铁碳相图

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§5.6 铁碳相图和铁碳合金

钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是

它们的基本组成都是铁(Fe)和碳(C)两种元素。因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。

Fe和C能够形成Fe3C, Fe2C 和FeC等多种稳定化合物。所以,Fe-C相图可以划分成Fe-Fe3C, Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。由于化合物是硬脆相,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。

化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图5.6-1)。Fe-Fe3C相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。这里主要分析讨论Fe-Fe3C相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。

图5.6-1 铁碳双重相图

【说明】图5.6-1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。

铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下:

由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。【说明】

图5.6-1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。

铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下:

由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。

纯铁纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图5.6-2。

铁的固溶体

碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图5.6-2)碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体结构的奥氏体可以溶解较多的碳,1148℃时最多可以溶解2.11%的碳,到727℃时含碳量降到0.8%。奥氏体的硬度(HB170~220)较低,塑性(延伸率δ为40%~50%)高。奥氏体的显微组织见图5.6-3,图5.6-4表示碳原子存在于面心立方晶格中正八面体的中心。

图5.6-3奥氏体的显微组织图5.6-4碳在γ-Fe晶格中的位置渗碳体

(Fe3C)渗碳体是铁和碳形成的化合物,含碳量为6.67%(有些书上为6.69%),具有复杂的晶体结构(图

5.6-5),熔点为1227℃。渗碳体硬度极高(HB800),塑性几乎等于0,是硬脆相。在一定条件下,渗碳体可以分解而形成石墨状的自由碳:Fe3C→3Fe + C(石墨)。这一过程对于铸铁和石墨钢具有重要意义。

图 5.6-5渗碳体的晶格

单相区——5个相图中有5个基本的相,相应的有5

个相区:液相区(L)——ABCD以上区域δ固溶体区——

AHNA奥氏体区(γ)——NJESGN铁素体区(α)——GPQ以

左渗碳体区(Fe3C)——DFK直线

两相区——7个7个两相区分别存在于两个相应的单相区之

间:L+δ——AHJBA L+γ——BJECB L+ Fe3C——

DCFD δ+γ——HNJH γ+α——GPSG γ+Fe3C—

—ESKFCE α+ Fe3C——PQLKSP

三相区——3个包晶线——水平线HJB(L+δ+γ)

共晶线——水平线ECF(L+γ+Fe3C)

共析线——水平线PSK(γ+α+Fe3C)

图5.6-6 Fe-Fe3C相图

符号 C % 说明

表5.6-1 Fe-Fe 3C 相图中的特性点

相图中一些主要特性点的温度、成分及其意义列于表5.6-1。

Fe-Fe 3C 相图包含三个恒温转变:包晶、共晶、共析。

包晶转变发生在1495℃(水平线HJB ),反应式为:

式中 L 0.53——含碳量为0.53%的液相;δ0.09——含碳量为0.09%的δ固溶体;γ0.17——含碳量为0.17%的γ固溶体,即奥氏体,是包晶转变的产物。含碳量在0.09~0.53%之间的合金冷却到1495℃时,均要发生包晶反应,形成奥氏体。

共晶转变发生在1148℃(水平线ECF ),反应式为:

共晶转变的产物是奥氏体与渗碳体的机械混合物,称为莱氏体,用符号L d 表示。凡是含碳量大于2.11%的铁碳合金冷却到1148℃时,都会发生共晶反应,形成莱氏体。

共析转变发生727℃(水平线PSK ),反应式为:

共析转变的产物是铁素体与渗碳体的机械混合物,称为珠光体,用字母P 表示。含碳量大于0.0218%的铁碳合金,冷却至727℃ 时,其中的奥氏体必将发生共析转变,形成珠光体。

A 0 纯铁的熔点

B 0.53 包晶转变时液相成分

C 4.30 共晶点

D 6.67 渗碳体的熔点

E 2.11 碳在γ-Fe 中的最大溶解度

F 6.67 渗碳体的成分

G 0 纯铁α↔γ转变温度

H 0.09 碳在δ-Fe 中的最大溶解度

J 0.17 包晶点 K 6.67 渗碳体的成分 N 0 纯铁γ↔δ转变温度 P 0.0218 碳在α-Fe 中的最大溶解度

S 0.77 共析点

Q

0.0057 600˚C 碳在α-Fe 中的溶解度7×10-7 200˚C 碳在α-Fe 中的溶解度

相关文档
最新文档