物线21:23L y x x =−−的顶点为P .直线l 过点()()0,3M m m ≥−,且平行于x 轴,与抛物线1L 交于A B 、两点(B 在A 的右侧).将抛物线1L 沿直线l 翻折得到抛物线2L ,抛物线2L 交y 轴于点C ,顶点为D .(1)当1m =时,求点D 的坐标;(2)连接BC CD DB 、、,若BCD △为直角三角形,求此时2L 所对应的函数表达式;(3)在(2)的条件下,若BCD △的面积为3,E F 、两点分别在边BC CD 、上运动,且EF CD =,以EF 为一边作正方形EFGH ,连接CG ,写出CG 长度的最小值,并简要说明理由.43.(2023·云南·统考中考真题)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方面,具有精确性、形(几何)侧重研究物体形的方面,具有直观性.数和形相互联系,可用数来反映空间形式,也可用形来说明数量关系.数形结合就是把两者结合起来考虑问题,充分利用代数、几何各自的优势,数形互化,共同解决问题.同学们,请你结合所学的数学解决下列问题.在平面直角坐标系中,若点的横坐标、纵坐标都为整数,则称这样的点为整点.设函数2(42)(96)44y a x a x a =++−−+(实数a 为常数)的图象为图象T .(1)求证:无论a 取什么实数,图象T 与x 轴总有公共点;(2)是否存在整数a ,使图象T 与x 轴的公共点中有整点?若存在,求所有整数a 的值;若不存在,请说明理由.44.(2023·湖南怀化·统考中考真题)如图一所示,在平面直角坐标系中,抛物线28y ax bx =+−与x 轴交于(4,0)(2,0)A B −、两点,与y 轴交于点C .(1)求抛物线的函数表达式及顶点坐标;(2)点P为第三象限内抛物线上一点,作直线AC,连接PA 标;(3)设直线135 :4l y kx k=+−交抛物线于点M、N,求证:无论存在一点E,使得MEN∠为直角.。

二次函数的图像性质及应用

二次函数的图像性质及应用

二次函数的图像性质及应用二次函数是一种代数函数,由形如f(x) = ax^2 + bx + c 的方程定义,其中a、b、c为实数且a不等于0,x为自变量,f(x)为因变量的值。

在二次函数的图像性质及应用方面,可以从以下几个角度来进行解析。

一、图像性质1. 平移性质:二次函数的图像可以根据a、b、c的值进行平移。

当c不为0时,图像沿y轴平移c个单位;当b不为0时,图像沿x轴平移-b/2a个单位;当a 不为0时,图像的开口方向取决于a的正负性,开口向上(a>0)或者开口向下(a<0)。

2. 对称性质:二次函数的图像关于y轴对称。

这是因为二次函数的方程中只有x 的二次项没有一次项,故图像关于y轴对称。

3. 零点性质:二次函数的零点是指函数值为0的x值。

对于一般的二次函数,它将有两个零点,除非它开口向上或开口向下且顶点位于x轴上,此时则只有一个零点。

4. 首项分类:当a>0时,二次函数的图像开口向上,称为正二次函数;当a<0时,二次函数的图像开口向下,称为负二次函数。

首项a的正负性决定了二次函数的凹凸性。

二、应用1. 自然科学中的运动学问题:二次函数可以用来描述自然界中物体的运动状态。

例如,自由落体运动中物体的下落高度与时间的关系可以用二次函数来表示。

2. 经济学中的成本与收益问题:在经济学中,很多问题可以用二次函数来建模。

例如,成本与产量之间的关系、价格与需求之间的关系等。

3. 地理学中的地形分析:地理学中,二次函数可以用来描述地形的变化。

例如,山谷河流的横断面、地势的坡度等。

4. 工程学中的建模问题:在工程学中,二次函数可以应用于许多建模问题,如桥梁设计、弹道分析等。

总结起来,二次函数的图像性质包括平移性质、对称性质、零点性质和首项分类。

而其应用领域广泛,包括自然科学中的运动学问题、经济学中的成本与收益问题、地理学中的地形分析以及工程学中的建模问题等。

通过对二次函数的图像性质及应用的深入理解,可以更好地应用于实际问题的建模与求解。

重难点 二次函数图象性质及其综合应用(学生版)

重难点  二次函数图象性质及其综合应用(学生版)

重难点二次函数图象性质及其综合应用考点一:二次函数的图象与性质二次函数是中考三大函数中内容最多,考察难度最大的一个函数。

而二次函数的图象更是其庞大内容的核心,初中数学中需要我们详细的掌握抛物线的画法、特征、性质、与系数的关系、几何变换等几个方面的知识,进而在多变的题型中快速找到解决它们的方法。

题型01二次函数图象与性质易错点01:对于二次函数y=ax2+bx+c(a≠0)的图象:形状:抛物线;对称轴:直线x=−b2a;顶点坐标:−b2a,4ac−b24a;其中抛物线的顶点坐标的纵坐标与一元二次方程解法中的公式法的表达式比较相似,需要重点加以区分;易错点02:抛物线的增减性问题,由a的正负和对称轴同时确定,单一的直接说y随x的增大而增大(或减小)是不对的,必须在确定a的正负后,附加一定的自变量x取值范围;解题大招:对于y=ax2+bx+c上的各个点,当a>0时,抛物线开口向上,图象有最低点,函数有最小值,哪个点离对称轴越近,哪个点的纵坐标越小;当a <0时,抛物线开口向下,图象有最高点,函数有最大值,哪个点离对称轴越近,哪个点的纵坐标越大;【中考真题练】1(2023•台州)抛物线y =ax 2-a (a ≠0)与直线y =kx 交于A (x 1,y 1),B (x 2,y 2)两点,若x 1+x 2<0,则直线y =ax +k 一定经过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限2(2023•邵阳)已知P 1(x 1,y 1),P 2(x 2,y 2)是抛物线y =ax 2+4ax +3(a 是常数,a ≠0)上的点,现有以下四个结论:①该抛物线的对称轴是直线x =-2;②点(0,3)在抛物线上;③若x 1>x 2>-2,则y 1>y 2;④若y 1=y 2,则x 1+x 2=-2,其中,正确结论的个数为()A.1个B.2个C.3个D.4个3(2023•扬州)已知二次函数y =ax 2-2x +12(a 为常数,且a >0),下列结论:①函数图象一定经过第一、二、四象限;②函数图象一定不经过第三象限;③当x <0时,y 随x 的增大而减小;④当x >0时,y 随x的增大而增大.其中所有正确结论的序号是()A.①②B.②③C.②D.③④4(2023•安徽)下列函数中,y 的值随x 值的增大而减小的是()A.y =x 2+1B.y =-x 2+1C.y =2x +1D.y =-2x +15(2023•枣庄)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴是直线x =1,下列结论:①abc <0;②方程ax 2+bx +c =0(a ≠0)必有一个根大于2且小于3;③若(0,y 1),(32,y 2)是抛物线上的两点,那么y 1<y 2;④11a +2c >0;⑤对于任意实数m ,都有m (am +b )≥a +b ,其中正确结论的个数是()A.5B.4C.3D.26(2023•呼和浩特)关于x 的二次函数y =mx 2-6mx -5(m ≠0)的结论:①对于任意实数a ,都有x 1=3+a 对应的函数值与x 2=3-a 对应的函数值相等.②若图象过点A (x 1,y 1),点B (x 2,y 2),点C (2,-13),则当x 1>x 2>92时,y 1-y 2x 1-x 2<0.③若3≤x ≤6,对应的y 的整数值有4个,则-49<m ≤-13或13≤m <49.④当m >0且n ≤x ≤3时,-14≤y ≤n 2+1,则n =1.其中正确的结论有()A.1个B.2个C.3个D.4个7(2023•福建)已知抛物线y=ax2-2ax+b(a>0)经过A(2n+3,y1),B(n-1,y2)两点,若A,B分别位于抛物线对称轴的两侧,且y1<y2,则n的取值范围是.8(2023•北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)是抛物线y=ax2+bx+c(a>0)上任意两点,设抛物线的对称轴为x=t.(1)若对于x1=1,x2=2,有y1=y2,求t的值;(2)若对于0<x1<1,1<x2<2,都有y1<y2,求t的取值范围.【中考模拟练】9(2024•虹口区二模)已知二次函数y=-(x-4)2,如果函数值y随自变量x的增大而减小,那么x的取值范围是()A.x≥4B.x≤4C.x≥-4D.x≤-410(2024•郑州模拟)已知二次函数y=ax2+bx(a≠0)的图象如图所示,则一次函数y=ax+b(a≠0)的图象大致为()A. B.C. D.11(2024•霍邱县模拟)函数y=kx2-4x+3和y=kx-k(k是常数,且k≠0)在同一平面直角坐标系中的图象可能是()A. B.C. D.12(2024•余姚市一模)已知点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)在二次函数y =-x 2+c (c >0)的图象上,点A ,C 是该函数图象与正比例函数y =kx (k 为常数且k >0)的图象的交点.若x 1<0<x 2<x 3,则y 1,y 2,y 3的大小关系为()A.y 3<y 2<y 1B.y 1<y 2<y 3C.y 2<y 1<y 3D.y 1<y 3<y 213(2024•武威二模)已知二次函数y =a (x +1)(x -m )(a 为非零常数,1<m <2),当x <-1时,y 随x 的增大而增大,则下列结论正确的是()①若x >2时,则y 随x 的增大而减小;②若图象经过点(0,1),则-1<a <0;③若(-2023,y 1),(2023,y 2)是函数图象上的两点,则y 1<y 2;④若图象上两点14,y 1 ,14+n ,y 2 对一切正数n .总有y 1>y 2,则32<m <2.A.①②B.①③C.①④D.③④14(2024•福田区模拟)已知函数y =|x 2-4|的大致图象如图所示,对于方程|x 2-4|=m (m 为实数),若该方程恰有3个不相等的实数根,则m 的值是.15(2024•合肥模拟)在平面直角坐标系中,G (x 1,y 1)为抛物线y =x 2+4x +2上一点,H (-3x 1+1,y 1)为平面上一点,且位于点G 右侧.(1)此抛物线的对称轴为直线;(2)若线段GH 与抛物线y =x 2+4x +2(-6≤x <1)有两个交点,则的x 1取值范围是1.16(2024•碑林区校级一模)如图,抛物线y =14x 2-12x -3的对称轴l 与x 轴交于点A ,与y 轴交于点B .(1)求点A 、B 的坐标;(2)C 为该抛物线上的一个动点,点D 为点C 关于直线l 的对称点(点D 在点C 的左侧),点M 在坐标平面内,请问是否存在这样的点C ,使得四边形ACMD 是正方形?若存在,请求出点C 的坐标;若不存在,请说明理由.题型02二次函数与几何变换易错点:抛物线平移步骤:①将一般式转化为顶点式,②根据“左加右减(x ),上加下减(整体)”来转化平移所得函数解析式;解题大招:y =ax 2+bx +c 的轴对称变换规律y =ax 2+bx +c 关于x 轴对称:y =−ax 2−bx −c 关于x 轴对称:y =ax 2−bx +c关于原点对称:y =−ax 2+bx −c【中考真题练】17(2023•无锡)将二次函数y =2(x -1)2+2的图象向右平移2个单位长度,所得函数图象的顶点坐标为()A.(-1,2)B.(3,2)C.(1,3)D.(1,-1)18(2023•徐州)在平面直角坐标系中,将二次函数y =(x +1)2+3的图象向右平移2个单位长度,再向下平移1个单位长度,所得抛物线对应的函数表达式为()A.y =(x +3)2+2B.y =(x -1)2+2C.y =(x -1)2+4D.y =(x +3)2+419(2023•西藏)将抛物线y =(x -1)2+5平移后,得到抛物线的解析式为y =x 2+2x +3,则平移的方向和距离是()A.向右平移2个单位长度,再向上平移3个单位长度B.向右平移2个单位长度,再向下平移3个单位长度C.向左平移2个单位长度,再向上平移3个单位长度D.向左平移2个单位长度,再向下平移3个单位长度20(2023•牡丹江)将抛物线y =(x +3)2向下平移1个单位长度,再向右平移个单位长度后,得到的新抛物线经过原点.21(2023•上海)在平面直角坐标系xOy 中,已知直线y =34x +6与x 轴交于点A ,y 轴交于点B ,点C 在线段AB 上,以点C 为顶点的抛物线M :y =ax 2+bx +c 经过点B ,点C 不与点B 重合.(1)求点A ,B 的坐标;(2)求b ,c 的值;(3)平移抛物线M 至N ,点C ,B 分别平移至点P ,D ,联结CD ,且CD ∥x 轴,如果点P 在x 轴上,且新抛物线过点B ,求抛物线N 的函数解析式.【中考模拟练】22(2024•津市市一模)将二次函数y =x 2-6的图象向右平移1个单位长度,再向下平移3个单位长度,所得图象的解析式为()A.y =x 2-2x -5B.y =x 2+2x -9C.y =x 2-2x -8D.y =x 2+2x -523(2024•秦都区一模)已知抛物线C 1:y =x 2-3x +m ,抛物线C 2与C 1关于直线y =l 轴对称,两抛物线的顶点相距5,则m 的值为()A.-34B.234C.-34或234D.234或3424(2024•济南模拟)将抛物线y =(x +1)2的图象位于直线y =9以上的部分向下翻折,得到如图图象,若直线y =x +m 与此图象有四个交点,则m 的取值范围是()A.54<m <7 B.34<m <5 C.45<m <9 D.34<m <725(2024•松江区二模)平移抛物线y =x 2+2x +1,使得平移后的抛物线经过原点,且顶点在第四象限,那么平移后的抛物线的表达式可以是2.(只需写出一个符合条件的表达式)26(2024•新北区校级模拟)如图,将抛物线y =2(x +1)2+1绕原点O 顺时针旋转45°得到新曲线,新曲线与直线y =x 交于点M ,则点M 的坐标为.27(2024•廉江市一模)已知抛物线C1:y=ax2+2ax+a-2 3.(1)写出抛物线C1的对称轴:.(2)将抛物线C1平移,使其顶点是坐标原点O,得到抛物线C2,且抛物线C2经过点A(-2,-2)和点B(点B在点A的左侧),若△ABO的面积为4,求点B的坐标.(3)在(2)的条件下,直线l1:y=kx-2与抛物线C2交于点M,N,分别过点M,N的两条直线l2,l3交于点P,且l2,l3与y轴不平行,当直线l2,l3与抛物线C2均只有一个公共点时,请说明点P在一条定直线上.题型03二次函数图象与系数的关系解题大招01:二次函数图象与系数a、b、c的关系解题大招02:二次函数图象题符号判断类问题大致分为以下几种基本情形∶①a、b、c单个字母的判断,a由开口判断,b由对称轴判断(左同右异),c由图象与y轴交点判断;②含有a、b两个字母时,考虑对称轴;③含有a、b、c三个字母,且a和b系数是平方关系,给x取值,结合图像判断,例如∶二次函数y=ax2+bx+c(a≠0),当x=1时,y=a+b+c,当x=-1时,y=a-b+c,当x=2时,y=4a+2b+c当x=-2时,y=4a-2b+c;另:含有a、b、c三个字母,a和b系数不是平方关系,想办法消掉一到两个字母再判断∶④含有b2和4ac,考虑顶点坐标,或考虑△.⑤其他类型,可考虑给x取特殊值,联立方程进行判断;也可结合函数最值,图像增减性进行判断。

二次函数的性质和应用

二次函数的性质和应用
单击此处添加副标题
二次函数的性质和应用
汇报人:
目录
01 02 03 04 05
添加目录项标题 二次函数的性质 二次函数的应用 二次函数的图像和性质的关系 二次函数的应用题解析
01
添加目录项标题
02
二次函数的性质
二次函数的开口方向
二次函数的开口方向取决于二次项系数a的正负。 当a>0时,开口向上;当a<0时,开口向下。 开口方向与对称轴垂直,对称轴为x=h。 开口大小与二次项系数a的绝对值成正比。
感谢观看
汇报人:
二次函数的对称轴
二次函数图像的对称轴是x=-b/2a
二次函数图像的对称轴与开口方向有关,开口向上时,对称轴是x=-b/2a;开口向下时,对称 轴是x=-b/2a
二次函数图像的对称轴与顶点坐标有关,顶点坐标为(h,k),则对称轴是x=h
二次函数图像的对称轴与函数值有关,当x=-b/2a时,函数值取得最值
二次函数在数学竞赛中的应用
二次函数在几何 作图中的应用
二次函数在数列 求和中的应用
二次函数在不等 式证明中的应用
二次函数在代数 方程求解中的应 用
二次函数在金融领域的应用
计算投资组合风险和回报 评估股票价格和波动性 预测汇率变动和贸易平衡 制定保险和退休计划策略
二次函数在物理中的应用
自由落体运动:公式y=1/2gt^2描述物体下落距离与时间的关系 弹性碰撞:公式y=mv/(m+m)描述两物体碰撞后的速度变化 简 谐 振 动 : 公 式 y = A* s i n ( ω t + φ ) 描 述 物 体 振 动 的 位 移 与 时 间 的 关 系 抛体运动:公式y=v0t-1/2gt^2描述物体抛出后的下落距离与时间的关系

高中数学二次函数图像的性质及应用

高中数学二次函数图像的性质及应用

高中数学二次函数图像的性质及应用二次函数是高中数学中重要的一种函数类型,它的图像具有许多特殊的性质和应用。

本文将详细介绍二次函数图像的性质,并通过具体题目的分析来说明考点和解题技巧,以帮助高中学生更好地理解和应用二次函数。

一、二次函数图像的性质1. 对称性:二次函数的图像关于抛物线的对称轴对称。

对称轴是图像的中心线,它垂直于x轴,过抛物线的顶点。

例如,对于函数y = ax^2 + bx + c,其对称轴的x 坐标为 x = -b/2a。

这一性质在解题中常常用来求抛物线的对称轴以及顶点的坐标。

2. 开口方向:二次函数图像的开口方向由二次项系数a的正负决定。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

这一性质在解题中用来判断函数的增减性和极值。

3. 零点:二次函数的零点即为函数图像与x轴的交点,也就是方程ax^2 + bx +c = 0的解。

求零点是解二次方程的常见问题,可以通过因式分解、配方法、求根公式等方法来求解。

二、二次函数图像的应用1. 最值问题:二次函数图像的顶点即为函数的极值点。

通过求解二次函数的极值,可以应用到许多最值问题中。

例如,一辆汽车以二次函数的形式描述其加速度,通过求解函数的极值,可以确定汽车的最大加速度或最短时间内达到某个速度。

2. 抛体运动问题:抛体运动问题是物理学中常见的应用题,可以用二次函数来描述抛体的轨迹。

通过解析抛体运动问题,可以求解抛物线的顶点、抛物线与地面的交点等。

例如,求解一个抛出的物体在空中的最高点、最远距离等问题。

3. 面积问题:二次函数的图像下方与x轴之间的面积可以表示某些实际问题中的面积。

例如,通过求解二次函数图像与x轴之间的面积,可以计算出某个区域的面积、某个物体的体积等。

这一应用在几何学和物理学中都有广泛的应用。

三、解题技巧和注意事项1. 确定函数的类型:在解题过程中,首先要确定给定函数是否为二次函数。

如果函数的表达式中含有二次项(x^2)且系数不为零,则可以确定为二次函数。

二次函数与二元二次方程的像与性质的证明与应用的综合考察

二次函数与二元二次方程的像与性质的证明与应用的综合考察

二次函数与二元二次方程的像与性质的证明与应用的综合考察二次函数和二元二次方程是数学中的重要概念,它们在数学及其他学科的应用中具有广泛的应用。

本文将通过证明和实际应用的角度,综合考察二次函数与二元二次方程的像与性质。

一、二次函数的像与性质证明1. 二次函数的定义及性质二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为常数且a ≠ 0。

考虑二次函数的图像,我们可以得出以下性质:性质1:当a > 0时,二次函数的图像开口向上;当a < 0时,二次函数的图像开口向下。

性质2:二次函数的图像关于坐标轴的对称轴是直线x = -b/2a。

性质3:当a > 0时,二次函数在对称轴上有最小值;当a < 0时,二次函数在对称轴上有最大值。

性质4:当a ≠ 0时,二次函数的图像为一个拱形。

通过以上性质的证明,可以帮助我们更好地理解二次函数的形状和性质。

2. 二次函数的像与性质证明考虑二次函数y = ax^2 + bx + c(a ≠ 0),我们来证明它的图像在平面上的像是一条抛物线。

证明:假设二次函数的定义域是实数集合R,我们尝试寻找一个实数x,使得f(x)的值等于y。

即求解方程ax^2 + bx + c = y,若存在实数解,则抛物线上存在对应的点,即该点的坐标为(x, y)。

由二次函数的定义可知,ax^2 + bx + c = y,可以化简得到ax^2 + bx + (c - y) = 0。

这是一个二元二次方程,我们可以利用二次方程求根公式来求解。

根据二次方程求根公式,解可以表示为:x = (-b ± √(b^2 - 4ac - 4ay))/(2a)上述公式求得的解即为对应点的横坐标x。

因此,当给定一个实数y时,我们可以通过求解上述方程得到相应点的横坐标x,从而得到抛物线上对应点的坐标(x, y)。

通过这样的过程,我们证明了二次函数的图像是一条抛物线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数的图像和性质
二次函数的性质
例1. 关于抛物线2
21y x x =--,下列说法错误的是( )
A . 顶点坐标为()1,2-
B . 与y 轴的交点坐标为()0,1-
C . 抛物线上两点()()121,4,A y B y -和,则有12y y <
D . 当x >1时,y 随x 的增大而减小
1. 已知函数y =-x 2
-2x ,当________时,函数值y 随x 的增大而增大.
2. 抛物线2
21219y x x =-+的顶点坐标是( )
A. (3,1)
B. (3,-1)
C. (-3,1)
D. (-3,-1)
3. 2+bx +c (a ≠0)图象上部分点的坐标(x ,y )对应值列表如下:
则该函数图象的对称轴是( ) A. 直线x =-3 B. 直线x =-2 C. 直线x =-1 D. 直线x =0
函数平移
例2. 已知抛物线y =x 2
-4x +3与x 轴相交于点A ,B (点A 在点B 左侧),顶点为M ,平移该抛物线,使点M 平移后的对应点M ′落在x 轴上,点B 平移后的对应点B ′落在y 轴上,则平移后的抛物线解析式为( )
A. y =x 2+2x +1
B. y =x 2
+2x -1
C. y =x 2-2x +1
D. y =x 2
-2x -1
1. 要将抛物线y =x 2+2x +3平移后得到抛物线y =x 2
,下列平移方法正确的是( ) A. 向左平移1个单位,再向上平移2个单位 B. 向左平移1个单位,再向下平移2个单位 C. 向右平移1个单位,再向上平移2个单位 D. 向右平移1个单位,再向下平移2个单位
2. 在平面直角坐标系中,把一条抛物线先向上平移3个单位长度,然后绕原点旋转180°
得到抛物线y =x 2
+5x +6,则原抛物线的解析式是( )
A. y =-(x -52)2-114
B. y =-(x +52)2-11
4
C. y =-(x -52)2-14
D. y =-(x +52)2+1
4
3. 已知正方形ABCD 中A (1,1)、B (1,2)、C (2,2)、D (2,1),有一抛物线y =(x +1)2
向下平移m 个单位(m >0)与正方形ABCD 的边(包括四个顶点)有交点,则m 的取值范围是________.
函数图像与系数,,a b c 的关系
例3、二次函数y =ax 2
+bx +c ()0a ≠的图象如图所示,有下列9个结论①0abc >;②a
+c >b ;③2a +b=0;④0a b c ++>;⑤23c b <;⑥()a b m am b +≥+;
⑦2
40b ac ->;⑧()2
2
a c
b +>;

3c
a
>-正确的是__________
1、二次函数y =ax 2+bx +c 的图象如图所示,下列结论:①4ac <b 2
;②a +c >b ;③2a +b >0.其中正确的有 ( )
A .①②
B .①③
C .②③
D .①②③
2、如图是抛物线y 1=ax 2
+bx +c (a ≠0)的一部分图象,抛物线的顶点坐标是A (1,3),与x 轴的一个交点是B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A ,B 两点,下列结论:①abc
>0;②方程ax 2
+bx +c =3有两个相等的实数根;③抛物线与x 轴的另一个交点是(-1,0);④当1<x <4时,有y 2>y 1;⑤x (ax +b )≤a +b ,其中正确的结论是__________.(只填写序号)
3. (2013长沙10题3分)二次函数y =ax 2
+bx +c 的图象如图所示,则下列关系式错误..的是( )
A . a >0
B . c >0
C . b 2-4ac >0
D . a +b +c >0
4、已知二次函数2
y ax bx c =++(a ≠0)的图象如图所示,现有下列结论:①b 2
-4ac >0;②abc >0;③c a
>-8;④ 9a +3b +c <0.其中,正确结论的个数是( )
A. 1
B. 2
C. 3
D. 4
5、已知二次函数2
y ax bx c =++(a>0)经过点M (-1,2)和点N (1,-2),交x 轴于点A ,
B ,交y 轴于点
C . 现有以下四个结论:①2b =-;②该二次函数图象与y 轴交于负半轴;
③存在实数a ,使得M ,A ,C 三点在同一条直线上;④若1a =,则OA ·OB =OC 2
.其中,正
确的结论有( )
A. ①②③④
B. ②③④
C. ①②④
D. ①②③
函数图像的判断
例4、已知直线y =bx -c 与抛物线y =ax 2
+bx +c 在同一直角坐标系中的图象可能是( )
1、在同一平面直角坐标系中,函数y=ax+b 与y=ax 2
-bx 的图象可能是
( )
2. (2014长沙10题3分)函数y =a x
与y =ax 2
(a ≠0)在同一平面直角坐标系中的图象可能是( )
函数与不等式的关系
例5. 如图,直线y =mx +n 与抛物线y =ax 2
+bx +c 交于A (-1,p ),
B (4,q )两点,则关于x 的不等式mx +n >ax 2+bx +c 的解集是____.
1、如图,直线y =x +m 和抛物线y =x 2
+bx +c 都经过点A (1,0)
和B (3,2),不等式x 2
+bx +c >x +m 的解集为____________.
二次函数的最值
例6 已知二次函数y =x 2
-2mx (m 为常数),当-1≤x ≤2时,函数值y 的最小值为-2,则m 的值是( )
A. 32
B. 2
C. 32或 2
D. -3
2或 2
1、已知二次函数2
21y x x =-+
(1)若x 为任意实数,求函数的的最小值
(2)若12x ≤≤,求函数的的最大值和最小值
(3)若01x ≤≤,求函数的的最大值和最小值
(4)若20x -≤≤,求函数的的最大值和最小值
(5)若x 为整数,求函数的最小值
函数与方程的关系
例7、在平面直角坐标系xoy 中,抛物线2
43y x x =-+与x 轴交于点A ,B (点A 在点
B 的左侧),与y 轴交于点
C .
(1)求直线BC 的表达式;
(2)垂直于y 轴的直线l 与抛物线交于点P (x 1,y 1),Q (x 2,y 2),与直线BC 交于点N(x 3,y 3).若x 1<x 2<x 3,结合函数的图象,求x 1+x 2+x 3的取值范围.
1、已知关于x 的一元二次方程()2
510x k x k +-+-=,其中k 为常数.
(1)求证:无论k 为何值,方程总有两个不相等实数根;
(2)已知函数()2
51y x k x k =+-+-的图象不经过第三象限,求k 的取值范围;
(3)若原方程的一个根大于3,另一个根小于3,求k 的最大整数值.
2、已知:二次函数2
2y ax bx =+-的图象经过点(1,0),一次函数图象经过原点和点(1,-b ),其中a >b >0且a 、b 为实数.
(1)求一次函数的表达式(用含b 的式子表示); (2)试说明:这两个函数的图象交于不同的两点;
(3)设(2)中的两个交点的横坐标分别为x 1、x 2,求|x 1-x 2|的取值范围.。

相关文档
最新文档