小学数学奥数测试题排列组合人教版完整版
小学数学《排列组合》练习题(含答案)
小学数学《排列组合》练习题(含答案)1、计算①4356C A -;②2265C A ÷。
解答:①4356C A -=5432⨯⨯⨯-654321⨯⨯⨯⨯=120-20=100。
②2265C A ÷5465321⨯=⨯÷=⨯ 2、某班要从30名同学中选出3名同学参加数学竞赛,有多少种选法?如果从30名同学中选出3名同学站成一排,又有多少种站法?解答: 参加竞赛的选法:330302928321C ⨯⨯⨯⨯==4060种 站成一排的站法:330A =30×29×28=24360种参加竞赛的选法有4060种,站成一排的站法有24360种3、7个不同的小球放入4个不同的盒子中,每个盒子只能放一个,一共有多少种情况? 解答:47A =7654⨯⨯⨯=840(种)一共有840种不同的情况。
4、7个相同的小球放入4个不同的盒子中,每个盒子至少放一个,一共有多少种情况? 解答:1+1+1+0=3,1+2+0+0=3,3+0+0+0=3,分三种情况①选出一个盒子,不再放入球,其他三个盒子再各放入一个:14C ;②选出两个盒子,分别再放入一个球,两个球:24A③选出一个盒子,再放入三个球:14C总的放法:14C +24A +14C =20(种)5、从1,3,5,7,9中任取三个数字,从2,4,6,8中任取两个数字,组成没有重复数字的五位数,一共可以组成多少个数?解答:第一步,从1,3,5,7,9中任取三个数字,这是一个组合问题,有35C 种方法; 第二步,从2、4、6、8中任取两个数字,也是一个组合问题,有24C 种方法;第三步,用取出的5个数字组成没有重复数字的五位数,有55A 种方法。
再由分步计数原理求总的个数。
325545A 7200C C ⨯⨯=(个) 一共能组成7200个没有重复数字的五位数。
6、在6名女同学,5名男同学中选出4名女同学,3名男同学站成一排,有多少种排法? 解答:437657A C C ⨯⨯=765000(种)有765000种排法。
小学数学 《 排列组合》练习题(含答案)
小学数学《排列组合》练习题(含答案)例1 由数字0、1、2、3可以组成多少个没有重复数字的偶数?分析注意到由四个数字0、1、2、3可组成的偶数有一位数、二位数、三位数、四位数这四类,所以要一类一类地考虑,再由加法原理解决.第一类:一位偶数只有0、2,共2个;第二类:两位偶数,它包含个位为0、2的两类.若个位取0,则十位可有C13种取法;若个位取2,则十位有C12种取法.故两位偶数共有(C13+C12)种不同的取法;第三类:三位偶数,它包含个位为0、2的两类.若个位取0,则十位和百位共有P23种取法;若个位取2,则十位和百位只能在0、1、3中取,百位有2种取法,十位也有2种取法,由乘法原理,个位为2的三位偶数有2×2个,三位偶数共有(P23+2×2)个;第四类:四位偶数.它包含个位为0、2的两类.若个位取 0,则共有P33个;若个位取 2,则其他 3位只能在 0、 1、 3中取.千位有2种取法,百位和十位在剩下的两个数中取,再排成一列,有P22种取法.由乘法原理,个位为2的四位偶数有2×P22个.所以,四位偶数共有(P33+2×P22)种不同的取法.解:由加法原理知,共可以组成2+(C13+C12)+(P23+2×2)+(P33+2×P22)=2+5+10+10=27个不同的偶数.补充说明:本题也可以将所有偶数分为两类,即个位为0和个位为2的两类.再考虑到每一类中分别有一位、两位、三位、四位数,逐类讨论便可求解.例2 国家举行足球赛,共15个队参加.比赛时,先分成两个组,第一组8个队,第二组7个队.各组都进行单循环赛(即每个队要同本组的其他各队比赛一场).然后再由各组的前两名共4个队进行单循环赛,决出冠亚军.问:①共需比赛多少场?②如果实行主客场制(即A、B两个队比赛时,既要在A队所在的城市比赛一场,也要在B队所在的城市比赛一场),共需比赛多少场?分析比赛的所有场次包括三类:第一组中比赛的场次,第二组中比赛的场次,决赛时比赛的场次.①中,第一组中8个队,每两队比赛一场,所以共比赛C28场;第二组中7个队,每两队比赛一场,所以共比赛C27场;决赛中4个队,每两队比赛一场,所以共比赛C24场.②中,由于是实行主客场制,每两个队之间要比赛两场,比赛场次是①中的2倍.另外,还可以用排列的知识来解决.由于主客场制不仅与参赛的队有关,而且与比赛所在的城市(即与顺序)有关.所以,第一组共比赛P28场,第二组共比赛P27场,决赛时共比赛P24场.解:由加法原理:①实行单循环赛共比赛②实行主客场制,共需比赛2×(C28+C27+C24)=110(场).或解为:P28+P27+P24=8×7+7×6+4×3=56+42+12=110(场).例3在一个半圆周上共有12个点,如右图,以这些点为顶点,可以画出多少个①三角形?②四边形?分析①我们知道,不在同一直线上的三个点确定一个三角形,由图可见,半圆弧上的每三个点均不共线(由于A、B既可看成半圆上的点,又可看成线段上的点,为不重复计算,可把它们归在线段上),所以,所有的三角形应有三类:第一类,三角形的三个顶点全在半圆弧上取(不含A、B两点);第二类,三角形的两个顶点取在半圆弧上(不包含A、B),另一个顶点在线段上取(含A、B);第三类,三角形的一个顶点在半圆弧上取,另外两点在线段上取.注意到三角形的个数只与三个顶点的取法有关,而与选取三点的顺序无关,所以,这是组合问题.解:三个顶点都在半圆弧上的三角形共有两个顶点在半圆弧上,一个顶点在线段上的三角形共有一个顶点在半圆弧上,两个顶点在线段上的三角形共有由加法原理,这12个点共可以组成C37+(C27×C15)+(C17×C25)=35+105+70=210(个)不同的三角形.也可列式为C312-C35=220—10=210(个).分析②用解①的方法考虑.将组成四边形时取点的情况分为三类:第一类:四个点全在圆弧上取.(不包括A、B)有C17种取法.第二类:两个点取自圆弧.两个点取自直线AB.有取法C27×C25种.第三类:圆弧上取3个点,直线上取1个点,有C37×C15种取法.解:依加法原理,这12个点共可组成:C47+ C27×C25+C37×C15=35+210+175=420个不同的四边形.还可直接计算,这12个点共可组成:C412-C45-C35·C17=495-5-70=420个不同的四边形.例4 如下图,问①下左图中,有多少个长方形(包括正方形)?②下右图中,有多少个长方体(包括正方体)?分析①由于长方形是由两组分别平行的线段构成的,因此只要看上左图中水平方向的所有平行线中,可以选出几组两条平行线,竖直方向上的所有平行线中,可以选出几组两条平行线?②由于长方体是由三组分别平行的平面组成的.因此,只要看上页右图中,平行于长方体上面的所有平面中,可以选出几组两个互相平行的平面,平行于长方体右面的所有平面中,可以选出几组两个互相平行的两个平面,平行于长方体前面的所有平面中,可以选出几组两个互相平行的平面.解:①C25×C27=210(个)因此,上页左图中共有210个长方形.②C25×C26×C24=900(个)因此,上页右图中共有900个长方体.例5 甲、乙、丙、丁4人各有一个作业本混放在一起,4人每人随便拿了一本,问:①甲拿到自己作业本的拿法有多少种?②恰有一人拿到自己作业本的拿法有多少种?③至少有一人没有拿到自己作业本的拿法有多少种?④谁也没有拿到自己作业本的拿法有多少种?分析①甲拿到自己的作业本,这时只要考虑剩下的三个人拿到其他三本作业本的情况.由于其他三人可以拿到自己的作业本,也可以不拿到自己的作业本.所以,共有P33种情况.②恰有一人拿到自己的作业本.这时,一人拿到了自己的作业本,而其他三人都没能拿到自己的作业本.拿到自己作业本的可以是甲、乙、丙、丁中的一人,共4种情况.另外三人全拿错了作业本的拿法有2种.故恰有一人拿到自己作业本的情况有4×2种情况.③至少有一人没有拿到自己的作业本.这时只要在所有拿法中减去四人全拿到自己作业本的拿法即可.由于4人拿作业本的所有拿法是P44,而4人全拿到自己作业本只有1种情况.所以,至少有一人没拿到自己作业本的拿法有P44-1种情况.④谁也没拿到自己的作业本.可分步考虑(假设四个人一个一个地拿作业本,考虑四人都拿错的情况即可).第一个拿作业本的人除自己的作业本外有3种拿法.被他拿走作业本的人也有3种拿法.这时,剩下的两人只能从剩下的两本中拿,要每人都拿错,只有一种拿法.所以,由乘法原理,共有3×3×1种不同的情况.解:①甲拿到自己作业本的拿法有P33=3×2×1= 6种情况;②恰有一人拿到自己作业本的拿法有4×2=8种情况;③至少有一人没有拿到自己作业本的拿法有P44-1=4×3×2×1-1=23种情况;④谁也没有拿到自己作业本的拿法有3×3×1=9种情况.由前面的各例题可以看到,有关排列组合的问题多种多样,思考问题的方法灵活多变,入手的角度也是多方面的.所以,除掌握有关的原理和结论,还必须学习灵活多样的分析问题、解决问题的方法.习题五1.由数字0、1、2、3、4可以组成多少个①三位数?②没有重复数字的三位数?③没有重复数字的三位偶数?④小于1000的自然数?2.从15名同学中选5人参加数学竞赛,求分别满足下列条件的选法各有多少种?①某两人必须入选;②某两人中至少有一人入选;③某三人中恰入选一人;④某三人不能同时都入选.3.如右图,两条相交直线上共有9个点,问:一共可以组成多少个不同的三角形?4.如下图,计算①下左图中有多少个梯形?②下右图中有多少个长方体?5.七个同学照相,分别求出在下列条件下有多少种站法?①七个人排成一排;②七个人排成一排,某两人必须有一人站在中间;③七个人排成一排,某两人必须站在两头;④七个人排成一排,某两人不能站在两头;⑤七个人排成两排,前排三人,后排四人,某两人不在同一排.习题五解答1.①100;②48;③30;④124.2.①C313=286;②C515-C513=1716;③C13·C412=1485;④C515-C212=2937.3.C15·C23+C26·C13=60;或C39-C36-C34=60.4.①C26×C26=225;②C25×C26×C25=1500.5.①P77=5040;②2P66=1440;③2P55=240;④5×4×P55=2400;⑤2×3×4×P55=2880.。
小学数学五年级奥数3--排列组合(一)
排列组合(一)例1:探究“排列”从1、2、3、4、5中挑两个数字组成一个两位数,共可组成多少个不同的两位数?乘法原理:排列原理:例2:探究“组合”从1、2、3、4、5中挑选两个数字,有多少种选法?乘法原理:组合原理:例3:排队问题有6个年龄互不相同的人,3人一排,站成两排。
(1)如果可以随便站,那么一共有多少种排法?(2)如果第一排的每一个人都比第二排的小,那么一共有多少种排法?例4:圆圈连线如图,在一个圆周上有9个点,以这些点为顶点或端点,一共可以画出()条线段;()个三角形;()个四边形。
练习1:从5、6、7、8、9这五个数字中选出四个数字(不能重复)组成四位数,共能组成多少个不同的四位数?练习2:甲、乙、丙、丁四个人站成一排照相,一共有多少种不同的排法?练习3:学生会召集各班正、副班长,学习委员开会。
五(2)班参加会议的班干部到会堂后,发现还有11个空座位,那么他们一共有多少种不同的坐法?练习4:从1、2、3、4、5中任意取三个数字,从6、7、8、9中任取两个数字,一共可以组成多少个没有重复数字的五位数?练习5:在一个圆周上有7个点,那么以这些点为顶点或者端点,一共可以画出多少条线段?多少个三角形?多少个四边形?练习6:一个圆周上有10个点,任意两点用线段连接,那么这些线段在圆内最多有多少个交点?练习7:学校举行四、五、六年级的足球比赛,其中四年级共有8个班,五年级共有7个班,六年级共有6个班。
比赛按年级分成3个小组,先各小组都进行单循环赛,然后再由各组的前两名共6个班进行单循环赛,决出冠亚军。
一共需要比赛多少场?练习8:学校体操队有18名同学,从中选出2名同学,(1)分别担任正副队长,有多少种不同的选法?(2)去参加全市的体操比赛,有多少种不同的选法?练习9:新学期的班会上,大家要从9名候选人中选出4名同学组成班委会,那么一共有多少种选法?如果贝贝一定要当选,有多少种不同的选法?练习10:7本不同的故事书,任选4本分给4名同学,每人一本,有多少种不同的分法?练习11:一本书有400页,数字1在这本书里出现了多少次?第十二届中环杯决赛题选如图,半圆连同直径上共有10个点,以这些点为顶点,可以构成()个三角形。
(完整版)排列组合练习题3套(含答案)
(完整版)排列组合练习题3套(含答案)排列练习⼀、选择题1、将3个不同的⼩球放⼊4个盒⼦中,则不同放法种数有()A、81B、64C、12D、142、n∈N且n<55,则乘积(55-n)(56-n)……(69-n)等于()A、 B、 C、 D、3、⽤1,2,3,4四个数字可以组成数字不重复的⾃然数的个数()A、64B、60C、24D、2564、3张不同的电影票全部分给10个⼈,每⼈⾄多⼀张,则有不同分法的种数是()A、2160B、120C、240D、7205、要排⼀张有5个独唱和3个合唱的节⽬表,如果合唱节⽬不能排在第⼀个,并且合唱节⽬不能相邻,则不同排法的种数是()A、 B、 C、 D、6、5个⼈排成⼀排,其中甲、⼄两⼈⾄少有⼀⼈在两端的排法种数有()A、 B、 C、 D、7、⽤数字1,2,3,4,5组成没有重复数字的五位数,其中⼩于50000的偶数有()A、24B、36C、46D、608、某班委会五⼈分⼯,分别担任正、副班长,学习委员,劳动委员,体育委员,其中甲不能担任正班长,⼄不能担任学习委员,则不同的分⼯⽅案的种数是()A、B、C、D、⼆、填空题1、(1)(4P84+2P85)÷(P86-P95)×0!=___________(2)若P2n3=10Pn3,则n=___________2、从a、b、c、d这四个不同元素的排列中,取出三个不同元素的排列为__________________________________________________________________3、4名男⽣,4名⼥⽣排成⼀排,⼥⽣不排两端,则有_________种不同排法4、有⼀⾓的⼈民币3张,5⾓的⼈民币1张,1元的⼈民币4张,⽤这些⼈民币可以组成_________种不同币值。
三、解答题1、⽤0,1,2,3,4,5这六个数字,组成没有重复数字的五位数,(1)在下列情况,各有多少个?①奇数②能被5整除③能被15整除④⽐35142⼩⑤⽐50000⼩且不是5的倍数2、7个⼈排成⼀排,在下列情况下,各有多少种不同排法?(1)甲排头(2)甲不排头,也不排尾(3)甲、⼄、丙三⼈必须在⼀起(4)甲、⼄之间有且只有两⼈(5)甲、⼄、丙三⼈两两不相邻(6)甲在⼄的左边(不⼀定相邻)(7)甲、⼄、丙三⼈按从⾼到矮,⾃左向右的顺序(8)甲不排头,⼄不排当中3、从2,3,4,7,9这五个数字任取3个,组成没有重复数字的三位数(1)这样的三位数⼀共有多少个?(2)所有这些三位数的个位上的数字之和是多少?(3)所有这些三位数的和是多少?排列与组合练习(1)⼀、填空题1、若,则n的值为()A、6B、7C、8D、92、某班有30名男⽣,20名⼥⽣,现要从中选出5⼈组成⼀个宣传⼩组,其中男、⼥学⽣均不少于2⼈的选法为()A、 B、 C、 D、3、空间有10个点,其中5点在同⼀平⾯上,其余没有4点共⾯,则10个点可以确定不同平⾯的个数是()A、206B、205C、111D、1104、6本不同的书分给甲、⼄、丙三⼈,每⼈两本,不同的分法种数是()A、 B、 C、 D、5、由5个1,2个2排成含7项的数列,则构成不同的数列的个数是()A、21B、25C、32D、426、设P1、P2…,P20是⽅程z20=1的20个复根在复平⾯上所对应的点,以这些点为顶点的直⾓三⾓形的个数为()A、360B、180C、90D、457、若,则k的取值范围是()A、[5,11]B、[4,11]C、[4,12]D、4,15]8、⼝袋⾥有4个不同的红球,6个不同的⽩球,每次取出4个球,取出⼀个线球记2分,取出⼀个⽩球记1分,则使总分不⼩于5分的取球⽅法种数是()A、 B、 C、 D、1、计算:(1)=_______(2)=_______2、把7个相同的⼩球放到10个不同的盒⼦中,每个盒⼦中放球不超1个,则有_______种不同放法。
小学奥数思维训练排列组合专项练习
小学数学专项训练排列组合(经典透析)学校:___________姓名:___________班级:___________考号:___________一、解答题1.小明和小王从北京出发先到天津看海,然后再到上海东方明珠塔参观.从北京到天津可以坐火车或者坐公共汽车,坐火车有4种车次,坐公共汽车有3种车次;而从天津到上海可以坐火车,公共汽车,轮船或者飞机,火车有3种,汽车有5种,轮船有4种,飞机有2种.问小明和小王从北京到上海旅游一共有多少种走法?2.某公园有两个园门,一个东门,一个西门.若从东门入园,有两条道路通向龙凤亭,从龙凤亭有一条道路通向园中园,从园中园又有两条道路通向西门.另外,从东门有一条道路通向游乐场.从游乐场有两条道路通向水上世界,另有一条道路通向园中园.从水上世界有一条道路通向西门,另有一条道路通向小山亭,从小山亭有一条道路通向西门.问若从东门入园,从西门出园一共有多少种不同的走法(不走重复路线)?3.由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?①可组成多少个没有重复数字的三位数?4.如下图,A、B、C、D、E五个区域分别用红、黄、蓝、白、黑五种颜色中的某一种染色,要使相邻的区域染不同的颜色,共有多少种不同的染色方法?5.4名同学到照相馆照相。
他们要排成一排,问:共有多少种不同的排法?6.从分别写有1、3、5、7、8五张卡片中任取两张,作成一道两个一位数的乘法题,问:①有多少个不同的乘积?①有多少个不同的乘法算式?7.如下图,问:①下左图中,共有多少条线段?①下右图中,共有多少个角?8.从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?9.国家举行足球赛,共15个队参加.比赛时,先分成两个组,第一组8个队,第二组7个队.各组都进行单循环赛(即每个队要同本组的其他各队比赛一场).然后再由各组的前两名共4个队进行单循环赛,决出冠亚军.问:①共需比赛多少场?①如果实行主客场制(即A、B两个队比赛时,既要在A队所在的城市比赛一场,也要在B队所在的城市比赛一场),共需比赛多少场?参考答案:1.98种【解析】【分析】首先看他们完成整个过程需要几个步骤,这是判断利用加法原理和乘法原理的依据.很明显整个过程要分两步完成,先从北京到天津,再从天津到上海,应该用乘法原理.我们再分开来看,先看从北京到天津,无论是坐火车还是汽车都是一步完成,所以要用加法原理,同样的道理,从天津到上海的走法计算也应该用加法原理.【详解】解:从北京到天津走法有:4+3=7种,从天津到上海走法有:3+5+4+2=14(种).从北京到上海的走法有:7×14=98(种).答:小明和小王从北京到上海旅游一共有98种走法.2.10种【解析】【详解】解法一:这个题的已知条件比较复杂.我们可将已知条件稍加“梳理”:1.从东门入园,从西门出园;2.从东门入园后,可以通向两个游览区,龙凤亭与游乐场;3.从龙凤亭经园中园可达到西门;4.从游乐场经水上世界可达到西门,或从游乐场经园中园可达到西门;5.从水上世界经小山亭可达到西门;根据以上五条可知,从东门入园经龙凤亭经园中园达到西门为一主干线.而东门到龙凤亭有两条不同路线;龙凤亭到园中园只有一条路线;园中园到西门又有两条不同的路线.由乘法原理,这条主干线共有2×1×2=4种不同的走法.再看从东门入园后到游乐场的路线.从东门到游乐场只有一条路,由游乐场分成两种路线,一是经园中园到西门,这条路线由乘法原理可知有1×1×2=2种不同走法;二是经水上世界到西门,从水上世界到西门共有两条路线(由水上世界直接到西门和经小山亭到西门),再由乘法原理可知这条路线有1×2×2=4种不同路线.最后由加法原理计算.从东门入园从西门出园且不走重复路线的走法共有2×1×2+1×1×2+1×2×2=10种.解法二:“枚举法”解题.如图,图中A 表示东门,B 表示西门,C 表示龙凤亭,D 表示园中园,E 表示游乐场,F 表示水上世界,G 表示小山亭,线表示道路.不同的走法有10种.1121111A C D BA C DB A E D BA E F G BA E F GB →→→→→→→→→→→→→→→→→ 1222222A C D BA C DB ACD B AEFG BA E F GB →→→→→→→→→→→→→→→→→答:不走重复路线,共有10种不同走法.【点睛】本题主要考察加法乘法原理.先分类利用加法原理,再对每一类进行分步利用乘法原理.建议可以利用加法与乘法原理的题型就没必要用枚举法,因为枚举法比较容易重复和遗漏.3.①48个①18个【解析】【分析】在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定。
小学奥数排列组合
小学奥数排列组合 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一.计数专题:④排列组合一. 进门考1.有四张数字卡片, 用这四张数字卡片组成三位数,可以组成多少个?2.一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同.问: ①从两个口袋内任取一个小球,有多少种不同的取法?②从两个口袋内各取一个小球,有多少种不同的取法?3.甲组有6人,乙组有8人,丙组有9人。
从三个组中各选一人参加会议,共有多少种不同选法?4.从1到500的所有自然数中,不含有数字4的自然数有多少个?5.学校的一块活动场地呈梯形,如图所示.(1)这块活动场地的面积是多少平方米?(2)学校计划给这块地铺上草皮,如果每平方米的草皮20元,学校一共要为这块活动场地花费多少元钱?5 87 66*.按1,2,3,4的顺序连线,有多少种不同的连法?二.授新课①奥数专题:乘法原理专题简析在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关.日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.解决排列组合问题,离不开加法原理和乘法原理,合理分类、合理分组,求出组合数和排列数。
排列公式:由乘法原理,从n 个不同元素中取出m 个元素的排列数是121n n n n m ⋅-⋅-⋅⋅-+()()(),即121m n P n n n n m =---+()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘.组合公式:从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m nC .12)112321m m n n m m P n n n n m C m m m P ⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⨯⨯()(()()().例1:排列数:121m n P n n n n m =---+()()()1. 三个人排成一排照相,有多少种不同的排法?2. 有3名男生和2名女生排成一排照相,有多少种不同的排法如果要求两名女生必须相邻,有多少种排法3.有从1到9共计9个号码球,请问,可以组成多少个三位数?4.5人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 多少?例2:组合数:12)112321mm n n m m P n n n n m C m m m P ⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⨯⨯()(()()()1. 从有3名男生和2名女生中选出2名同学参加数学竞赛,有多少种选法?2.在“星星杯”,“排球比赛中,共有10个小球队参加比赛。
小学三年级上期奥数第3讲家庭作业试题及答案--排列组合
基础班1.用6根长短、粗细一样的火柴棍拼出四个等边三角形(即三边相等的三角形),如何拼?解:如右图的立体图形。
2. (1)三个小朋友三分钟削三支铅笔,九个小朋友六分钟削几支铅笔?(2)三只猫三天吃三只老鼠,六只猫几天吃18只老鼠?解:(1)18支;(2)9天。
3.大杯子能装50克水,小杯子能装30克水。
你能用这两只杯子量出70克水吗?怎样量?解:可以,先把大杯子装满水,再从这一大杯子里倒30克水进小杯子,这时,大杯子里还有50-30=20克水,然后倒掉小杯子中的水,把大杯子中的20克水倒进小杯子,最后再倒一大杯子水,这样20+50=70克水。
4.某超市出售酱油,规定每3个空瓶可以换一瓶酱油,小明妈妈买了15瓶酱油,她最多可以用多少瓶酱油?解:15+5+1+1=22(瓶),或者15+5+2=22(瓶).5.电视台要播放一部30集的动画片,如果要求每天播出的集数互不相等,该动画片最多可以播几天?解:7天. 30=1+2+3+4+5+6+9,30=1+2+3+4+5+7+8。
提高班1.用6根长短、粗细一样的火柴棍拼出四个等边三角形(即三边相等的三角形),如何拼?解:如右图的立体图形。
2. (1)三个小朋友三分钟削三支铅笔,九个小朋友六分钟削几支铅笔?(2)三只猫三天吃三只老鼠,六只猫几天吃18只老鼠?解:(1)18支;(2)9天。
3.大杯子能装50克水,小杯子能装30克水。
你能用这两只杯子量出70克水吗?怎样量?解:可以,先把大杯子装满水,再从这一大杯子里倒30克水进小杯子,这时,大杯子里还有50-30=20克水,然后倒掉小杯子中的水,把大杯子中的20克水倒进小杯子,最后再倒一大杯子水,这样20+50=70克水。
4.某超市出售酱油,规定每3个空瓶可以换一瓶酱油,小明妈妈买了15瓶酱油,她最多可以用多少瓶酱油?解:15+5+1+1=22(瓶),或者15+5+2=22(瓶).5.电视台要播放一部30集的动画片,如果要求每天播出的集数互不相等,该动画片最多可以播几天?解:7天. 30=1+2+3+4+5+6+9,30=1+2+3+4+5+7+8。
20181213小学奥数练习卷(知识点:排列组合)含答案解析
小学奥数练习卷(知识点:排列组合)题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)评卷人得分一.选择题(共3小题)1.红、黄、蓝、白颜色的四面小旗,每次升起一面、二面、三面、四面所表示的信号不同,并且旗的上下顺序不同所代表的信号也不同.一共可以组成()种不同的信号.A.24B.36C.48D.642.将1,2,3,4,5,6,7,8这8个数排成一行,使得8的两边各数之和相等,那么共有()种不同的排法.A.1152B.864C.576D.2883.如图所示,韩梅家的左右两侧各摆了2盆花.每次,韩梅按照以下规则往家中搬一盆花:先选择左侧还是右侧,然后搬该侧离家最近的.要把所有的花搬到家里,共有()种不同的搬花顺序.A.4B.6C.8D.10第Ⅰ卷(非选择题)评卷人得分二.填空题(共38小题)4.由数字0,1,2,8(既可全用也可不全用,但不重复用)组成的所有非零自然数,按照从小到大排列,2018排在第个.5.用3颗红色的珠子,2颗蓝色的珠子,1颗绿色的珠子串成圆形手链,一共可以串成种不同的手链.6.有3角的邮票4张,5角的邮票3张,用它们可以支付种不同的邮资.7.某五号码牌由英文字母和数字组成,前四位有且只有两位为英文字母(字母I、O不可用),最后一位必须为数字.小李喜欢18这个数,希望自己的号码牌中存在相邻两位为1和8,且1在8的前面,那么小李的号码牌有种不同的选择方式.(英文共有26个字母)8.一只蚂蚁从正方体某个面的中心出发,每次都走到相邻面的中心,每个中心恰好经过一次,最终回到出发点.所有经过的中心排出的序列共有种.(两条序列不同指沿着行走方向经过的中心点顺序不一样)9.周老师一天要上3个班级的课,每班上1节.如果一天共有9节课,上午5节,下午4节,并且周老师不能连上3节课(第5节和第6节不算连上),那么,周老师一天上课的所有排课法共有种.10.小明计划在8天中去健身馆3次,但为了防止运动过量,他不能连续2天都去.那祥的话,他一共有种满足条件的时间安排方法.11.用1、2、3、4组成五位数,要求1、2、3、4至少各出现一次,则这样的五位数共有个.12.如图,8×8的方格表中,左上方4×4部分是黑色小方格,剩下的部分为白色小方格,将整个方格表分为若干块(每块都必须包含整数块小方格,不能把单个的小方格切开),要求每块中白色小方格的数量是黑色小方格数量的3倍.最多可以分成块.13.小青蛙在A、B、C三片荷叶之间跳动.它从A叶开始跳起,每次跳跃必须跳到另外两片荷叶上,不可以落在原来的叶片上.如果想要一共跳4次后要回到A叶,这只小青蛙共有种不同的跳法.14.亚瑟王在王宫中召见6名骑士,这些骑士中每个骑士恰好有2个朋友.他们围着一张圆桌坐下(骑士姓名与座位如图),结果发现这种坐法,任意相邻的两名骑士恰好都是朋友.亚瑟王想重新安排座位,那么亚瑟王有种不同方法安排座位,使得每一个骑士都不与他的朋友相邻(旋转以后相同的,算同一种方法).15.昊宇写好了五封信和五个不同地址的信封,要将每封信放入相应的信封中,一个信封只放入一封信.只有一封信装对,其余全部被错装的情形有种.16.一场橄榄球比赛中,一次成功的进攻可能得1、2、3、6分,其中1分只能出现在6分后面(1分必须与6分相邻,比如6、1、3就是一个可能的得分序列,6、3、1则不可能出现),但是6分后面不是一定要跟着1分.最后,上海队一共得到了10分,那么不同的得分序列有个.17.A、B两个纸片都被分成了4个区域,用黄、蓝、红三种颜色分别给它们涂色,要求相邻的区域涂色不能相同,A,B两个纸片中的涂法较多,有种不同的涂法.18.在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).19.如图,六边形的六个顶点分别标志为A,B,C,D,E,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有种.20.一个五边形的五个内角度数都是正整数且互不相等.已知其中有一个内角为76°,剩下的四个内角度数都是三位数,并且这四个三位数正好可以写在下面3×3的方格内(分别为abc、adf、fgh、ceh,不同的字母也可以表示相同的数字),那么,满足条件的方格有种不同的填法.21.图中由20个方格组成,其中含有A的正方形有个.22.将2015,2016,2017,2018,2019这五个数字分别填入如图中写有“D,O,G,C,W”的五个方格内,使得D+O+G=C+O+W,则共有种不同的填法.23.如图是兰兰家到学校的街道示意图.兰兰沿街道从家到学校共有种不同的最短路线.24.图中由12个面积为1的方格组成,则图中和阴影梯形面积相同的长方形有个.25.用3、5、7这三个数字,能组成个不同的三位数(在每个三位数中,每个数字只能用一次).26.现在有N(N+1)÷2张多米诺骨牌,每张骨牌上都写有两个数字,这两个数字都是1~N中的数(这两个数可以相同),任意两张骨牌上的两组数字不能都相同.现在,将这些多米诺骨牌排成若干列“火车”,每列“火车”中间的任意两张相邻骨牌上的相邻数字相同,如图给出了N=3时的一列“火车”当N=2016时,至少需要列“火车”才能将2016×(2016+1)÷2张骨牌全部用完.27.如图,在8×8的正方形网格中,A、B两点处各有一只臭虫(A点处的臭虫我们称其为a臭虫,B点处的臭虫我们称其为b臭虫).臭虫每次走1格(向上、向下、向左、向右这四个方向中选一个方向走).若b臭虫走两格,a臭虫走三格,最后b臭虫与A点的距离小于等于a臭虫与A点距离的走法有种.28.如图,一只蜜蜂从A处出发,回到蜂巢B处,每次只能从一个蜂房爬向右侧临近的蜂房而不准逆行,这只蜜蜂共有种回家的方法.29.小明希望1﹣12这12个数字排在一个圆周上,使得任意相邻的两个数字之差(大减小)为2或3,那么不同的排法有种(旋转后相同的排法算同一种).30.A、B、C、D四个城市分别派出2个足球队参加一次足球锦标赛,要求任何两个球队之间比赛一场,并且同一个城市的两个代表队之间不比赛.那么一共需要安排场比赛.31.从1、2、3、4、5、6、7这七个自然数中选出两个数,使得其和为偶数,共有种不同的选法.32.如图1所示,小明从A→B,毎次都是往一个方向走三格,然后转90度后再走一格,例如图2中,从点C出发可以走到八个位置.那么小明至少走次才能从点A到达点B.33.如图,一个大正方形被分割成六个小正方形,如果两个小正方形之间有多于一个的公共点,那么称它们为相邻的.将1、2、3、4、5、6填人如图,每个小正方形内填一个数字,使得相邻的小正方形内数之差永远不是3.不同的填法有种.34.小明在如图中的黑色小方格内,每次走动,小明都进入相邻的小方格(如果两个小方格有公共边,就称它们是相邻的),每个小方格都可以重复进入多次,经过四次走动后,小明所在的不同小方格有种.35.如图,从左下角A走到右上角B,每次只能向右或者向上走一格,要求行走路径正好穿过AB一次(如图的路径穿过AB三次,仅仅接触到AB上的点不算穿过),不同的行走路径有多少种?36.如图所示,两条直线与两个圆交于9个点.从这9个点中选出4个点,要求这4个点中的任意3个点既不在一条直线上,也不在一个圆周上.不同的选法有种.37.12个边长为1厘米的等边三角形拼成如图所示,从点A出发,到点B,不允许走重复路线,最多能走厘米.38.一个五位数从五个数码中任意取出两个数码,构成一个两位数(保持数码在原先五位数中的前后顺序),这样的两位数有10个:33、37、37、37、38、73、77、78、83、87.则=.39.如图的每个方格中填入1~6中的一个数字,使每行、每列及每个粗线宫内的六个数字都恰好是1~6.格线上的提示数5表示两侧格内数字之和是5,提示数6表示两侧格内数字之和是6.相邻两格间没有提示数的,这两格内数字之和不能是5也不能是6.那么,四位数等于.40.用1、2、3、4这四个数字构成一个四位数,要求:(1)a、b、c、d互不相同;(2)b比a、d都大,c比a、d都大,这样的四位数有个.41.从图a的正六边形网格中选出图b的形状,有种不同的选法(注意:图b可以旋转).评卷人得分三.解答题(共9小题)42.某城市的电话号码是六位数,但首位不能是0,其余各位可以是0、1、2、3、4、5、6、7、8、9中任何一个数字,而且不同数位上的数字可以重复(如:222222),那么这个城市最多可以容纳多少部电话?43.用1,9,9,8四个数字可以组成若干个不同的四位数,所有这些四位数的平均值是多少?44.有2克、5克、20克的砝码各1个,只用砝码和一架已经调节平衡了的天平,能称出多少种不同的质量.45.如图,圆圈表示房间,实线表示地上通道,虚线表示地下通道,开始时,一个警察和一个小偷在两个不同房间中,每一次警察从所在房间的地上通道转移到相邻的房间;同时,小偷从所在房间沿着地下通道转移到相邻的房间,如果警察和小偷转移了3次都没有在任何房间相遇,那么他们有种不同的走法.46.用2,0,1,7这四个数字可以组成多少个没有重复数字的四位偶数?47.盒子里有4枚白色棋子和2枚黑色棋子,菲菲分若干次拿走所有棋子,每次至少拿走一枚,共有多少种不同拿法?48.一个机关锁如图所示,锁上共有八卦和太极共九个按键,依次按下其中四个按键后(按键按下便不可再按),若与正确按法一致则开锁,若不一致则机关重置至初始状态.已知在太极按下之前不可连续按下正对的两个卦象键(例如图中的乾、坤或兑、艮),且正确按法只有一种,那么打开这个机关锁至多需要试多少次?49.如图是某社区的街道示意图,一辆洒水车从A点出发不重复地经过所有街道又回到A点.那么洒水车有多少种不同的路线?50.冬冬有10块大白兔奶糖,他从今天起,每天至少吃一块,直到吃完.请问一共有多少种不同的吃法?参考答案与试题解析一.选择题(共3小题)1.红、黄、蓝、白颜色的四面小旗,每次升起一面、二面、三面、四面所表示的信号不同,并且旗的上下顺序不同所代表的信号也不同.一共可以组成()种不同的信号.A.24B.36C.48D.64【分析】可以分4种方法把小旗挂在旗杆上作信号,即①选择1面,②选择其中的2面,③选择其中的3面,④4面全挂.分别计算出再相加.【解答】解:①选择1面,4×1=4(种);②选择2面,4×3=12(种);③选择3面,4×3×2=24(种);④选择4面(全挂),4×3×2×1=24(种);4+12+24+24=64(种).答:共有64种不同的信号.故选:D.【点评】此题分情况讨论,先根据乘法原理求出每种情况的可能,再根据加法原理进行求解.2.将1,2,3,4,5,6,7,8这8个数排成一行,使得8的两边各数之和相等,那么共有()种不同的排法.A.1152B.864C.576D.288【分析】首先求出1,2,3,4,5,6,7的和是28,判断出8的两边各数之和都是14;然后分4种情况:(1)8的一边是1,6,7,另一边是2,3,4,5时;(2)8的一边是2,5,7,另一边是1,3,4,6时;(3)8的一边是3,4,7,另一边是1,2,5,6时;(4)8的一边是1,2,4,7,另一边是3,5,6时;求出每种情况下各有多少种不同的排法,即可求出共有多少种不同的排法.【解答】解:1+2+3+4+5+6+7=288的两边各数之和是:28÷2=14(1)8的一边是1,6,7,另一边是2,3,4,5时,不同的排法一共有:(3×2×1)×(4×3×2×1)×2=6×24×2=288(种)(2)8的一边是2,5,7,另一边是1,3,4,6时,不同的排法一共有288种.(3)8的一边是3,4,7,另一边是1,2,5,6时,不同的排法一共有288种.(4)8的一边是1,2,4,7,另一边是3,5,6时,不同的排法一共有288种.因为288×4=1152(种),所以共有1152种不同的排法.答:共有1152种不同的排法.故选:A.【点评】此题主要考查了排列组合问题,考查了乘法原理的应用,要熟练掌握,注意不能多数、漏数.3.如图所示,韩梅家的左右两侧各摆了2盆花.每次,韩梅按照以下规则往家中搬一盆花:先选择左侧还是右侧,然后搬该侧离家最近的.要把所有的花搬到家里,共有()种不同的搬花顺序.A.4B.6C.8D.10【分析】分两种情况讨论:①先取的两盆在同侧有=2种搬法;②在异侧有×=4种搬法,所以共有2+4=6种,据此解答即可.【解答】解:根据分析可得,+×=2+4=6(种)答:共有6种不同的搬花顺序.故选:B.【点评】本题考查了排列组合知识的灵活应用,关键是先分类再计数.二.填空题(共38小题)4.由数字0,1,2,8(既可全用也可不全用,但不重复用)组成的所有非零自然数,按照从小到大排列,2018排在第37个.【分析】分一位数、两位数、三位数和四位数分步计数,然后找到以“2”开头的四位数中2018 排在第几即可.【解答】解:非零一位数有3个,两位数有:3×3=9个,三位数有:3×3×2=18个,四位数中“1”在千位上的有:1×3×2×1=6个:“2”在千位上的第一个数就是2018;所以,按照从小到大排列,2018排在第3+9+18+6+1=37个;故答案为:37.【点评】本题考查了分类计数和分步计数问题的综合应用,注意0不能放在最高位.5.用3颗红色的珠子,2颗蓝色的珠子,1颗绿色的珠子串成圆形手链,一共可以串成5种不同的手链.【分析】因为是圆形手链,所以旋转和翻转相同的只能算一种,因为红色的珠子有3颗,所以可以让3颗红色的珠子相邻,也可以让2个红色的珠子相邻,也可以让红色的珠子不相邻这三种情况考虑,据此解答即可.【解答】解:①3颗红色的珠子相邻,则只有2种;②只有2颗红色的珠子相邻,有2种;③3颗红色的珠子都不相邻,有1种;2+2+1=5(种)答:一共可以串成5种不同的手链.【点评】本题考查的排列组合问题.6.有3角的邮票4张,5角的邮票3张,用它们可以支付19种不同的邮资.【分析】①单取3角的邮票共有4种方法,②同理,单取5角的邮票共有3种方法,③根据乘法原理,两种都取共有4×3=12种方法,然后相加即可.【解答】解:4+3+4×3=7+12=19(种)答:用它们可以支付19种不同的邮资.故答案为:19.【点评】解答本题要注意,先分类,再分步计数.7.某五号码牌由英文字母和数字组成,前四位有且只有两位为英文字母(字母I、O不可用),最后一位必须为数字.小李喜欢18这个数,希望自己的号码牌中存在相邻两位为1和8,且1在8的前面,那么小李的号码牌有34560种不同的选择方式.(英文共有26个字母)【分析】本题考察排列组合.【解答】解:除掉18剩余的三个位置有10×24×24=5760(种),所以18在一二位有5760种;18在二三位有5760种;18在三四位有5760种;18在四五位有5760×3=17280种;综上,共有5760×6=34560(种),故填34560.【点评】本题关键在于根据18在哪相邻的两位进行分类计数.8.一只蚂蚁从正方体某个面的中心出发,每次都走到相邻面的中心,每个中心恰好经过一次,最终回到出发点.所有经过的中心排出的序列共有32种.(两条序列不同指沿着行走方向经过的中心点顺序不一样)【分析】本题考察排列组合.【解答】解:从一个面出发,第一次有4个不同的方向选择,这四个方向的情况数目是相同的,所以考虑一种即可,我们考虑从正面出发的情况,正→上→背→右→下→左→正正→上→背→左→下→右→正正→上→左→下→背→右→正正→上→左→背→右→下→正正→上→左→背→下→右→正正→上→右→下→背→左→正正→上→右→背→左→下→正正→上→右→背→下→左→正所以总共有4×8=32(种)故填:32.【点评】本题关键在于考虑一种情况后利用乘法原理进行计数.9.周老师一天要上3个班级的课,每班上1节.如果一天共有9节课,上午5节,下午4节,并且周老师不能连上3节课(第5节和第6节不算连上),那么,周老师一天上课的所有排课法共有474种.【分析】利用排除法即可解决问题.【解答】解:9节课全排列=504种排法,排除不满足条件的123,234,345,678,789,可得﹣5=504﹣30=474,故答案为474.【点评】本题考查排列组合,解题的关键是学会利用排除法解决问题.10.小明计划在8天中去健身馆3次,但为了防止运动过量,他不能连续2天都去.那祥的话,他一共有20种满足条件的时间安排方法.【分析】他不能连续2天都去意味着3天均不相邻,可以采用插空法解答,不去健身房有5天,5天形成了6个空,在6个空里选择三个空去健身房,共有种方法,据此解答即可.【解答】解:==20(种)答:他一共有20种满足条件的时间安排方法.故答案为:20.【点评】像这种不相邻的排列组合问题,往往采用“插空法”解答比较简洁.11.用1、2、3、4组成五位数,要求1、2、3、4至少各出现一次,则这样的五位数共有240个.【分析】由1、2、3、4至少各出现一次知第5个数有4种选法,从而知需要对AABCD型这5个数字排列,根据排列公式可得答案.【解答】解:因为1、2、3、4至少各出现一次,所以第5个数有4种选法,对于第5个数字的每一种可能,则需要对AABCD型这5个数字排列,共有=60种,综上,共有60×4=240个不同的五位数,故答案为:240.【点评】本题主要考查数字的排列组合,解题的关键是明确用排列解决问题,且理解其加法原理、乘法原理.12.如图,8×8的方格表中,左上方4×4部分是黑色小方格,剩下的部分为白色小方格,将整个方格表分为若干块(每块都必须包含整数块小方格,不能把单个的小方格切开),要求每块中白色小方格的数量是黑色小方格数量的3倍.最多可以分成7块.【分析】根据题意,考虑左上方4×4部分,根据要求每块中白色小方格的数量是黑色小方格数量的3倍,利用填数的方法,可得图中的分割方法,即可得出结论.【解答】解:根据题意,考虑左上方4×4部分,根据要求每块中白色小方格的数量是黑色小方格数量的3倍,利用填数的方法,可得图中的分割方法,其中四个1表示一块,四个2表示一块,四个3表示一块,四个4表示一块,四个5表示一块,四个6表示一块,所有7表示一块,故最多可以分成7块.故答案为7.【点评】本题给出图形,求最多分割的方法,考查学生对图形的认识,正确填格是关键.13.小青蛙在A、B、C三片荷叶之间跳动.它从A叶开始跳起,每次跳跃必须跳到另外两片荷叶上,不可以落在原来的叶片上.如果想要一共跳4次后要回到A叶,这只小青蛙共有6种不同的跳法.【分析】画出树状图,即可解决提问.【解答】解:观察树状图,可知一共有6种本题的方法.故答案为6.【点评】本题考查排组合等知识,利用树状图是解决问题的关键.14.亚瑟王在王宫中召见6名骑士,这些骑士中每个骑士恰好有2个朋友.他们围着一张圆桌坐下(骑士姓名与座位如图),结果发现这种坐法,任意相邻的两名骑士恰好都是朋友.亚瑟王想重新安排座位,那么亚瑟王有6种不同方法安排座位,使得每一个骑士都不与他的朋友相邻(旋转以后相同的,算同一种方法).【分析】首先根据题目要求旋转相同的算同一种方法,因此可只考虑其中一个人排在第一位的情况,然后根据题目条件进行后续排序即可.【解答】解:为方便起见,分别用数字1、2、3、4、5、6代表6个人,则1的朋友为2和6,即和1相邻的只能是3,4,5.由于旋转相同的算同一种方法,可以只考虑以1开始的排序方法,由于是一个圆圈,则第二位和最后一位只能从3,4,5中选,那么以1为基准可排的座位顺序为:(1)若第二位选3,则第三位选5或6,①若第三位选5,则第四位只能选2,还剩下4和6,由于最后一位只能是3,4,5,则第五位选6,第六位选4,即1,3,5,2,6,4;②若第三位选6,还剩下2,4,5,若第四位选2,则剩下4和5,相邻,不符合题意,且6和5相邻,因此第四位选4,则第五位选2,第六位选5,即1,3,5,2,6,4;(2)若第二位选4,可同样推理,得到两种排序,即1,4,6,2,5,3和1,4,2,6,3,5,(3)若第二位选5,可同样推理,得到两种排序,即1,5,2,4,6,3,和1,5,3,6,2,4.共计6种.故答案为:6.【点评】本题的突破口在于将圆圈问题直线化,在排序过程中注意不重不漏即可.15.昊宇写好了五封信和五个不同地址的信封,要将每封信放入相应的信封中,一个信封只放入一封信.只有一封信装对,其余全部被错装的情形有45种.【分析】为了方便说明,可以设五封信编号分别为1,2,3,4,5,五个信封的编号分别为A,B,C,D,E,只有一封信装对,则首先选一封装对的信,有种情况,其他四封信都装错的情况可分类列举,据此解答.【解答】解:首先选一封装对的信,为,可以以第5封信为例,即第5封信装在信封E,其他四封信全部装错.可能的情况:①1﹣B,2﹣A,3﹣D,4﹣C;1﹣B,2﹣C,3﹣D,4﹣C;1﹣B,2﹣D,3﹣A,4﹣C;②1﹣C,2﹣A,3﹣D,4﹣B;1﹣C,2﹣D,3﹣A,4﹣B;1﹣C,2﹣D,3﹣B,4﹣A;③1﹣D,2﹣A,3﹣B,4﹣C,1﹣D,2﹣C,3﹣A,4﹣B,1﹣D,2﹣C,3﹣B,4﹣A.共计9种,因此只有一封信装对,其余全部被装错的情形有×9=45种.故答案为:45.【点评】本题的突破口在于能把其中四封信全部被装错的情况找到,做到不重不漏.16.一场橄榄球比赛中,一次成功的进攻可能得1、2、3、6分,其中1分只能出现在6分后面(1分必须与6分相邻,比如6、1、3就是一个可能的得分序列,6、3、1则不可能出现),但是6分后面不是一定要跟着1分.最后,上海队一共得到了10分,那么不同的得分序列有12个.【分析】首先分析符合条件的数字可以是3,6,1组合,也可以是3,3,2,2组合.【解答】解:依题意可知:6,1,3分组合满足题意,满足题意的有3,6,1组合.那么满足条件的还有(6,2,2)组合共3种;还有22222的组合共1种.还有出现2个2分和2个3分的组合共=6(种).故答案为:12【点评】本题考查对排列组合的理解和运用,关键问题是找到数字和为10的组合数,问题解决.17.A、B两个纸片都被分成了4个区域,用黄、蓝、红三种颜色分别给它们涂色,要求相邻的区域涂色不能相同,A,B两个纸片中B的涂法较多,有12种不同的涂法.【分析】A的涂色区域只能是最上方区域和左下方区域图同色,其排列数为;图B的涂色区域中涂同色的区域有2类,一是最上方区域和左下方区域;二是最上方区域和右下角区域,涂色种类数为+.【解答】解:图A的涂色方法有=3×2×1=6(种)图B的涂色方法有+=6+6=12(种)故:B的涂法多,有12种不同涂法.【点评】此题的解题关键是能否想到合并能涂同色的区域,而且要把这种情况找全.18.在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有10种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).【分析】可以分情况讨论,四个顶点的位值一样,正中间的一个方格一个位值,剩下的四个方格位值相同,故可以分次三种情况分别计算不同的摆放方法.【解答】解:根据分析,份三种情况:①当正中间即E处放一颗棋子,然后另一颗棋子放在外围任意一个位置,除去对称性因素,有2种不同的摆放方法,即AE、BE;②当两颗棋子都不在正中间E处时,而其中有一颗在顶点处时,有4种不同摆法,即AB、AF、AH、AD;③当两颗棋子都在顶点处时,有2种不同摆法,即AC、AI;④当两颗棋子都在除顶点和正中间之外的4个方格中,有2种不同摆法,即BD、BH.综上,共有:2+4+2+2=10种不同摆放方法.【点评】本题考查了排列组合,突破点是:分情况讨论,根据不同的位置求出总的不同摆放方法.19.如图,六边形的六个顶点分别标志为A,B,C,D,E,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有4种.【分析】显然,只有两种情况,分别讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后可以求得总的不同的摆放方法.【解答】解:根据分析,分两类情况:①按顺序移动一个位置,顺时针移动一个位置,有1种不同摆放方法,逆时针移动一个位置,有1种不同摆放方法;②相邻两个位置互换,则共有:2种不同的摆放方法.综上,共有:1+1+2=4种不同摆放方法.故答案是:4.。
小学三年级奥数习题(排列组合类型,有答案解析)
小学三年级奥数习题(排列组合类型,有答案解析)1、小明有两件不同背心和三条不同的短裤,可以有()种不同的搭配方法.A . 8B . 6C . 42、小明家到学校有2条路可以走,学校到超市4条路可以走,小明从家经过学校去超市,一共有多少种走法?A、6种B、8种C、10种3、8名羽毛球运动员直接进行单打比赛淘汰赛,最后产生第一名,共进行()场的比赛。
A . 7B . 16C . 104、赛季缩水,有16支足球队采用单循环制联赛,一共要进行()场的足球比赛。
A . 32B . 240C . 1205、有14个篮球队进行比赛,若采用淘汰制,最后产生一名冠军,则至少要进行()场比赛。
A . 15B . 14C . 13D . 126、5支足球队进行踢足球比赛,每两个队都要赛一场,一共要赛场.7、12支球队若进行淘汰赛,(通过抽签可以有轮空队伍)共需比赛场.8、下面图形中,有条线段.9、现有3名男生和3名女生,欲从中各选派一个人参加羽毛球混合双打比赛,共有种不同的组队方案.10、洋洋有3件上衣和3条裙子,一件上衣配一条裙子共有种穿法。
11、从3个不同的故事书中任意选2个借给一位同学,一共有种不同的借法.12、若3名同学中选出两人做班干部,有种可能。
13、从甲、乙、丙三人人中选出一人参加校园网络知识竞赛有种方案。
14、从3名男生和3名女生中各选2个参加混合接力项目比赛,一共有种不同选法。
答案解析:1、2×3=6,低年级学生可以通过画图数一数来完成。
2、2×4=8,也可以通过画图的方法。
3、淘汰赛,8进4,4进2,2进1,共进行4+2+1=7.4、单循环,每两支球队都要赛一场,组合问题,(16×15)÷ 2=120,[总数×(总数-1)]÷2 ,也可以这样理解,类似于数线段总数一样,15+14+……+3+2+1= (15+1)×(15÷2)=1205、淘汰赛,14进7 ;6进3,一个轮空;4进2,2进1,7+3+2+1=136、同第4题,(5×4)÷2=107、6+3+1+1=118、数线段:3+2+1=6,另一种方法(4×3)÷2=6是加法算法的总结。
小学数学《排列组合》练习题(含答案)
小学数学《排列组合》练习题(含答案)小学数学《排列组合》练习题(含答案)加乘原理,排列组合是四年级一个重要的学习内容,在之前的学习中,我们已经对它们有所了解,对于加乘原理我们只需要记住:加法分类,类类独立;乘法分步,步步相关!排列组合的应用具有一定难度.突破难点的关键:首先必须准确、透彻的理解加法原理、乘法原理;即排列组合的基石.其次注意两点:①对问题的分析、考虑是否能归纳为排列、组合问题?若能,再判断是属于排列问题还是组合问题?②对题目所给的条件限制要作仔细推敲认真分析.可利用图示法,可使问题简化便于正确理解与把握.本讲主要巩固加强此部分知识,注重排列组合的综合应用.排列在实际生活中常遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法.就是排列问题.在排的过程中,不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关.一般地,从n个不同的元素中任取出m个(m≤n)元素,按照一定的顺序排成一列.叫做从n个不同元素中取出m个元素的一个排列.由排列的定义可以看出,两个排列相同,不仅要求这两个排列中的元素完全相同,而且各元素的先后顺序也一样.如果两个排列的元素不完全相同.或者各元素的排列顺序不完全一样,则这就是两个不同的排列.从n个不同元素中取出m个(m≤n)元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,我们把它记做mnp(m≤n),m(1)(2) (1)mnp n n n n m=---+共个数.其中!(1) (1)nnP n n n==?-??.【例1】4名男生和2名女生去照相,要求两各女生必须紧挨着站在正中间,有几种排法?分析:分两步进行,先安排两个女生有22P 种方法,4个男生站的位置有44P 种方法,共有2424P P ?=2×1×4×3×2×1=48(种),故有48种排法.【巩固】停车站划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,一共有多少种不同的停车方案? 分析:把4个空车位看成一个整体,(4个空车位看成一样的)与8辆车一块儿进行排列.99362880P =.【前铺】讲解此部分例题之前,请根据本班情况,将排列公式的计算练习一下!计算:(1)321414P P - ;(2)53633P P - 分析:(1)321414P P -=14×13×12-14×13=2002 ;(2)53633P P -=3×(6×5×4×3×2)-3×2×1=2154 .【例2】书架上有4本不同的漫画书,5本不同的童话书,3本不同的故事书,全部竖起排成一排,如果同类型的书不要分开,一共有多少种排法?如果同类书可以分开,一共有多少种排法?(只写出表达式,不用计算)分析:每种书内部任意排序,分别有44P ,55P ,33P 种排法,然后再排三种类型的顺序,有33P 种排法,整个过程分4步完成.44P ×55P ×33P ×33P =103680(种).如果同类书可以分开,就相当于4+5+3=12本书随意排,有1212P 种排法.【例3】用0,1,2,3,4可以组成多少个没重复数字的三位数?分析:(法1)在本题中要注意的是0不能为首位数字,因此,百位上的数字只能从1,2,3,4这四个数字中选择1个,有4种方法;十位和个位上的数字可以从余下的4个数字中任选两个进行排列,有2 4P 种方法.由分步计数原理得,三位数的个数是:4×24P =48(个).(法2):从0,1,2,3,4中任选三个数字进行排列,再减去其中不合要求的,即首位是0.从0,1,2,3,4这五个数字中任选三个数字的排列数为35P ,其中首位是0的三位数有24P 个.三位数的个数是:35P -24P =5×4×3-4×3=60-12=48(个).不是简单的全排列,有一些其它的限制,这样要么全排列再剔出不合题意的情况,要么直接在排列的时候考虑这些限制因素.【前铺】(1)用1,2,3,4,5可以组成多少个没有重复数字的三位数? (2)用1,2,3,4,5可以组成多少个三位数?分析:(1)要组成三位数,自然与三个数字的排列顺序有关,所以这是一个从五个元素中取出三个进行排列的问题,可以组成35P =5×4×3=60种没有重复数字的三位数.(2)没有要求数字不能重复,所以不能直接用35P 来计算,分步考虑,用乘法原理可得:5×5×5=125(个).注意“重复”和“没有重复”的区别!【巩固】用数码0,1,2,3,4可以组成多少个小于1000的没有重复数字的自然数? 分析:小于1000的自然数包括一位数、两位数、三位数,可以分类计算.注意“0”是自然数,且不能作两位数、三位数的首项.11124444569P P P P +?+?=(个).很自然的知道需要根据位数分类考虑,而且首位非零的限制也需要考虑.【例4】由4个不同的独唱节目和3个不同的合唱节目组成一台晚会,要求任意两个合唱节目不相邻,开始和最后一个节目必须是合唱,则这台晚会节目的编排方法共有多少种?分析:先排独唱节目,四个节目随意排,有44P =24种排法;其次在独唱节目的首尾排合唱节目,有三个节目,两个位置,对应23P =6种排法;再在独唱节目之问的3个位置中排一个合唱节目,有3种排法,由乘法原理,一共有24×6×3=432种不同的编排方法.【例5】小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?(1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排.分析:(1)775040P =(种).(2)只需排其余6个人站剩下的6个位置.66720P =(种).(3)先确定中间的位置站谁,冉排剩下的6个位置.2×66P =1440(种).(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ?= (种).(5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ?=(种).(6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种).(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,一般先考虑特殊情况再去全排列.【例6】某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9.为确保打开保险柜,至少要试多少次?分析:四个数字之和为9的情况有:l+1+1+6=9;1+1+2+5=9;1+1+3+4=9;1+2+2+4=9;1+2+3+3=9;2+2+2+3=9,分别计算这6种情况.对于“l+1+1+6”这种情况,我们只需考虑6,其它1放那都一样;对于“1+1+2+5”这种情况,只需考虑2和5,其它同理,可得答案:12222144444456()P P P P P P +++++=次【巩固】有3所学校共订300份中国少年报,每所学校订了至少98份,至多102份.问:一共有多少种不同的订法?分析:可以分三种情况来考虑:(1)3所学校订的报纸数量互不相同,有98,100,102;99,100,101两种组合,每种组各有33P =6种不同的排列,此时有6×2=12种订法.(2)3所学校订的报纸数量有2所相同,有98,101,101;99,99,102两种组合,每种组各有3种不同的排列,此时有3×2=6种订法.(3)3所学校订的报纸数量都相同,只有100,100,100一种订法.由加法原理,不同的订法一共有12+6+l=19种.组合一般地,从n 个不同元素中取出m 个(m≤n )元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.由组合的定义可以看出,两个组合是否相同,只与这两个组合中的元素有关,而与取到这些元素的先后顺序无关.只有当两个组合中的元素不完全相同时,它们才是不同的组合.从n 个不同元素中取出m 个元素(m ≤n )的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作(1) (1)!m mn n n n m C m ?-??-+=个数这就是组合数公式.【例7】以右图中的8个点中的3个为顶点,共可以画出多少个不同的三角形?分析:从8个点中选3个点,一共有56种不同的选法.但是因为在一条直线上的3个点不能组成三角形,所以应去掉两条直线上不合要求的选法.5个点选3个的选法有10种.4个点选3个的选法有4种.所以一共可以画出56-(10+4)=42不同的三角形.【前铺】右图共有11条射线,那么图中有多少个锐角?分析:如图,最大的为锐角,它内部的各个角一定也是锐角,图中共有11条射线,任取两条作为角的两边便可确定一个锐角.因为角的两边不存在顺序关系,所以应该用组合.211C =55.几何题中的数个数问题往往可以采用这样的组合方法来解题.【前铺】讲解例题之前请根据本班情况先将组合公式计算练习一下!计算:(1)241655,,C C C ,(2)352777,,C C C分析:(1)26651521C ?==?,45543254321C ==,15551C == ;(2)3776535321C ??==?? ,57765432154321C == ,57765432154321C ==注意:从上发现规律m n mn n C C -=.【巩固】从3、5、7、11这四个质数中任取两个相乘,可以得到多少个不同的乘积?分析:由于3,5,7,11都是质数,因此所得乘积各不相同,因此只要求出不同的质数对的个数就可以了.24C =6.【巩固】一个口袋中有4个球,另一个口袋中有6个球,这些球颜色各不相同.从两个口袋中各取2个球,共有多少种不同结果?分析:分步考虑,224661590C C ?=?=(种).【例8】有13个队参加篮球比赛,比赛分两个组,第一组七个队,第二组六个队,各组先进行单循环赛(即每队都要与其它各队比赛一场),然后由各组的前两名共四个队再进行单循环赛决定冠亚军.问:共需比赛多少场?分析:分三部分考虑,第一组预赛、第二组顶赛和最后的决赛.第一组要赛:27C =21(场),第二组要赛:26C =15(场),决赛阶段要赛:24C =6(场),总场数:21+15+6=42(场).【拓展】一个盒子装有10个编号依次为1,2,3,…,10的球,从中摸出6个球,使它们的编号之和为奇数,则不同的摸法种数是多少?分析:10个编号中5奇5偶,要使6个球的编号之和为奇数,有以下三种情形:(1)5奇1偶,对奇数只有1种选择,对偶数有5种选择.由乘法原理,有1×5=5种选择; (2)3奇3偶,对奇数有35C =10种选择,对偶数也有35C =10种选择.由乘法原理,有10×10=100种选择;(3)1奇5偶,对奇数有5种选择,对偶数只有1种选择.由乘法原理,有5×1=5种选择.由加法原理,不同的摸法有:5+100+5=110种.【例9】某年级6个班的数学课,分配给甲、乙、丙三名数学老师任教,每人教两个班,分派的方法有多少种?分析:分三步进行:第一步,取两个班分配给甲,与先后顺序无关,是组合问题,有15种选法;第二步,从余下的4个班中选取两个班给6种选法;第三步,剩余的两个班给丙,有1种选法.根据乘法原理,一共有15×6×l=90种不同的分配方法.【拓展】从8名候选人中选出正、副班长各1人,再选出3名班委会成员.一共有多少种不同的选法?分析:先选正、副班长,分别有8种和7种选法.再从剩下的6人中选出3人,有36C =20种选法.由乘法原理,共有8×7×20=1120种不同的选法.【例10】工厂从100件产中任意抽出三件进行检查,问: (1)一共有多少种不同的抽法?(2)如果100件产品有2件次品,抽出的3件中恰好有一件是次品的抽法有多少种?(3)如果100件产品中有2件次品,抽出的3件中至少有一件是次品的抽法有多少种? 、分析:从100件产品中抽出3件检查,与抽出3件产品的顺序无关,是一个组合问题. (1)不同的抽法数就是从100个元素中取3个元素的组合数.3100C =161700(种). (2)可分两步考虑,第一步:从2件次品中抽出一件次品的抽法有12C 种;第二步:从98件合格品中抽出2件合格品的抽法有298C 种.再用分步计数原理求出总的抽法数,122989506C C ?=.(3)可以从反面考虑,从抽法总数3100C 中减去抽出的三件都是合格品的情况,便得到抽出的三件产品中至少有一件是次品的抽法总数.33100981617001520969604C C -=-=.【例11】从10名男生,8名女生中选出8人参加游泳比赛.在下列条件下,分别有多少种选法?(1)恰有3名女生入选;(2)至少有两名女生入选;(3)某两名女生,某两名男生必须入选;(4)某两名女生,某两名男生不能同时入选;(5)某两名女生,某两名男生最多入选两人.分析:(1)恰有3名女生入选,说明男生有5人入选,应为:35 81014112C C ?=;(2)要求至少两名女生人选,那么“只有一名女生入选”和“没有女生入选”都不符合要求.运用包含与排除的方法,从所有可能的选法中减去不符合要求的情况:8871181010842753C C C C --?=.(3)4人必须入选,则从剩下的14人中再选出另外4人. 4141001C =.(4)从所有的选法818C 中减去这4个人同时入选的414C 种可能:818C -414C =42757.(5)分三类情况:4人无人入选,4人仅有1人入选,4人中有2人入选,共:8172614414414C C C C C +?+?=34749.【例12】用2个1,2个2,2个3可以组成多少个互不相同的六位数?用2个0,2个1,2个2可以组成多少个互不相同的六位数?分析:先考虑在6个数位上选2个数位放1,这两个1的顺序无所谓,故是组合问题有26C =15种选法;再从剩下的4个数位上选2个放2,有24C =6种选法;剩下的2个数位放3,只有1种选法.由乘法原理,这样的六位数有15×6×l=90个.在前一问的情况下组成的90个六位数中,首位是1、2、3的各30个.如果将3全部换成0,这30个首位是0的数将不是六位数,所以可以组成互不相同的六位数90—30=60个.【例13】从1,3,5,7,9中任取三个数字,从2,4,6,8中任取两个数字,组成没有重复数字的五位数,一共可以组成多少个数?分析:整个过程可以分三步完成:第一步,从1,3,5,7,9中任取三个数字,这是一个组合问题,有35C 种方法;第二步,从2,4,6,8中任取两个数字,也是一个组合问题,有24C 种方法;第三步,用取出的5个数字组成没有重复数字的五位数,有55P 种方法.再由分步计数原理求总的个数:35C ×24C ×55P =7200(个).附加题目【附1】小明的书架上原来有6本书,不重新排列,再放上3本书,可以有多少种不同的放法?分析:放第一本书时,有原来的6本书之间和两端的书的外侧共7个位置可以选择;放第二本书时,有已有的7本书之间和两端的书的外侧共8个位置可以选择.同样道理,放第三本书时,有9个位置可以选择.由乘法原理,一共可以有7×8×9=504种不同的放法.【附2】一栋12层楼房备有电梯,第二层至第六层电梯不停.在一楼有3人进了电梯,其中至少有一个要上12楼,则他们到各层的可能情况共有多少种?分析:每个人都可以在第7层至第12层中任何一层下,有6种情况,那么三个人一共有6×6×6=216种情况,其中,都不到12楼的情况有5×5×5=125种.因此,至少有一人要上12楼的情况有216-125=91种.【附3】某校组织进行的一次知识竞赛共有三道题,每道题满分为7分,给分时只能给出自然数l,2,3,…,7分.已知参加竞赛者每人三道题的得分的乘积都是36,而且任意二人各题得分不完全相同,那么请问参加竞赛的最多有多少人?分析:将36分解为不大于7的三个数的乘积,有1×6×6;3×3×4;2×3×6三种情况.考虑到因数的先后顺序,第一种情况,考虑1有三个位置可选择,其余位置放6,有3种顺序;第二种情况与第一种情况相似,有3种顺序;最后一种情况,有3×2×l=6种顺序.由加法原理,一共有12种顺序,所以参赛的最多有12人.【附4】某市的电视台有八个节目准备分两天播出,每天播出四个,其中某动画片和某新闻播报必须在第一天播出一场,体育比赛必须在第二天播出,那么一共有多少种不同的播放节目方案?分析:某动画片和某新闻播报在第一天播放,对于动画片而言,可以选择当天四个节目时段的任何一个时段,一共有4种选择,对于新闻播报可以选择动画片之外的三个时段中的任何一个时段,一共有3种选择,体育比赛可以在第二天的四个节目时段中任选一个,一共有4种选择.剩下的5个节目随意安排顺序,有55P=120种选择.由乘法原理,一共有4×3×4×120=5760种不同的播放节目方案.【附5】某旅社有导游9人,其中3人只会英语,2人只会日语,其余4个既会英语又会日语.现要从中选6人,其中3人做英语导游,另外3人做日语导游.则不同的选择方法有多少种?分析:此题若从“多面手”出发来做,不太简便,由于只会日语的人较少,所以针对只会日语的人讨论,分三类:(1)只会日语的2人都出场,则还需1个多面手做日语导游,有4种选择.从剩下的只会英语的人和多面手共6人中选3人做英语导游,有36C=20种,由乘法原理,有4×20=80种选择.(2)只会日语的2人中有1人出场,有2种选择.还需从多面手中选2人做日语导游,有24C=6种选择.剩下的只会英语的人和多面手共5人中选3人做英语导游,有3 5C=10种选择.由乘法原理,有2×6×10=120种选择.(3)只会日语的人不出场,需从多面手中选3人做日语导游,有34C=4种选择.剩下的只会英语的人和多面手共4人中选3人做英语导游,有34C=4种选择.由乘法原理,有4×4=16种选择.根据加法原理,不同的选择方法一共有80+120+16=216种.【附6】五个瓶子都贴了标签,其中恰好贴错了三个,贴错的可能情况共有多少个?分析:首先考虑哪三个瓶子贴错了,有35C 种可能,3个瓶子贴错后互相贴错标签又分成两种不同情况.所以共有35C ×2=20(种).此题容易出错的是三个出错的瓶子确定后,他们之间错误的可能情况数目,有的同学很容易忽略这一环节,而有的会不假思索的把它当作一个全排列,这都是不正确的.【附7】马路上有编号为1,2,3,…,l0的十只路灯,为节约用电又能看清路面,可以把其中的三只灯关掉,但又不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法有多少种?分析:l0只灯关掉3只,实际上还亮7只灯,而又要求不关掉两端的灯和相邻的灯,此题可以转化为在7只亮着的路灯之问的六个空档中插入三只熄灭的灯,有36C =20种插法.练习十二1.给出1,2,3,4四个数字,试求:(1)可组成多少个数字不重复的四位数? (2)可组成多少个数字不重复的自然数? (3)可组成多少个不超过四位的自然数?分析:(1)44P =4×3×2×1=24个数字不重复的四位数.(2)利用1,2,3,4可组成数字不重复的一位、两位、三位、四位自然数,分类考虑:12344444P P P P +++=64个.(3)此题数位上的数字允许重复,利用1,2,3,4可组成一位、两位、三位、四位自然数.进一步考虑,一位数有4个,两位数有4×4=16个,三位数有4×4×4=64个,四位数有4×4×4×4=256个.故共有4+16+64+256=340个.2.由四个不同的非0数字组成的所有四位数中,数字和等于12的共有多少个?分析:四个数字都不同而数字和为12的数字有1,2,3,6和1,2,4,5两种情况,对于每种情况,可以组成44P =24个不同的四位数.对于所以,共可以组成24+24=48个不同的四位数.3.桌子上有3张红卡片,2张黄卡片,和1张蓝卡片,如果将它们横着排成一排,同种颜色的卡片不分开,一共有多少种排法?分析:32133213P P P P =72种.4.在1~100中任意取出两个不同的数相加,其和是偶数的共有多少种不同的取法?分析:两个数的和是偶数,这两个数必然同是奇数或同是偶数,而取出的两个数与顺序无关,所以是组合问题;从50个偶数中取出2个,有250C =1225种取法;从50个奇数中取出2个,也有250C =l225种取法.根据加法原理,一共有1225+1225=2450种不同的取法.5.在一个口袋内装有大小相同的7个白球和1个黑球.(1)从口袋内取出3个球,共有多少种取法?(2)从口袋取出3个球,使其中含有1个黑球,有多少种取法? (3)从口袋内取出3个球,使其中不含黑球,有多少种取法?分析:(1)从口袋内的8个球中取出3个球,与顺序无关,是组合问题,其取法种数是56种.(2)从口袋内取出的3个球中有1个是黑球,于是还要从7个白球中再取出2个,其取法种数是21种.(3)由于所取出的3个球中不含黑球,也就是要从7个白球中取出3个球,其取法种数是35种.6.在6名女同学,5名男同学中选出4名女同学,3名男同学站成一排,有多少种排法?分析:男女同学分别考虑,再整体排列.437657C C P ?? =756000(种).。
小学数学奥数测试题组合_人教版
2019年小学奥数计数专题——组合1.某校举行男生乒乓球比赛,比赛分成3个阶段进行,第一阶段:将参加比赛的48名选手分成8个小组,每组6人,分别进行单循环赛;第二阶段:将8个小组产生的前2名共16人再分成4个小组,每组4人,分别进行单循环赛;第三阶段:由4个小组产生的4个第1名进行2场半决赛和2场决赛,确定1至4名的名次.问:整个赛程一共需要进行多少场比赛?2.由数字1,2,3组成五位数,要求这五位数中1,2,3至少各出现一次,那么这样的五位数共有________个。
3.10个人围成一圈,从中选出两个不相邻的人,共有多少种不同选法?4.小明有10块大白兔奶糖,从今天起,每天至少吃一块.那么他一共有多少种不同的吃法?5.小红有10块糖,每天至少吃1块,7天吃完,她共有多少种不同的吃法?6.把20个苹果分给3个小朋友,每人最少分3个,可以有多少种不同的分法?7.有10粒糖,分三天吃完,每天至少吃一粒,共有多少种不同的吃法?8.某池塘中有A B C、、三只游船,A船可乘坐3人,B船可乘坐2人,C船可乘坐1人,今有3个成人和2个儿童要分乘这些游船,为安全起见,有儿童乘坐的游船上必须至少有个成人陪同,那么他们5人乘坐这三支游船的所有安全乘船方法共有多少种?9.从10名男生,8名女生中选出8人参加游泳比赛.在下列条件下,分别有多少种选法?⑴恰有3名女生入选;⑵至少有两名女生入选;⑶某两名女生,某两名男生必须入选;⑷某两名女生,某两名男生不能同时入选;⑸某两名女生,某两名男生最多入选两人。
10.在6名内科医生和4名外科医生中,内科主任和外科主任各一名,现要组成5人医疗小组送医下乡,按照下列条件各有多少种选派方法?⑴有3名内科医生和2名外科医生;⑵既有内科医生,又有外科医生;⑶至少有一名主任参加;⑷既有主任,又有外科医生。
11.在10名学生中,有5人会装电脑,有3人会安装音响设备,其余2人既会安装电脑,又会安装音响设备,今选派由6人组成的安装小组,组内安装电脑要3人,安装音响设备要3人,共有多少种不同的选人方案?12.有11名外语翻译人员,其中5名是英语翻译员,4名是日语翻译员,另外两名英语、日语都精通.从中找出8人,使他们组成两个翻译小组,其中4人翻译英文,另4人翻译日文,这两个小组能同时工作.问这样的分配名单共可以开出多少张?13.在1~100中任意取出两个不同的数相加,其和是偶数的共有多少种不同的取法?14.7个相同的球,放在4个不同的盒子里,每个盒子至少放一个,不同的放法有多少种?15.从19,20,2l,…,93,94这76个数中,选取两个不同的数,使其和为偶数的选法总数是多少?16.50件产品中有4件次品,从中任意抽出5件,其中至少有3件次品的抽法有_______种.17.从4台甲型与5台乙型电视机中任选出3台,其中至少要有甲、乙型机各一台,则不同的取法共有()A.140种B.84种C.70种D.35种18.四面体的顶点和各棱中点共10个点,从中取出4个不共面的点,不同的取法有()种.A.150B.147C.144D.14119.同室四人各写一张贺年卡,先集中起来,然后每人从中拿出一张别人送出的贺年卡,第 1 页则四张贺年卡不同的分配方式有()A.6种B. 9 种C.11种D. 23种20.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( )A.2人或3人 B.3人或4人 C.3人 D.4人21.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有( )A.45种 B.36种 C.28种 D.25种22.甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。
(完整版)小学三年级和排列组合问题练习题
(完整版)小学三年级和排列组合问题练习题小学三年级和排列组合问题练题1. 一个购物篮里有3个苹果和2个橙子,请问,从购物篮中随机取出2个水果,取出2个苹果的可能性有多少种?答:从3个苹果中取出2个苹果的可能性有3种,从5个水果中取出2个水果的总可能性有10种。
所以,取出2个苹果的可能性为3/10。
2. 一个班级有12个学生,其中5个男生和7个女生。
如果从班级中随机选出3个学生,其中至少有1个男生的可能性是多少?答:根据排列组合的原理,从5个男生和7个女生中选出3个学生,有C(5,1) * C(7,2)种可能性,从12个学生中选出3个学生的总可能性是C(12,3)种。
所以,至少有1个男生的可能性为(C(5,1) * C(7,2)) / C(12,3)。
3. 一个密码锁的密码是4位数字,每位数字都只能是0-9中的一个。
请问,如果不重复使用数字,一共有多少种可能的密码组合?答:由于每位数字都只能选择0-9中的一个,且不重复使用数字,所以第一位数字有10种选择,第二位数字有9种选择,第三位数字有8种选择,第四位数字有7种选择。
所以,可能的密码组合共有10 * 9 * 8 * 7 = 5,040种。
4. 一个餐厅的菜单有6道菜可供选择。
请问,如果要选择其中的3道菜作为晚餐的菜品,一共有多少种不同的组合方式?答:根据排列组合的原理,从6道菜中选择3道菜的组合方式为C(6,3)种。
计算得到C(6,3) = 20,所以一共有20种不同的组合方式。
5. 小明有8本不同的漫画书和4本不同的小说书,请问他想带6本书出去阅读,他有多少种不同的选择方式?答:根据排列组合的原理,从8本漫画书中选择3本漫画书,从4本小说书中选择3本小说书的选择方式分别为C(8,3)和C(4,3)。
计算得到C(8,3) = 56和C(4,3) = 4,所以小明有56 * 4 = 224种不同的选择方式。
以上是小学三年级和排列组合问题的练习题及答案。
【精品】五年级下册数学试题-奥数专项训练:排列组合人教版
排列组合排列组合问题,分为两类,排列和组合。
其中,排列问题是解决一些人进行排队时,所排队列的情况种类数,而组合问题则是从一些人中选出一部分人出来的所有可能的情况数,因此,排列问题是有顺序的,而组合问题则是无顺序的。
本讲主要介绍了排列问题和组合问题的计算方法,并且分别引入了两种计算公式。
排列:从n个事物中任意取出m个,组成一个有序的组合序列的种类数,计算公式组合:从n个事物中任意取出m个,组成一个无序的组合的种类数,计算公式排列组合测试卷A1、2、3、有4个同学一起去郊游,照相时,必须有一名同学给其他3人拍照,共可能有_______种拍照情况?(照相时3人站成一排)4、4名同学到照相馆照相.他们要排成一排,问:共有________种不同的排法?5、9名同学站成两排照相,前排4人,后排5人,共有_______种站法?6、一列往返于北京和上海方向的列车全程停靠14个车站(包括北京和上海),这条铁路线共需要______种不同的车票7、有五面颜色不同的小旗,任意取出三面排成一行表示一种信号,问:共可以表示_______种不同的信号?8、用1、2、3、4、5、6、7、8可以组成_______个没有重复数字的四位数?9、由0,2,5,6,7,8组成无重复数字的数,四位数有______个?10、用1、2、3、4、5这五个数字可组成______个比20000大且百位数字不是3的无重复数字的五位数?11、千位数字与十位数字之差为2(大减小),且不含重复数字的四位数有_____个?排列组合测试卷B1、2、3、丁丁和爸爸、妈妈、奶奶、哥哥一起照“全家福”,5 人并排站成一排,奶奶要站在正中间,有______种不同的站法?4、某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9,那么确保打开保险柜至少要试_____次?5、幼儿园里3名小朋友去坐6把不同的椅子(每人只能坐一把),有______种不同的坐法?6、一种电子表在6时24分30秒时的显示为6:24:30,那么从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有多少个?7、用0到9十个数字组成没有重复数字的四位数,若将这些四位数按从小到大的顺序排列,则5687是第______个数?8、用1、2、3、4、5这五个数字,不许重复,位数不限,能写出______个3的倍数?9、航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号.如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出_______种不同的信号?10、有五面颜色不同的小旗,任意取出三面排成一行表示一种信号,问:共可以表示________种不同的信号?11、由数字0、2、8(既可全用也可不全用)组成的非零自然数,按照从小到大排列.2008排在________个.。
(完整版)排列组合习题_[含详细答案解析]
圆梦教育中心排列组合专项训练1.题 1 (方法对比,二星)题面:(1)有 5 个插班生要分配给 3 所学校,每校至少分到一个,有多少种不同的分配方法?(2)有5个数学竞赛名额要分配给3所学校,每校至少分到一个名额,有多少种不同的名额分配方法?解析:“名额无差别”——相同元素问题(法1)每所学校各分一个名额后,还有 2 个名额待分配,21 可将名额分给 2 所学校、1 所学校,共两类:C32C31(种)(法 2 ——挡板法)2 相邻名额间共 4 个空隙,插入 2 个挡板,共:C426(种)注意:“挡板法”可用于解决待分配的元素无差别,且每个位置至少分配一个元素的问题.(位置有差别,元素无差别)题面:有10 个运动员名额,分给7 个班,每班至少一个, 有多少种分配方案?答案:C96详解:因为10 个名额没有差别,把它们排成一排。
相邻名额之间形成9 个空隙。
在9 个空档中选 6 个位置插个隔板,可把名额分成7 份,对应地分给7 个班级,每一种插板6方法对应一种分法共有C96种分法。
题面:完美WORD 格式由隔板分成的左、中、右三部分的球数分别为x、y、z 之值, 故解的个数为 C 9 2=36 (个)。
2.题 2 (插空法,三星)题面:某展室有9 个展台,现有3 件展品需要展出,要求每件展品独自占用1 个展台,并且3 件展品所选用的展台既不在两端又不相邻,则不同的展出方法有 ______________________________ 种;如果进一步要求3 件展品所选用的展台之间间隔不超过两个展位,则不同的展出方法有____ 种.答案:60,48 同类题一题面:6 男 4 女站成一排,任何 2 名女生都不相邻有多少种排法?答案:A66·A47种.详解:任何 2 名女生都不相邻,则把女生插空,所以先排男生再让女生插到男生的空中,共有A66·A47种不同排法.题面:有 6 个座位连成一排,现有 3 人就坐,则恰有两个空座位相邻的不同坐法有()A.36 种B.48 种C.72 种D.96 种答案: C. 详解:恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共A 33A24=72 种排法,故选 C.求方程X+Y+Z=10 的正整数解的个数。
小学奥数 排列组合
一.计数专题:④排列组合一. 进门考1.有四张数字卡片, 用这四张数字卡片组成三位数,可以组成多少个?2.一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同.问:①从两个口袋内任取一个小球,有多少种不同的取法?②从两个口袋内各取一个小球,有多少种不同的取法?3.甲组有6人,乙组有8人,丙组有9人。
从三个组中各选一人参加会议,共有多少种不同选法?4.从1到500的所有自然数中,不含有数字4的自然数有多少个?5.学校的一块活动场地呈梯形,如图所示.(1)这块活动场地的面积是多少平方米?(2)学校计划给这块地铺上草皮,如果每平方米的草皮20元,学校一共要为这块活动场地花费多少元钱?6*.按1,2,3,4的顺序连线,有多少种不同的连法?二.授新课5 87 6①奥数专题:乘法原理专题简析在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关.日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.解决排列组合问题,离不开加法原理和乘法原理,合理分类、合理分组,求出组合数和排列数。
排列公式:由乘法原理,从个不同元素中取出个元素的排列数是,即,这里,,且等号右边从开始,后面每个因数比前一个因数小,共有个因数相乘.组合公式: 从个不同元素中取出个元素()的所有组合的个数,叫做从个不同元素中取出个不同元素的组合数.记作..例1:排列数:1. 三个人排成一排照相,有多少种不同的排法?2. 有3名男生和2名女生排成一排照相,有多少种不同的排法?如果要求两名女生必须相邻,有多少种排法?3.有从1到9共计9个号码球,请问,可以组成多少个三位数?n m 121n n n n m ⋅-⋅-⋅⋅-+()()()121m n P n n n n m =---+()()()m n ≤n 1m n m m n ≤n mm n C 12)112321m m n nm m P n n n n m C m m m P ⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⨯⨯()(()()()121m n P n n n n m =---+()()()4.5人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 多少?例2:组合数:1. 从有3名男生和2名女生中选出2名同学参加数学竞赛,有多少种选法?2.在“星星杯”,“排球比赛中,共有10个小球队参加比赛。
小学奥数排列组合专题训练
小学奥数排列组合专题训练概述本文档旨在提供给小学生们一些关于排列组合的专题训练题目,帮助他们提升奥数能力。
通过解决这些题目,孩子们可以加深对排列组合概念的理解,并提高解决问题的能力。
题目一:选购水果某个小摊位上有5个不同种类的水果:苹果、香蕉、橙子、草莓和葡萄。
小明想要选购其中3种水果,问他有多少种不同的选择方式?> 解答:根据排列组合的原理,选择3种水果的方式共有$${5\choose 3}$$种。
计算结果为10种。
题目二:站队小学班级有20名学生,他们需要排成一队。
其中有4个女生和16个男生。
问有多少种不同的排队方式?如果要保证女生们都站在一起,有多少种不同的排队方式?> 解答:对于第一个问题,可以使用排列组合的原理计算。
共有20个学生,因此不同的排队方式为$${20 \choose 4}$$种,计算结果为4845种。
>> 对于第二个问题,首先需要将4个女生看作一组。
将这一组看作一个人,那么问题就变成了有17个人需要排队的情况。
因此,不同的排队方式为$${17 \choose 1}$$种,计算结果为17种。
题目三:组队竞赛一支小学班级共有10名学生,他们要组成3人一组进行游戏。
问组队的方式有多少种?> 解答:对于每个小组,需要选择3名学生。
首先选择一名学生,有10种选择;然后选择另外两名学生,有9种选择。
由于小组内部的学生顺序不重要,所以需要将结果除以3!(3的阶乘,即6)。
因此,不同的组队方式为$${10 \times 9 \over 3!}$$种,计算结果为60种。
题目四:颜色排列小学班级有5个同学,他们要在一行上排成一队。
其中有2个红色衣服的同学、1个黄色衣服的同学和2个蓝色衣服的同学。
问他们有多少种不同的排列方式?> 解答:根据排列组合的原理,不同的排列方式为$${5 \choose 2, 1, 2}$$种。
计算结果为30种。
结论通过以上的训练题目,小学生们可以巩固排列组合的概念,并学会运用排列组合的原理解决问题。
小学奥数排列和组合试题及答案
小学四年级奥数排列组合练习
1.由数字0、1、2、3、4可以组成多少个
①三位数②没有重复数字的三位数
③没有重复数字的三位偶数④小于1000的自然数
2.从15名同学中选5人参加数学竞赛,求分别满足下列条件的选法各有多少种
①某两人必须入选;
②某两人中至少有一人入选;
③某三人中恰入选一人;
④某三人不能同时都入选.
3.如右图,两条相交直线上共有9个点,问:
一共可以组成多少个不同的三角形
4.如下图,计算
①下左图中有多少个梯形
②下右图中有多少个长方体
5.七个同学照相,分别求出在下列条件下有多少种站法①七个人排成一排;②七个人排成一排,某两人必须有一人站在中间;③七个人排成一排,某两人必须站在两头;④七个人排成一排,某两人不能站在两头;⑤七个人排成两排,前排三人,后排四人,某两人不在同一排.
答案:
1.①100;②48;③30;④124.
2.①C313=286;②C515-C513=1716;
③C13·C412=1485;④C515-C212=2937.
3.C15·C23+C26·C13=60;或C39-C36-C34=60.
4.①C26×C26=225;②C25×C26×C25=1500.
5.①P77=5040;②2P66=1440;
③2P55=240;④5×4×P55=2400;
⑤2×3×4×P55=2880.。
小学数学奥数测试题排列组合人教版
小学数学奥数测试题排列组合人教版1.四个不同的小球插进编号为1、2、3、4的四个盒子中,则恰有一个空盒的放法有________种.2.只用1,2,3三个数字组成一个四位数,准则这三个数必须同时使用,且联合数字不能相邻出现,这样的四位数有( )A.6个B.9个C.18个D.36个3.某公司招聘来8名员工,均匀分派给下属的甲、乙两个部门,此中两名英语翻译职员不能分在联合个部门,别的三名电脑编程职员也不能全分在联合个部门,则不同的分派方案共有( )A.24种B.36种C.38种D.108种4.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( ) A.72 B.96 C.108 D.1445.要是在一周内(周一至周日)部署三所学校的学生观光某展览馆,每天最多只部署一所学校,要求甲学校一连观光两天,别的学校均只观光一天,那么不同的部署要领有( ) A.50种B.60种C.120种D.210种6.将6位志愿者分成4组,此中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆办事,不同的分派方案有________种(用数字作答).7.将标号为1,2,3,4,5,6的6张卡片插进3个不同的信封中.若每个信封放2张,此中标号为1,2的卡片插进联合信封,则不同的要领共有A.12种B.18种C.36种D.54种8.现部署甲、乙、丙、丁、戌5名同砚到场上海世博会志愿者办事活动,每人从事翻译、导游、礼仪、司机四项劳动之一,每项劳动至少有一人到场。
甲、乙不会开车但能从事其他三项劳动,丙丁戌都能胜任四项劳动,则不同部署方案的种数是( ). A.152 B.126 C.90 D.549.6个别分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车要领数为( ) A.40 B.50 C.60 D.7010.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到联合个班,则不同分法的种数为A.32B.24C.30D.3611.2位男生和3位女生共5位同砚站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A. 60B. 48C. 42D. 3612.12个篮球队中有3个强队,将这12个队恣意分成3个组(每组4个队),则3个强队恰恰被分在联合组的概率为()A.155B.355C.14D.1313.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,联合级台阶上的人不区分站的位置,则不同的站法种数是(用数字作答).14.将5名实习西席分派到高一年级的3个班实习,每班至少1名,最多2名,则不同的分派方案有A.30种B.90种C.180种D.270种15.某校从8名西席中选派4名西席同时去4个边远地区支教(每地1人),此中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有种.16.按下列要求把12个别分成3个小组,各有几多种不同的分法?(1)各组人数分别为2,4,6个;(2)均匀分成3个小组;(3)均匀分成3个小组,进来3个不同车间.17.2位男生和3位女生共5位同砚站成一排,若男生甲不站两端,3位女生中有且只第 1 页有两位女生相邻,则不同排法的种数是A. 60B. 48C. 42D. 3618.2位男生和3位女生共5位同砚站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A. 60B. 48C. 42D. 3619.从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,此中奇数的个数为A.432B.288C. 216D.10820.3位男生和3位女生共6位同砚站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A. 360B. 188C. 216D. 9621.12个篮球队中有3个强队,将这12个队恣意分成3个组(每组4个队),则3个强队恰恰被分在联合组的概率为()A.155B.355C.14D.1322.用数字0,1,2,3,4,5,6组成没有重复数字的四位数,此中个位、十位和百位上的数字之和为偶数的四位数共有个(用数字作答)23.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,联合级台阶上的人不区分站的位置,则不同的站法种数是(用数字作答).24.有甲、乙、丙3项使命,甲需要2人承担,乙、丙各需要1人承担,从10人中选派4人承担这三项使命,不同的选法有()种.A.1260B. 2025C. 2520D. 504025.8个别站队,冬冬必须站在小悦和阿奇的中间(不一定相邻),小慧和大智不能相邻,小光和大亮必须相邻,满足要求的站法一共有几多种?第 1 页参考答案1.144【剖析】在错解中消除重复,有2C 133434C A =144种放法.从四个球中取出2个作为一组,与另两个球一起插进四个盒子中的三个内,有3424A C =144种放法.将四个球分别插进四只盒子后,取出此中的2盒并为一盒(自然出现一空盒),有2444C A =144种放法. 2.C【剖析】注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C 13=3(种)选法,即1231,1232,1233,而每种选择有A 22×C 23=6(种)排法,所以共有3×6=18(种)环境,即这样的四位数有18个. 3.B【剖析】本题考察排列组合的综合应用,据题意可先将两名翻译职员分到两个部门,共有2种要领,第二步将3名电脑编程职员分成两组,一组1人另一组2人,共有C 13种分法,然后再分到两部门去共有C 13A 22种要领,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C 13种要领,由分步乘法计数原理共有2C 13A 22C 13=36(种).4.C【剖析】分两类:若1与3相邻,有A 22·C 13A 22A 23=72(个),若1与3不相邻有A 33·A 33=36(个)故共有72+36=108个. 5.C【剖析】先部署甲学校的观光时间,一周内两天连排的要领一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C 16,然后在剩下的5天中任选2天有序地部署别的两所学校观光,部署要领有A 25种,根据分步乘法计数原理可知共有不同的部署要领C 16·A 25=120种,故选C. 6.1080 【剖析】先将6名志愿者分为4组,共有226422C C A 种分法,再将4组职员分到4个不同场馆去,共有A 44种分法,故所有分派方案有:226422C C A ·A 44=1 080种. 7.B【剖析】标号1,2的卡片插进联合封信有种要领;其他四封信插进两个信封,每个信封两个有种要领,共有种,故选B.8.B【剖析】分类讨论:如有2人从事司机劳动,则方案有233318C A ⨯=;如有1人从事司机劳动,则方案有123343108C C A ⨯⨯=种,所以共有18+108=126种,故B 正确. 9.B【剖析】先分组再排列,一组2人一组4人有36C =15种不同的分法;两组各3人共有3622C A =10种不同的分法,所以乘车要领数为25×2=50,故选B. 10.C【剖析】用间接法解答:四名学生中有两名学生分在一个班的种数是24C ,顺序有33A 种,而甲乙被分在联合个班的有33A 种,所以种数是23343330C A A -= 11.B【剖析】解法一、从3名女生中任取2人“捆”在一起记作A ,(A 共有62223=A C 种不同排法),剩下一名女生记作B ,两名男生分别记作甲、乙;则男生甲必须在A 、B 之间(若甲在A 、B 两端。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学奥数测试题排列组合人教版HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】2015年小学奥数计数专题——排列组合1.四个不同的小球放入编号为1、2、3、4的四个盒子中,则恰有一个空盒的放法有________种.2.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有( )A.6个 B.9个 C.18个 D.36个3.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有( )A.24种 B.36种 C.38种 D.108种4.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( )A.72 B.96 C.108 D.1445.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有( )A.50种 B.60种 C.120种 D.210种6.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).7.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有种种种种8.现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。
甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是( ).A.1529. 6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为( ) A.40 B.50 C.60 D.7010.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为11. 2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A. 60B. 48C. 42D. 3612. 12个篮球队中有3个强队,将这12个队任意分成3个组(每组4个队),则3个强队恰好被分在同一组的概率为()A.155B.355C.14D.1313.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是(用数字作答).14.将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有种种种种15.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有种.16.按下列要求把12个人分成3个小组,各有多少种不同的分法?(1)各组人数分别为2,4,6个;(2)平均分成3个小组;(3)平均分成3个小组,进入3个不同车间.17. 2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A. 60B. 48C. 42D. 3618. 2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A. 60B. 48C. 42D. 36 19.从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为C. 21620.3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是A. 360B. 188C. 216D. 9621. 12个篮球队中有3个强队,将这12个队任意分成3个组(每组4个队),则3个强队恰好被分在同一组的概率为()A.155B.355C.14D.1322.用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有个(用数字作答)23.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是(用数字作答).24.有甲、乙、丙3项任务,甲需要2人承担,乙、丙各需要1人承担,从10人中选派4人承担这三项任务,不同的选法有()种.B. 2025C. 2520D. 504025.8个人站队,冬冬必须站在小悦和阿奇的中间(不一定相邻),小慧和大智不能相邻,小光和大亮必须相邻,满足要求的站法一共有多少种?参考答案1.144【解析】在错解中消除重复,有2C 133434C A =144种放法.从四个球中取出2个作为一组,与另两个球一起放入四个盒子中的三个内,有3424A C =144种放法.将四个球分别放入四只盒子后,取出其中的2盒并为一盒(自然出现一空盒),有2444C A =144种放法.2.C【解析】注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有C 13=3(种)选法,即1231,1232,1233,而每种选择有A 22×C 23=6(种)排法,所以共有3×6=18(种)情况,即这样的四位数有18个.3.B【解析】本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C 13种分法,然后再分到两部门去共有C 13A 22种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C 13种方法,由分步乘法计数原理共有2C 13A 22C 13=36(种).4.C【解析】分两类:若1与3相邻,有A 22·C 13A 22A 23=72(个),若1与3不相邻有A 33·A 33=36(个)故共有72+36=108个. 5.C【解析】先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为C 16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A 25种,按照分步乘法计数原理可知共有不同的安排方法C 16·A 25=120种,故选C.6.1080【解析】先将6名志愿者分为4组,共有226422C CA 种分法,再将4组人员分到4个不同场馆去,共有A 44种分法,故所有分配方案有:226422C CA ·A 44=1 080种.7.B【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.8.B【解析】分类讨论:若有2人从事司机工作,则方案有233318C A ⨯=;若有1人从事司机工作,则方案有123343108C C A ⨯⨯=种,所以共有18+108=126种,故B 正确.9.B【解析】先分组再排列,一组2人一组4人有36C =15种不同的分法;两组各3人共有3622C A =10种不同的分法,所以乘车方法数为25×2=50,故选B. 10.C【解析】用间接法解答:四名学生中有两名学生分在一个班的种数是24C ,顺序有33A 种,而甲乙被分在同一个班的有33A 种,所以种数是23343330C A A -= 11.B【解析】解法一、从3名女生中任取2人“捆”在一起记作A ,(A 共有62223=A C 种不同排法),剩下一名女生记作B ,两名男生分别记作甲、乙;则男生甲必须在A 、B 之间(若甲在A 、B 两端。
则为使A 、B 不相邻,只有把男生乙排在A 、B 之间,此时就不能满足男生甲不在两端的要求)此时共有6×2=12种排法(A 左B 右和A 右B 左)最后再在排好的三个元素中选出四个位置插入乙,所以,共有12×4=48种不同排法。
解法二;同解法一,从3名女生中任取2人“捆”在一起记作A ,(A 共有62223=A C 种不同排法),剩下一名女生记作B ,两名男生分别记作甲、乙;为使男生甲不在两端可分三类情况:第一类:女生A 、B 在两端,男生甲、乙在中间,共有22226A A =24种排法;第二类:“捆绑”A 和男生乙在两端,则中间女生B 和男生甲只有一种排法,此时共有226A =12种排法第三类:女生B 和男生乙在两端,同样中间“捆绑”A 和男生甲也只有一种排法。
此时共有226A =12种排法 三类之和为24+12+12=48种。
12.B【解析】因为将12个组分成4个组的分法有444128433C C C A 种,而3个强队恰好被分在同一组分法有3144398422C C C C A ,故个强队恰好被分在同一组的概率为31442444399842128433C C C C A C C C A =55。
13.336【解析】对于7个台阶上每一个只站一人,则有37A 种;若有一个台阶有2人,另一个是1人,则共有1237C A 种,因此共有不同的站法种数是336种.14.B【解析】将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则将5名教师分成三组,一组1人,另两组都是2人,有12542215C C A ⋅=种方法,再将3组分到3个班,共有331590A ⋅=种不同的分配方案,选B.15.600【解析】某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,可以分情况讨论,①甲、丙同去,则乙不去,有2454C A ⋅=240种选法;②甲、丙同不去,乙去,有3454C A ⋅=240种选法;③甲、乙、丙都不去,有45120A =种选法,共有600种不同的选派方案.16.(1)13860(2)5775(3)34650 【解析】(1)C 212C 410C 66=13 860(种);(2)444128433C C C A =5 775(种);(3)分两步:第一步平均分三组;第二步让三个小组分别进入三个不同车间,故有444128433C C C A ·33A =C 412·C 48·C 44=34 650(种)不同的分法. 17.B【解析】解法一、从3名女生中任取2人“捆”在一起记作A ,(A 共有62223=A C 种不同排法),剩下一名女生记作B ,两名男生分别记作甲、乙;则男生甲必须在A 、B 之间(若甲在A 、B 两端。