理论力学_点的合成运动_点的加速度合成定理_

合集下载

理论力学——运动学

理论力学——运动学

v2

n
加速度a的大小:
a
aτ + a n
2
2
dv 2 v 2 2 ( ) ( ) dt
加速度和主法线所夹的锐角的正切:
tan
aτ an
4、直角坐标于自然坐标之间的关系:
ds 2 dx 2 dy 2 dz 2 v ( ) ( ) ( ) ( ) dt dt dt dt
2
2
九、刚体的基本运动
1、刚体的平动
(1)刚体平动的定义 刚体运动时,若其上任一直线始终保持与它的初始
位置平行,则称刚体作平行移动,简称为平动或移动 。 (2) 平动刚体的运动特点
刚体平动时,其上各点的轨迹形状相同;同一瞬时,
各点的速度相同,加速度也相同。
刚体平动判别:P169题三图,P176题五图,题七图
点加的速度
i + y j + z k vx
a vx i + v y j + vz k xi + yj + zk
ax v x x ay v y y az v z z
3、自然法
用自然法描述的运动方程:
s பைடு நூலகம் f (t )
a 2 a x a y a z a an
1
2
2
2
2
2


a 2 a v2
2
5、匀速、匀变速公式
(1)
aτ=常数,
v v0 aτ t
( 2)v=常数,
1 2 s s0 v0t aτ t 2 2 v 2 v0 2a ( s s0 )
平面运动。

[理学]理论力学8—点的合成运动-土木_OK

[理学]理论力学8—点的合成运动-土木_OK
9
8.2 点的速度合成定理
处理具体问题时应注意: (1) 选取动点、动参考系和定参考系。
动点和动系应分别选择在两个不同的刚体上。
动点和动系的选择应使相对运动的轨迹简单直观。
在有的机构中,一个构件上总有一个点被另一个构件 所约束。这时,以被约束的点作为动点,在约束动点 的构件上建立动系,相对运动轨迹便是约束构件的轮 廓线或者约束动点的轨道。
20
vr1 2vcos30 17.32(m/ s)
(2) 求A相对于B的速度,以A为动点,动系固连于B艇。
ve2
OA
50
v
5m / s

va2 10m / s
vr2 ve22 vr22 11.2m / s
tan ve2 5 0.5
va2 10
2634‘
R
B
Ve2
Φ=30°
(2) 应用速度合成定理时,可利用速度平行四边形中的 几何关系解出未知数。也可以采用投影法:即等式10左 右两边同时对某一轴进行投影,投影的结果相等。
8.2 点的速度合成定理
通常选动点和动系主要有以下几种情况: 1. 有一个很明显的动点,在题中很容易发现;
2. 有一个不变的接触点,可选该点为动点;
解:以凸轮圆心C为动
点,静系取在地面上,动 系取在顶杆上,动点的速 度合成矢量图如图。
va ve vr
ve va cos e cos 45
va
ve
vr
2 e
16
2
例6 AB杆以速度v1向上作平动,CD杆斜向上以速度v2作平动, 两条杆的夹角为a,求套在两杆上的小环M的速度。 解 取M为动点,AB为动坐标系,相对速度、牵连速度如图。
O

理论力学--运动学总结

理论力学--运动学总结

速度瞬心位置的确定总结
瞬时平动
几点注意 1、基点法是速度分析的基本方法;
2、速度投影法 应用起来简单,但必须知道待求速度 点的方位,致命的弱点—是不能求图形的角速度 2、当平面几何简单时,分析速度可采用瞬心法; 瞬心法既可以求某点的速度,也可以求刚体运动 的角速度; 4、确定速度瞬心的速度是该点的绝对运动速度; 5、具体分析时三种方法灵活运用;
(1)刚体的基本运动 平动
v A vB
aA aB
各点的轨迹相同;
可简化为一个点的运动。
定轴转动
v R
a R
an R 2
轮系的传动比:
1 n1 R1 Z 2 i12 2 n2 R2 Z1
各处不打滑时: 接触点有相同的线速度和相同的切向加速度。
(2)刚体的平面运动 1. 定义 任一点到某固定平面的距离保持不变。
B点的加速度分析
D
C
a a 2 a a 2 ae 2 ar 2
n

aa 2 ae 2
O1

30°
ar 2
B
aa 2cos60 aa2cos30 ae 2
n

aa 2
1
30° O2
n
A
a a2 O2 B 2
n 2 aa2 O2 B2
ae2 657mm/ s
2
三、刚体的运动
va=v
vCA
动点:滑块C 动系:固结于AE
u=vA
vr
vC' A
ωAE
分析三种运动
牵连运动:刚体的平面运动
牵连转动
va ( vA vCA ) vr
va cos vCA v A sin

理论力学点的合成运动

理论力学点的合成运动

例 8-4 曲柄OA以匀角速度 w绕O轴转动,其上
套有小环 M,而小环 M又在固定的大圆环上运动,大 圆环的半径为 R。
试求当曲柄与水平线成的角 j ωt 时,小环 M
的绝对速度和相对曲柄 OA 的相对速度。
A
M w
R
O
j
C
解:(1)选择动点及 动系: 小环M为动点,动系固连在 OA上。
(2)分析三种运动:绝 对运动为圆周运动,相对运 动为沿OA的直线运动,牵连 运动为定轴转动。
y
OA杆转动的角速度为
O
wOA
ve OC
ve 2r
3u 6r
y
wOA B
j va vr
A
r ve C
x
u x
8.3 牵连运动是平动时点的加速度合成定理
在图8-9中,设 Oxyz为定系,Oxyz为动系且作平
动,M为动点。动点M在动系中的坐标为 x、y 、z, 动系单位矢量为 i、 j、k。动系平动,i、j、k 的
Oxyz 作某种运动,在瞬时t,动系连同相对轨迹AB在
定系中的I位置,动点则在曲线 AB
上的 M 点。经过时间间 隔 t ,动系运动到定系 中的II位置,动点运动到
点 M。 如果在动系上观
察点M 的运动,则它沿 曲线 AB 运动到点 M2。
z B
M2
vr
z
M O
A
O I
x
va
M B
ve M1
z
O x A
例 8-1 汽车以速度 v1 沿直线的道路行驶,雨滴 以速度 v2 铅直下落,试求雨滴相对于汽车的速度。
v1
解: 因为雨滴相对运动的汽车有运动,所以本题 为点的合成运动问题,可应用点的速度合成定理求解。

理论力学答案

理论力学答案
10.3.4一圆盘置于光滑水平面上,开始处于静止,如图10.3所示。当它受图示力偶(F,F,)作用后,①。
①其质心C将仍然保持静止;②其质心C将沿图示x轴方向作直线运动;
③其质心C将沿某一方向作直线运动;④其质心C将作曲线运动。
10.3.5如图10.4所示两个相同的均质圆盘,放在光滑水平面上,在圆盘的不同位置上,各作用一水平力F和F,,使圆盘由静止开始运动,设F=F,,问哪个圆盘的质心运动得
8.4.6在图示四连杆机构中,已知 。在图示位置时,OA杆的角速度ω=2rad/s,角加速度α=3 rad/s2,O、A、B位于同一水平线上,且垂直于O1B。试求该瞬时:(1)AB杆的角速度和角加速度;(2)O1B杆的角速度和角加速度。(答案:ωAB=0.8 rad/s,αAB=1.2rad/s2;ωO1B=0,αO1B=2.24rad/s2)
8.4.2如图所示,在筛动机构中,筛子的摆动是由曲柄连杆机构所带动。已知曲柄OA的转速 , 。当筛子BC运动到与点O在同一水平线上时, 。求此瞬时筛子BC的速度。
8.4.3曲柄O角速度ω=2rad/s绕轴O转动,带动等边三角形ABC作平面运动。板上点B与杆O1B铰接,点C与套筒铰接,而套筒可在绕轴O2转动的杆O2D上滑动。OA=AB=BC=CA=O2C=1m,当OA水平,AB∥O2D,O1B与BC在同一直线上时,求杆O2D的角速度ω2。(答案:ω2=0.577rad/s)
9.2.3重物M重10 N,系于30cm长的细线上,线的另一端系于固定点O。重物在水平面内作圆周运动,成一锥摆形状,且细线与铅垂线成30˚角。求重物的速度与线的拉力。
(答案:FT=11.6N,v=0.94m/s)
9.2.4物体M重为P=10N,置于能绕y轴转动的光滑斜面上,θ=30o,绳索长L=2m,物体随同斜面一起以匀转速n=10r/min转动,试求绳子的拉力(取g=10m/s2)。(答案:FT=6.65N)

大学本科理论力学课程第9章 点的合成运动

大学本科理论力学课程第9章 点的合成运动

在任意瞬时,动参考系上与动点重合的那一点称为牵连点。 注意动点相对动系运动,故牵连点不是动系上的某个固定点。
有了牵连点的概念,可以定义牵连速度和牵连加速度如下: 牵连运动中,某瞬时牵连点的速度和加速度称为该瞬时动
点的牵连速度 ve 和牵连加速度 ae 。
下面通过例子来说明以上的各个概念:
理论力学电子教程
则M点速度大小:
v R O1M (OM sin ) r sin
由此,据线性代数知
v rOM
O1 R v
θ
M
r
O
上式是转动刚体上点的速度矢
积表达式。
理论力学电子教程
第九章 点的合成运动
由于角速度矢量与角加速度矢量共线,故
d
dt
又 v r
a dv dt
a dv d r
第九章 点的合成运动
理论力学电子教程
第九章 点的合成运动
理论力学电子教程
第九章 点的合成运动
不同动点的选择会有不同的运动分析结果,尤其是相对运动 轨迹有时简单明了有时复杂难辩,从而影响速度、加速度分析。 例如下面各例:
详例1:
理论力学电子教程
动点:AB杆上A点 动系:固结于偏心凸轮C上 定系:固结在地面上
理论力学电子教程
第九章 点的合成运动
下面介绍点的合成运动中的重要基本概念:“一点两系三运动” 一 点: 即动点,所研究的点。 P175 两 系:定(静)坐标系和动坐标系。 定(静)坐标系 — 固结于地面(地球)上的坐标系,
简称定(静)系。 动坐标系 — 建立在相对于地面运动着的物体上的坐标系,
简称动系。例如建立在行驶的火车上的坐标系。
理论力学电子教程
第九章 点的合成运动

理论力学8

理论力学8
摇杆绕固定轴O1来回摆动。设曲柄长OA=r,两轴间距离OO1 l
求曲柄在水平位置瞬时,摇杆O1B绕O1轴的角速度1及滑块A相
对摇杆O1B的相对速度。
运动学/点的合成运动
解:
选取动点: OA 上的A点 动系: O1B 定系: 基座
运 绝对运动:圆周运动 动 分 相对运动:直线运动 析 牵连运动:定轴转动 :
运动学/点的合成运动
另一方面,在实际问题中,不仅要在固联在地面上
的参考系上还要在相对于地面运动着的参考系上观察和
研究物体的运动。下面先看几个例子。
沿直线轨道纯滚动 的圆轮,研究轮缘上A 点的运动,对于地面上 的观察者,是旋轮线轨 迹,对站在轮心上的观 察者是圆。
A点的运动可看成随轮心的平移与绕轮心转动的合成。
运动学/点的合成运动
MM MM1 M1M 将上式两边同时除以t并取 t0得
lim MM lim MM1 t 0 t t 0 t
lim
M1M
t 0 t
va ve vr
即:在任一瞬时动点的绝对速度等于牵连速度与相对速
度的矢量和,这就是点的速度合成定理。
点的速度合成定理是瞬时矢量式,共包括大小‚方向 六个元素,已知任意四个元素,就能求出其它两个。
运动学/点的合成运动
例如,直管OB以匀角速度绕定轴O转动,小球M
以速度u在直管OB中作相对的匀速直线运动,如图示。 将动坐标系固结在OB管上,以小球M为动点。随着动 点M的运动,牵连点在动坐标系中的位置在相应改变。 设小球在t1、t2瞬时分别到达M1、M2位置,则动点的 牵连速度分别为
ve1 OM1
运动学/点的合成运动
第八章
点的合成运动
在前两章中研究点和刚体的运动时,认为地球( 参考体)固定不动,将坐标系(参考系)固连于地面。 因此,点和刚体的运动是相对固定参考系而言的。

理论力学.

理论力学.
相对运动:沿O1B的直线运动; 牵连运动:摇杆绕O1轴的定轴转动。
2.速度分析: vavevr
大小:rω ? ?
方向:√ √ √
v e v as i n rs in
1
ve r2
O1A l2 r2
例7-4
已知:如图所示半径为R、偏心距为e的凸轮,以角速度ω 绕O轴转动,杆AB能在滑槽中上下平移,杆的端点A始终 与凸轮接触,且OAB成一直线。 求:在图示位置时,杆AB的速度。
求:当连线OM在水平位置时, 圆盘边缘上的点M的绝对速度。
D
C
M
B A
解: 1.运动分析:
动点:M点 ; 动系:固连于框架BACD;
绝对运动:未知;
相对运动:以O为圆心的圆周运动;
牵连运动:绕AB轴的定轴转动。
2.速度分析
C
vavevr
大小: ? Rω2 Rω 1
方向: ? √ √
vave 2 vr2R1 222
用铰链连接。当曲柄OA以匀角速度ω绕固定轴O转动时,
滑块在摇杆O1B上滑动,并带动杆O1B绕定轴O1摆动。设曲
柄长为OA=r,两轴间距离OO1=l。
求:曲柄在水平位置时摇杆的角 加速度。
解:
1.运动分析:
§动 绝牵点对连7-M运 运4相动动牵对、:连于相D运E地对动的面动绝运是水作动定平空点对、轴平间牵转移曲:运连动。线运时运滑动动点动的块:加速以度A合O;成点为动圆系心:,与O摇A杆为半固O径1 连B的;圆周运动;
arctvvaer)na( rct a1 2)n(
D M
B A
点的速度合成定理的解题步骤
1.选取动点、动参考系和定参考系; 2.分析三种运动和三种速度;
绝对运动、相对运动、牵连运动 绝对速度、相对速度、牵连速度 3.应用速度合成定理,做出速度平行四边形; 绝对速度为平行四边形的对角线 4.利用速度平行四边形中的几何关系解出未知数。

理论力学课后习题答案

理论力学课后习题答案

第7章 点的合成运动一、是非题(正确的在括号内打“√”、错误的打“×”)1.点的速度和加速度合成定理建立了两个不同物体上两点之间的速度和加速度之间的 关系。

( √ ) 2.根据速度合成定理,动点的绝对速度一定大于其相对速度。

( × )3.应用速度合成定理,在选取动点和动系时,若动点是某刚体上的一点,则动系不可以固结在这个刚体上。

( √ )4.从地球上观察到的太阳轨迹与同时在月球上观察到的轨迹相同。

( × ) 5.在合成运动中,当牵连运动为转动时,科氏加速度一定不为零。

( × ) 6.科氏加速度是由于牵连运动改变了相对速度的方向而产生的加速度。

( √ ) 7.在图中,动点M 以常速度r v 相对圆盘在圆盘直径上运动,圆盘以匀角速度ω绕定轴O 转动,则无论动点运动到圆盘上的什么位置,其科氏加速度都相等。

( √ )二、填空题1.已知r 234=++v i j k ,e 63=-ωi k ,则k =a 18 i + -60 j + 36 k 。

2.在图中,两个机构的斜杆绕O 2的角速度均为2ω,O 1O 2的距离为l ,斜杆与竖直方向的夹角为θ,则图(a)中直杆的角速度=1ωθθωcos sin 2,图(b)中直杆的角速度=1ω2ω。

图 图3.科氏加速度为零的条件有:动参考系作平动、0=r v 和r e v ω//。

4.绝对运动和相对运动是指动点分别相对于定系和动系的运动,而牵连运动是指牵连点相对于定系的运动。

牵连点是指某瞬时动系上和动点相重合的点,相应的牵连速度和加速度是指牵连点相对于定系的速度和加速度。

5.如图所示的系统,以''Ax y 为动参考系,Ax'总在水平轴上运动,AB l =。

则点B 的相对轨迹是圆周,若kt ϕ= (k 为常量),点B 的相对速度为lk ,相对加速度为2lk 。

图6.当点的绝对运动轨迹和相对运动轨迹都是曲线时,牵连运动是直线平动时的加速度合成定理表达式是a e r =+a a a ;牵连运动是曲线平动时的加速度合成定理表达式是 a e r =+a a a ;牵连运动是转动时的加速度合成定理表达式是a e r k =++a a a a 。

注电考试最新版教材-第100讲 理论力学:运动学(三)

注电考试最新版教材-第100讲 理论力学:运动学(三)

三、点的合成运动点的合成运动这部分内容,主要是应用运动的合成与分解的概念,研究同一动点相对于两个不同参考系的运动之间的关系。

从而建立了点的速度合成定理和加速度合成定理。

(一)静系·动系固结于某一参考体上的坐标系Oxyz称为静坐标系,简称静系。

通常如不加说明,则以固结于地球表面上的坐标系作为静系。

固结于相对静系运动的参考体上的坐标系O’x’y’z’称为动坐标系,简称动系。

(二)三种运动·三种速度·三种加速度动点相对于静系的运动称为绝对运动。

在绝对运动中的轨迹、速度和加速度称为动点的相对轨迹、相对速度和相对加速度,并以va 和aa分别表示此速度和加速度。

动系相对静系的运动称为牵连运动。

在某一瞬时,动系上与动点相重合的一点称为动点在此瞬时的牵连点。

牵连点的速度和加速度称为动点在该瞬时的牵连速度和牵连加速度,并分别以vr和ar表示之。

上述三种运动的关系如图4—2—8所示。

即动点的绝对运动可视为相对运动与牵连运动的合成运动。

反之,动点的绝对运动也可分解为牵连运动和相对运动。

(三)点的速度合成定理可以证明,动点的三种速度va ,ve,vr之间有如下关系式:va=ve+vr即动点的绝对速度等于它的牵连速度和相对速度的矢量和,这就是点的速度合成定理。

根据此定理可知va ,ve,vr构成一速度平行四边形,其对角线为绝对速度va。

由于每个速度矢量包含大小和方向二个量,因此上式总共含有六个量,当已知其中任意四个量时,便可求出其余两个未知量。

应当指出,由于存在相对运动,所以不同瞬时,动系上与动点相重合的那一点即牵连点,在动系上的位置也随之而变化的。

(四)点的加速度合成定理动点的加速度合成与牵连运动的性质有关,当牵连运动为平动或转动时,动点的加速度合成定理如下:牵连运动为平动:aa =ae+ar牵连运动为转动:aa =ae+ar+ak式中 ak 称为科氏加速度。

它是由于牵连运动与相对运动相互影响而产生的。

理论力学8—点的合成运动

理论力学8—点的合成运动

(2) 应用速度合成定理时,可利用速度平行四边形中的 几何关系解出未知数。也可以采用投影法:即等式左 右两边同时对某一轴进行投影,投影的结果相等。
7.2 点的速度合成定理
通常选动点和动系主要有以下几种情况: 1. 有一个很明显的动点,在题中很容易发现;
2. 有一个不变的接触点,可选该点为动点;
3. 没有不变的接触点,此时应选相对轨迹容易确 定的点为动点; 4. 必须选某点为动点,而动系要取两次; 5. 根据题意,必须取两次动点和动系; 6. 两个不相关的动点,可根据题意来确定;
=ωt, 已知:r,相对速度v,
求:点M的绝对运动方程。
t0
0。
解:
动点:M 点 动 系 : O x y
相对运动方程
OO x O M cos 1 1 O y M sin 1
代入
vt r
=ωt, 已知:r,相对速度v,
求:点M的绝对运动方程。
vt x r 1 cos r y r sin vt r
第 7 章
点的合成运动
8.1 相对运动· 牵连运动· 绝对运动
8.2 点的速度合成定理
8.3 点的加速度合成定理
7.1 相对运动· 牵连运动· 绝对运动
一、方法及思想起源
运动合成的思想我们 大家都很熟悉,比如说右 边直升飞机螺旋桨端的P 点,其运动就可以分解为: “随螺旋桨一起相对飞机 机身的运动”和“随机身 一起在空中的移动”。你 们可以试着点击一下图片, 看看运动合成的情况。
A
y`
转轮
x
现在我们可以这样陈述:动点A相对于坐标架xoy的运动(螺旋 线),可以分解为动点相对于坐标架x`oy`的运动(直线运动)和坐 标架x`oy`相对于坐标架xoy的运动(定轴转动)。

07点的合成运动--速度合成

07点的合成运动--速度合成
所以va ve vr
三、点的速度合成定理:
动点在某瞬时的绝对速度等于它在该瞬时的牵连速度与相对速度的矢
量和。
va
ve
ቤተ መጻሕፍቲ ባይዱr
大小 ? 方向 ?




只要知道六个量中的四个 就能求出其余变量
求牵连速度
例7-3 急回机构的曲柄OA以匀角速度ω绕固定轴O转
动, 滑块在摇杆O1B上滑动并带动摇杆绕固定轴 O1摆 动。OA=r, OO1=l, 求当曲柄在水平位置时摇杆的角速 度ω1 。
牵 连 点 相 对 于 定 系 的 矢 径 : r r1r r1= r r'r rO'x'i'y'j'z'k'r rO' 牵 di连 'x速 'd 度 j'vy e' (d 认 k'为 z'牵 +连 dr rO 点 ' 在 动 系 中 的 坐 标 不 变 , 即 x',y',z' 不 变 ) dt dt dt dt
v r 1 2 v c o s 3 0 o 1 7 .3 2 ( m /s )
(2) 求A相对于B的速度,以A为动点,动系固连于B艇。
ve2O A50v5m/s 北
va2 10m/s
v r2v e2 2 v r2 2 1 1 .2 m /s
R
B
tanve2 5 0.5
ve2 Φ=30°
va2 10
相对速度
vr (ar )
动点相对于动系的运动速度
牵连速度
ve (ae )
动系上与动点重合的点
某瞬时, 牵连点相对于定系的速度

第9章 点的合成运动速度和加速度

第9章 点的合成运动速度和加速度

y
ω
ϕ
M
理论力学电子教程
第九章 点的合成运动
例9-3说明动点、动系及绝对运动、牵连运动和相对运动。 说明动点、动系及绝对运动、牵连运动和相对运动。 动和相对运动
ve
x′
M
y ′ va
O
v
ω
vr
ω
M
(a)
( b)
理论力学电子教程
第九章 点的合成运动
绝对轨迹, 牵连轨迹, 相对轨迹; 绝对轨迹 牵连轨迹 相对轨迹 绝对速度, 牵连速度, 相对速度; 绝对速度 牵连速度 相对速度 (
d 2 z′ a rz ′ = 2 dt
牵连运动:在某一瞬时与动点 重合而与动坐标系固结 牵连运动:在某一瞬时与动点M重合而与动坐标系固结 在一起的点M 对于静坐标系的轨迹为牵连运动的轨迹 对于静坐标系的轨迹为牵连运动的轨迹。 在一起的点 ‘对于静坐标系的轨迹为牵连运动的轨迹。 在某一瞬时与动点M重合的点 相对于静坐标系的速 在某一瞬时与动点 重合的点M ‘相对于静坐标系的速 重合的点 度和加速度, 称为动点M 在这一瞬时的牵连速度 牵连速度和 度和加速度, 称为动点 在这一瞬时的牵连速度和牵连加 称为牵连点 速度。 称为牵连点。 速度。M ‘称为牵连点。
理论力学电子教程
第九章 点的合成运动
点的复合运动 — 速度分析例子
思考:如果动点是顶杆上的A点,动系与凸轮固结,试对 动点进行速度分析,画出速度图。
理论力学电子教程
第九章 点的合成运动
第二节 点的速度合成定理
本节主要研究点的绝对速度、牵连速度、 本节主要研究点的绝对速度、牵连速度、相对速度三者 之间的关系 r r r
动点: 动点:AB杆上A点 动系: 动系:固结于偏心凸轮C上 静系: 静系:固结在地面上

理论力学8—点的合成运动2分解

理论力学8—点的合成运动2分解

(2) 应用速度合成定理时,可利用速度平行四边形中的 几何关系解出未知数。也可以采用投影法:即等式左 右两边同时对某一轴进行投影,投影的结果相等。
8.2 点的速度合成定理
通常选动点和动系主要有以下几种情况: 1. 有一个很明显的动点,在题中很容易发现;
2. 有一个不变的接触点,可选该点为动点;
ae 2 ve1

o
M1
ae1
o
ve1 (l r ) ae1 (l r ) 2
2 2
ve 2 l r
ae 2 l 2 r 2 2
重点要弄清楚牵 连点的概念
8.2 点的速度合成定理
rM rO r
r = xi yj zk
8.1 相对运动· 牵连运动· 绝对运动
习惯上把固定在地球上的坐标系称为 定参考系 , 以oxy坐标系表示;固定在其它相对于地球运动的参考 体上的坐标系称为动参考系,以o'x'y'坐标系表示。 用点的合成运动理论分析点的运动时,必须选定两 个参考系,区分三种运动:
(1) 动点相对于定参考系的运动,称为绝对运动;
第 8 章
点的合成运动
8.1 相对运动· 牵连运动· 绝对运动
8.2 点的速度合成定理
8.3 点的加速度合成定理
在不同的参考系中,对于同一动点,其运动方 程、速度和加速度是不相同的,这就是运动的 相对性。许多力学问题中,常常需要研究同一 点在不同参考系中的速度、加速度的相互关系。
8.1 相对运动· 牵连运动· 绝对运动
z'
k' j'
y'
i'
x'
O' y

天津大学理论力学课件运动学3点的合成运动

天津大学理论力学课件运动学3点的合成运动
M点牵连速度ve是动系(摇杆OA)上与M点位置重合 的那个几何点的速度,由于摇杆OA 绕点O定轴转动, 故ve 垂直于杆OA。
再如,直管OB以匀角速度绕定轴O转动,小 球M以速度u在直管OB中作相对的匀速直线运 动,如图示。将动坐标系固结在OB管上,以 小球M为动点。随着动点M的运动,牵连点在 动坐标系中的位置在相应改变。设小球在t1、 t2瞬时分别到达M1、M2位置,
➢若选凸轮上的点(例如与A重合之点)为 动点,而动坐标系与AB杆固结,这样,相对
运动轨迹不仅难以确定,而且其曲率半径未 知。因而相对运动轨迹变得十分复杂,这将 导致求解(特别是求加速度)的复杂性。
第三节 牵连运动为平移时,点的加速度 合成定理
➢动点的绝对加速度、相对加速度和牵连加速度
绝对加速度aa:动点相对于静坐标系运动的加速度 相对加速度ar:动点相对于动坐标系运动的加速度
在任意瞬时,只有牵连点的运动能够给动点 以直接的影响。为此,定义某瞬时,与动点 相重合的动坐标系上的点(牵连点)相对于 静坐标系运动的速度称为动点的牵连速度
下图中,动坐标系OA上各点的速度大小不一 样
M点绝对速度va沿着绝对运动轨迹(半圆弧)在点M 处的切线方向,即va垂直于点M与圆心的连线; M点相对速度vr沿着动点M与动系(摇杆OA)的相对 运动轨迹的切线方向,即沿着OA上的滑槽方向;
EF 相接触,在两者接触处套上一小环 M,当 BC 杆
运动时,小环 M 同时在 BC、EF 杆上滑动。设曲柄 AB=CD=r,连杆 BC=AD=l,若曲柄转至图示角位 置时的角速度为,角加速度为,试求小环 M 的
加速度。
解:
动点:小环M
动系:固连在连杆BC上
静系:固连在地面上
绝对运动是沿 EF 的直线运动。aa 方向已知,沿 EF;

《理论力学》第三章点的合成运动(三)

《理论力学》第三章点的合成运动(三)
求:摆杆O1B角速度1
解:A-动点,O1B-动系,基座-静系。
绝对速度va = r
相对速度vr = ? 牵连速度ve = ?
由速度合成定理 va= vr+ ve
sin
r
r 2 l
2
,ve
va
sin

r 2
r2 l2
又ve
O1
A1
,1

ve O1 A

1 r 2 l2
A
cR

O

u
x

r 2
r 2 l2

r
r
2
2
l
2


[例] 圆盘凸轮机构
已知:OC=e , R 3e , (匀角速度)
图示瞬时, OCCA 且 O,A,B三点共线。 求:从动杆AB的速度。
解:动点A,动系-圆盘, 静系-基座。 绝对速度 va = ? 待求,方向//AB 相对速度 vr = ? 未知,方向CA
例图示平面机构,已知:OA=r,0为常数,BC=DE, BD=CE=L,求:图示位置,杆BD的角速度和角加速度。
解: 动点:A点(OA杆)
动系:BC杆
va ve vr
D
E
大小: 方向:
??
B
600 A
vr
300 C
0 O
根据速度合成定理 va ve vr va
ve
做出速度平行四边形, 如图示
E
投至y轴:
0 O aa
aa ae
si
n (
300 ae n aa aen ) sin
sin 60 0
sin 30 0

理论力学第7章分析解析

理论力学第7章分析解析

解: 1.运动分析:
动点:滑块A ;
动系:固连于杆BC上;
绝对运动:以O为圆心的圆周运动; 相对运动:滑块A在杆BC上的直线运动;
牵连运动:BC的平移。
2.速度分析
va ve vr
? √ √
大小:rωO ? 方向:√
vr ve va rO
BD
ve rO BD l
ωt
绝对运动方程: vt vt x x cos y sin r 1 cos cos ωt r sin sin ωt r r
vt vt y x sin y cos r 1 cos sin ωt r sin cos ωt r r
§ 7-2 点的速度合成定理
例:小球在金属丝上的运动
绝对运动
M'
相对运动
M2
va ve
M1
牵连点的运动
z
vr
M y
x
O
点的速度合成定理
动点在某瞬时的绝对速度等于它在该瞬时 的牵连速度与相对速度的矢量和
va ve vr
例7-3 已知:刨床的急回机构如图所示。曲柄OA的一端A与滑块 用铰链连接。当曲柄OA以匀角速度ω绕固定轴O转动时, 滑块在摇杆O1B上滑动,并带动杆O1B绕定轴O1摆动。设曲 柄长为OA=r,两轴间距离OO1=l。 求:曲柄在水平位置时摇杆的 角速度 1 。
(3)机构传动,传动特点是在一个刚体上存在 一个不变的接触点,相对于另一个刚体运动。 例如: 导杆滑块机构 —— 滑块为动点, 动系固结于导杆; 凸轮挺杆机构 —— 杆上与凸轮接触点为动点, 动系固结于凸轮; 摇杆滑道机构 —— 滑道中的点为动点, 摇杆为动系。 (4)特殊问题,特点是相接触两个物体的接触 点位置都随时间变化,此时,这两个物体的接触 点都不宜选为动点,应选择满足前述的选择原则 的非接触点为动点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8-4 点的加速度合成定理
三种加速度(相对于三种运动,瞬时量)绝对加速度动点相对静系运动的加速度相对加速度动点相对动系运动的加速度牵连加速度牵连点的加速度8-4点的加速度合成定理
a a r a e a
动点--M 点
定系--OXYZ
动系--O ˊXˊYˊZˊ
牵连点—动系O ˊXˊYˊZˊ上M 点
M O r r r ''
=+r x i y j z k '''''''
=++为常矢量,,其中考虑到
考虑到则
M a O dr v r x i y j z k x i y j z k dt '''''''''''''
==++++++e
O O e
dv dv a a dt dt '
'===r r
r dv dv a dt dt
==
点的加速度合成定理—当牵连运动为平动时,动点在某瞬时的绝对加速度等于它在该瞬时的牵连加速度与相对加速度的矢量和。

22222
22222o M a d r d r d x d y d z a i j k dt dt dt dt dt '''''''==+++a e r a a a =+
上式中每一个矢量都有大小和方向两个要素,因此上式总共包含有12个要素,其中若仅有两个要素是未知的,则此矢量式可解。

由于加速度包括沿轨迹切线方向的切向加速度和沿主法线方向的法向加速度
两个分量,所以在最一般的情况下
练习1凸轮在水平面上向右作减速运动,如图所示。

设凸轮半
v a
径为R,图示瞬时的速度和加速度分别为和。

求杆AB在图示位置时的加速度。

解:取动点和动系
动点:顶杆AB上的A点
动系:固结凸轮上的参考系
绝对运动:铅垂方向直线运动
相对运动:半圆周运动
牵连运动:水平直线平移
8
该瞬时杆AB 的速度方向向上
练习1—速度分析
绝对速度:大小未知,方向沿杆AB 向上牵连速度:,方向水平向右相对速度:大小未知,方向沿凸轮圆周的切线根据速度合成定理ϕ
ϕsin sin e r v
v v ==a v e v r v e v v =
练习1—加速度分析
绝对加速度:大小未知,方向沿直线AB 牵连加速度:,沿水平方向相对加速度法向分量:,沿着,指向半圆板圆心相对加速度切向分量:大小未知,垂直于,假设指向右下
a a e a e a a OA OA O。

相关文档
最新文档