发酵工程总结

合集下载

发酵工程知识点总结归纳

发酵工程知识点总结归纳

发酵工程知识点总结归纳一、发酵工程概述1. 发酵工程的定义发酵工程是一门研究微生物、酶等生物催化剂在工业生产中广泛应用的工程学科。

2. 发酵工程的历史发酵工程的历史可以追溯到几千年前,最早的酿酒技术可以追溯到古代民族。

随着人类对微生物的认识和技术的发展,发酵工程逐渐成为一门系统的学科。

3. 发酵工程的应用领域发酵工程广泛应用于食品、饮料、医药、生物制药、环保等领域,对人类的生活和健康有着重要影响。

二、发酵过程及机理1. 发酵过程发酵过程是利用微生物或酶对有机物进行生物催化反应,产生有机产物或能量的过程。

发酵过程通常包括菌种培养、发酵产物的分离提纯等步骤。

2. 发酵机理发酵的基本机理包括微生物的生长和代谢过程,包括物质的代谢途径、酶的作用、生理生化特性等。

三、发酵工程中的微生物1. 发酵微生物的分类发酵微生物包括细菌、真菌、酵母等。

不同的微生物在发酵过程中起到不同的作用。

2. 发酵微生物的培养发酵微生物的培养包括培养基的配制、发酵罐的设计等环节,培养条件对微生物的生长和代谢具有重要影响。

3. 发酵微生物的选育发酵工程中常用的微生物包括大肠杆菌、酵母菌等,针对不同的产品需要选择适合的微生物用于发酵生产。

四、发酵工程中的酶1. 酶的分类酶是生物催化剂,可以促进化学反应的进行。

按照其作用方式可以分为氧化酶、还原酶、水解酶等。

2. 酶的应用酶在发酵工程中有着广泛的应用,可以用于生产食品、医药、生物燃料等产品。

3. 酶的工程化酶的工程化包括酶的产生、提纯、改良等步骤,使其更好地适用于实际生产。

五、发酵工程中的设备1. 发酵罐发酵罐是用于放置和滋生微生物的设备,包括灭菌、通气、控温等功能。

2. 排气系统排气系统可以有效地排除产生的二氧化碳和其他代谢产物,以保证发酵过程的正常进行。

3. 分离设备分离设备包括离心机、膜分离等,用于分离提纯发酵产物。

六、发酵工程中的工艺控制1. 发酵条件的控制发酵过程中需要控制pH、温度、氧气供应等参数,以保证微生物的生长和产物的产生。

发酵工程实验报告总结

发酵工程实验报告总结

发酵工程实验报告总结发酵工程实验是一项非常重要且广泛应用的实验,通过实验,我们可以了解到发酵过程中的微生物生长和代谢规律,提高发酵过程的效率和产物质量。

本次实验主要涉及到发酵过程中的控制变量,发酵过程中微生物的生长和代谢规律的研究以及发酵过程中产物的分析等内容。

通过本次实验,我了解到了发酵过程中的一些基本原理和技术,对发酵工程有了更加深入的认识。

在实验中,我们首先进行了菌种的培养和优选。

通过实验,我们了解到菌种的选择和培养过程对发酵过程中的微生物生长和产物质量具有重要的影响。

通过对不同菌种的筛选和培养条件的优化,我们可以选择到合适的菌种,并使其生长状况良好,提高发酵过程的效率。

在实验中,我们还进行了发酵过程的控制变量的研究。

通过对发酵过程中温度、pH值、氧气供应等因素的控制,我们可以调节微生物的生长速度和产物的合成效率。

实验结果表明,控制变量对发酵过程中的微生物生长和产物质量具有明显的影响。

因此,合理地控制发酵过程中的各项参数是提高发酵效率和产物质量的关键。

在实验中,我们还对发酵过程中微生物的生长和代谢规律进行了研究。

通过对微生物数量、生物量、细胞代谢产物等指标的测定和分析,我们可以了解到微生物在不同生长阶段的代谢特点和变化规律。

实验结果表明,微生物生长和代谢过程中有明显的生长阶段和代谢阶段的变化,我们可以根据这些变化规律来调节发酵过程中的控制变量,提高发酵效率。

最后,在实验中,我们还对发酵过程中产物的分析进行了研究。

通过对发酵产物的组成、含量、纯度等指标的分析和测定,我们可以评估发酵过程的效果和产物质量。

实验结果表明,发酵产物的组成和含量与微生物的生长和代谢过程密切相关,通过调节好发酵过程中的控制变量和选择合适的菌种,我们可以获得高质量的发酵产物。

综上所述,发酵工程实验是一项非常重要和有意义的实验,通过实验,我们可以了解到发酵过程中的微生物生长和代谢规律,探索调节发酵过程的控制变量以提高发酵效率和产物质量的方法。

发酵工程重点总结

发酵工程重点总结

第一章发酵:通过微生物的生长繁殖和代谢活动,产生和积累人们所需产品的生物反应过程发酵工程:利用微生物(或动植物细胞)的特定性状,通过现代工程技术,在生物反应器中生产有用物质的技术体系。

该技术体系主要包括菌种选育与保藏、菌种扩大生产、代谢产物的生物合成与分离纯化制备等技术。

发酵工业的特点?(7点)1.发酵过程一般是在常温常压下进行的生化反应,反应安全,要求条件较简单。

2.可用较廉价原料生产较高价值产品。

3.反应专一性强。

4.能够专一性地和高度选择性地对某些较为复杂的化合物进行特定部位的生物转化修饰。

5.发酵过程中对杂菌污染的防治至关重要。

6.菌种是关键。

7.发酵生产不受地理、气候、季节等自然条件限制。

工业发酵的类型?厌氧发酵1. 按微生物对氧的不同需求需氧发酵兼性厌氧发酵液体发酵(包括液体深层发酵)2.按培养基的物理性状浅盘固体发酵深层固体发酵(机械通风制曲)分批发酵按发酵工艺流程补料分批发酵单级恒化器连续发酵连续发酵多级恒化器连续发酵带有细胞再循环的单级恒化器连续发酵发酵生产的基本工业流程?1. 用作种子扩大培养及发酵生产的各种培养基的配制;2. 培养基、发酵罐及其附属设备的消毒灭菌;3. 扩大培养出有活性的适量纯种,以一定比例接种入发酵罐中;4. 控制最适发酵条件使微生物生长并形成大量的代谢产物;5. 将产物提取并精制,以得到合格的产品;6. 回收或处理发酵过程中所产生的三废物质。

工业发酵的过程的工艺流程图?第二章1、发酵工业菌种分离筛选的一般流程?调查研究(包括资料查阅)试验方案设计含微生物样品的采集(如何使样品中所含微生物的可能性大?)样品预处理(如何在后续的操作中使这种可能性实现)菌种分离根据目的菌株及其产物特点分选择性分离方法随机分离方法(定向筛选←选择压力) (用筛选方案- 检测系统进行间接分离)富集液体培养固体培养基条件培养(初筛)菌种纯化复筛菌种纯化初步工艺条件摸索再复筛生产性能测试较优菌株1-3株保藏及进一步做生产试验某些必要试验和或作为育种的出发菌株毒性试验等2、菌种选育改良的具体目标。

发酵工程全部知识点总结

发酵工程全部知识点总结

发酵工程全部知识点总结一、发酵工程的基本概念1. 发酵的定义发酵是指利用微生物或其代谢物来改变物质的过程。

主要包括酵母、细菌、真菌等微生物。

2. 发酵工程的定义发酵工程是指利用发酵微生物代谢特性,通过合理调控环境条件,进行微生物发酵过程中的相关技术。

二、发酵微生物1. 酵母酵母是发酵工程中最常用的微生物,广泛应用于酒类、面包、啤酒等食品工业中。

2. 细菌细菌在发酵工程中也有重要的应用,如益生菌、酸奶中的乳酸菌等。

3. 真菌真菌发酵应用广泛,包括酵素生产、抗生素生产、食品添加剂等。

三、发酵工程的基本过程1. 液体发酵液体发酵是将发酵微生物培养在液体培养基中,通过控制培养基成分、通气、温度等条件来进行微生物代谢产物的生产。

2. 固体发酵固体发酵是将发酵微生物培养在固体底物中,通过控制底物成分、湿度、通气等条件来进行微生物代谢产物的生产。

3. 半固体发酵半固体发酵是将发酵微生物培养在半固体底物中,采用液态和固态发酵的优点来进行微生物代谢产物的生产。

四、发酵工程的主要设备和工艺1. 发酵罐发酵罐是发酵工程的主要设备之一,根据不同的发酵工艺和需求,可以采用不同类型的发酵罐。

2. 发酵工艺发酵工艺是指在发酵过程中,针对不同的微生物和产物特性,进行合理的发酵条件控制和操作流程。

3. 发酵控制系统发酵控制系统是指在发酵工程中,通过自动化设备和仪器,实现对发酵条件如温度、pH 值、通气、搅拌等的精确控制。

五、发酵工程的应用范围1. 食品工业发酵工程在食品工业中应用广泛,如酿造啤酒、制作酸奶、发酵面包、制作酱油等。

2. 医药工业发酵工程在医药工业中应用广泛,如生产抗生素、激素、酶制剂等。

3. 燃料工业发酵工程在燃料工业中也有应用,如生物乙醇、生物柴油等。

4. 化学工业发酵工程在化学工业中也有应用,如生产乳酸、丙酮、丙二醇等。

六、发酵工程的发展趋势1. 发酵工程技术的进步随着科技的不断进步,发酵工程的技术也在不断提高,发酵设备和工艺不断更新。

发酵工程知识点总结

发酵工程知识点总结

➢名词解释(每个3分)➢填空题➢单项选择题➢计算题(2题)➢简答题(4-5题)➢分析题(1-2题)➢论述或问答题(1题)第一章1发酵和发酵工程的概念发酵狭义:利用微生物在有氧或无氧条件下的生命活动,来制备微生物菌体或其代谢产物的过程。

广义:凡是培养细胞(动、植物和微生物细胞)来制得产品的过程。

发酵工程研究发酵工业生产过程中,各个单元操作的工艺和设备的一门科学2、发酵工程研究的内容※发酵工业用生产菌种的选育:◆自然选育◆诱变育种◆基因工程育种※发酵条件的优化与控制※生物反应器的设计※发酵产物的分离、提取和精制3、发酵类型1 按发酵产品的类型划分2 按发酵工艺是否需氧划分※厌氧发酵:如酒类发酵、酒精发酵、丙酮丁醇发酵、乳酸发酵和甲烷发酵※通风发酵:如酵母菌生产、抗生素发酵、有机酸发酵、氨基酸发酵和酶制剂生产等3 按发酵工艺培养基的状态划分※固态发酵:主要应用于传统酿造业。

※液态发酵:,是目前发酵工业所采用的主要工艺。

4、发酵工艺培养方法发酵工艺培养方法有:固态发酵工艺和液态发酵工艺1固态发酵工艺※固态薄层发酵※固态厚层(通风)发酵2 液态发酵工艺※液态表面发酵(浅盘发酵)工艺※液态深层通风发酵(Submerged fermentation)液态深层通风发酵是指在无菌条件下,在液体培养基内部进行微生物培养,获得产品的过程。

它包括向发酵罐中通入大量无菌空气、搅拌使空气均匀、培养基灭菌和无菌接种。

液态深层通风发酵是发酵工业使用的主要工艺。

5、分批发酵,分批补料发酵分批发酵(batch-process):在生物反应器内投入限量培养基后,接入微生物菌种进行培养,完成一个生长周期,获得产品的微生物培养方法。

是目前传统发酵工业所采用的主要发酵形式。

在分批补料发酵:发酵的开始投入一定量的培养基,在发酵过程的适当时期,开始连续补加碳或(和)氮源或(和)其他必需基质,直至发酵液体积达到发酵罐最大操作容积后,将发酵液一次放出,这种操作方式称为补料分批发酵。

高中发酵工程的知识点总结

高中发酵工程的知识点总结

高中发酵工程的知识点总结一、发酵工程的基本概念1. 发酵工程的定义发酵工程是以微生物或酶等生物催化剂为基础,通过控制合适的环境条件,利用微生物或酶的代谢作用,进行有选择地生产物质或提取有用产品的工程技术。

2. 发酵工程的原理发酵工程利用生物催化剂在适宜的温度、pH、氧气供应等条件下对原料进行代谢作用,使其产生有用的化学产物。

发酵过程分为有氧发酵和无氧发酵,有氧发酵是指微生物在充分供氧的情况下进行代谢作用,而无氧发酵则是微生物在缺氧条件下进行代谢作用。

3. 发酵工程的应用发酵工程在食品、医药、酒类、饲料、化工等领域都有重要的应用,可以生产出酒精、乳酸、维生素、抗生素、酶等多种产品。

二、微生物学基础1. 微生物的分类微生物是一类极小的生物体,包括细菌、真菌、酵母菌、病毒等。

其中,细菌可分为革兰氏阳性菌和革兰氏阴性菌,酵母菌主要是酵母菌科的酵母菌,真菌包括霉菌和酵母菌。

2. 微生物的生长特性微生物的生长需要适宜的温度、pH值、氧气供应等条件,不同微生物的生长特性有所不同。

典型的微生物生长曲线包括潜伏期、对数生长期和平稳期。

3. 微生物的代谢特点微生物的代谢分为呼吸代谢和发酵代谢两种形式。

呼吸代谢需要有氧气,产生CO2和H2O,而发酵代谢不需要氧气,产生乳酸、酒精、醋酸等产物。

4. 微生物的培养方法微生物的培养方法包括液体培养和固体培养两种形式,培养基的选择对微生物的生长有重要影响。

三、发酵工程的工艺流程1. 发酵工程的基本流程发酵工程的基本流程包括发酵菌种的培养和保存、发酵罐的设计和运行、发酵过程的控制和调节、产品的分离和提取等步骤。

2. 发酵工程的发酵罐发酵罐是进行微生物发酵的设备,按照不同的设计要求可分为批式发酵罐和连续式发酵罐。

3. 发酵工程的发酵菌种发酵菌种是进行发酵的微生物,可以是细菌、酵母菌、真菌等。

合适的发酵菌种是发酵工程成功的关键。

4. 发酵工程的发酵过程控制发酵过程的控制包括温度、pH值、氧气供应、营养物质的添加等方面,需要根据不同的菌种和发酵产品进行调节。

发酵工程原理知识点总结

发酵工程原理知识点总结

发酵工程原理知识点总结发酵工程是一门研究微生物在发酵过程中生长、代谢和产物形成的工程学科。

其研究内容包括发酵微生物的筛选与培养、优化发酵条件、发酵过程监控与控制、发酵产物提取纯化与分离、罐内动力学和发酵机理等。

以下是发酵工程原理的相关知识点总结:1.发酵微生物的筛选与培养:(1)选材原则:产物多、投资少、筛选简单、培养容易、操纵方便;(2)常用的微生物包括细菌、酵母、霉菌等;(3)需考虑微生物生长的条件,如pH、温度、氧气供应等;(4)历经菌种筛选、单菌菌种的分离和纯化、菌种的贮藏等步骤;2.发酵条件的优化:(1)pH的控制:不同微生物对pH的要求不同,可以通过酸碱控制剂来调节pH;(2)温度的控制:温度是细胞生长和代谢的重要因素,一般通过水浴或发酵罐内加热来实现温度控制;(3)氧气供应的控制:氧气是许多微生物生长和代谢必需的,可以通过氧气流量的调节或增加曝气器的表面积来提供充足的氧气;(4)发酵液的搅拌速度和离心速度:搅拌可增强氧气传递和培养液的混合,离心可实现发酵产物的分离和提纯;3.发酵过程监控与控制:(1)发酵过程中需要监测的重要指标包括微生物生长速率、酸碱度、氧气浓度、温度、发酵产物浓度等;(2)监控手段有离线分析法、在线分析法和非破坏性检测法;(3)通过对监测指标的控制,实现对发酵过程的控制与优化,如调节酸碱度、温度以及添加营养物质来提高产量和产物质量;4.发酵产物的提取纯化与分离:(1)通过离心和过滤等物理方法,去除微生物和固体颗粒;(2)通过萃取、渗析、蒸馏、结晶等方法来提纯产物;(3)产物的纯化和分离过程需要进行监测和控制,以确保产物的纯度和产量;5.罐内动力学和发酵机理:(1)罐内动力学研究微生物的生长和代谢过程,了解微生物在不同发酵过程中的特性;(2)通过建立数学模型,可以预测发酵过程中微生物产物的生成速率和浓度变化;(3)对发酵机理的研究有助于进一步优化发酵条件,提高产物的产量和质量;以上是发酵工程原理的一些主要知识点总结。

发酵工程期末考点总结

发酵工程期末考点总结

第一章绪论狭义“发酵”的定义:在生物化学或生理学上发酵是指微生物在无氧条件下,分解各种有机物质产生能量的一种方式,或者更严格地说,发酵是以有机物作为电子受体的氧化还原产能反应。

广义“发酵”的定义:工业上所称的发酵是泛指利用生物细胞制造某些产品或净化环境的过程,它包括厌氧培养的生产过程,如酒精、丙酮丁醇、乳酸等,以及通气(有氧)培养的生产过程,如抗生素、氨基酸、酶制剂等的生产。

产品即有细胞代谢产物,也包括菌体细胞、酶等。

“发酵工程”的定义:应用微生物学等相关的自然科学以及工程学原理,利用微生物等生物细胞进行酶促转化,将原料转化成产品或提供社会性服务的一门科学。

发酵工程的特点:1)常温常压下进行的生物化学反应,反应安全,要求条件也比较简单。

2)发酵所用的原料简单粗放3)反应的专一性强,因而可以得到较为单一的代谢产物4)发酵过程中对杂菌污染的防治至关重要5)可以产生比较复杂的高分子化合物。

6)微生物菌种是进行发酵的根本因素7)工业发酵与其他工业相比,投资少,见效快,并可以取得显著的经济效益。

发酵过程的组成:繁殖种子和发酵生产所用的培养基组份确定;培养基、发酵罐及其附属设备的灭菌;培养出有活性、适量的纯种,接种入生产容器中;微生物在最适合于产物生长的条件下,在发酵罐中生长;产物提取和精制;过程中排出的废弃物的处理。

发酵产品的类型: 菌体、代谢产物、酶初级代谢产物:氨基酸、核苷酸、蛋白质、核酸、脂类和碳水化合物等。

次级代谢产物:有些微生物的稳定期培养物中所含有的化合物,并不在营养期时出现,而且未见到对细胞代谢功能有明显的影响。

例如,抗生素。

生物转化过程定义:生物细胞或其产生的酶能将一种化合物转化成化学结构相似,但在经济上更有价值的化合物。

特点:反应条件温和(30-40℃,常压,水相反应)反应选择性高反应产物纯度高(包括光学纯)反应底物简单便宜(一般无毒、不易燃)反应收率主要取决于菌种的性能设备简单第二章:生产菌种的来源微生物的特性及工业微生物的要求:1)微生物的特性:体积小、面积大;吸收快、转化快;生长旺、繁殖快;易变异、适应性强;种类多、分布广2)工业化菌种的要求:能够利用廉价的原料,有关合成产物的途径尽可能地简单,或者说菌种改造的可操作性要强遗传性能要相对稳定不易感染它种微生物或噬菌体产生菌及其产物的毒性必须考虑生产特性要符合工艺要求菌种在发酵过程中不产生或少产生与目标产品性质相近的副产物和其它产物。

发酵工程工作总结

发酵工程工作总结

发酵工程工作总结
发酵工程是一门涉及微生物、生物化学、工程学等多学科知识的综合性学科,
其应用范围涉及食品、医药、化工等多个领域。

在过去的一段时间里,我有幸参与了发酵工程的工作,并在实践中积累了一些经验和感悟,现在我将对这段经历进行总结和分享。

首先,发酵工程的工作需要对微生物的生长规律和代谢途径有深入的了解。


实际操作中,我们需要根据不同微生物的特性,选择合适的培养基、培养条件和发酵工艺参数,以保证微生物能够获得最佳的生长环境,从而产生出高效的发酵产物。

在这个过程中,对微生物的生理特性和代谢途径的理解是至关重要的。

其次,发酵工程的工作需要对发酵工艺有深入的了解和熟练的操作技能。

在实
际操作中,我们需要掌握各种发酵设备的使用方法,了解不同发酵工艺的优缺点,并且能够根据实际情况进行灵活调整和优化。

同时,我们还需要对发酵过程中可能出现的问题有预见性,并且能够迅速有效地解决这些问题,以保证整个发酵过程的顺利进行。

最后,发酵工程的工作需要具备团队合作和沟通能力。

在实际工作中,我们需
要与不同领域的专业人员进行密切的合作,共同解决实际问题。

而且,我们还需要与同事之间进行有效的沟通和协调,以保证整个团队的工作能够有序进行。

总的来说,发酵工程是一项综合性强、应用广泛的工作,需要我们具备多方面
的知识和能力。

在未来的工作中,我将继续努力学习,不断提升自己的专业素养,以更好地为发酵工程的发展做出贡献。

发酵工程知识点总结

发酵工程知识点总结

发酵工程知识点总结一、发酵工程的基本概念发酵工程是利用微生物、酶等生物体对有机物进行代谢的技术和工艺。

通过对微生物的培养、发酵过程的调控和产物的提取等一系列工艺步骤,实现对特定有机物的高效生产。

发酵工程是一门综合国家的学科,涉及生物学、化学工程、微生物学、工艺学等多个学科的知识。

二、发酵工程的发展历史发酵工程的起源可以追溯到几千年前,人类早在古代就已经开始利用自然界中的微生物进行发酵生产,如制酒、酿酒、发酵豆腐等工艺。

随着科学技术的发展,特别是现代微生物学、生物技术和生物化工技术的兴起,发酵工程逐渐成为一门独立的学科,并得到了迅速的发展。

三、发酵工程的基本原理发酵过程是一种微生物或酶对有机物进行代谢的过程。

微生物在合适的温度、pH值、氧气供应等条件下,利用有机物作为碳源进行代谢,产生新的有机化合物。

该过程分为静态发酵和动态发酵两种方式。

在发酵工程中,需要控制好微生物的生长条件,确保发酵产物的质量和产量。

四、发酵工程的主要微生物种类发酵工程中常用的微生物包括细菌、真菌、酵母等。

常见的细菌有大肠杆菌、乳酸菌等,真菌有曲霉、酵母菌等。

不同的微生物对有机物的代谢方式有所差异,因此在不同的发酵工程中需要选择合适的微生物种类。

五、发酵工程的工艺流程发酵工程的工艺流程主要包括微生物的培养、发酵过程的控制和产物的提取三个阶段。

微生物的培养是指通过预处理、接种和发酵基质制备等步骤,使得微生物得到最佳的生长繁殖条件。

发酵过程的控制是指通过对温度、pH值、氧气供应等因素的调控,使得微生物产生出期望的产物。

产物的提取则是指将发酵产物从培养基中分离出来,并经过精制处理得到最终的产品。

六、发酵工程中的发酵罐发酵罐是发酵工程中最为重要的设备之一,它是用来进行微生物培养和发酵过程控制的容器。

根据不同的发酵工艺要求,发酵罐可以分为批次式发酵罐、连续式发酵罐等多种类型。

在发酵罐中,需要控制好温度、pH值、氧气供应等因素,以确保微生物的生长和代谢过程。

高三生物发酵工程知识点总结

高三生物发酵工程知识点总结

高三生物发酵工程知识点总结在高三的生物学课程中,我们学习了许多有关生物发酵工程的知识。

发酵工程是一门将微生物和有机物结合起来产生有用产物的科学,涉及到了微生物学、生物化学、和工程学的多个领域。

本文将总结高三生物学中所学习的一些发酵工程的重要知识点。

1. 发酵工程的定义和应用发酵工程是利用微生物进行发酵生产的一门科学。

它可以用于食品工业、制药工业和环境工程等领域。

在食品工业中,我们通常利用微生物发酵来制作酸奶、啤酒、面包等食品。

在制药工业中,发酵可以用来生产抗生素、维生素和其他药物。

在环境工程中,发酵是处理废物和产生可再生能源的重要方法。

2. 发酵过程的基本原理发酵是一种有氧或无氧条件下的微生物代谢过程。

它通常分为三个阶段:生长阶段、发酵阶段和产物分离和纯化。

在生长阶段,微生物需要合适的温度、pH值和营养物质来进行生长。

在发酵阶段,微生物利用底物进行代谢反应,并产生所需的产物。

在产物分离和纯化阶段,通过一系列的分离和纯化步骤,得到纯净的产物。

3. 杀菌技术在发酵工程中,杀菌是一项重要的步骤。

杀菌可以去除微生物中的杂质和竞争微生物,以确保发酵过程的顺利进行。

常见的杀菌方法包括高温杀菌、紫外线辐射和滤过。

4. 发酵过程监控发酵过程的监控对于产物的得率和品质至关重要。

常用的发酵过程监控方法包括测量发酵生物体积、氧气和二氧化碳浓度、底物浓度以及产物浓度。

这些监控手段可以帮助工程师调整发酵条件,以达到最佳的产物结果。

5. 常见的发酵工程应用在生活中,我们能够接触到许多发酵工程的应用。

例如,酵母菌发酵是制作面包的基础过程。

当酵母菌在面团中进行发酵时,它们分解葡萄糖,产生二氧化碳气泡,使面团发酵膨胀。

啤酒的制作也是通过酵母菌发酵产生的。

此外,酸奶、味精、红曲米等都是通过发酵工程制造的。

6. 发酵工程的未来发展随着科学技术的进步,发酵工程在未来将有更广阔的发展前景。

例如,通过基因工程技术,可以改良微生物的代谢途径,增强产物产量和质量。

高中生物发酵工程的知识点总结

高中生物发酵工程的知识点总结

高中生物发酵工程的知识点总结高中生物的发酵工程是生物学中的一个重要分支,涉及到多种微生物和酶的使用,是现代生物技术的重要组成部分。

在学习高中生物发酵工程时,需要掌握一些基本的知识点,下面就是一个高中生物发酵工程的知识点总结。

一、发酵工程的概念和分类发酵工程是利用微生物和生物酶对一些物质进行转化的过程。

它主要分为植物发酵工程、微生物发酵工程和动物发酵工程。

其中,微生物发酵工程是最常见的。

二、发酵微生物的分离与培养发酵工程要涉及到微生物的使用,因此分离与培养是非常关键的步骤。

在高中生物实验中,我们可以采用以下步骤进行分离和培养:1. 采样:从自然环境或其他已经进行的发酵过程中取样,可以得到微生物样本。

2. 筛选:将样本分别接种到不同的培养基上进行筛选,选出合适的微生物株。

3. 培养:将筛选出的微生物株进行培养,包括静态和摇床培养。

三、发酵过程参数的调控发酵过程中,有多种参数需要调控,以保证发酵过程的顺利进行,同时也可以提高产品的产量和质量。

1. pH调控:不同微生物对pH的适应范围不同,需要在不同的阶段进行调控。

2. 温度调控:对于不同的微生物来说,有特定的最适生长温度。

3. 氧气含量调控:不同的微生物对氧气含量的需求也不同,需要根据微生物的特性进行调控。

4. 搅拌速度调控:搅拌速度可以影响发酵液的气体传递和混合均匀度,需要根据具体情况进行调控。

4、发酵液的成分在发酵工程中,发酵液的成分非常重要,可以直接影响发酵的效果和产品质量。

1. 碳源:微生物需要碳源来进行生长和转化,常见的碳源包括葡萄糖、淀粉和纤维素等。

2. 氮源:氮源可以影响微生物的生长速率和产物合成,常见的氮源包括氨基酸、尿素和硝酸盐等。

3. 矿物元素:矿物元素对于微生物的生长和代谢也非常重要,常见的矿物元素包括钙、磷和镁等。

4. 其他添加剂:例如表面活性剂、营养补充剂、抗生素等,也可能会对发酵液的成分产生影响。

5、发酵产物的提取发酵产物的提取是整个发酵过程的关键环节之一,涉及到后续生产的成本和产品的质量。

第1章 发酵工程 期末复习知识点总结【新教材】人教版高中生物选择性必修三

第1章  发酵工程 期末复习知识点总结【新教材】人教版高中生物选择性必修三

第1章发酵工程1.1传统发酵技术的应用一、发酵与传统发酵技术1. 发酵: 人们利用微生物, 在适宜的条件下, 将原料通过微生物的代谢转化为人类所需要的产物。

2. 传统发酵食品——腐乳:(1) 原料: 豆腐。

(2) 参与发酵的微生物: 酵母、曲霉和毛霉等, 起主要作用的是毛霉。

(3) 物质变化: 蛋白质小分子的肽和氨基酸。

毛霉是怎样将蛋白质分解成小分子的肽和氨基酸的?提示: 毛霉产生的蛋白酶将蛋白质分解。

3. 传统发酵技术:(1) 概念: 直接利用原材料中天然存在的微生物, 或利用前一次发酵保存下来的面团、卤汁等发酵物中的微生物进行发酵、制作食品的技术。

(2) 特点: 以混合菌种的固体发酵及半固体发酵为主, 通常是家庭式或作坊式的。

4. 下列食品是传统发酵食品的是②③④⑥⑦⑧⑨。

①豆腐②腐乳③酱油④香醋⑤豆油⑥泡菜⑦豆豉⑧馒头⑨米酒⑩豆浆酸奶米饭二、尝试制作传统发酵食品(一) 制作泡菜1. 菌种来源: 植物体表面天然的乳酸菌。

2. 原理: 无氧的情况下, 乳酸菌将葡萄糖分解为乳酸。

反应简式: C 6 H 12 O 6 2C 3 H 6 O 3 (乳酸) +能量。

3. 方法步骤:4. 结果分析与评价:判一判: 结合泡菜的制作原理和过程, 判断下列实验分析的正误:(1) 用水密封泡菜坛可以保证乳酸菌发酵所需要的无氧环境。

(√)(2) 随着发酵时间的延长, 泡菜中乳酸含量逐渐增加, 所以泡菜腌制时间越长越好。

(×)提示: 当乳酸含量为0. 4%~0. 8%时, 泡菜的口味、品质最佳, 如果发酵时间过长, 乳酸含量过高,口味不佳, 还需考虑亚硝酸盐含量的问题。

(3) 制作泡菜时配制的盐水可以直接使用。

(×)提示: 盐水应该煮沸冷却后再使用。

(4) 蔬菜和香辛料不能装满泡菜坛, 只能装八成满。

(√)蔬菜中含有较多的硝酸盐, 试从泡菜的制作过程分析亚硝酸盐产生的原因。

提示: 泡菜是新鲜蔬菜经过乳酸菌等微生物的发酵制作而成的, 蔬菜中的硝酸盐在某些微生物的作用下被还原成亚硝酸盐。

发酵工程原理知识点总结

发酵工程原理知识点总结

发酵工程原理知识点总结1.微生物生长和代谢:发酵工程原理的基础是对微生物生长和代谢过程的深入理解。

微生物生长的关键因素包括温度、pH值、营养物质和氧气的供应等。

在发酵过程中,微生物通过代谢合成或降解有机物质,产生所需的产物或者降解废物。

代谢途径包括糖的发酵、酸的代谢、氨基酸和脂类的合成等。

2.反应器的设计和操作:反应器是发酵工程中最核心的装置,其设计和操作直接影响发酵过程的效果。

常见的反应器类型包括批式反应器、连续流动反应器和离散批式反应器等。

反应器的设计需要考虑气液传质、热量传递、气体液体反应速率等因素。

操作方面,需要控制反应器内的温度、pH值、氧气和营养物质的供应等参数。

3.发酵过程的监测和控制:发酵过程的监测和控制是保证发酵工程运行稳定和高效的关键。

监测包括微生物数量、代谢产物的浓度、营养物质的消耗和废物的产生等方面。

常用的监测方法包括生物量测定、物质浓度测定、环境参数的监测等。

控制方面,需要根据监测结果调整温度、pH值、氧气和营养物质的供应,以维持发酵过程的稳定和高效。

4.发酵工艺的优化:发酵工艺的优化是提高产量和质量的关键。

优化方法包括微生物菌种的选取、培养基组成的优化、发酵条件的优化等。

在微生物菌种选取上,需要考虑产物的需求和微生物的特性。

培养基的组成需要提供充足的营养物质,以满足微生物的生长需求。

发酵条件的优化包括控制温度、pH值、氧气和营养物质的供应等,以最大程度地促进微生物的生长和代谢。

5.发酵工程的应用领域:发酵工程广泛应用于食品、饮料、制药、化工等工业领域。

在食品工业中,发酵工程用于酿造啤酒、酱油、味精等食品。

在制药工业中,发酵工程用于制备抗生素、酶、氨基酸等生物药品。

在化工工业中,发酵工程用于生产有机酸、有机溶剂等化学品。

总之,发酵工程原理涉及微生物的生长和代谢、反应器的设计和操作、发酵过程的监测和控制等方面。

了解和掌握发酵工程原理,可以为工程师在发酵工程中的设计和操作提供理论和实践指导,进一步提高发酵工程的效果和产量。

发酵工程(总结)

发酵工程(总结)

名词解释:⒈诱变育种:利用物理、化学等因素,使微生物DNA上的碱基发生改变,而排列错误的DNA 模版形成异常的遗传信息,造成某些结构变异,导致细胞功能的改变⒉前体:是指加到发酵培养基中的某些化合物,能直接被微生物在生物合成过程中结合到产物分子中去,而其自身的结构并没有多大变化,但是产物的产量却因其加入而有较大的提高。

⒊促进剂:在氨基酸、抗生素、和酶制剂的发酵过程中可在发酵培养基中加进某些对发酵起一定促进作用的物质⒋介质过滤:过滤时用来阻留固体颗粒、渗透液体的多孔隙固体物质。

⒌种子培养:将冷冻干燥管、砂土管中处于休眠状态的工业菌种接入试管斜面活化后,再经摇瓶及种子罐逐级扩大培养而获得一定数量和质量的纯种的过程。

这些纯培养物称为种子⒍发酵热:发酵过程中所产生的热量,叫做发酵热。

Q发酵=Q生物+Q搅拌-Q蒸发-Q辐射⒎微生物工程:是利用微生物为工业大规模生产服务的一门工程技术,它直接建立在微生物工业基础上,随着微生物工业的发展而迅速发展,并与化学工业的新发展相结合⒏发酵动力学:是研究发酵过程中菌体生长,基质消耗,产物生成的动态平衡及其内在规律⒐连续培养:又称连续发酵,是在开放系统中进行的,指以一定的速率向发酵罐内添加新鲜培养基,同时以相同的速度流出培养液,从而使发酵罐内的容量维持恒定,使培养物在近似恒定的状态下生长的培养方法⒑次级代谢:微生物在生长和繁殖过程中合成一些功能不明确的化合物,如抗生素、酶抑制剂、色素等,一般将生成的这些化合物的代谢称为次级代谢。

这些化合物称为次级代谢产物⒒诱变剂:能够提高生物体突变频率的物质⒓菌种退化:菌种的抗生素产生抑菌圈减少,分解菌水解圈减小和生产菌株产量降低的现象⒔自然选育:微生物不经过人工诱变处理,从而自然生长繁殖与菌种保存的过程中选出突变菌株的过程⒕抑制剂:抑制某些代谢途径的进行,同时刺激另一代谢途径,以致可以改变微生物的代谢途径⒖连续灭菌:培养基连续流入灭菌容器内(连消塔),经流入维持罐,一定时间保温后,冷却流入发酵罐⒗分批发酵:在发酵中,营养物和菌种一次加入进行培养,直到结束放出,中间除了空气进入和尾气排出外,与外部没有物料交换。

高二发酵工程的知识点总结

高二发酵工程的知识点总结

高二发酵工程的知识点总结发酵工程是一门涉及生物和工程学科的交叉学科,研究生物质在微生物或酶的作用下产生有用产物的过程。

在高二阶段的学习中,掌握发酵工程的基本知识点对于进一步深入学习和理解发酵工艺具有重要意义。

本文将对高二发酵工程的知识点进行总结。

一、发酵工程的基本概念和原理1. 发酵的定义:发酵是生物体在无氧或微氧条件下通过酶的催化作用将有机物转化为有机酸、醇、酮、酯、酶或其他化合物的过程。

2. 发酵的分类:根据所用微生物的种类和发酵过程的条件,发酵可以分为酒精发酵、乳酸发酵、醋酸发酵、酱油发酵等。

3. 发酵的条件:发酵过程中,需要控制温度、pH值、营养物质和氧气供应等条件,以保持微生物的生长和产酶/产物的最佳状态。

4. 发酵过程的步骤:发酵过程包括菌种接种、培养基制备、发酵液发酵、产物分离和纯化等步骤。

二、常见的发酵工艺1. 酒精发酵:酒精发酵是将糖类物质经过酵母菌的作用转化为乙醇和二氧化碳的过程。

常见的应用包括酿酒、酿造啤酒等。

2. 乳酸发酵:乳酸发酵是将葡萄糖等物质通过乳酸菌转化为乳酸的过程。

常见的应用包括乳制品生产、食品酸化等。

3. 醋酸发酵:醋酸发酵是将酒精通过醋酸菌氧化转化为醋酸的过程。

常见的应用包括醋的生产和调味品的发酵等。

4. 酱油发酵:酱油发酵是将大豆和小麦等原料经过微生物的作用转化为酱油的过程。

常见的应用包括调味品的生产和食品加工等。

三、发酵工程的关键技术1. 良种选育:选择高产高效的微生物菌株,进行培养和改良,以提高发酵产物的质量和产量。

2. 发酵培养基的设计:根据微生物的生长特性和发酵需要,合理设计培养基的组成和比例,为微生物的生长提供适宜的营养环境。

3. 发酵过程的控制:通过控制温度、pH值、氧气供应等参数,调节微生物的生长和代谢,提高产物生成的效率。

4. 发酵产物的提取和纯化:通过物理和化学方法,将发酵产物从发酵液中分离和纯化,以获得高纯度的产品。

四、发酵工程的应用领域1. 食品工业:发酵工程在食品工业中广泛应用,包括酿酒、酿造啤酒、乳制品生产、酱油生产等。

高中生物发酵工程知识点总结

高中生物发酵工程知识点总结

高中生物发酵工程知识点总结
发酵工程是生物工程的一个分支,主要关注微生物的生长、代谢和产物分泌等过程。

以下是高中生物发酵工程的知识点总结:
1. 发酵定义和分类:发酵是指利用微生物对有机物进行代谢,产生特定的有用产物的过程。

常见的发酵分类包括酒精发酵、乳酸发酵、醋酸发酵、葡萄糖酸发酵等。

2. 微生物发酵过程:微生物发酵是指某些微生物在适宜的条件下(温度、pH、氧气浓度等)对有机底物进行代谢,产生有用的产物和能量的过程。

典型的微生物有乳酸菌、酵母菌、大肠杆菌等。

3. 发酵器:发酵器是用于进行微生物发酵的设备。

常用的发酵器有罐式发酵器、塔式发酵器、灵活床式发酵器等。

4. 发酵调控:发酵过程需要控制环境因素来促进微生物的生长和代谢,包括温度、pH、氧气浓度、碳源和氮源等。

5. 发酵产物:发酵产物是指微生物在发酵过程中产生的有用物质。

常见的发酵产物有乳酸、醋酸、酵母、酒精等。

6. 发酵应用:发酵应用广泛,包括生物制药、食品工业、化工工业等领域。


见的应用包括酸奶生产、啤酒酿造、酱油发酵等。

发酵工程总结版

发酵工程总结版

发酵工程期末复习名词解释:1.发酵工程是发酵原理与工程学的结合,是研究生物细胞参与的工艺过程的的原理和科学,是研究利用生物材料生产有用物质服务于人类的综合性科学技术。

2.分批培养: 是指在一个密闭系统内, 投入有限数量的营养物质后接入少量微生物菌种进行培养, 使微生物生长繁殖, 在特定条件下只完成一个生长周期的微生物培养方法。

3.连续培养: 是指以一定的速度向培养系统内添加新鲜培养基, 同时又以相同的速度流出培养液, 从而使培养系统内培养液的量维持恒定, 微生物细胞能在近似恒定状态下生长的发酵方式。

4.补料分批培养: 是指在分批培养过程中, 间歇或连续地补加新鲜培养基的培养方法5.液化: 用α-淀粉酶将淀粉转化为糊精和低聚糖。

6.糖化: 用糖化酶(又称葡萄糖淀粉酶)将糊精和低聚糖转化为葡萄糖7.糊化: 在温水中, 当淀粉颗粒无限膨胀形成均一的粘稠液体的现象, 称为淀粉的糊化。

此时的温度称为糊化温度。

8.老化:分子间已断裂的氢键、糊化淀粉又重新排列形成新的氢键的过程, 也就是复结的过程。

9.间歇灭菌间歇灭菌就是将配制好的培养基放入发酵罐或其他装置中, 通入蒸汽将培养基和所用设备一起进行灭菌的操作过程, 也称分批灭菌或实罐灭菌。

10.连续灭菌将配制好的培养基在向发酵罐输送的同时加热、保温和冷却, 进行灭菌。

11.呼吸强度(比耗氧速率) QO2 : 单位质量干菌体在单位时间内消耗氧的量。

单位: mmolO2/(kg干菌体·h)。

12.摄氧率γ(耗氧速率): 单位体积培养液在单位时间内消耗氧的量。

单位:γ=QO2·x x——细胞浓度, kg(干重)/m313.临界氧浓度微生物的耗氧速率受发酵液中氧的浓度的影响, 各种微生物对发酵液中溶氧浓度有一个最低要求, 即不影响呼吸所允许的最低溶氧浓度, 称为临界氧浓度, 以C临界表示14.静电除菌: 利用静电引力来吸附带电粒子而达到除尘灭菌的目的。

发酵工程知识点总结高中

发酵工程知识点总结高中

发酵工程知识点总结高中一、发酵工程的概念和发展发酵工程,是指通过微生物的代谢活动,将有机物质转化成更有用的产物的工程技术。

发酵工程是综合应用生物化学、微生物学、工程学的一门新兴科学,是现代生产中的重要组成部分。

随着生物技术和工程技术的不断发展,发酵工程得到了较快的发展。

发酵工程的产物广泛用于医学、农业、食品、环保等多个领域。

在国民经济各部门和人们生活中都起着重要作用。

二、发酵工程的基本原理1.微生物发酵的基本原理发酵的基本过程是:首先是微生物分解所需营养物质为能量,随后是将其转化为生长代谢的生物体组织,进一步是将有机物质转化为对人类生产和生活有益的产物。

在这个过程中,微生物起着关键的作用。

2.发酵过程的基本特点发酵过程是由微生物代谢活动引起的,具有时间长、可控制性差等特点。

另外,发酵过程还会产生较多的热量,需要合理的散热措施。

3.发酵工程原料的选择原料的选择对于发酵工程至关重要,原料一般包括碳源、氮源、矿物盐等,不同的微生物对原料要求差异较大。

4.发酵工程的主要流程发酵工程主要包括发酵罐的设计、微生物的培养、发酵条件的控制等步骤,其主要目的是通过发酵罐培养微生物得到需求的产物。

三、发酵工程中的微生物1.发酵工程中的微生物的种类常见的发酵微生物有酵母菌、乳酸菌、霉菌、细菌等。

在不同的发酵过程中,选择合适的微生物种类非常重要。

2.微生物的选型对于发酵工程来说,微生物的选型是十分关键的。

要根据所需产物的性质和发酵条件的要求来选择合适的微生物。

3.微生物的培养微生物的培养是发酵工程中的核心环节,培养的条件应该控制得很好,确保微生物的最佳生长繁殖情况。

四、发酵罐的设计1.发酵罐的结构发酵罐通常分为罐体、搅拌器、温控装置、进气装置、排气装置等几个部分。

2.发酵罐的主要功能和要求发酵罐的主要功能是提供合适的生长环境给微生物,要求它能够充分搅拌,保持温度和通气等。

3.发酵罐的类型目前,常用的发酵罐类型有批量式、连续式及其衍生的多种类型。

发酵工程全重点总结

发酵工程全重点总结

一绪论1生物技术(biotechnology): “应用自然科学及工程学原理、依靠生物作用剂的作用将物料进行加工以提供产品或为社会服务”的技术。

2发酵的英文Fermentation是从拉丁语ferver即“翻腾”、“沸涌”、“发泡”而来;因为发酵有鼓泡和类似翻腾、沸涌的现象。

如中国的黄酒、欧洲的beer就以起泡现象作为判断发酵进程的标志。

3发酵广义——通过微生物的培养使某种特定代谢产物或菌体本身大量积累的过程。

狭义——厌氧微生物或兼性厌氧微生物在无氧条件下进行能量代谢并获得能量的一种方式。

4发酵工业:(巴斯德)经纯种培养和提炼精制获得的成分单纯、无风味要求的产品的生产过程叫发酵工业。

如酒精、抗生素、柠檬酸、氨基酸、酶、维生素、某些色素等。

、5就发酵产品而言,发酵主要有以下主要类型:微生物菌体发酵;酶制剂和酶调节剂的微生物发酵;以微生物的代谢产物(包括初级代谢产物和次级代谢产物)为目的产物的微生物发酵;微生物转化发酵;工程菌和工程细胞产物的发酵等。

6 生物发酵工业的发展简史:传统(古老)生物技术的追溯;第一代(初期)生物技术产品的出现;第二代(近代)生物技术产品的发展;第三代(现代)生物技术产品的挑战。

①最早的发酵产品据记载起源与5000BC。

据记载最早的发酵食品应是酒类,通常认为是wine,因为大自然中具备了野生果类和酵母菌,条件适宜情况下即行发酵。

在神话传说中亦有猿猴酿酒之说。

由于自然界中资源的多样性(F、M),便有了多种多样的发酵食品。

4000BC——Beer,至古埃及即出现了麦芽糖化。

5000~6000BC——wine、黄酒、白酒、Cheese 4000BC——Beer,至古埃及即出现了麦芽糖化。

(酱油、调味品) 白酒:农业社会粮食节余,生霉、发酵、蒸馏而得)②第一个转折点——微生物纯种分离培养技术建立:自然发酵时期:知其然而不知其所以然,如厌气性——酒类,好气性——醋。

微生物纯种分离培养技术,开创了人为控制微生物时代,减少了腐败现象,实现了无菌操作;发明了简便的密封式发酵罐;人工控制条件,提高发酵效率,稳定产品质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绪论:一、概念:发酵工程(Fermentation Engineering)指在最适发酵条件下,在发酵罐中大量培养细胞和生产代谢产物的技术。

二、发酵工程研究的主要内容发酵工程主要包括代谢工程和发酵工艺两个主要内容具体来说它一般包括微生物细胞或动植物细胞的悬浮培养,或利用固定化酶,固定化细胞所做的反应器加工底物,以及培养加工后产物大规模的分离提取等工艺。

发酵工艺主要是在生物反应过程中提供各种所需的最适环境条件。

如酸碱度、湿度、底物浓度、通气量以及保证无菌状态等研究内容。

四、发酵工程的特点一个完整的发酵过程包括:1材料的预处理2生物催化剂的制备3生化反应器及发应条件的选择与监控第二章:菌种的来源一、工业化生产菌种的要求❑能够利用廉价的原料,简单的培养基,大量高效地合成产物❑有关合成产物的途径尽可能地简单,或者说菌种改造的可操作性要强❑遗传性能要相对稳定❑不易感染它种微生物或噬菌体❑产生菌及其产物的毒性必须考虑(在分类学上最好与致病菌无关)❑生产特性要符合工艺要求二、自然界中菌种分离的一般过程(步骤):土样的采取→预处理→培养→菌落的选择→产品的鉴定.目的:高效地获取一株高产目的产物的微生物.三、采样时要注意的问题:气候、水分、空气;来源要广;结合产品的特点;标签:地点、时间、气候等四、目的微生物富集的一些基本方法富集的目的:让目的微生物在种群中占优势,使筛选变得可能。

富集的三种方案:❑定向培养:采用特定的有利于目的微生物富集的条件,进行培养。

❑当不可能采用定向培养时,则可设计在一个分类学中考虑,❑不能提供任何有助于筛选产生菌的信息,这时只能通过随机分离的办法. 定向培养的方法物理方法:加热、膜过滤等但主要是通过培养的方法定向培养的富集方法1、底物2、pH条件3、培养时间4、培养温度等一切能提高目的微生物相对生长速度的手段,培养(固体、液体;分批连续)后使目的微生物在种群中占优势。

五、菌落的选出1.从产物角度出发:在培养时以产物的形成有目的的设计培养基利用简单、快速的鉴定方法,如抗生素2.从形态的角度:菌落的外观形态,是微生物的一个重要表征。

如多糖产生菌在适当的培养基上生长,从具有粘液性的菌落外观上就可以初步识别。

六、菌株选育、分子改造方法:基因突变:自然选育、诱变育种基因重组:杂交、原生质体融合、基因工程基因的直接进化:点突变、易错PCR、同序法DNA Shuffling等第三章:发酵培养基一、发酵培养基所需成分1、碳源1)、作用:提供微生物菌种的生长繁殖所需的能源和合成菌体所必需的碳成分提供合成目的产物所必须的碳成分2)、来源:糖类、油脂、有机酸、正烷烃3)、工业上常用的糖类①葡萄糖②糖蜜③淀粉、糊精2、氮源氮源主要用于构成菌体细胞物质(氨基酸,蛋白质、核酸等)和含氮代谢物。

常用的氮源可分为两大类:有机氮源和无机氮源。

1)、无机氮源选择合适的无机氮源有两层意义:满足菌体生长稳定和调节发酵过程中的pH2)、有机氮源成分复杂:除提供氮源外,有些有机氮源还提供大量的无机盐及生长因子3、无机盐和微量元素来源:C、N源,以盐的形式补充使用注意点:A 对于其它渠道有可能带入的过多的某种无机离子和微量元素在发酵过程中必须加以考虑B使用时注意盐的形式(pH的变化)4、生长因子、前体和产物促进剂前体作用:前体有助于提高产量和组份用法:前体使用时普遍采用流加的方法5、水三、发酵培养基的设计和优化:1、培养基成分选择的原则:菌种的同化能力、代谢的阻遏和诱导、合适的C、N比:100∶0.2~2.0、pH的要求2、成分含量的确定1)、理论转化率与实际转化率理论转化率是指理想状态下根据微生物的代谢途径进行物料衡算,所得出的转化率的大小。

实际转化率是指实际发酵过程中转化率的大小2)、实验设计培养基成分的含量最终都是通过实验获得的合理的实验方法:多因子实验:均匀设计、正交实验设计、响应面分析等3、培养基设计的步骤:①根据前人的经验和培养基成分确定时一些必须考虑的问题,初步确定可能的培养基成分;②通过单因子实验最终确定出最为适宜的培养基成分;③当培养基成分确定后,剩下的问题就是各成分最适的浓度,由于培养基成分很多,为减少实验次数常采用一些合理的实验设计方法。

4、摇瓶水平到反应器水平的优化配方摇瓶——培养基设计的第一步反应器—最终的优化的基础配方5、培养基设计时注意的一些相关问题 : 原料及设备的预处理、原材料的质量、发酵特性的影响、灭菌第四章种子的扩大培养一、种子扩大培养的概念:种子扩大培养是指将保存在砂土管、冷冻干燥管中处休眠状态的生产菌种接入试管斜面活化后,再经过扁瓶或摇瓶及种子罐逐级扩大培养,最终获得一定数量和质量的纯种过程。

这些纯种培养物称为种子。

二、种子扩大培养的目的:○1接种量的需要○2菌种的驯化○3缩短发酵时间、保证生产水平三、种子的要求:○1总量及浓度能满足要求○2生理状况稳定,个体与群体○3活力强,移种至发酵后,能够迅速生长○4无杂菌污染四、种子制备的技术概要主要包括:实验室阶段、生产车间阶段实验室阶段:1培养物选择的原则 2培养基选择的原则 3起始接种物的传代问题1培养物选择的原则:目的:种子扩培到一定的量和质,根据菌种的特点最终的培养物2培养基选择的原则培养基的选择应该是有利于菌体的生长,对孢子培养基应该是有利于孢子的生长。

在原料方面,实验室种子培养阶段,规模一般比较小,因此为了保证培养基的质量,培养基的原料一般都比较精细。

3起始接种物的传代问题○1细菌:保藏斜面→活化斜面○2产孢子:保藏→母斜面→子斜面目的:使菌种的传代次数尽可能的少。

生产车间阶段:1、培养物的选择原则 2、培养基选择的原则 3、发酵级数的确定4、接种量的确定5、种龄6、种子的质量要求1培养物的选择原则:❑缩短发酵时间❑有利于获得好的发酵结果2、培养基选择的原则目的:获得一定数量和质量的菌体,因此培养基的选择应首先考虑的是有利于孢子的发育和菌体的生长,所以营养要比发酵培养基丰富。

3、发酵级数的确定❑级数受发酵规模、菌体生长特性、接种量的影响❑级数大,难控制、易染菌、易变异,管理困难,一般2-4级。

❑在发酵产品的放大中,反应级数的确定是非常重要的一个方面4、接种量的确定接种量=移入种子的体积/接种后培养液的体积过大过小都不好,最终以实践定,如大多数抗生素为7-15%。

但是一般认为大一点好。

5、种龄种龄是指种子罐中培养的菌体开始移入下一级种子罐或发酵罐时的培养时间。

种龄短:菌体太少;种龄长:易老化。

6、种子的质量要求:量:要求达到一定的浓度质: 形态(生长处于某个阶段、均匀等等)理化指标:C、N、P的含量,pH,酶活等无污染第五章发酵过程动力学的基本概念一、发酵过程的反应描述及速度概念1.发酵过程反应的描述:XS (底物) ─→ X (菌体) + P (产物) 2发酵研究的内容: 菌种的来源——找到一个好的菌种 发酵过程的工艺控制——最大限度发挥菌种的潜力单位时间内单位菌体消耗基质或形成产物(菌体)的量称为比速,是生物反应中用于描述反应速度的常用概念3.发酵过程反应速度的描述:XS (底物) ─→ X (菌体) + P (产物)比生长速率,单位为时间的倒数,有一个精确的生物学含义:它表示在固定的生长时间内由已有的数量确定的个体产生的新个体数。

数值越大,群体中产生新个体的速率也越大。

4.微生物生长动力学的基本概念一) 微生物在一个密闭系统中的生长情况:dt ds -二) 微生物的生长动力学、Monod 方程❑ 微生物的生长速度:μ=f(s,p,T,pH,……,)❑ 在一定条件下(基质限制):μ=f(S)Monod 研究了基质浓度与生长速度的关系———Monod 方程(1949) :μ:菌体的生长比速S :限制性基质浓度Ks :半饱和常数μmax: 最大比生长速度单一限制性基质:就是指在培养微生物的营养物中,对微生物的生长起到限制作用的营养物。

(双倒数法):将Monod 方程取倒数可得:这样通过测定不同限制性基质浓度下,微生物的比生长速度,就可以通过回归分析计算出Monod 方程的两个参数。

二、反应动力学的应用——连续培养的操作特性1.连续反应器:流入速度=流出速度=F反应器内(V)全混流溶质浓度处处相等基于细胞量的物料平衡dtdX X X X V F X V =-+-αμ0F 细胞的进入速率-细胞的流出速率+细胞的生长速率-细胞的死亡速率=细胞的积累速率在连续培养系统达到稳定状态时,上式可变为:max s S K S μμ=+max s S v v K S=+max s S K Sμμ=+dt dX X X V F =+μ- (没有加入菌体、连续培养达到稳定时,菌体浓度和基质保持不变) 2. D 在连续培养技术中称为稀释速率,用符号“D”表示 μ==V F D (等于培养液在罐中平均停留时间的倒数)在稳定状态下,细胞的比生长速率等于稀释速率。

3.基于限制性营养成分的物料平衡dtds Y X q mX Y X S V F S V F s p p =----/0μ养分进入系统的速率-养分流出系统的速率-用于生长的养分消耗的速率-用于维持的养分消耗的速率-用于产物形成的养分消耗的速率=养分在系统中积累的速率4.物料衡算(连续培养的反应器特性)第六章 氧的供需及对发酵的影响溶氧(DO)是需氧微生物生长所必需。

在发酵过程中有多方面的限制因素,而溶氧往往是最易成为控制因素。

一 微生物对氧的需求一)描述微生物需氧的物理量1.比耗氧速度或呼吸强度(Q O2):单位时间内单位体积重量的细胞所消耗的氧气,单位mmol O2·g菌-1·h-12.摄氧率(r):单位时间内单位体积的发酵液所需要的氧量。

单位mmol O2·L-1·h-1 r= Q O2.X 二)溶解氧浓度对菌体生长和产物形成的影响1.C Cr:临界溶氧浓度, 指不影响呼吸所允许的最低溶氧浓度。

2.定义:氧饱和度=发酵液中氧的浓度/临界溶氧溶度所以对于微生物生长,只要控制发酵过程中氧饱和度>1.三)影响需氧的因素(菌体浓度和Q O2)r= Q O2 .XQ O2与遗传因素、菌龄、营养的成分与浓度、有害物质的积累、培养条件有关二反应器中氧的传递一)发酵液中氧的传递方程:N:传氧速率kmol/m2.hk g:气膜传质系数kmol/m2.h.atmK L:液膜传质系数 m/h调节Kla是最常用的方法,kla反映了设备的供氧能力,一般来讲大罐比小罐要好。

二) 发酵液中氧的平衡1.发酵液中供氧和需氧始终处于一个动态的平衡中Nv:体积传氧速率 kmol/m3.h K la:以(C*-C)为推动力的体积溶氧系数h-1三影响Kla的因素Kla反映了设备的供氧能力,发酵常用的设备为摇瓶与发酵罐。

相关文档
最新文档