基于PLC的温度控制闭环系统
基于PLC的加热炉温控制系统设计
毕业设计(论文)题目:基于PLC的加热炉温控制系统设计学院:电子信息学院专业班级:06自动化(2)指导教师:康涛职称:讲师学生姓名:雷颖倩学号:40604010225摘要在现代工业生产过程中,一些温度等作为被控参数的过程,往往其容量滞后较大,控制要求又较高,若采用单回路控制系统,其控制质量无法满足生产要求。
本文针对锅炉的结构特点以及船机控制能够有效的改善过程的动态特性、提高工作频率、减小等效过程时间常数和加快响应速度等,提出了锅炉温度串级控制的解决方案。
本系统以电加热锅炉为被控对象,以锅炉出口水温为主被控参数,以炉膛内水温为福被控参数,以加热炉电阻丝电压为控制参数,以PLC为控制器,构成锅炉温度控制系统;完成了系统的硬件设计和PLC程序设计。
经过调试,PLC程序实现了数据采集、A/D转换、PID运算和D/A转换等,达到了设计要求。
关键词:锅炉,温度,串级控制,PLC,PIDABSTRACTIn modern industrial production,some course's capacity often lags behind relatively largely,control also expect relatively much regarding temperature,etc,if adopt the controlsystem of single circuit,its quality of control is unable to meet the production requirement.Because the bunches of control can improve the dynamic characteristic of the course effectively,improve operating frequency,reducing the time constant of the equivalent course and accelerating the response speed,etc.This text have proposed one bunch of solutions of control of boiler temperature.This system leaves target of accusing of on boiler with electricity,export water temperature.With boiler for accuse of parameter mainly,regard the burner hearth water temperature as one pair of parameters of accusing of,regard voltage of resistance wire of the heating furnace as the control parameter,regard PLC as the controller, form one bunch of control systems of boiler temperature;Finish the designing of systematic hardware and the program with PLC.Through debugging,PLC procedure has realized the data gathering,A/D changing,PID operation and D/A changing,etc,has reached the designing requirement.KEYWORDS:boiler,temperature,bunches of control,plc,pid前言随着我国国民经济的快速发展,锅炉的使用范围越来越广泛。
基于PLC的中央空调温度控制系统设计毕业设计论文
摘要中央空调已经广泛应用于商用与民用建筑中,用于保持整栋建筑温度恒定。
传统的设计中,无论季节、昼夜和用户负荷的怎样变化,各电机都长期固定在工频状态下全速运行,所以会造成极大的的能源浪费。
本设计采用变频器、PLC、温度传感器等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量达到节能目的。
该系统采用西门子的S7—200PLC作为主控制单元,利用传统PID控制算法,通过西门子MM440变频器控制水泵运转速度,保证系统根据实际负荷的情况调整流量,实现恒温控制,从而最大程度的解决能源浪费问题。
本设计通过采用基于USS 协议的RS-485总线通讯的网络,通过西门子TD200文本显示器实现人机界面的设计,使用MCGS工控组态软件,对系统进行理论分析。
通过分析该设计,验证了该设计的可靠性,可以解决中央空调的能源浪费问题。
关键词:中央空调,PLC,PID,变频器ABSTRACTThe central air conditioning has been widely used in commercial and civil buildings, which are used to maintain constant temperature of the building. In traditional design, regardless of the season, day and night, and how the user load changes, the motor is fixed to run at full speed for a long time in the condition of power frequency. It will cause great waste of energy.This design is developed based on the combination of frequency converter, PLC, temperature sensor. It makes up a temperature difference closed-loop automatic control system and automatically adjust the output flow of pump to achieve energy saving. The system adopts the Siemens S7-200 PLC as the main control unit, using the traditional PID to control algorithm, using Siemens MM440 inverter to control of pump speed, to guarantee system adjust load flow according to actual situation. All of these will bring out constant temperature control, so as to solve the problem of energy waste to a great extent.This design use RS - 485 bus communication networks which is based on USS protocol and using the Siemens TD200 to realize the human-computer interface design, and using the software made from MCGS, to carries on the theoretical analysis to the system. Verified the reliability of the design, the design can solve the problem of central air conditioning energy waste through the analysis of the design.KEY WORDS: The central air conditioning, PLC, PID, frequency converter目录摘要 (I)ABSTRACT (II)第1章绪论 (1)1.1 中央空调的发展 (1)1.1.1 中央空调现在状况 (1)1.1.2 中央空调发展趋势 (1)1.2 本设计的意义 (1)1.2.1 设计的主要内容 (1)1.2.2 设计的意义 (2)第2章中央空调系统介绍 (3)2.1 中央空调结构 (3)2.1.1 中央空调概述 (3)2.1.2 中央空调结构 (3)2.2 中央空调系统工作原理 (4)2.2.1 制冷原理 (4)2.2.2 工作原理 (4)2.2.3 中央空调的控制原理 (4)2.3 中央空调的评价 (5)2.4 本章小结 (5)第3章中央空调控制系统的硬件设计 (6)3.1 变频器 (6)3.1.1 变频器的介绍 (6)3.1.2 变频调速的原理 (6)3.1.3 变频器的选择 (9)3.1.4 使用注意的问题 (10)3.2 电机的软启动原理及应用 (11)3.2.1 软启动的介绍 (11)3.2.2 软启动工作原理 (11)3.2.3 软启动的优点 (11)3.2.4 软启动与变频器的对比 (12)3.3 PLC选型 (12)3.3.1 PLC的工作原理 (12)3.3.2 西门子S7—200介绍 (13)3.4 温度传感器 (14)3.5 温度变送器 (15)3.6 人机界面选型方案 (15)3.7 总体硬件设计 (16)3.8 本章小结 (19)第4章软件设计 (20)4.1 PID控制 (20)4.1.1 PID控制简介 (20)4.1.2 PID参数整定 (20)4.1.3 对中央空调的PID控制 (21)4.2 应用软件STEP7 (21)4.3 plc编程 (22)4.3.1 程序流程图 (22)4.3.2 中央空调控制系统的I/O分配表 (24)4.3.3 程序中使用的存储器及其功能 (25)4.3.4 中央空调温度控制系统程序 (25)4.4 设备通讯 (26)4.4.1 RS-485介绍 (26)4.4.2 USS协议软件与S7—200间的通讯 (26)4.5 MCGS组态软件 (27)4.5.1 MCGS组态软件简介 (27)4.5.1 MCGS组态画面 (27)4.6 本章小结 (29)第5章结论 (30)致谢 (31)参考文献 (32)附录 (33)第1章绪论1.1 中央空调的发展1.1.1 中央空调现在状况中央空调行业现在存在着巨大的竞争,这种竞争是产品革新所产生的,产品革新主要围绕低碳环保进行,低碳环保在这个时代有着很重大的意义。
基于PLC的恒温控制系统
基于PLC的恒温控制系统本科生毕业论文(设计)题目:基于PLC的恒温控制系统院系:专业:学生姓名:学号:指导教师:二〇一四年五月摘要在工业控制领域,基于运行稳定性考虑,要对生产过程中的各种物理量进行详细的检测和控制。
这在冶金、化工、建材、食品、机械、石油等工业中,具有举足轻重的作用。
其中温度控制又以其较为复杂的工艺过程而备受人们关注。
所以各种加热炉、热处理炉、反应炉等得到了广泛应用。
这些都对温度控制系统的设计提出了更高的要求。
本设计采用S7-200PLC对加热炉温度进行控制。
随着自动控制技术的迅速发展,PLC对温度的控制技术应用越来越广泛。
本文采用PLC对温度进行控制,通过合理的设计,提高温度控制水平,进而改善温度运行的稳定性,使其更加精确。
本文主要介绍了温度控制的PLC控制系统总体方案设计、设计过程、组成、梯形图,并给出了系统组成框图,分析流量逻辑关系,提出PLC的编程方法。
本系统分析了加热炉温度控制的PID控制原理,设计了系统的数学控制模型以及系统控制框图,用组态王软件组态配置工业控制监控系统,对数据进行实时监控。
通过对单回路控制系统的参数整定以及组态王的PID控制程序,实现了加热炉温度的精确控制。
通过对PLC程序的仿真调试以及对组态的系统仿真,验证了本加热炉温度控制系统的设计合理性,系统动态响应符合了最初的设计要求,也具有一定的实用价值。
关键词:温度控制,可编程控制器,PID,组态王目录第一章前言 01.1恒温控制的现状与意义 01.2系统设计要求 (1)1.3设计主要内容 (2)第二章恒温控制系统硬件设计 (4)2.1总体分析 (4)2.2PLC控制系统设计的基本原则和步骤 (5)2.2.1PLC控制系统设计的基本原则 (5)2.2.2PLC控制系统设计的一般步骤 (6)2.3PLC的选型与硬件配置 (7)2.3.1PLC型号的选择 (7)2.3.2S7-200 CPU的选择 (8)2.3.3EM231模拟量输入模块 (8)2.3.4热电偶温度传感器 (10)2.4I/O地址分配及电气连接图 (11)2.5PLC硬件接线图 (12)第三章PLC控制系统软件设计 (14)3.1PLC程序设计方法 (14)3.2编程软件STEP7--M ICRO/WIN概述 (15)3.2.1STEP7-Micro/WIN简单介绍 (15)3.2.2STEP7-Micro/WIN参数设置(通讯设置) (16)3.3基于S7200的PID控制 (18)3.3.1控制系统数学模型的建立 (18)3.3.2P ID在PLC中的回路指令 (19)3.4内存地址分配与PID指令回路表 (20)3.5程序设计梯形图 (23)3.5.1初次上电 (23)3.5.2启动/停止阶段 (24)3.5.3子程序0 (25)3.5.4中断程序、PID的计算 (26)第四章基于组态软件恒温监控系统设计 (28)4.1组态王软件介绍 (28)4.2组态软件开发过程 (29)4.2.1工程整体规划 (29)4.2.2工程建立 (29)4.2.3构造数据词典 (30)4.2.4组态用户窗口 (32)4.2.5组态王设备连接 (32)4.2.6组态王画面制作与动连接 (33)4.2.7PID控制脚本编写 (34)第五章系统运行结果及分析 (37)5.1PLC控制系统仿真测试 (37)5.2控制系统PID控制性能验证 (40)第六章总结 (43)参考文献 (44)致谢 (45)第一章前言1.1恒温控制的现状与意义温度的测量和控制对人类日常生活、工业生产、气象预报、物资仓储等都起着极其重要的作用。
基于PLC控制的加热炉温度控制系统设计
课程设计姓名张镇炀学号********班级电气优创0801摘要温度控制系统广泛应用于工业控制领域,如钢铁厂、化工厂、火电厂等锅炉的温度控制系统,电焊机的温度控制系统等。
加热炉温度控制在许多领域中得到广泛的应用。
这方面的应用大多是基于单片机进行PID 控制, 然而单片机控制的DDC 系统软硬件设计较为复杂, 特别是涉及到逻辑控制方面更不是其长处, PLC 在这方面却是公认的最佳选择。
加热炉温度是一个大惯性系统,一般采用PID调节进行控制。
随着PLC功能的扩充在许多PLC控制器中都扩充了PID 控制功能, 因此在逻辑控制与PID控制混合的应用场所中采用PLC控制是较为合理的。
本设计是利用西门子S7-300PLC控制加热炉温度的控制系统。
首先介绍了温度控制系统的工作原理和系统的组成,然后介绍了西门子S7-300PLC和系统硬件及软件的具体设计过程。
关键词:西门子S7-300PLC,PID,温度传感器,固态继电器目录摘要 (I)Abstract ........................................... 错误!未定义书签。
第一章引言 ....................................... 错误!未定义书签。
1.1 系统设计背景............................... 错误!未定义书签。
1.2 系统工作原理 (IV)1.3 系统设计目标及技术要求 (IV)1.4 技术综述 (IV)第二章系统设计 (V)2.1 控制原理与数学模型 (V)2.1.1 PID控制原理 (V)2.1.2 PID指令的使用注意事项 (VIII)2.2 采样信号和控制量分析 (IX)2.3 系统组成 (IX)第三章硬件设计 ................................................... X I3.1 PLC的基本概念 (XI)3.1.1 模块式PLC的基本结构 (XII)3.1.2 PLC的特点 (XIII)3.2 PLC的工作原理 (XIV)3.2.1 PLC的循环处理过程 (XIV)3.2.2 用户程序的执行过程 (XVI)3.3 S7-300 简介 (XVI)3.3.1 数字量输入模块 (XVII)3.3.2 数字量输出模块 (XVII)3.3.3 数字量输入/输出模块 (XVII)3.3.4 模拟量输入模块 (XVII)3.3.5 模拟量输出模块 (XVIII)3.4 温度传感器 (XVIII)3.4.1 热电偶 (16)3.4.2 热电阻 (17)3.5 固态继电器 (XX)3.5.1 概述 (18)3.5.2 固态继电器的组成 (18)3.5.3 固态继电器的优缺点 (19)第四章软件设计 ................................................. X XII4.1 STEP7编程软件简介 (XXII)4.1.1 STEP7概述 (XXII)4.1.2 STEP7的硬件接口 .......................... .. (XXII)4.1.3 STEP7的编程功能 (XXII)4.1.4 STEP7的硬件组态与诊断功能 (XXIII)4.2 STEP7项目的创建 (XXIV)4.2.1 使用向导创建项目 (XXIV)4.2.2 直接创建项目 (XXIV)4.2.3 硬件组态与参数设置 (XXIV)4.3 用变量表调试程序 (XXVI)4.3.1 系统调试的基本步骤 (XXVI)4.3.2 变量表的基本功能 (XXVII)4.3.3 变量表的生成 (XXVIII)4.3.4 变量表的使用 (XXVIII)4.4 S7-300的编程语言 (XXIX)4.4.1 PLC编程语言的国际标准 (XXIX)4.4.2 STEP7中的编程技术 (XXX)结束语 ......................................................... X XXIV 致谢 (33)参考文献 (34)附录 (35)1.1系统设计背景近年来,加热炉温度控制系统是比较常见和典型的过程控制系统,温度是工业生产过程中重要的被控参数之一,冶金﹑机械﹑食品﹑化工等各类工业生产过程中广泛使用的各种加热炉﹑热处理炉﹑反应炉,对工件的处理均需要对温度进行控制。
基于PLC的温度控制系统的设计
1 引言1.1 设计目的温度的测量和控制对人类平常生活、工业生产、气象预报、物资仓储等都起着极其重要的作用。
在许多场合,及时准确获得目的的温度、湿度信息是十分重要的。
近年来,温湿度测控领域发展迅速,并且随着数字技术的发展,温湿度的测控芯片也相应的登上历史的舞台,可以在工业、农业等各领域中广泛使用。
1.2 设计内容重要是运用PLC S7-200作为可编程控制器,系统采用PID控制算法,手动整定或自整定PID参数,实时计算控制量,控制加热装置,使加热炉温度为为一定值,并能实现手动启动和停止,运营指示灯监控实时控制系统的运营,实时显示当前温度值。
1.3 设计目的通过对温度控制的设计,提高在电子工程设计和实际操作方面的综合能力,初步培养在完毕工程项目中所应具有的基本素质和规定。
培养团队精神,科学的、实事求是的工作方法,提高查阅资料、语言表达和理论联系实际的技能。
2 系统总体方案设计2.1 系统硬件配置及组成原理2.1.1 PLC型号的选择本温度控制系统采用德国西门子S7-200 PLC。
S7-200 是一种小型的可编程序控制器,合用于各行各业,各种场合中的检测、监测及控制的自动化。
S7-200系列的强大功能使其无论在独立运营中,或相连成网络皆能实现复杂控制功能。
因此S7-200系列具有极高的性能/价格比。
2.1.2 PLC CPU的选择S7-200 系列的PLC有CPU221、CPU222、CPU224、CPU226等类型。
S7-200PLC 硬件系统的组成采用整体式加积木式,即主机中涉及定数量的I/O端口,同时还可以扩展各种功能模块。
S7-200PLC由基本单元(S7-200 CPU模块)、扩展单元、个人计算机(PC)或编程器,STEP 7-Micro/WIN编程软件及通信电缆等组成。
表2.1 S7-200系列PLC中CPU22X的基本单元本设计采用的是CUP226。
它具有24输入/16输出共40个数字量I/O点。
基于PLC和组态技术的锅炉水温串级控制系统设计
2011 届毕业设计说明书基于PLC和组态技术的锅炉水温串级控制系统设计摘要本设计论述了基于PLC和组态技术的锅炉内胆水温和夹套水温构成的串级控制系统的设计过程。
下位机编程软件采用SIEMENS公司的STEP 7软件,选用西门子S7-400PLC控制锅炉温度的控制系统,介绍了西门子S7-400PLC和系统硬件及软件的具体设计过程。
上位机组态画面软件采用SIMATIC WINCC,对其进行了简单介绍,并详细介绍了项目的创建、变量的新建、画面的组态。
上位机进行程序编写实现控制,下位机组态画面,建立人机界面,进行远程控制。
锅炉水温具有非线性、时变性、大滞后和不对称性等特点,采用传统的控制方法所得到的控制量的控制品质不高。
锅炉内胆与夹套构成串级控制。
由于串级控制具有有效改善过程的动态特性、提高工作频率、减小等效过程时间常数和加快响应速度等特点,所以在克服被控系统的时滞方面能够取得较好的效果。
串级控制中的主副回路是控制夹套和内胆的温度,温度是一个多变且不易控制的量,而PID控制在这方面具有突出的优点,很适合采用PID控制技术。
综合以上得到一个品质比较高的控制系统。
关键词PLC;组态技术;串级控制;锅炉水温;PID控制ABSTRACTThis design is discussed based on PLC and configuration technology of water temperature and clip boiler water tank consists of cascade control system design process. Lower level computer programming software using the SIEMENS company's STEP 7 software, choose SIEMENS s7-400plc control boiler temperature control system, introduces SIEMENS s7-400plc and system hardware and software, and the specific design process. Upper unit used in the software configuration screen WINCC, the SIMATIC simply introduced, and introduces the creation, variable of project construction, picture configuration. PC for programming realize control, lower frame) unit, establish normal screen man-machine interface, carries on the remote control.Boiler water temperature with nonlinearness, time delay and asymmetry wait for a characteristic, USES the traditional control method can get control portion control quality is not high. Boiler of the bladder and clip constitutes a cascade control. Due to the cascade control has effectively improve the dynamic characteristics, improve process working frequency, reducing the time constant and accelerate equivalent process characteristic, the response speed of the controlled system in overcome delay to the good result is achieved. Cascade control the principal deputy loop is control of the temperature of the clamping and bladder, temperature is a variable and not easy to control, and the amount of PID control in this respect has outstanding advantages, very suitable PID control technology. Comprehensive above gets a quality higher control system.Key words plc;configuration technology;cascade control;boiler water temperature;pid control目录1 引言 (4)1.1 系统的设计背景 (4)1.2 系统设计内容及技术要求 (5)1.3 系统的设计原理 (5)1.4 系统的整体设计方案 (6)2 串级控制系统设计 (7)2.1 串级控制系统的概述 (7)2.2 PID控制系统的简介 (8)2.3 PID控制器的参数整定 (10)3 硬件系统设计 (13)3.1 PLC的基本介绍 (13)3.2 S7-400简介 (14)3.3 其它器件介绍 (16)4 STEP 7简介及组态硬件、程序编写 (18)4.1 STEP 7简介 (18)4.2 STEP 7项目的创建 (20)4.3 组态硬件 (22)4.4 SETP 7编程介绍 (25)4.5 变量及系统程序 (26)5 WINCC简介及人机界面组态 (33)5.1 WinCC简介 (33)5.2 WinCC系统功能 (34)5.3 WinCC的项目创建及组态方法 (35)6 控制系统整体调试 (46)6.1 系统整体测试 (46)6.2 系统测试的结果 (47)结束语 (48)参考文献 (49)致谢 (51)1 引言1.1 系统的设计背景自70年代以来,由于工业过程控制的需要,特别是在电子技术的迅猛发展,以及自动控制理论和设计方法发展的推动下,国外温度控制系统发展迅速,并在智能化自适应参数自整定等方面取得成果。
基于PLC和Pt100的闭环温度控制系统的设计
基于PLC和Pt100的闭环温度控制系统的设计作者:丁欣姚开武陈君霞来源:《企业科技与发展》2016年第01期【摘要】文章在建设国家骨干院校的背景环境下,借助广西水利电力职业技术学院的院级重点科研项目“基于PLC的整流教学装置的研究与实现”及核心课程的建设要求,设计出融合了PLC课程及自动检测课程的闭环温度控制系统,该控制系统稳定性好、可靠性高、响应迅速,并且与人们的生活联系紧密,具有一定的现实意义。
【关键词】PLC;单回路控制系统;铂电阻Pt100;EM235模块【中图分类号】TP273 【文献标识码】A 【文章编号】1674-0688(2016)01-0037-031 引言PLC具有经济、稳定性好、高效、易操作、易维护等特点,而且具有编程简单、抗干扰能力强、能耗低、功能强大等优点,因此在很多领域都有着广泛的应用,成为工程人员常用的控制设备之一。
其中,S7-200编程软件STEP7MIicro/WIN的编程过程简单,易掌握,功能强大。
PLC的数据采集模拟/数字量输入输出模块EM235,能够实现A/D和D/A之间的转换,以便及时采集温度变送器送过来的模拟信息[1]。
在自动化工业生产过程中,温度是最常见的过程参数之一。
近年来,国内外对温度控制系统的研究越来越深入、广泛。
随着计算机、网络、物联网等技术的发展,在温度控制系统的研究方面更是取得了巨大的进步。
如:模糊控制、职能化PID、自适应控制等,其性能、控制效果好,可广泛应用于温度控制系统及企业相关设备的技术改造服务[2]。
2 控制系统整体设计本设计采用西门子的S7-200系列PLC控制器。
铂电阻Pt100温度变送器可用来检测热水壶水温,并将温度转化为4~20 mADC的标准电流信号,送到采集模块EM235的1号通道,EM235模块将标准的电流信号转换成数字信号,完成A/D转换,并将数字信号传给PLC控制器。
PLC通过程序控制,把EM235模块传来的信号与给定值对应的数字信号相比较,根据比较结果输出驱动固态继电器的线圈,通过控制继电器线圈的得电与失电来改变热水壶的通断,从而实现对热水恒温的控制(如图1所示)。
基于PLC温度流量和压力控制系统的设计
基于 PLC温度流量和压力控制系统的设计【摘要】:提出了基于PLC控制的中小型系统的检测模拟量闭环控制算法,对PLC中PID指令控制系统进行设计。
在实际使用中,实现PID指令程序的流量和压力模拟量闭环过程控制,此控制系统应用到生产调试中的控制稳定。
【关键词】:PLC技术;流量;压力控制在生产控制中要收集电量参数、流量、压力、温度等物理量实现生产分析,一般使用电缆在主单元右边连接。
使用压力、温度等传感器与变送器收集模拟量并且输入。
根据控制需求实现PLC控制程序的设计编写,之后实现联机调试。
PLC为工作控制装置,被广泛应用到生产、科研与社会生活中。
大型PLC配备过程中能够对多个模拟量同时控制,但是成本比较高。
在硬件中,只需要对数模和模数转换模块进行配备,通过PID编程模块实现PID单数的设置,对控制值进行输出[1]。
以此,本文就将PLC应用到流量压力控制系统设计中。
1控制系统的硬件设计1.1硬件结构本文所设计系统硬件结构设计是否能够使后期软件编写需求得到满足,根据设计的需求实现硬件结构的设计,详见图1。
此种控制系统根据西门子S7-300PLC设计,收集各种数据,包括温度、压力等,还包括外部设备控制。
利用一体化触摸屏实现系统上位机的控制,利用RS485/RS232数据线使上位机与下位机进行交流。
在设计控制系统时,通过PLC以压力传感器对数据进行收集,内部处理器处理数据,数据在处理后显示到触摸屏中。
之后,PLC对比设置控制参数,对数据是否在范围中进行检查,假如超过或者低于设置数值,使用PID算法对控制量计算,PLC输出控制外部加热器、变频器和其他辅助设备,调整温度与压力数值到允许的范围中,实时监控整个压力数据变化。
利用S7-300PLC实现设备控制,通过K型压簧式热电偶设计,测量温度范围设计为0-800℃,输出电流设计为4-20mA,使用MIK-P300G压力传感器,输出电流设置为4-20mA,测量范围为-20~300℃,压力范围为0-1KPa。
基于PLC的锅炉加热温度控制系统设计
基于PLC的锅炉加热温度控制系统设计锅炉加热温度控制系统设计是一个非常重要的工程项目,特别是在工业生产中。
PLC(可编程逻辑控制器)是一种高级自动化控制设备,可以实现对锅炉加热温度的精确控制。
本文将介绍一个基于PLC的锅炉加热温度控制系统的设计。
【系统概述】该系统的基本目标是稳定地控制锅炉的加热温度,保证锅炉在正常工作范围内运行,并尽可能地提高热效率。
具体来说,系统需要实现以下功能:1.实时监测锅炉温度。
2.控制锅炉加热功率。
3.响应温度变化,并自动调整加热功率。
4.报警和故障保护功能。
【系统设计】1.硬件设计:硬件部分包括传感器、执行机构和PLC。
传感器用于实时监测锅炉温度,常用的温度传感器有热电偶和敏感电阻。
执行机构用于控制加热功率,可采用电磁阀或电加热器。
PLC负责处理数据和控制信号,可以选择常用的西门子、施耐德等PLC。
2.软件设计:软件部分主要包括PLC编程和人机界面设计。
PLC编程可以使用基于LD(梯形图)或SFC(时序功能图)的编程语言,根据具体控制要求,设计合适的控制算法和逻辑。
人机界面设计可以使用HMI(人机界面)或SCADA(监控与数据采集系统),实时显示锅炉温度、加热功率和系统状态,并提供控制和设定温度的功能。
3.控制策略设计:控制策略需要根据具体情况进行设计,一般分为开环控制和闭环控制两种。
开环控制是根据经验或数学模型预先设定温度和加热功率曲线,直接输出控制信号。
闭环控制则根据实时监测的温度反馈信息,通过控制算法动态调整加热功率,使实际温度尽可能接近设定温度。
4.报警和故障保护设计:系统需要具备报警和故障保护功能,当温度超出设定范围或系统出现故障时,及时发出警报并采取相应的措施,以保护锅炉和工艺安全。
【实施与测试】在实施前,需要进行系统调试,确保PLC编程和硬件连接正常。
在实际运行中,需要对系统进行定期检测和维护,以保证系统的稳定性和可靠性。
总结起来,基于PLC的锅炉加热温度控制系统的设计是一个复杂的工程,需要综合考虑硬件和软件的因素。
基于PLC技术的电气设备自动控制系统
基于PLC技术的电气设备自动控制系统摘要:为了给工业自动化提供技术支持,设计了一种基于PLC技术的电气设备自动控制系统。
获取电气设备运行的相关信息,输入到PLC可编程控制器,用于控制电气设备。
这些信息被输入到输出模块,用于控制电气设备和开关阀电路的工作状态。
显示模块为用户提供电气设备的运行信息。
实验结果表明,该系统运行稳定,具有良好的通信性能,能够控制电气设备的温度和压力,实际应用效果较好。
关键词:PLC技术;电气设备;自动控制系统引言可编程逻辑控制器的缩写是PLC。
在PLC控制技术出现之前,计算机技术在自动控制中的应用很少。
但是自从PLC技术的出现,它可以将计算机技术和自动控制技术有机的融合在一起,这两种新技术可以更好的促进相关产业的发展。
后期很多企业很好的更新了PLC控制系统的产品,使得PLC更加先进,在很多工业领域得到应用。
这大大提高了人们对PLC的认识,更多的企业选择使用PLC技术来控制其相关系统,尤其是在电气自动化方面。
1简述PLC技术PLC主要由微处理器存储器等组成。
通过智能设计实现智能控制系统。
PLC 技术可以通过逻辑分析对输入信号进行处理,通过输出形式对其进行控制,使其智能工作。
PLC系统可以执行某些操作,如内部逻辑运算,而传统的控制系统主要用于电气自动化,连接过程繁琐,系统灵活性低。
PLC系统包括电源等相关部件,用户可根据需要适当扩展和补充外部设备的辅助控制。
在PLC控制系统中,电源可以控制系统的关机和启动,并通过输入输出接口有效地发送和接收相应的命令。
CPU在PLC控制系统中起着重要的作用,可以有效地管理用户的流水线指标。
PLC是一种具有多种功能的专用工业控制设备。
PLC硬件主要包括内存,可以满足小型PLC控制系统的需要。
PLC技术的发展逐渐形成了一个比较完整的系统,内存影响着PLC系统的使用效果。
PLC系统运行过程中,数据以采样方式输入系统,必须保证输入脉冲信号宽度,使输入脉冲信号宽度大于随后的采样周期。
基于MCGS的PLC温度监控系统设计_李红萍
4 基于 8255A 和 8259A 芯片的 I / O 接口设 计举例
假设一计算机系统配置有一个键盘和 CRT 显 示器。要 求: 当 在 键 盘 按 下 一 个 键 后,能 及 时 在 CRT 上显示输出,直到按下回车键( 0DH) 为止。图 4 所示为基于 8255A 和 8259A 芯片的 I / O 接口硬件 配置与连接示意图。
5 结论
该文利用 8255A 和 8259A 芯片设计了一个基 于 I /O 接口的输入输出系统。以往多采用程序查询 方式,它的缺点是 CPU 的利用率不高,执行大量无 效的查询,使 CPU 长期处于等待状态。该 I / O 接口 应用设计中,采用中断控制的方式使 CPU 既能对事 件做出及时响应,又可以尽量避免无效操作,因此提 高了 CPU 的效率。
参考文献: [1] 刘乐善. 微型计算机接口技术原理及应用[M]. 武汉:
华中理工大学出版社,1997. [2] 王让定,陈金儿. 计算机组成原理教学模式探讨[J].
宁波大学学报,2002,11( 6) : 14 - 17. [3] 李承恕. 数字通信发展中的若干问题[J]. 电信科学,
1992,8( 4) : 21 - 24. [4] 俸远祯. 计算机组成原理及汇编语言[M]. 北京: 电子
件实现[J]. 油气井测试,2009( 6) : 34 - 37. [7] 蔡凌,韩晓. 基于仿人智能控制的恒温水( 油) 浴箱温
度控制的研究[J]. 化工自动化及仪表,2011,38 ( 3) : 332 - 334. [8] 邱琳. 基于 PLC 的温控系统设计与研究[J]. 江西化 工,2010( 4) : 38 - 41. [9] 肖艳军,李磊,周婧. 基于 PLC 的自动续料机械手[J]. 机械设计与制造,2011( 2) : 152 - 154.
基于PLC的智能温度控制系统设计
第16期2023年8月无线互联科技Wireless Internet TechnologyNo.16August,2023作者简介:丁艳玲(1978 ),女,吉林榆树人,工程师,硕士研究生;研究方向:电气自动化技术㊂基于PLC 的智能温度控制系统设计丁艳玲(南京机电职业技术学院,江苏南京211135)摘要:在工业自动化生产线中,对温度控制的要求不断增加㊂智能化㊁数字化的温度控制系统是今后的发展趋势㊂文章以西门子PLC 为核心,通过温度传感器信号采集,转换器传送给PLC ,通过现场采集温度与设定温度的误差对比,经过PID 模拟量整定及程序处理后,启用相应的制热或散热系统,构建自动闭环运行的温度系统,系统应用在生产线锅炉温度的自动控制,可以改善现场工作环境,提高设备使用寿命㊂关键词:PLC ;温度传感器;PID中图分类号:TP332㊀㊀文献标志码:A0㊀引言㊀㊀随着现代科学技术的迅猛发展,工业现场对温度控制系统的要求不断提高㊂智能化㊁数字化㊁人性化的温度控制系统是以后的发展趋势㊂智能控制系统技术日益更新,温湿度测控领域也在快速发展㊂在数字技术的创新引领下,温湿度系统测控芯片也不断更新,被广泛应用于工业和农业等领域㊂智能温湿度控制系统以PLC 或者单片机为核心,通过现场采集温度与设定温度的误差对比,经过系统误差校正,启用相应的制热或散热系统,进而实现温湿度的恒定调节,改善工业现场工作环境,提高设备使用寿命㊂1㊀系统整体分析1.1㊀设计思路㊀㊀随着微电子技术的快速发展,在自动控制理论和方法发展的引领下,温度测控领域快速发展㊂我国温度控制系统在数字化㊁自适应和参数自整定等方面已经取得一定成果,根据工业现场自动控制的需求,设计性能良好的温度控制器及相关仪器仪表,被广泛应用于工业和农业等领域㊂硬件控制系统中,目前温度控制系统比较成熟产品主要以温控模块及传统PID 控制器为主,其适应性有一定局限,较难用于控制存在滞后㊁比较复杂和时间变化的温度系统㊂因此,智能化㊁数字化㊁人性化的温度控制系统是今后市场的发展趋势㊂1.2㊀技术说明㊀㊀现代工业生产要根据市场需求做出快速反应,生产小批量㊁多规格㊁成本低和质量高的产品,为了满足不同的生产需求,自动化生产线的控制系统要具有相当高的可靠性和灵活性㊂本文以西门子PLC 为核心,通过温度传感器进行信号采集,PLC 模拟量参数调整实现生产线锅炉温度的自动控制㊂为实现智能化控制,温度实时显示根据需求调整,本系统开发的监控软件是性能稳定的工业自动控制系统,既可以使用灵活的组态方式,又具有适应性强㊁开放性好㊁界面友好㊁成本低等优点㊂2㊀系统硬件设计㊀㊀PLC 是控制系统的核心,具有发送接收指令㊁数据存储和模拟量处理等功能[1]㊂本设计以西门子PLC 控制器为核心,使用西门子CPU226㊂该PLC 使用24V 电源供电,硬件具有24/16数字量输入输出通道,共有40个数字量输入输出通道;该CPU 具有26K 存储空间,6个独立的可灵活使用的高速计数器和2路独立的20kHz 高速脉冲输出;CPU 还具有PID 参数控制功能,可供使用者灵活应用㊂温度控制系统硬件由温度传感器㊁温度控制模块㊁加热管㊁运行指示灯组成㊂根据PLC 主机输入输出分配,绘制PLC 控制系统外部接线,如图1所示㊂图1㊀PLC 外部接线在PLC扩展模块中,EM235是最常用的模拟量扩展模块,可以实现4路模拟量输入和1路模拟量输出功能㊂模块采用标准电压和标准电流信号,变送器与模拟量模块之间通过三线制接线[2]㊂通过EM235硬件组态参数设置,将变送器主回路交流电流转换成按线性比例输出电流信号控制系统的核心,具有发送接收指令等功能,输出为直流4~20mA标准电流信号,根据系统控制要求连接到电脑或外部设备㊂通过分辨率参数计算,本设计输入设置成相同的模拟量输入范围和格式㊂本设计使用EM235温度检测和控制模块,将检测到的温度值进行转换,转换模块将0~10V模拟信号转化为占空比,控制加热系统进行锅炉加热㊂系统输出的模拟信号也是0~10V,对应温度变化为60~ 100ħ㊂由于加热需要,锅炉外接24V直流电源,根据温度检测数据结果判断是否启用加热电源㊂输入输出地址分配如表1所示㊂表1㊀温控系统I/O分配输入信号输出信号I0.0启动按钮Q0.1启动指示灯Q0.3正常运行指示灯Q0.5锅炉加热指示灯I0.1停止按钮Q0.2停止指示灯Q0.4温度报警指示灯3㊀系统软件设计㊀㊀在PID控制中,P比例控制是一种比较简单的控制方式㊂比例控制器的输出与输入误差信号成比例关系㊂其使用特点是具有快速响应,控制及时,缺点是很难消除余差㊂I是积分控制,该控制器的输出与输入误差信号的积分成正比关系㊂积分控制和比例控制相比优点是可以消除余差,缺点是滞后,不能快速对输入误差进行有效的抑制㊂微分控制优于前两种控制方法,其输出与输入误差信号的变化率成正比关系,在一定程度上减小误差㊂微分控制具有超前预判功能,能根据反馈结果预测误差变化的趋势㊂该控制可以避免较大误差出现,但不能消除误差㊂综合上述,在控制系统中控制器要合理使用㊂西门子S7-200系列PLC软件使用的PID回路指令格式㊂该指令EN端为驱动条件,当EN端口执行条件满足,就可进行PID运算㊂该指令有两个操作数TBL和LOOP㊂TBL端是回路表的起始数据地址,本文采用的是VB100㊂根据指令使用说明,一个PID 回路需使用32个字节空间,地址范围是VB100~ VB131㊂LOOP端是回路号,本文使用4,可以是0~7,不可以重复使用[4]㊂温度传感器输入的电压信号经过EM235进行数据转换后,得到一个整数值,而PID指令能够执行的数据必须是实数型,所以需要在PID指令前把整数转化成实数[3]㊂使用指令DTR实现转换功能,对应转换程序如下:MOVW AIW0AC0DTR AC0AC0MOVR AC0VD100PID参数整定方法是确定调节器的比例系数P㊁积分时间T i和微分时间T d,改善系统的静态和动态特性,使系统的过渡过程达到最为满意的质量指标要求[5]㊂经验法又叫现场凑试法,它不需要进行事先的计算和实验,而是根据运行经验,利用一组经验参数,根据反应曲线的效果不断地改变参数,对于温度控制系统,工程上已经有大量的经验,其规律如表2所示㊂表2㊀温度控制器参数经验数据被控变量规律的选择比例度/%积分时间/min微分时间/min 温度滞后较大20~603~100.5~3㊀㊀根据反复的试凑,调处比较好的结果是P=15, I=2.0,D=0.5㊂本设计中PID模块除了采样时间和PID的3个设定参数外,其余几个参数都要求输入或输出值为0.0~1.0㊂为满足参数输出值范围,在PID指令使用之前,需要把PV和SP的值作归一化处理[6]㊂智能温度控制系统中温度控制子程序,如图2所示㊂智能温度控制系统中模拟量程序处理部分程序,如图3所示㊂组态王开发监控系统软件,具有适应性强㊁开放性好㊁易于扩展㊁经济㊁开发周期短等优点㊂通常可以把这样的系统划分为控制层㊁监控层㊁管理层3个层次结构㊂其中,监控层对下连接控制层,对上连接管理层,它不但实现对现场的实时监测与控制,而且可以在系统中完成上传下达㊁组态开发的重要作用㊂系统考虑3方面问题:画面㊁数据㊁动画㊂通过对监控系统要求及实现功能的分析,采用组态王对监控系统进行设计㊂组态软件提供了可视化监控画面,有利于实时现场监控㊂图2㊀温度控制子程序图3㊀模拟量信号处理程序本文研究的温度控制系统中,PLC 变量中内存VD0地址存放当前实际温度,并规定105ħ为温度上限㊂当超过上限值时,监控系统要作出相应告警信号,操作人员要做出相关的告警处理㊂4 结语㊀㊀本文使用西门子S7-200PLC 和组态软件组态王的基础上设计智能温度控制系统,实现恒温控制,该系统测量准备㊁报警快速㊁性能稳定㊂系统使用组态王人机界面进行监控与报警,系统操作简便,性能稳定,可进一步在原有监控界面开发新功能㊂编程时使用编程软件自带的PID 指令向导模块,这样虽然方便,但会导致控制系统超调量和调节时间都稍微偏大,如果编写PID 控制子程序,控制效果可能会更好㊂智能温度控制系统在温度检测精度和报警实时性方面还有一定的不足,需进一步优化程序㊁提高系统采集信号的准确性㊁通信传输的实时性,保证系统应用稳定性㊂系统输出将进一步扩展到多种电压输出,应用到不同工业现场环境㊂参考文献[1]廖常初.S7-200PLC 编程及应用[M ].北京:机械工业出版社,2002.[2]Frank.D.Petruzella.PLC 教程[M ].3版.北京:人民邮电出版社,2007.[3]西门子(中国)有限公司.深入浅出西门子S7-200PLC [M ].3版.北京:北京航空航天大学出版社,2007.[4]陈建明.电气控制与PLC 应用[M ].北京:电子工业出版社,2009.[5]袁任光.可编程序控制器选用手册[M ].北京:机械工业出版社,2002.[6]戴仙金.西门子S7-200系列PLC 应用与开发[M ].北京:中国水利水电出版社,2007.(编辑㊀姚㊀鑫)Design of intelligent temperature control system based on PLCDing YanlingNanjing Vocational Institute of Mechatronic Technology Nanjing 211135 ChinaAbstract In industrial automation production lines the demand for temperature control continues to increase.Intelligent and digital temperature control systems are the future development trend.This article takes Siemens PLC as the core collects temperature sensor signals and transmits them to the PLC through a converter.By comparing the error between the temperature collected on site and the set temperature and after PID analog tuning and program processing the corresponding heating or cooling system is enabled to construct an automatic closed -loop temperature system.The system is applied to the automatic control of boiler temperature on the production line which can improve the on -site working environment and prolong the service life of the equipment.Key words PLC temperature sensor PID。
由plc来控制温度的方法
由PLC来控制温度的方法介绍在现代工业生产中,温度控制是一个非常重要的环节。
而PLC(可编程逻辑控制器)作为一种常用的自动化控制设备,被广泛应用于各个行业中。
本文将详细探讨由PLC来控制温度的方法。
PLC的基本原理PLC是一种用于控制和监控自动化过程的计算机系统。
它由中央处理单元(CPU)、输入/输出模块(I/O模块)、存储器和通信模块等组成。
PLC的基本工作原理是通过读取输入信号,经过程序的逻辑运算,控制输出信号,从而实现对设备的控制。
温度传感器与PLC的连接要实现由PLC来控制温度,首先需要将温度传感器与PLC进行连接。
常见的温度传感器包括热电偶和热敏电阻等。
通过将传感器的输出信号连接到PLC的输入模块上,PLC可以获取到实时的温度数据。
PLC程序设计PLC的程序设计是实现温度控制的关键。
以下是一个基本的PLC程序设计流程:1.设定温度设定值:首先需要设定一个目标温度,也就是温度设定值。
可以通过人机界面(HMI)或者外部输入设备来设定。
2.读取温度信号:PLC通过输入模块读取温度传感器的信号,获取实时的温度数值。
3.比较温度数值:将读取到的温度数值与设定值进行比较,判断当前温度是否达到设定值。
4.控制输出信号:根据比较结果,通过输出模块控制执行器或者其他控制设备,调节温度。
5.循环执行:以上步骤是一个循环过程,通过不断读取温度信号、比较温度数值和调节输出信号,实现温度的稳定控制。
温度控制策略在温度控制中,常用的控制策略包括开环控制和闭环控制。
开环控制开环控制是一种简单的控制策略,它根据设定值直接控制输出信号,而不考虑实际的温度数值。
开环控制的优点是简单易实现,但缺点是无法对外界干扰和系统变化进行补偿,容易导致温度偏差较大。
闭环控制闭环控制是一种基于实际温度数值的控制策略。
它通过不断读取温度信号,并与设定值进行比较,根据比较结果调节输出信号,实现对温度的精确控制。
闭环控制的优点是能够对系统变化进行补偿,提高控制精度。
PLC交流异步电动机闭环控制系统
2
1或2
2
1或2
9
P1080
0
0
10
P1082
50
50.00
11
P1120
10
10
12
P1121
10
10
功能说明 用户访问级别 电动机的额定电压( 220V ) 电动机的额定电流( 0.5A ) 电动机的额定功率( 100W ) 电动机的额定频率( 50Hz ) 电动机的额定转速( 1420 r/min ) 选择命令源(由BOP/端子排输入) 用BOP/端子排输入控制频率的升降 电动机的最小频率( 0Hz ) 电动机的最大频率( 50Hz ) 斜坡上升时间( 10S ) 斜坡下降时间( 10S )
直流电机:直流电机分为直流电动机和直流发电机两大类。本设计用直流
发电机,外接电阻,相当于电动机负载,另端接码盘测速。
码盘:码盘分为绝对式编码器和增量编码器两种,前者能直接给出与角位
置相对应的数字码;后者利用计算系统将旋转码盘产生的脉冲增量针对某
个基准数进行加减以求得角位移。本次设计采用的是接触编码器,把输入
用PLC实现交流异步电动机的转速PID闭环控制,在显示频上实 现电机的运行,停止,给定速度,实际速度显示,并利用棒图组态, 趋势视图显示当前转速趋势。
实验器材 (1)电机
电机:三相异步电动机
分类:鼠笼式、绕线式; 鼠笼式:结构简单、价格低廉、工作可靠;不能人为改变电
动机的机械特性; 绕线式:结构复杂、价格较贵、维护工作量大;转子外加电
PLC交流异步电动机闭环控制系统 技能考核
组员:
PLC交流异步电动机闭环控制系统
发展前景:
在许多工业场合,需要电机转速能够很好地跟随给定转速,因 此采用闭环控制系统。PLC是现在应用较多的一种控制装置, 利用PLC丰富的内部资源及强大的功能指令,编写闭环调速系 统程序,不仅可以替代继电器实现相应功能,还可以提高工作 可靠性及其系统的灵活性。本次设计就是基于PLC的变频器实 现转速闭环调速系统。用PLC实现交流异步电动机的转速PID闭 环控制,在显示频上实现电机的运行,停止,给定速度,实际 速度显示,并利用棒图组态,趋势视图显示当前转速趋势。。
基于组态王的PLC温度控制系统设计
1 5 8 ・
科 技制 系统设 计
刘 斌 赵丹丹
( 河南工业职业技 术学院智能控制工程技术研究 中心 , 河南 南阳 4 7 3 0 0 0 )
摘 要: 为 了高效可靠地控 制混合 炉加 热的温度 , 采用成熟的 P L C控 制技 术和 电力拖动 自 动控制技术 , 运用P L C模块化编程 、 D / A 转换、 A / D转换、 P I D 控制, 获得 了运 用成 熟的 P L C和电力拖动 自动控制 的温度 自动控 制 系统 , 实时有效的控制混合 炉的温度。仿真计算 的结果证 明了方案的可行性和对环境温度变化的适应能力。 采用P L C和电力拖动 自动控 制的温度控制 系统代替 了传统的电气控制 系统 系统具有 经济 高效、 稳定、 维护方便 、 降低 电能损耗等优点。 关键词 : 温度控制 ; 可编程控制器 ; 人机界面; 组态王
,
偏差送人 P L C控制器按 P I D算法 进行 修正 ,返 回对应工况下 的固 近年来 , 国内外对温度控制器 的研究进行 了广泛 、 深入 的研究 , 态继 电器导通时 间 , 调节 电热丝 的有效 加热功率 , 从 而实现对炉子 特别是随着计算机技术 的发展 , 温度控制器 的研究取得 了巨大的发 的温度控制 。R ( s ) 为设定温度 的拉 氏变换式 ; E ( s ) 为偏 差的拉氏变换 展, 形成 了一批商品化的温度调节器 , 如: 职能化 P I D、 模糊控制 、 自 式 ;G c ( s ) 为控制器的传递 函数 ; G o ( s ) 为广义对象 , 即控制 阀、 对 象控 适应 控制 等 , 其性能 、 控制效果好, 可广泛应 用于温度控制系统及企 制通道、 测量变送装置三个环节的合并 。 业相 关设备 的技术改造服务 。P L C ( 可编程控制器 ) 以其可靠性 高、 在 系统投运 之前 , 还需要进行控制器的参数整定 。控制器参数 抗 干扰能力强 、 编程简单 、 功能强大 、 性价 比高 、 体积小 、 能耗低等显 整定方法很多 , 归纳起来可分为 两大类 , 即理论计算 整定法和工程 著特 点广 泛应用 于现代工业 的自动控制之 中。 目前 的工业控 制中, 整定法。理论计算整定法是在 已知被控对象 的数学模型的基础上 , 常常选用 P L C 作 为现场的控制设备 , 用于数据采集与处理 、 逻辑判 根据 选取 的质量指 标 , 通过 理论计 算 ( 微 分方 程 、 根 轨迹 、 频 率 法 断、 输 出控制 ; 而上位机 则是 利用 H MI软件 来完成工业控制状态 、 等) , 来求得最佳 的整定参数。 这类方法计算繁杂 , 工作量又大 , 而且 流程 和参数的显示, 实现监控 、 管理 、 分 析和存储等功能 。这种监控 由于用解析法或实验测 定法求得 的对象数学模 型都 只能近似 的反 系统充分利用 了 P L C 和计算机各 自的特点, 得到 了广泛的应用 。在 映过程的动态特性 , 整定结果 的精度 是不高的 , 因而未在工程上受 这种方式 的基础上设计 了一套温度控制系统 。以基 于 P L C 的下位 到广泛推广 。对于工程整定法 , 工程技术人员无需知道对象的数学 机和完成 HM I 功能 的上位 机相结合, 构建成分布 式控制系统 , 实现 模型 , 无 需具备理论计算所需 的理论 知识 , 就可 以在 控制系统 中直 了温度 自动控制。 接进行整定 , 因而简单 、 实用 , 在实际工程 中被广泛使用。常用的工 2 P L C 的 选 型 与硬 件 配 置 程整定法有经验整定 法 、 临界 比例度 法 、 衰减 曲线法 、 反应 曲线 法 、 2 . 1 P L C型 号 的 选 择 自整定 法等 。 本 温度控制系统选 择德 国西 门子 公司的 s 7 — 2 0 0系列 的 P L C 。 4 系统 运 行 结果 S 7 0 0 P L C属于小型整体式的 P L C 。 完成了 P L C程 序设 计 和人 机界 面设 计 之 后 , 进 入 系 统 运 行 测试 2 . 2热电式传感器 阶段。首先在 S T E P 7 一 Mi c o/ r Wi n 编程软件 中将设计好的程序下载到 热 电式传感器是一种将温度变化转化为 电量变化的装置 。 在各 P L C中, 然后打开组态王 , 切换 到运行模式 。初次上 电, 没有模 拟量 种热 电式传感器 中 ,以将温度量转换 为电势和 电阻 的方 法最为普 输入 , 只显示 P I D值和当前温度 , 曲线图为锅 炉温度 的实时 曲线 图。 锅炉开始升温 , 并维持在 5 0摄氏度左右 。 遍。其 中最常用于测量温度 的是热 电偶和热 电阻 , 热 电偶是将温度 启动后 , 变化 转换 为电势变化 , 而热 电阻是将温度变化转换为 电阻的变 化。 5 结 论 这两种热 电式传感器 目前在工业生产中已得到广泛应用 。 P L C ( 可编程控制器 )以其 可靠性 高 、 抗干扰能力强 、 编程简单 、 该 系统 中需要用传感器将温度转换成 电压 , 且炉子 的温度最高 功能强大 、 性价 比高 、 体积小 、工业上最常用 业的 自动控制之 中。P I D闭环控制是控制系统 中应 用很广泛 的一种 的温度检测元 件之一 。国际标准热电偶有 S 、 B 、 E 、 K 、 R 、 J 、 T 七种类 控制算法 , 对大部分控制对象都有 良好 的控制效果 。组态软件组态 I 设计 中深 受用 户的喜欢而得到广 型, 在本系统中 , 选用了 K型热电偶度 。 . 王 因其简单易用的特点 ,在 HM 泛 的使用 。在西 门子 s 7 — 2 0 0系列 P L C和组 态软件组 态王 的基础 2 . 3 I / O点分配及 电气连接图 2 . 3 . 1该温度控制 系统 中 I / O点分配表如表 1 所示 。 上, 成功设计 出了温度控制 系统 , 该系统达到了快 、 准、 稳的效果 , 也
基于MicroLogix1400 PLC的PID温度监控系统
自动化控制• Automatic Control96 •电子技术与软件工程 Electronic Technology & Software Engineering【关键词】MicroLogix1400控制器 PID 调温1 系统控制要求某生产线有一个加热单元,该单元主要完成原材料的热处理加工等功能。
该单元的控制要求如下:(1)当上一个单元将货物移至传送带后,传送带开始运行。
(2)当光电传感器检测到有工件进入时,延迟一段时间后传送带停止运行,工件进入热处理工位。
(3)系统根据设定值,自动进行PID 调节,当温度达到指定值或达到加热时间后,传送带启动运行,将货料送到出料口。
(4)在系统加热过程中,人机界面上会显示当前的温度值。
2 系统硬件组成本系统选用的控制器是罗克韦尔公司旗下的AB 品牌的MicroLogix 1400 PLC 。
型号为1766—28BXBA 的PLC 控制器支持32个离散量I/O 点(含20个离散量输入点和12个离散量输出点),同时具备6个模拟量I/O 点(4路模拟量输入和2路模拟量输出。
)温度的检测选用Pt100铂金温度传感器,它的输出连接着一个温度变送器,温度变送器的输出连接到PLC 的模拟量输入端I:0.4。
调温的输出是通过PLC 的模拟量输出端基于MicroLogix1400 PLC 的PID 温度监控系统文/汤荣秀O:0.4连接到一个光电隔离单相调压模块上面(型号为LTVDH-220V-10A ),调压模块输出端连接热电偶用于加热。
3 PID指令调节Micrologix 1400 PID 指令使用了一个PD 数据文件。
可以通过创建一个新数据文件,然后将其归类为PD 文件类型,来创建一个PD 数据文件。
每当在某个梯级上编写一条PID 指令时,RSLogix 自动创建一个新的PD 文件或者PD 子元素。
然后,PD 文件就出现在“数据文件”(Data Files )列表内。
基于PLC可控硅的温度闭环控制系统设计
摘要在许多现代工业生产中,温度控制都是要解决的问题之一,对于无需人力控制的领域,我们需要自动控制。
随着电子技术的发展,可编程序控制器(PLC)已经由原来简单的逻辑量控制,逐步具有了计算机控制系统的功能。
PLC具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。
PLC在工业自动化控制特别是顺序控制中的地位,在可预见的将来,是无法取代的。
本文提出了采用可编程控制器和可控硅组成一个比较简单、通用的温度控制系统。
PLC是温度控制的主控核心,采用PID算法,运用PLC梯形图编程语言进行编程,实现温度的自动控制。
可编程控制器的一个优势就是可以很方便的改写其中的程序以满足不同的控制系统,尤其在控制系统需要改进时优势更加明显。
文章分别就控制系统的基本工作原理,特殊模块的选型、PLC配置、等几方面进行阐述。
通过提高温度控制系统具有响应快、稳定性好、可靠性高、控制精度好等特点,对工业控制有现实意义。
关键词:温度控制PLC PID可控硅闭环系统AbstractIn many modern industrial production,temperature control is one of problems to solve,without human control on the field,we need automatic control.With the development of electronic technology,programmable logic controller(PLC)have by original simple logical quantity control, gradually with a computer control system function.PLC has strong commonality,use convenient,wide adaptability,high reliability,strong anti-jamming capability,programming of simple features.PLC in industrial automation control especially the status of sequence control in the foreseeable future,is irreplaceable.This paper proposes using the programmable controller and SCR form a relatively simple,general temperature control system.PLC is the main controlling of temperature control,PID algorithm,core using PLC ladder-diagram programming programming language,realize temperature automatic control.One of the strengths of the programmable controller is very convenient rewrite the program to meet different control system, especially in the control system that needs to improve more obvious when advantage.Articles respectively basic working principle of the control system, special module selection,PLC configuration,wait a few aspects.By raising the temperature control system has a fast response,good stability, high reliability,control precision is good wait for a characteristic,and the industrial control have realistic significance.Keywords:temperature-control PLC PID SCR closed-loop system目录摘要 (I)Abstract (II)1绪论 (1)1.1课题背景及研究目的 (1)1.2国内外的研究状况 (1)1.3课题研究内容 (2)1.4课题研究方法 (3)2PLC控制系统的硬件组成 (3)2.1可编程控制器基础 (4)2.1.1可编程序控制器的概述 (4)2.1.2可编程控制器的组成和工作原理 (4)2.1.3可编程控制器的分类及特点 (7)3PLC控制系统的硬件设计 (8)3.1PLC控制系统设计的基本原则和步骤 (8)3.1.1PLC控制系统设计的基本原则 (8)3.1.2PLC控制系统设计的一般步骤 (8)3.1.3PLC程序设计的一般步骤 (9)3.2PLC的选型和硬件配置 (10)3.2.1PLC型号的选择 (10)3.2.2FX2N的功能简介 (11)3.2.3温度检测模块FX2N-4AD-TC (11)3.2.4电加热控制器 (13)3.3系统整体设计方案和电器接线图 (15)3.4PLC控制器的设计 (16)3.4.1PID控制的原理和特点 (16)3.4.2PID控制的参数整定 (17)4PLC控制系统的软件设计 (20)4.1PLC程序设计的方法 (20)4.2编程软件FXGP_WIN-C概述与简介 (21)4.3.1PLC编程指令 (21)4.3.2控制程序的编写 (23)5系统调试 (27)5.1系统软件调试 (27)5.2系统硬件调试 (27)5.3温度系统特性 (27)6结论 (30)附录1 (31)附录2 (32)致谢 (33)【参考文献】 (34)1绪论1.1课题背景及研究目的温度控制的应用领域是很广泛的,大到工业生产、航空航天,小到我们的日常生活。
基于PLC的温度控制
一.概述1.1 PLC简介随着微处理器,计算机的和数字通讯技术的飞速发展,计算机控制技术已经渗透到所有工业领域。
当前用于工业控制的计算机可分为:可编程控制器,基于PC总线的工业控制计算机,基与单片机的测控装置,用于模拟量闭环控制的可编程调节器,集散控制系统(DCS)和现场总线控制系统(FCS)等.可编程控制器是应用广泛,功能强大,使用方便的通用工业控制装置,已成为当代工业自动化的重要支柱.近几年来,在国内已得到迅速推广普及。
正改变着工厂自动控制的面貌,对传统的技术改造、发展新型工业具有重大的实际意义。
可编程控制器对用户来说,是一种无触点设备,改变程序即可改变生产工艺,因此可在初步设计阶段选用可编程控制器,在实施阶段再确定工艺过程。
另一方面,从制造生产可编程控制器的厂商角度看,在制造阶段不需要根据用户的要求专门设计控制器,适合批量生产。
由于这些特点,可编程控制器问世以后很快受到工业控制界的欢迎,并得到迅速的发展.可编程序控制器,英文称Programmable Controller,简称PC。
但由于PC容易和个人计算机(Personal Computer)混淆,故人们仍习惯地用PLC作为可编程序控制器的缩写。
它是一个以微处理器为核心的数字运算操作的电子系统装置,专为在工业现场应用而设计,它采用可编程序的存储器,用以在其内部存储执行逻辑运算、顺序控制、定时/计数和算术运算等操作指令,并通过数字式或模拟式的输入、输出接口,控制各种类型的机械或生产过程。
PLC是微机技术与传统的继电接触控制技术相结合的产物,它克服了继电接触控制系统中的机械触点的接线复杂、可靠性低、功耗高、通用性和灵活性差的缺点,充分利用了微处理器的优点,又照顾到现场电气操作维修人员的技能与习惯,特别是PLC的程序编制,不需要专门的计算机编程语言知识,而是采用了一套以继电器梯形图为基础的简单指令形式,使用户程序编制形象、直观、方便易学;调试与查错也都很方便。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 绪论1.1 课题背景随着现代工业的逐步发展,在工业生产中,温度、压力、流量和液位是四种最常见的过程变量。
其中,温度是一个非常重要的过程变量。
例如:在冶金工业、化工工业、电力工业、机械加工和食品加工等许多领域,都需要对各种加热炉、热处理炉、反应炉和锅炉的温度进行控制[1]。
这方面的应用大多是基于单片机进行PID控制,然而单片机控制的DDC系统软硬件设计较为复杂,特别是涉及到逻辑控制方面更不是其长处,然而PLC在这方面却是公认的最佳选择。
随着PLC功能的扩充在许多PLC控制器中都扩充了PID控制功能,因此在逻辑控制与PID控制混合的应用场所中采用PLC控制是较为合理的,通过采用PLC来对它们进行控制不仅具有控制方便、简单和灵活性大的优点,而且可以大幅度提高被测温度的技术指标,从而能够大大提高产品的质量和数量。
因此,PLC对温度的控制问题是一个工业生产中经常会遇到的控制问题。
这也正是本课题所重点研究的内容。
1.2 研究的主要内容本课题的研究内容主要有:1)温度的检测;2)采用PLC进行恒温控制;3)PID算法在PLC中如何实现;4)PID参数对系统控制性能的影响;5)温控系统人机界面的实现。
2 基于PLC的炉温控制系统的硬件设计2.1系统控制要求本PLC温度控制系统的具体指标要求是:对加热器加热温度调整范围为0℃—150℃,温度控制精度小于3℃,系统的超调量须小于15%。
软件设计须能进行人机对话,考虑到本系统控制对象为电炉,是一个大延迟环节,且温度调节范围较宽,所以本系统对过渡过程时间不予要求。
2.2系统设计思路根据系统具体指标要求,可以对每一个具体部分进行分析设计。
整个控制系统分为硬件电路设计和软件程序设计两部分。
系统硬件框图结构如图所示:图2.1系统硬件框图被控对象为炉内温度,温度传感器检测炉内的温度信号,经温度变送器将温度值转换成0~10V的电压信号送入PLC模块。
PLC把这个测量信号与设定值比较得到偏差,经PID运算后,发出控制信号,经调压装置输出交流电压用来控制电加热器的端电压,从而实现炉温的连续控制。
2.3系统的硬件配置2.3.1 S7-200PLC选型S7-200 系列 PLC 是由德国西门子公司生产的一种超小型系列可编程控制器,它能够满足多种自动化控制的需求,其设计紧凑,价格低廉,并且具有良好的可扩展性以及强大的指令功能,可代替继电器在简单的控制场合,也可以用于复杂的自动化控制系统。
由于它具有极强的通信功能,在大型网络控制系统中也能充分发挥作用[2] S7-200系列可以根据对象的不同, 可以选用不同的型号和不同数量的模块。
并可以将这些模块安装在同一机架上。
SiemensS7-200 主要功能模块介绍:(1)CPU 模块S7-200的CPU 模块包括一个中央处理单元,电源以及数字I/O 点,这些都被集成在一个紧凑,独立的设备中。
CPU 负责执行程序,输入部分从现场设备中采集信号,输出部分则输出控制信号,驱动外部负载.从 CPU 模块的功能来看, CPU模块为CPU22*,它具有如下五种不同的结构配置CPU 单元:①CPU221 它有 6 输入/4 输出,I/0 共计 10 点.无扩展能力,程序和数据存储容量较小,有一定的高速计数处理能力,非常适合于少点数的控制系统。
②CPU222 它有8 输入/6 输出,I/0 共计 14 点,和 CPU 221 相比,它可以进行一定的模拟量控制和2个模块的扩展,因此是应用更广泛的全功能控制器。
③CPU224 它有 14 输入/10 输出,I/0 共计 24 点,和前两者相比,存储容量扩大了一倍,它可以有 7 个扩展模块,有内置时钟,它有更强的模拟量和高速计数的处理能力,是使用得最多 S7-200 产品。
④CPU226 它有 24 输入/16 输出,I/0 共计 40 点,和 CPU224 相比,增加了通信口的数量,通信能力大大增强。
它可用于点数较多,要求较高的小型或中型控制系统。
⑤CPU226XM 它在用户程序存储容量和数据存储容量上进行了扩展,其他指标和 CPU226相同。
(2)开关量 I/O 扩展模块当 CPU 的 I/0 点数不够用或需要进行特殊功能的控制时,就要进行 I/O 扩展,I/O 扩展包括 I/O 点数的扩展和功能模块的扩展。
通常开关量 I/O 模块产品分 3 种类型:输入模块,输出模块以及输入/输出模块。
为了保证 PLC 的工作可靠性,在输入模块中都采用提高可靠性的技术措施。
如光电隔离,输入保护(浪涌吸收器,旁路二极管,限流电阻),高频滤波,输入数据缓冲器等。
由于PLC 要控制的对象有多种,因此输出模块也应根据负载进行选择,有直流输出模块, 交流输出模块和交直流输出模块。
按照输出开关器件种类不同又分为 3 种:继电器输出型,晶体管输出型和双向晶闸管输出型。
这三种输出方式中,从输出响应速度来看,晶体管输出型最快,继电器输出型最差,晶闸管输出型居中;若从与外部电路安全隔离角度看,继电器输出型最好。
在实际使用时,亦应仔细查看开关量 I/O 模块的技术特性,按照实际情况进行选择。
由于本系统是单回路的反馈系统,CPU224XP相比与其他型号具有更好的硬件指标,其上自带有模拟量的输入和输出通道,因此节省了元器件的成本,CPU224XP自带的模拟量I/O规格如表:表2.1模拟量I/O配置表CPU224XP自带的模拟量输入通道有2个,模拟量输出通道1个。
在S7-200中,单极性模拟量的输入/输出信号的数值范围是0~32000,双极性模拟信号的数值范围是-32000~+32000[3]2.3.2 温度传感器温度传感器有四种主要类型:热电偶、热敏电阻、电阻温度检测器(RTD)和 IC 温度传感器。
热电阻是中低温区最常用的一种温度检测器。
它的主要特点是测量精度高,性能稳定,典型的有铜热电阻、铂热电阻等。
其中铂热电阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪,它的阻值会随着温度的变化而改变,通常用PT100来表示。
其中PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。
PT100是广泛应用的测温元件,在-50~600℃范围内具有其他任何温度传感器无可比拟的优势,包括高精度、稳定性好、抗干扰能力强等。
由于铂电阻的电阻值与温度成非线性关系,所以需要进行非线性校正。
校正分为模拟电路校正和微处理器数字化校正,模拟校正有很多现成的电路,其精度不高且易受温漂等干扰因素影响,数字化校正则需要在微处理系统中使用,将Pt电阻的电阻值和温度对应起来后存入EEPROM中,根据电路中实测的AD值以查表方式计算相应温度值[4]。
常用的Pt电阻接法有三线制和两线制,其中三线制接法的优点是将PT100的两侧相等的的导线长度分别加在两侧的桥臂上,使得导线电阻得以消除。
常用的采样电路有两种:一为桥式测温电路,一为恒流源式测温电路。
本设计采用的就是三线制接线。
由于铂热电阻测出的是温度变化,需要在将信号输入PLC前加一个温度变送器,将温度信号转换成电压信号。
本系统采用的温度变送器是DZ4130,使用过程中要加一个24V的电源,该电源可以从PLC上直接获得。
2.3.3 调压装置(SSR)由于PLC输出的信号是直流信号,而被控制的加热器小灯泡是由220伏特交流电供应工作的,所以在由PLC接入到小灯泡时要加入一个调压装置,本设计采用的是一个可将5伏特的直流电转化为220伏特交流电的反相调压器EUV-75A。
该调压装置工作时需要有两个工作电源,分别支持交流部分和直流部分工作,交流部分需要220伏特的工作电压,直流部分需要5伏特的直流电压。
EUV-75A 是反相调压器,即输入0伏特对应的输出是220伏特的输出,而输入5伏特对应的是0伏特是输出。
EUV-75A 的硬件接线如图所示:图2.2 EUV-75A 硬件接线图其中直流部分共有5根线,实际使用的时候只有其中3根式有用的,一根接5伏特的直流电源,一根为信号的输出端,还有一根是电源和输出信号的公共接地。
EUV-75A 的交流部分有3个端口,对角线的两个端口是接工作电源220伏特的交流电,输出信号接剩下的一个端口和其下方的一个端口。
直流部分 交流电源和输出接口 输出接口交流电源3 炉温PID控制算法3.1模拟PID算法简介在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。
PID控制器问世至今已有近80年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。
当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便[5]。
即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。
PID控制,实际中也有PI和PD控制。
PID 控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
比例(P)控制:比例控制是一种最简单,最常用的控制方式[6]。
其控制器的输出与输入误差信号成比例关系。
当仅有比例控制时系统输出存在稳态误差(Steady-state error)。
积分(I)控制:在积分控制中,控制器的输出与输入误差信号的积分成正比关系。
对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。
为了消除稳态误差,在控制器中必须引入“积分项”。
积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。
这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。
因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。
微分(D)控制:在微分控制中,控制器的输出与输入误差信号的微分(即误差的变化率)成正比关系。
自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。
其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。
解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。
这就是说,在控制器中仅引入“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。
所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。