无穷级数 函数项级数 幂级数收敛半径

合集下载

幂级数的概念与幂级数的收敛半径

幂级数的概念与幂级数的收敛半径

幂级数函数项级数、幂级数的概念幂级数的收敛性幂级数的运算和函数的性质函数项级数、幂级数的概念给定一个定义在区间I 上的函数列1()u x ,2()u x ,,()n u x ,,表达式1231()()()()()nn n u x u x u x u x u x ∞==+++++∑称为定义在区间I 上的(函数项)无穷级数, 简称(函数项)级数.例 21sin n nx n ∞=∑ 22sin 2sin sin 2x nxx n=++++对于每一个确定的值0x I ∈, 有常数项级数1201()()()()nn n u x u x u x u x ∞==++++∑若01()nn u x ∞=∑收敛, 称点0x 是1()nn u x ∞=∑的收敛点;若1()nn u x ∞=∑发散, 称点0x 是1()nn u x ∞=∑的发散点.函数项级数1()n n u x ∞=∑的收敛点的全体称为它的收敛域,发散点的全体称为它的发散域.例 函数项级数21sin n nxn ∞=∑, (,)x ∀∈-∞+∞, 22sin 1nx n n≤, 211n n ∞=∑收敛, 故级数21sin n nx n ∞=∑收敛, 且它的收敛域为(,)-∞+∞.在收敛域上, 函数项级数的和是x 的函数()s x ,通常称()s x 为函数项级数的和函数.和函数的定义域就是级数的收敛域, 并写成12()()()()n s x u x u x u x =++++.级数1()n n u x ∞=∑的前n项的部分和()n s x在收敛域上有lim ()()n n s x s x →∞=.记()()()n n r x s x s x =-, 有lim ()0n n r x →∞=.特殊地,形如20102000()()()()nnnn n a x x a a x x a x x a x x ∞=-=+-+-++-+∑的函数项级数称为0()x x -的幂级数. 当00x =时,函数项级数的余项20120nnn n n a xa a x a x a x ∞==+++++∑,其中常数0a ,1a ,2a ,,n a ,称作幂级数的系数.t x x =-x取数轴上的哪些点时幂级数收敛,取哪些点时幂级数发散?幂级数的收敛性1.幂级数收敛域的结构例 考察幂级数0n n x∞==∑21n x x x +++++的收敛性. 解 当||1x <时, 011n n x x ∞==-∑; 当||1x ≥时, 这级数发散. 收敛域是开区间(1,1)-, 发散域是(,1]-∞-及[1,)+∞, 2111n x x x x =+++++-(11)x -<<.定理(阿贝尔(Abel)定理)如果级数0n nn a x ∞=∑当0x x =0(0)x ≠时收敛,则适合不等式0||||x x <的一切x 使这幂级数绝对收敛. 反之, 如果级数0n nn a x ∞=∑当0x x =时发散,则适合不等式0||||x x >的一切x 使这幂级数发散.证 先设0x 是0n n n a x ∞=∑的收敛点, 即级数00n n n a x ∞=∑收敛, 0lim 0n n n a x →∞=. 存在常数M ,使0||n n a x M ≤(0,1,2,)n =.00||n n n n x a x x =⋅ 0n x M x ≤. ||n n a x 00n n n n x a x x =⋅ 当0||||x x <时01x x <, 00n n x M x ∞=∑收敛, 0n n n a x ∞=∑绝对收敛.反之, 假设幂级数0n nn a x ∞=∑当0x x =时发散,而有一点1x 适合10||||x x >使级数收敛, 则当0x x =时级数收敛, 这与定理的假设矛盾, 定理表明, 若幂级数0n nn a x ∞=∑在0x x =处收敛,则对于开区间00(||,||)x x -内的任何x ,幂级数都收敛;若幂级数0n nn a x ∞=∑在0x x =处发散,则对于闭区间00[||,||]x x -外的任何x ,幂级数都发散. 在某一时刻, 遇到发散点, 幂级数的收敛域有如下特征:收敛域从原点开始向两端扩张, 初始时遇到的均为收敛点, 以后的所有点均为发散点.推论 如果幂级数0n nn a x ∞=∑不是仅在0x =一点收敛,也不是在整个数轴上都收敛, 则必有一个确定的正数R 存在, 使得当||x R < 时,幂级数绝对收敛;当||x R >时,幂级数发散;当x R =与x R =-时,幂级数可能收敛也可能发散.正数R 通常称作幂级数的收敛半径.例如, 幂级数0n n x∞=∑的收敛半径为1R =.开区间(,)R R -叫做幂级数的收敛区间. 收敛域是 (,)R R -、[,)R R -、(,]R R -或[,]R R -之一. 若幂级数只在0x =处收敛,规定收敛半径0R =;若幂级数对一切x 都收敛,规定R =+∞,收敛域(,)-∞+∞.。

幂级数的概念与幂级数的收敛半径

幂级数的概念与幂级数的收敛半径

幂级数函数项级数、幂级数的概念幂级数的收敛性幂级数的运算和函数的性质函数项级数、幂级数的概念给定一个定义在区间I 上的函数列1()u x ,2()u x ,,()n u x ,,表达式1231()()()()()nn n u x u x u x u x u x ∞==+++++∑称为定义在区间I 上的(函数项)无穷级数, 简称(函数项)级数.例 21sin n nx n ∞=∑ 22sin 2sin sin 2x nxx n=++++对于每一个确定的值0x I ∈, 有常数项级数1201()()()()nn n u x u x u x u x ∞==++++∑若01()nn u x ∞=∑收敛, 称点0x 是1()nn u x ∞=∑的收敛点;若1()nn u x ∞=∑发散, 称点0x 是1()nn u x ∞=∑的发散点.函数项级数1()n n u x ∞=∑的收敛点的全体称为它的收敛域,发散点的全体称为它的发散域.例 函数项级数21sin n nxn ∞=∑, (,)x ∀∈-∞+∞, 22sin 1nx n n≤, 211n n ∞=∑收敛, 故级数21sin n nx n ∞=∑收敛, 且它的收敛域为(,)-∞+∞.在收敛域上, 函数项级数的和是x 的函数()s x ,通常称()s x 为函数项级数的和函数.和函数的定义域就是级数的收敛域, 并写成12()()()()n s x u x u x u x =++++.级数1()n n u x ∞=∑的前n项的部分和()n s x在收敛域上有lim ()()n n s x s x →∞=.记()()()n n r x s x s x =-, 有lim ()0n n r x →∞=.特殊地,形如20102000()()()()nnnn n a x x a a x x a x x a x x ∞=-=+-+-++-+∑的函数项级数称为0()x x -的幂级数. 当00x =时,函数项级数的余项20120nnn n n a xa a x a x a x ∞==+++++∑,其中常数0a ,1a ,2a ,,n a ,称作幂级数的系数.t x x =-x取数轴上的哪些点时幂级数收敛,取哪些点时幂级数发散?幂级数的收敛性1.幂级数收敛域的结构例 考察幂级数0n n x∞==∑21n x x x +++++的收敛性. 解 当||1x <时, 011n n x x ∞==-∑; 当||1x ≥时, 这级数发散. 收敛域是开区间(1,1)-, 发散域是(,1]-∞-及[1,)+∞, 2111n x x x x =+++++-(11)x -<<.定理(阿贝尔(Abel)定理)如果级数0n nn a x ∞=∑当0x x =0(0)x ≠时收敛,则适合不等式0||||x x <的一切x 使这幂级数绝对收敛. 反之, 如果级数0n nn a x ∞=∑当0x x =时发散,则适合不等式0||||x x >的一切x 使这幂级数发散.证 先设0x 是0n n n a x ∞=∑的收敛点, 即级数00n n n a x ∞=∑收敛, 0lim 0n n n a x →∞=. 存在常数M ,使0||n n a x M ≤(0,1,2,)n =.00||n n n n x a x x =⋅ 0n x M x ≤. ||n n a x 00n n n n x a x x =⋅ 当0||||x x <时01x x <, 00n n x M x ∞=∑收敛, 0n n n a x ∞=∑绝对收敛.反之, 假设幂级数0n nn a x ∞=∑当0x x =时发散,而有一点1x 适合10||||x x >使级数收敛, 则当0x x =时级数收敛, 这与定理的假设矛盾, 定理表明, 若幂级数0n nn a x ∞=∑在0x x =处收敛,则对于开区间00(||,||)x x -内的任何x ,幂级数都收敛;若幂级数0n nn a x ∞=∑在0x x =处发散,则对于闭区间00[||,||]x x -外的任何x ,幂级数都发散. 在某一时刻, 遇到发散点, 幂级数的收敛域有如下特征:收敛域从原点开始向两端扩张, 初始时遇到的均为收敛点, 以后的所有点均为发散点.推论 如果幂级数0n nn a x ∞=∑不是仅在0x =一点收敛,也不是在整个数轴上都收敛, 则必有一个确定的正数R 存在, 使得当||x R < 时,幂级数绝对收敛;当||x R >时,幂级数发散;当x R =与x R =-时,幂级数可能收敛也可能发散.正数R 通常称作幂级数的收敛半径.例如, 幂级数0n n x∞=∑的收敛半径为1R =.开区间(,)R R -叫做幂级数的收敛区间. 收敛域是 (,)R R -、[,)R R -、(,]R R -或[,]R R -之一. 若幂级数只在0x =处收敛,规定收敛半径0R =;若幂级数对一切x 都收敛,规定R =+∞,收敛域(,)-∞+∞.。

(完整版)无穷级数整理

(完整版)无穷级数整理

无穷级数整理一、数项级数(一)数项级数的基本性质1.收敛的必要条件:收敛级数的一般项必趋于0.2.收敛的充要条件(柯西收敛原理):对任意给定的正数ε,总存在N 使得对于任何两个N 大于的正整数m 和n ,总有ε<-n m S S .(即部分和数列收敛)3.收敛级数具有线性性(即收敛级数进行线性运算得到的级数仍然收敛),而一个收敛级数和一个发散级数的和与差必发散.4.对收敛级数的项任意加括号所成级数仍然收敛,且其和不变.5.在一个数项级数内去掉或添上有限项不会影响敛散性. (二)数项级数的性质及敛散性判断 1.正项级数的敛散性判断方法(1)正项级数基本定理:如果正项级数的部分和数列有上界,则正项级数收敛. (2)比较判别法(放缩法):若两个正项级数∑∞=1n nu和∑∞=1n nv之间自某项以后成立着关系:存在常数0>c ,使),2,1( =≤n cv u n n ,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.推论:设两个正项级数∑∞=1n n u 和∑∞=1n n v ,且自某项以后有nn n n v v u u 11++≤,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.(3)比较判别法的极限形式(比阶法):给定两个正项级数∑∞=1n n u 和∑∞=1n n v ,若0lim >=∞→l v u nnn ,那么这两个级数敛散性相同.(注:可以利用无穷小阶的理论和等价无穷小的内容) 另外,若0=l ,则当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;若∞=l ,则当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.常用度量: ①等比级数:∑∞=0n nq,当1<q 时收敛,当1≥q 时发散;②p -级数:∑∞=11n p n ,当1>p 时收敛,当1≤p 时发散(1=p 时称调和级数); ③广义p -级数:()∑∞=2ln 1n pn n ,当1>p 时收敛,当1≤p 时发散.④交错p -级数:∑∞=--111)1(n pn n ,当1>p 时绝对收敛,当10≤<p 时条件收敛. (4)达朗贝尔判别法的极限形式(商值法):对于正项级数∑∞=1n n u ,当1lim1<=+∞→r u u nn n 时级数∑∞=1n n u 收敛;当1lim1>=+∞→r u u nn n 时级数∑∞=1n n u 发散;当1=r 或1=r 时需进一步判断. (5)柯西判别法的极限形式(根值法):对于正项级数∑∞=1n nu,设n n n u r ∞→=lim ,那么1<r 时此级数必为收敛,1>r 时发散,而当1=r 时需进一步判断. (6)柯西积分判别法:设∑∞=1n nu为正项级数,非负的连续函数)(x f 在区间),[+∞a 上单调下降,且自某项以后成立着关系:n n u u f =)(,则级数∑∞=1n n u 与积分⎰+∞)(dx x f 同敛散.2.任意项级数的理论与性质(1)绝对收敛与条件收敛:①绝对收敛级数必为收敛级数,反之不然; ②对于级数∑∞=1n nu,将它的所有正项保留而将负项换为0,组成一个正项级数∑∞=1n nv,其中2nn n u u v +=;将它的所有负项变号而将正项换为0,也组成一个正项级数∑∞=1n nw,其中2nn n u u w -=,那么若级数∑∞=1n nu绝对收敛,则级数∑∞=1n nv和∑∞=1n nw都收敛;若级数∑∞=1n nu条件收敛,则级数∑∞=1n nv和∑∞=1n nw都发散.③绝对收敛级数的更序级数(将其项重新排列后得到的级数)仍绝对收敛,且其和相同. ④若级数∑∞=1n nu和∑∞=1n nv都绝对收敛,它们的和分别为U 和V ,则它们各项之积按照任何方式排列所构成的级数也绝对收敛,且和为UV .特别地,在上述条件下,它们的柯西乘积⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=11n n n n v u 也绝对收敛,且和也为UV . 注:⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=∑∑∑∞=∞=∞=111n n n n n n v u c ,这里121121v u v u v u v u c n n n n n ++++=-- .(2)交错级数的敛散性判断(莱布尼兹判别法):若交错级数∑∞=--11)1(n n n u 满足0lim =∞→n n u ,且{}n u 单调减少(即1+≥n n u u ),则∑∞=--11)1(n n n u 收敛,其和不超过第一项,且余和的符号与第一项符号相同,余和的值不超过余和第一项的绝对值.二、函数项级数(一)幂级数1.幂级数的收敛半径、收敛区间和收敛域 (1)柯西-阿达马定理:幂级数∑∞=-00)(n n nx x a在R x x <-0内绝对收敛,在Rx x >-0内发散,其中R 为幂级数的收敛半径. (2)阿贝尔第一定理:若幂级数∑∞=-00)(n n nx x a在ξ=x 处收敛,则它必在00x x x -<-ξ内绝对收敛;又若∑∞=-00)(n n nx x a在ξ=x 处发散,则它必在00x x x ->-ξ也发散.推论1:若幂级数∑∞=0n n nx a在)0(≠=ξξx 处收敛,则它必在ξ<x 内绝对收敛;又若幂级数∑∞=0n n nx a在)0(≠=ξξx 处发散,则它必在ξ>x 时发散.推论2:若幂级数∑∞=-00)(n n nx x a在ξ=x 处条件收敛,则其收敛半径0x R -=ξ,若又有0>n a ,则可以确定此幂级数的收敛域.(3)收敛域的求法:令1)()(lim1<+∞→x a x a nn n 解出收敛区间再单独讨论端点处的敛散性,取并集.2.幂级数的运算性质(1)幂级数进行加减运算时,收敛域取交集,满足各项相加;进行乘法运算时,有:∑∑∑∑∞==-∞=∞=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛0000n n n i i n i n n n n n n x b a x b x a ,收敛域仍取交集. (2)幂级数的和函数)(x S 在收敛域内处处连续,且若幂级数∑∞=-00)(n nn x x a在R x x -=0处收敛,则)(x S 在[)R x R x +-00,内连续;又若幂级数∑∞=-00)(n n nx x a在R x x +=0处收敛,则)(x S 在(]R x R x +-00,内连续.(3)幂级数的和函数)(x S 在收敛域内可以逐项微分和逐项积分,收敛半径不变. 3.函数的幂级数展开以及幂级数的求和 (1)常用的幂级数展开:① +++++=nxx n x x e !1!2112∑∞==0!n n n x ,x ∈(-∞, +∞).②=11x -1+x +x 2+···+x n +··· =∑∞=0n n x ,x ∈(-1, 1). 从而,∑∞=-=+0)(11n nx x ,∑∞=-=+022)1(11n n n x x . ③∑∞=+++-=++-+-+-=0121253)!12()1()!12()1(!51!31sin n n nn n n x n x x x x x ,x ∈(-∞, +∞).④∑∞=-=+-+-+-=02242)!2()1()!2()1(!41!211cos n n n n n n x n x x x x ,x ∈(-∞, +∞). ⑤∑∞=-+-=++-+-+-=+11132)1(11)1(3121)1ln(n n n n n n x x n x x x x ,x ∈(-1, 1]. ⑥ ++--++-++=+n x n n x x x !)1()1(!2)1(1)1(2ααααααα,x ∈(-1, 1).⑦1202123)12()!(4)!2(12!)!2(!)!12(321arcsin +∞=+∑+=++-+++=n n n n x n n n n x n n x x x ,x ∈[-1, 1]. ⑧120123121)1(121)1(31arctan +∞=++-=++-++-=∑n n n n n x n x n x x x ,x ∈[-1, 1].(2)常用的求和经验规律:①级数符号里的部分x 可以提到级数外;②系数中常数的幂中若含有n ,可以与x 的幂合并,如将n c 和n x 合并为ncx )(; ③对∑∞=0n nnx a求导可消去n a 分母因式里的n ,对∑∞=0n n n x a 积分可消去n a 分子因式里的1+n ;④系数分母含!n 可考虑x e 的展开,含)!2(n 或)!12(+n 等可考虑正余弦函数的展开; ⑤有些和函数满足特定的微分方程,可以考虑通过求导发现这个微分方程并求解. (二)傅里叶级数1.狄利克雷收敛定理(本定理为套话,不需真正验证,条件在命题人手下必然成立) 若)(x f 以l 2为周期,且在[-l , l ]上满足: ①连续或只有有限个第一类间断点; ②只有有限个极值点;则)(x f 诱导出的傅里叶级数在[-l , l ]上处处收敛. 2. 傅里叶级数)(x S 与)(x f 的关系:⎪⎪⎪⎩⎪⎪⎪⎨⎧-++--++=.2)0()0(2)0()0()()(为边界点,为间断点;,为连续点;,x l f l f x x f x f x x f x S3.以l 2为周期的函数的傅里叶展开展开:∑∞=⎪⎪⎭⎫⎝⎛++=10sin cos 2)(~)(n n n l x n b l x n a a x S x f ππ(1)在[-l , l ]上展开:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰---l ln l l n l l dx l x n x f l b dx l x n x f l a dx x f l a ππsin )(1cos )(1)(10;(2)正弦级数与余弦级数:①奇函数(或在非对称区间上作奇延拓)展开成正弦级数:⎪⎪⎩⎪⎪⎨⎧===⎰l n n dxl x n x f l b a a 00sin )(200π;②偶函数(或在非对称区间上作偶延拓)展开成余弦级数:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰0cos )(2)(2000n l n l b dx l x n x f l a dx x f l a π;4.一些在展开时常用的积分: (1);0cos ;1)1(sin 010=+-=⎰⎰+ππnxdx nnxdx n(2)2sin 1cos ;1sin 2020πππn n nxdx n nxdx ==⎰⎰;(3)2022010)1(2cos 1)1(cos ;)1(sin n nxdx x n nxdx x n nxdx x n n n -=--=-=⎰⎰⎰+πππππ;; (4)C nx n nx a e n a nxdx e axax +-+=⎰)cos sin (1sin 22; C nx a nx n e na nxdx e ax ax +++=⎰)cos sin (1cos 22; (5)C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21sin sin ;C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21cos cos .注:①求多项式与三角函数乘积的积分时可采用列表法,注意代入端点后可能有些项为0; ②展开时求积分要特别注意函数的奇偶性及区间端点和间断点的特殊性; ③对于π≠l 的情形,事先令x lt π=对求积分通常是有帮助的.。

7考研数学大纲知识点解析(第七章无穷级数(数学一)和傅里叶级数(数学一))

7考研数学大纲知识点解析(第七章无穷级数(数学一)和傅里叶级数(数学一))


使
,于是
.令
,当 充分大时,有
因为
收敛,所以级数
绝对收敛.
【综合题】(04 年,数学一)设有方程
,其中 为正整数.证明此方程存
在唯一正实根 ,并证明当
时,级数
收敛.
【证明】记
.当
时,



上单调增加.
由于
,根据连续函数的零点存在定理知方程
存在唯一正实根 ,且
.从而当
时,有

而正项级数
收敛,所以当
在其收敛域 上可以逐项积分,即
, 且积分后的幂级数的收敛半径与原级数的收敛半径相同.
【函数展开成幂级数】


点的邻域
存在任意阶导数,则称幂级数


点处的泰勒级数.
特别地,当
时,称幂级数
【泰勒级数收敛充要条件】设函数
敛于
的充要条件为
,为
的麦克劳林级数.

内存在任意阶导数,则其泰勒级数收

其中

【常见麦克劳林级数】
(A)发散.
(C)绝对收敛. 【答案】(C).
收敛,则级数 (B)条件收敛. (D)收敛性与 有关.
【解析】由于

又级数

均收敛,所以由级数的运算性质得级数
收敛,
由正项级数的比较判别法,得级数
绝对收敛.故选(C).
【例题】(03 年,数学三)

,则下列命题正确的是 .
(A)若
条件收敛,则

都收敛.
【解析】因

时,因级数

,所以收敛半径


发散,故收敛域为

幂级数的收敛半径与收敛域

幂级数的收敛半径与收敛域

幂级数的收敛半径与收敛域幂级数是数学中重要的概念,它在各个领域有广泛的应用。

对于任意给定的幂级数,我们关心的一个重要问题是它的收敛性质。

特别是,我们想要知道幂级数的收敛半径以及收敛域。

1. 幂级数的定义与基本性质幂级数是指形如$\sum_{n=0}^{\infty}a_nx^n$的无穷级数,其中$a_n$是常数项,$x$是变量。

对于给定的$x$值,我们可以将幂级数看作一个函数$f(x)=\sum_{n=0}^{\infty}a_nx^n$,这个函数在某些$x$值上有收敛性。

幂级数有一些基本的性质:(1)收敛性:幂级数在某些$x$值上收敛,即级数$\sum_{n=0}^{\infty}a_nx^n$存在有限的和。

(2)发散性:幂级数在某些$x$值上发散,即级数$\sum_{n=0}^{\infty}a_nx^n$无限地增大或者震荡。

(3)绝对收敛性:幂级数在某些$x$值上绝对收敛,即级数$\sum_{n=0}^{\infty}|a_nx^n|$存在有限的和。

(4)条件收敛性:幂级数在某些$x$值上条件收敛,即幂级数收敛但不绝对收敛。

2. 幂级数的收敛半径幂级数的收敛半径是一个重要的指标,用于描述幂级数的收敛性。

对于幂级数$\sum_{n=0}^{\infty}a_nx^n$,定义收敛半径$R$如下: $$R = \frac{1}{{\limsup\limits_{n \to \infty} \sqrt[n]{|a_n|}}}$$其中$\limsup\limits_{n \to \infty} \sqrt[n]{|a_n|}$表示$a_n$的平方根序列的上极限。

根据收敛半径的定义,我们可以得到以下结论:(1)当$R=0$时,幂级数在除了$x=0$之外的任何$x$值上都发散。

(2)当$R=\infty$时,幂级数在整个实数轴上都绝对收敛。

(3)当$0<R<\infty$时,幂级数在以$x=0$为中心、半径为$R$的区间内绝对收敛,而在离开这个区间的地方发散。

第13章 无穷级数重点内容与练习

第13章 无穷级数重点内容与练习

都收敛
(B)
un 与
un2 都发散
n 1
n 1
n 1
n 1
(C) un 收敛,而
u
2 n
发散(D)
un 发散,而
un2
n 1
n 1
n 1
n 1
收敛
6. 级数 sin( n2 1) ( ).答案: B n1
(A)发散
(B)条件收敛
(C)绝对收敛 (D)敛散性无法判定
7.
级数
n1
sin n n2
( ).
(A) a ,b (B) a 2 ,b 2 2 +
2
2
2
2
(C) a ,b
22
答案: D .
(D) a 2 ,b
2
2
x2 1, 0 x ,
25.设
f
(x)
x2
1,
则 f (x) 以周期为 2 的傅
x 0.
里叶级数在点 x 处收敛于

答案: 2 .
1 n

).答案: C
(A)条件收敛 (B)绝对收敛
(C)发散
(D)无法确定
8. 设正项数列{an }单调减少,且级数 (1)n an 发散, n1
试讨论
(1)n (1 an1 ) 的敛散性.
n1
an
解:依题知
lim
n
an
存在,设
lim
n
an
a

a
0
,且
an a, n 1, 2,
而 (1)n (1 an1 ) an an1 an an1
ln
2
2
x
.当

级数的概念及其性质

级数的概念及其性质

级数的概念及其性质我们在中学里已经遇到过级数——等差数列与等比数列,它们都属于项数为有限的特殊情形。

下面我们来学习项数为无限的级数,称为无穷级数。

无穷级数的概念设已给数列a1,a2,…,a n,…把数列中各项依次用加号连接起来的式子a1+a2+…+a n+…称为无穷级数,简称级数.记作:或,即:=a1+a2+…+a n+…,数列的各项a1,a2,…称为级数的项,a n称为级数的通项.取级数最前的一项,两项,…,n项,…相加,得一数列S1=a1,S2=a1+a2,…,S n=a1+a2+…+a n,…这个数列的通项S n=a1+a2+…+a n称为级数的前n项的部分和,该数列称为级数的部分和数列。

如果级数的部分和数列收敛:,那末就称该级数收敛,极限值S称为级数的和。

例题:证明级数:的和是1.证明:当n→∞时,Sn→1.所以级数的和是1.级数的性质1.级数收敛的必要条件:收敛的级数的通项a n当n→∞时趋于零,即:注意:此条件只是级数收敛的必要条件,而不是充分条件。

例如:级数虽然在n→∞时,通项,级数却是发散的。

此级数为调和级数,在此我们不加以证明。

2.如果级数收敛而它的和是S,那末每一项乘上常数c后所得到的级数,也是收敛的,而且它的和是cS.如果发散,那末当c≠0时也发散。

3.两个收敛的级数可以逐项相加或相减。

4.在任何收敛的级数中,不改变连在一起的有限项的次序而插入括号,所得的新级数仍收敛,其和不变。

注意:无限项的所谓和是一种极限,与有限项的和在本质上是有区别的。

5.在一个级数的开头添入或去掉有限个项并不影响这个级数的收敛或发散。

正项级数的收敛问题对于一个级数,我们一般会提出这样两个问题:它是不是收敛的?它的和是多少?显然第一个问题是更重要的,因为如果级数是发散的,那末第二个问题就不存在了。

下面我们来学习如何确定级数的收敛和发散问题。

我们先来考虑正项级数(即每一项a n≥0的级数)的收敛问题。

判定正项级数敛散性的基本定理定理:正项级数收敛的充分与必要条件是部分和S n上有界.如果S n上无界,级数发散于正无穷大。

Cauchy-Hadamard定理中关于“幂级数收敛半径确定”充分性的分析

Cauchy-Hadamard定理中关于“幂级数收敛半径确定”充分性的分析

Cauchy-Hadamard 定理中关于“幂级数收敛半径确定”充分性的分析李占勇(喀什大学数学与统计学院,新疆喀什844000)摘要:针对华东师范大学数学系编著的《数学分析(下册)》第三版第十四章第一节Cauchy-Hadamard定理中利用上极限确定幂级数收敛半径的条件“当0<ρ<+∞时,收敛半径R =1ρ”,给出了一个反例说明该条件充分性不足,并通过分析应对幂级数系数集{a n }的有界性加以限制,得到了Cauchy-Hadamard 定理的最优充分性条件.关键词:Cauchy-Hadamard 定理;幂级数收敛半径;充分性;上极限;下极限中图分类号:O173.1文献标志码:A文章编号:2096-2134(2020)06-0017-040引言幂级数是函数项级数中最基本的一类.它的特点是在其收敛区间绝对收敛,且幂级数在收敛区间内可逐项微分和积分,由此得到了一种函数的无限形式的表达式(即幂级数展开式).将函数展为幂级数,无论在理论研究方面还是在应用方面都有着重大的意义.收敛级数有许多重要的应用[1-6].一般级数不是在任一点处都是收敛的,它们有一定的收敛域,需要讨论它们的收敛半径[7-9].对于幂级数+∞n=0∑a n x n中系数集是否满足“limn →+∞a n n√存在”,可以将幂级数+∞n =0∑a n x n 收敛半径的确定分为两个阶段.第一个阶段是当lim n →+∞a n n√存在时,有如下基本定理.定理1[10]已知幂级数+∞n=0∑a n x n,设limn →+∞a nn√=ρ,则:(1)当0<ρ<+∞时,幂级数+∞n=0∑a n x n 的收敛半径为1ρ;(2)当ρ=0时,幂级数+∞n =0∑a n x n 的收敛半径为+∞;(3)当ρ=+∞时,幂级数+∞n =0∑a n x n 的收敛半径为0.第二个阶段是当limn →+∞a n n√不存在时,可以利用上极限确定幂级数的收敛半径,即下面的Cauchy-Hadamard 定理.定理2[10](Cauchy-Hadamard 定理)已知幂级数+∞n =0∑a n x n ,设limn →+∞a n n√=ρ,则:(1)当0<ρ<+∞时,幂级数+∞n=0∑a n x n 的收敛半径为1ρ;收稿日期:2020-11-11作者简介:李占勇(1986-),男,河南省驻马店人,硕士,主要从事常微分方程与动力系统研究.E-mail :*******************DOI :10.13933/ki.2096-2134.2020.06.005喀什大学学报Vol.41No.6第41卷第6期(2)当ρ=0时,幂级数+∞n=0∑a n x n的收敛半径为+∞;(3)当ρ=+∞时,幂级数+∞n=0∑a n x n 的收敛半径为0.对于定理2中的(1),我们提出一个反例:设幂级数+∞n =0∑a n x n ,其中a n =n n ,当n 为奇数时;(122,当n =2时;(12+12n 2)n,当n 为不小于4的偶数时.⎧⎩⏐⏐⏐⏐⏐⏐⏐⏐⏐⎨⏐⏐⏐⏐⏐⏐⏐⏐⏐容易看出a n n√{}=1,12,3,(12+122),5,(12+123),6,…{},它只有一个聚点12,因此,lim n →+∞a n n√=ρ=12,由Cauchy-Hadamard 定理知收敛半径R =1ρ=2,那么幂级数+∞n=0∑a n x n 必在x =1处收敛;但是当我们把1带入幂级数+∞n=0∑a n x n中得到级数+∞n=0∑a n ,而级数∑a n=11+(12)2+33+(12+122)4+55+(12+123)6+67+…≥11+33+55+…=∑(2n -1)2n -1,显然+∞n =0∑a n x n 在x =1处发散,这就产生了矛盾.由此可见,上述定理2中的条件(1)还缺少限制条件,这个限制条件就是“a n n√{}是有界的”.添加该限制条件后即为下面的Cauchy -Hadamard 定理.定理3(Cauchy-Hadamard 定理)已知幂级数+∞n =0∑a n x n,设limn →+∞a n n√=ρ,则:(1)当a n n√{}有界,0<ρ<+∞时,幂级数+∞n=0∑a n x n 的收敛半径为1ρ;(2)当ρ=0时,幂级数+∞n =0∑a n x n 的收敛半径为+∞;(3)当ρ=+∞时,幂级数+∞n =0∑a n x n 的收敛半径为0.2Cauchy-Hadamard 定理3的证明证明我们先看a nn √{}与ρ的之间的关系性质:因为ρ是a n n√{}的所有聚点的上确界,所以对于任意小的正数ε,则存在a n n√{}的一个聚点a ∈(ρ-ε,ρ+ε).现取一个正数δ=min {(ρ-ε)-a ,(ρ+ε)-a },由a 是a n n√{}的一个聚点可知(a -δ,a +δ)中含有a n n√{}的无数个项;再由(a -δ,a +δ)⊂(ρ-ε,ρ+ε)可知(ρ-ε,ρ+ε)中含有a n n√{}的无数个项,从而ρ是a n n√{}的一个聚点.其次,再来证明:满足大于等于ρ+ε的a n n√{}中的项的个数是有限的.假设满足大于等于ρ+ε的a n n√{}中的项的个数是无限的,并用A 表示由这无数个项组成的数集.根据添加的限制条件“a n n√{}是有界数列”可知数列A中又存在聚点b ,不妨设其中一个聚点为b ,显然b ≥ρ+ε(否则,就有b <ρ+ε,此时取正数δ′=(ρ+ε)-b ,则(b -δ′,b +δ′)中不含数列A 中的项,但这与b 是数列A 的一个聚点产生矛盾),进而有b >ρ,又因为b 是数列A 的一个聚点,那么它必是a n n√{}的一个聚点,但这与ρ是a n n√{}的所有聚点的上确界产生矛盾,所以假设不成立,满足大于等于ρ+ε的a n n√{}中的项的个数是有限的.注1:设limn →+∞a n n√=l ,同理可证l 是a nn√{}的一个聚点,且满足小于等于l -ε的a n n√{}中的项的个数是有限的.有了这些结论,我们就很容易得到如下正项级数收敛判定定理:引理1已知正项级数+∞n=1∑u n ,若满足:(1)当u n +1u n{}有界(显然lim n →+∞u n +1un,lim n →+∞u n +1u n均存在且均不小于0),且lim n →+∞u n +1u n =ρ<1时,则正项级数+∞n =1∑u n 收敛;喀什大学学报第41卷18··李占勇:Cauchy-Hadamard 定理中关于“幂级数收敛半径确定”充分性的分析第6期(2)当lim n →+∞u n +1u n =l >1时,则正项级数+∞n =1∑u n发散.注2:lim n →+∞u n +1u n=l >1并不能证明{u n }中有无穷个项大于1,它只能证明有无穷个比值项大于1,只有这无穷个比值项是依次衔接的才能证明正项级数+∞n =1∑u n 发散.引理2已知正项级数+∞n=1∑u n ,若满足:(1)当{u n }有界(显然limn →+∞u nn√存在且不小于0)且lim n →+∞u n n√ρ<1时,则正项级数+∞n=1∑u n 收敛;(2)当lim n →+∞u n n√ρ<1(ρ≠+∞)时,则正项级数+∞n=1∑u n 发散;(3)当lim n →+∞u n n√ρ=+∞时,正项级数+∞n=1∑u n发散.引理证明我们只给出引理2的证明,引理1的证明类似.(1)因为lim n →+∞u n n√=ρ<1,所以可取正数ε=1-ρ2,那么大于等于ρ+ε的u n n √{}中的项是有限个.设这有限个项的最大下标为N ,则当n>N时,总有u n n√<ρ+ε<1,根据正项级数收敛的柯西判别法可证得+∞n =1∑u n 收敛.(2)因为lim n →+∞u n n√=ρ>1,所以可取正数ε=ρ-12,那么(ρ-ε,ρ+ε)中含有u n n√{}的无数个项;由ρ-ε>1可知u n n√{}中有无数个项大于1,从而u n {}中有无数个项大于1,这样我们得到+∞n=0∑u n →+∞,即正项级数+∞n=1∑u n 发散.(3)因为lim n →+∞u n n√=+∞,所以存在u nn√{}的一个聚点u n 1n 1√,取正数ε=u n 1n 1√-12,则区间u n 1n 1√-ε,u n 1n 1√ε()含有u n n√{}中的无穷多个项,又因为1<u n 1n 1√-ε,所以这无穷多个项均大于1,进而对应的中的无穷多个项也大于1,这样我们得到正项级数+∞n =1∑u n 是发散的.现在继续回到定理的证明:(1)任取x ∈1ρ,1ρ(),则lim n →+∞a n x n n√=lim n →+∞a n n√·x ()=ρx <1(lim n →+∞ku n =k lim n →+∞u n ,k >0),从而+∞n =0∑a n x n 收敛,即+∞n =0∑a n x n 在-1ρ,1ρ()上绝对收敛,再由级数绝对收敛必收敛可知+∞n =0∑a n x n在-1ρ,1ρ()上是收敛的.任取x ∈-∞,-1ρ()∪1ρ,+∞(),则lim n →+∞a n x n n √=lim n →+∞a n n √·x ()=ρx >1,根据引理2可知+∞n=0∑a n x n 发散,即+∞n =0∑a n x n 在-∞,-1ρ()∪1ρ,+∞()上不绝对收敛.假设x ∈-∞,-1ρ()∪1ρ,+∞()使+∞n =0∑a nx n收敛,取1ρ<x⎺<x ,类比阿贝耳定理的证明可知:+∞n=0∑a n x n 在x ⎺处绝对收敛,又因为1ρ<x ⎺,所以根据前面的结论可知+∞n =0∑a n x n 在x ⎺处不绝对收敛,这就产生了矛盾,即+∞n =0∑a n x n 在-∞,-1ρ()∪1ρ,+∞()上发散,这说明幂级数+∞n =0∑a n x n 的收敛半径为1ρ.(2)任取x ∈(-∞,+∞),则lim n →+∞a n x n n√=limn →+∞a n n√·x()=ρx =0<1,根据引理2可知+∞n =0∑a n x n 收敛,从而+∞n =0∑a n x n 在(-∞,+∞)上绝对收敛且收敛,即幂级数+∞n =0∑a n x n 的收敛半径为+∞.(3)因为ρ=+∞,所以当x ≠0时,lim n →+∞a n x nn√19··Analysis on the Sufficiency of Determining the Convergence Radius of PowerSeries in Theorem Cauchy-HadamardLI Zhan-yong(School of Mathematics and Statistics,Kashi University,Kashi 844000,Xinjiang,China)Abstract:According to the Cauchy-Hadamard theorem in the first section of Chapter 14in the third edition ofmathematical analysis (Volume II )edited by the Department of mathematics of East China Normal University,the condition of using upper limit to determine the convergence radius of power series “when 0<ρ<+∞,the radius of convergence R =1ρ”,this paper gives a counter example to show that the condition is insufficient ,The boundedness of coefficient seta nn√{}of power series should be restricted by analysis.Finally,the optimalsufficient conditions of Cauchy-Hadamard theorem are obtained.Key words:Cauchy-Hadamard theorem;the radius of convergence of power series;sufficiency;upper limit;lower limit=lim n →+∞a n n√·x ()=ρx =+∞,从而有当x ≠0时,+∞n =0∑a nxn在(-∞,+∞)上不绝对收敛.假设存在x ≠0使幂级数+∞n=0∑a n x n 收敛,那么取一个正数x ⎺满足0<x ⎺<x ,类比阿贝耳定理的证明可知幂级数+∞n =0∑a n x n 在x ⎺处绝对收敛.但由前面的结论可知,幂级数+∞n =0∑a n x n 在x ⎺处不绝对收敛,所以假设失败,即幂级数+∞n =0∑a n x n 的收敛半径为0.定理3得证.3结论本文经过Cauchy -Hadamard 定理充分性的分析,增加了幂级数系数集a n n√{}的有界性,并且通过定理的证明过程得知系数集a n n√{}有界是必须的,从而增加的条件是最优的.在引理2中,我们知道{u n }有界必能推出u n n√{}有界,而u n n√{}有界则未必推出{u n }有界,所以会使人误认为“{u n }有界”换作“u n n√{}有界”后,条件(1)拓宽了.其实不然,换后的条件(1)除了有u n n√{}有界,还有0<ρ<1,这两个条件结合起来能证明{u n }有界,因此换后的条件与换前的条件是对等的,但对于给定的幂级数考察{u n }有界是直接能看到的,不需要经过变换.参考文献:[1]唐荣荣.渐近级数与收敛级数的比较[J].大学数学,2009,25(3):181-184.[2]朱明星.幂级数的应用[J].中国科技信息,2011,(10):60-61.[3]赵青波.不等式证明中幂级数的应用分析[J].当代旅游,2018,(11):1-2.[4]初文昌.形式幂级数技巧的应用:Ⅰ.李善兰恒等式的初等证明[J].数学的实践与认识,1990,(1):82-84.[5]张建军,宋业新,瞿勇.从两道竞赛题看幂级数展开式的应用[J].科技创新导报,2017,(30):224-225.[6]孙延彬.矩阵幂级数的收敛性质和应用[J].和田师范专科学校学报,2010,29(3):198-201.[7]蒋国强.一类幂级数收敛半径的统一求法[J].高等函授学报(自然科学版),2003,16(3):20-21.[8]蔡道西.关于二元幂级数收敛半径的计算公式[J].数学学习与研究,2009,(5):111-112.[9]Shapovalovska L O ,Skaskiv O B.On the radius of conve-rgence of random gap power series [J ].International Journal of Mathematical Analysis ,2015:1889-1893.[10]华东师范大学数学系.数学分析:下册[M].北京:高等教育出版社,2006.喀什大学学报第41卷20··。

幂级数求收敛半径

幂级数求收敛半径

幂级数求收敛半径幂级数是数学中的一个重要概念,它是由形如$sumlimits_{n=0}^{infty}a_nx^n$的无穷级数组成,其中$a_n$是常数,$x$是变量。

幂级数在数学中的应用非常广泛,如在微积分、数论、物理学等领域中都有着重要的应用。

然而,在实际的计算中,我们经常需要求出幂级数的收敛半径,以确定幂级数的收敛性。

因此,本文将从定义、性质和求解方法三个方面来介绍幂级数的收敛半径。

一、幂级数的定义幂级数是一种无穷级数,它的一般形式为$sumlimits_{n=0}^{infty}a_nx^n$,其中$a_n$是常数,$x$是变量。

当$x=0$时,幂级数的值为$a_0$,如果$x$的取值在某个区间内收敛,则称幂级数在该区间内收敛。

否则,幂级数在该区间内发散。

二、幂级数的性质1. 幂级数的收敛域是一个区间。

2. 幂级数的收敛半径是一个正实数$r$,它满足$limlimits_{nrightarrowinfty}left|dfrac{a_{n+1}}{a_n}right| =r$,当$r=0$时,幂级数在$x=0$处收敛;当$r=+infty$时,幂级数在整个实轴上收敛;当$0<r<+infty$时,幂级数在$xin(-r,r)$内收敛。

3. 幂级数的收敛性与$x$的取值有关,即幂级数在某个点处收敛,并不意味着它在整个区间内都收敛,反之亦然。

三、幂级数的求解方法1. 比值判别法比值判别法是求解幂级数收敛半径的一种常用方法。

具体来说,利用比值判别法可以得到$limlimits_{nrightarrowinfty}left|dfrac{a_{n+1}}{a_n}right| =r$,然后根据$r$的大小来确定幂级数的收敛半径。

比值判别法的具体步骤如下:(1)计算$limlimits_{nrightarrowinfty}left|dfrac{a_{n+1}}{a_n}right| $。

第章无穷级数-(函数项级数幂级数收敛半径)

第章无穷级数-(函数项级数幂级数收敛半径)

当y 2时, 可得n1n1发散,
当y

2时,
可得


(
n1
1)n收敛. n
2 y 2, 从而 2 x 1 2 1 x 3
收敛域为[1,3).
方 由比值法得,


lim un1 n un

lim
n
( x 1)n1 2n1(n 1)

(
2n x
n 1)
n

x 1 ,
2
当 x 1 1即 1 x 3时,原幂级数绝对收敛; 2
当 x 1 1即x 1或x 3时,原幂级数发散;
当x
2
3时,

原幂级数成为
1,
发散,
n1n
当x


1时, 原幂级数成为
(
收敛域为[1,3).
n1
1)n n
(1)计算 lim an1 ;
n an
(2)由的值得R 1 ;

(3)由数项级数判定x R时 an xn的敛散性得收
n0
敛域[R, R]或[R, R)或(R, R]或(R, R).
标准幂级数收敛域的求法习例
例 2 求下列幂级数的收敛半径和收敛域

(1)
形如

an xn a0 a1x an xn
n0
的函数项级数称为幂级数的标准形式.

an xn a0 a1 x an xn
(1)
n0

an ( x x0 )n a0 a1( x x0 ) an ( x x0 )n
n0

第八章 无穷级数

第八章  无穷级数


∑ 【例】(07) 设幂级数 an xn 在 (−∞, +∞) 内收敛,其和函数 y(x) 满足 y′′ − 2xy′ − 4 y = 0, n=0
y(0) = 0, y′(0) = 1
(Ⅰ)证明 an+2
=
2 n +1 an , n
= 1, 2,";
(Ⅱ)求 y(x) 的表达式

∑ 【例】设 an 为曲线 y = xn 与 y = xn+1 (n = 1, 2,.....) 所围成区域的面积,记 S1 = an , n=1
(1) 在 x = 0 点收敛,在 x = −4 点发散. (2) 在 x = 3 点条件收敛.
三 幂级数的和函数与级数求和
∑ ∞

幂级数 ∑ anxn 在其收敛域 D 上有和函数 s(x) = an xn (x ∈ D) 具有如下重要性质:
n=0
n=0
(1) S (x) 在收敛域 D 上的连续;

∑ S2 = a2n−1 ,求 S1 与 S2 的值。 n=1
1.直接展开
∑ (1)
1

= xn
1− x n=0
四 将函数展开为幂级数
x <1
∑ (2) ex = ∞ xn n=0 n!
x < +∞
∑ ∑ (3)
sin
x
=

( −1)n
n=0
x 2 n +1
(2n +1)!

x
< +∞
(4) cos x
①逐项求导,求积 ②四则运算 ③分解或组合(常见级数的和或差)、变量代换等等
∑ 【例】(03)求幂级数1 +

无穷级数知识点汇总

无穷级数知识点汇总

无穷级数知识点汇总一、数项级数(一)数项级数的基本性质1.收敛的必要条件:收敛级数的一般项必趋于0.2.收敛的充要条件(柯西收敛原理):对任意给定的正数ε,总存在N 使得对于任何两个N 大于的正整数m 和n ,总有ε<-n m S S .(即部分和数列收敛)3.收敛级数具有线性性(即收敛级数进行线性运算得到的级数仍然收敛),而一个收敛级数和一个发散级数的和与差必发散.4.对收敛级数的项任意加括号所成级数仍然收敛,且其和不变.5.在一个数项级数内去掉或添上有限项不会影响敛散性. (二)数项级数的性质及敛散性判断 1.正项级数的敛散性判断方法(1)正项级数基本定理:如果正项级数的部分和数列有上界,则正项级数收敛. (2)比较判别法(放缩法):若两个正项级数∑∞=1n nu和∑∞=1n nv之间自某项以后成立着关系:存在常数0>c ,使),2,1( =≤n cv u n n ,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.推论:设两个正项级数∑∞=1n n u 和∑∞=1n n v ,且自某项以后有nn n n v v u u 11++≤,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.(3)比较判别法的极限形式(比阶法):给定两个正项级数∑∞=1n n u 和∑∞=1n n v ,若0lim >=∞→l v u nnn ,那么这两个级数敛散性相同.(注:可以利用无穷小阶的理论和等价无穷小的内容) 另外,若0=l ,则当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;若∞=l ,则当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.常用度量: ①等比级数:∑∞=0n nq,当1<q 时收敛,当1≥q 时发散;②p -级数:∑∞=11n p n ,当1>p 时收敛,当1≤p 时发散(1=p 时称调和级数); ③广义p -级数:()∑∞=2ln 1n pn n ,当1>p 时收敛,当1≤p 时发散.④交错p -级数:∑∞=--111)1(n pn n ,当1>p 时绝对收敛,当10≤<p 时条件收敛. (4)达朗贝尔判别法的极限形式(商值法):对于正项级数∑∞=1n n u ,当1lim1<=+∞→r u u nn n 时级数∑∞=1n n u 收敛;当1lim1>=+∞→r u u nn n 时级数∑∞=1n n u 发散;当1=r 或1=r 时需进一步判断. (5)柯西判别法的极限形式(根值法):对于正项级数∑∞=1n nu,设n n n u r ∞→=lim ,那么1<r 时此级数必为收敛,1>r 时发散,而当1=r 时需进一步判断. (6)柯西积分判别法:设∑∞=1n nu为正项级数,非负的连续函数)(x f 在区间),[+∞a 上单调下降,且自某项以后成立着关系:n n u u f =)(,则级数∑∞=1n n u 与积分⎰+∞)(dx x f 同敛散.2.任意项级数的理论与性质(1)绝对收敛与条件收敛:①绝对收敛级数必为收敛级数,反之不然; ②对于级数∑∞=1n nu,将它的所有正项保留而将负项换为0,组成一个正项级数∑∞=1n nv,其中2nn n u u v +=;将它的所有负项变号而将正项换为0,也组成一个正项级数∑∞=1n nw,其中2nn n u u w -=,那么若级数∑∞=1n nu绝对收敛,则级数∑∞=1n nv和∑∞=1n nw都收敛;若级数∑∞=1n nu条件收敛,则级数∑∞=1n nv和∑∞=1n nw都发散.③绝对收敛级数的更序级数(将其项重新排列后得到的级数)仍绝对收敛,且其和相同. ④若级数∑∞=1n nu和∑∞=1n nv都绝对收敛,它们的和分别为U 和V ,则它们各项之积按照任何方式排列所构成的级数也绝对收敛,且和为UV .特别地,在上述条件下,它们的柯西乘积⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=11n n n n v u 也绝对收敛,且和也为UV . 注:⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=∑∑∑∞=∞=∞=111n n n n n n v u c ,这里121121v u v u v u v u c n n n n n ++++=-- .(2)交错级数的敛散性判断(莱布尼兹判别法):若交错级数∑∞=--11)1(n n n u 满足0lim =∞→n n u ,且{}n u 单调减少(即1+≥n n u u ),则∑∞=--11)1(n n n u 收敛,其和不超过第一项,且余和的符号与第一项符号相同,余和的值不超过余和第一项的绝对值.二、函数项级数(一)幂级数1.幂级数的收敛半径、收敛区间和收敛域 (1)柯西-阿达马定理:幂级数∑∞=-00)(n n nx x a在R x x <-0内绝对收敛,在Rx x >-0内发散,其中R 为幂级数的收敛半径. (2)阿贝尔第一定理:若幂级数∑∞=-00)(n n nx x a在ξ=x 处收敛,则它必在00x x x -<-ξ内绝对收敛;又若∑∞=-00)(n n nx x a在ξ=x 处发散,则它必在00x x x ->-ξ也发散.推论1:若幂级数∑∞=0n n nx a在)0(≠=ξξx 处收敛,则它必在ξ<x 内绝对收敛;又若幂级数∑∞=0n n nx a在)0(≠=ξξx 处发散,则它必在ξ>x 时发散.推论2:若幂级数∑∞=-00)(n n nx x a在ξ=x 处条件收敛,则其收敛半径0x R -=ξ,若又有0>n a ,则可以确定此幂级数的收敛域.(3)收敛域的求法:令1)()(lim1<+∞→x a x a nn n 解出收敛区间再单独讨论端点处的敛散性,取并集.2.幂级数的运算性质(1)幂级数进行加减运算时,收敛域取交集,满足各项相加;进行乘法运算时,有:∑∑∑∑∞==-∞=∞=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛0000n n n i i n i n n n n n n x b a x b x a ,收敛域仍取交集. (2)幂级数的和函数)(x S 在收敛域内处处连续,且若幂级数∑∞=-00)(n nn x x a在R x x -=0处收敛,则)(x S 在[)R x R x +-00,内连续;又若幂级数∑∞=-00)(n n nx x a在R x x +=0处收敛,则)(x S 在(]R x R x +-00,内连续.(3)幂级数的和函数)(x S 在收敛域内可以逐项微分和逐项积分,收敛半径不变. 3.函数的幂级数展开以及幂级数的求和 (1)常用的幂级数展开:① +++++=nxx n x x e !1!2112∑∞==0!n n n x ,x ∈(-∞, +∞).②=11x -1+x +x 2+···+x n +··· =∑∞=0n n x ,x ∈(-1, 1). 从而,∑∞=-=+0)(11n nx x ,∑∞=-=+022)1(11n n n x x . ③∑∞=+++-=++-+-+-=0121253)!12()1()!12()1(!51!31sin n n nn n n x n x x x x x ,x ∈(-∞, +∞).④∑∞=-=+-+-+-=02242)!2()1()!2()1(!41!211cos n n n n n n x n x x x x ,x ∈(-∞, +∞). ⑤∑∞=-+-=++-+-+-=+11132)1(11)1(3121)1ln(n n n n n n x x n x x x x ,x ∈(-1, 1]. ⑥ ++--++-++=+n x n n x x x !)1()1(!2)1(1)1(2ααααααα,x ∈(-1, 1).⑦1202123)12()!(4)!2(12!)!2(!)!12(321arcsin +∞=+∑+=++-+++=n n n n x n n n n x n n x x x ,x ∈[-1, 1]. ⑧120123121)1(121)1(31arctan +∞=++-=++-++-=∑n n n n n x n x n x x x ,x ∈[-1, 1].(2)常用的求和经验规律:①级数符号里的部分x 可以提到级数外;②系数中常数的幂中若含有n ,可以与x 的幂合并,如将n c 和n x 合并为ncx )(; ③对∑∞=0n nnx a求导可消去n a 分母因式里的n ,对∑∞=0n n n x a 积分可消去n a 分子因式里的1+n ;④系数分母含!n 可考虑x e 的展开,含)!2(n 或)!12(+n 等可考虑正余弦函数的展开; ⑤有些和函数满足特定的微分方程,可以考虑通过求导发现这个微分方程并求解. (二)傅里叶级数1.狄利克雷收敛定理(本定理为套话,不需真正验证,条件在命题人手下必然成立) 若)(x f 以l 2为周期,且在[-l , l ]上满足: ①连续或只有有限个第一类间断点; ②只有有限个极值点;则)(x f 诱导出的傅里叶级数在[-l , l ]上处处收敛. 2. 傅里叶级数)(x S 与)(x f 的关系:⎪⎪⎪⎩⎪⎪⎪⎨⎧-++--++=.2)0()0(2)0()0()()(为边界点,为间断点;,为连续点;,x l f l f x x f x f x x f x S3.以l 2为周期的函数的傅里叶展开展开:∑∞=⎪⎪⎭⎫⎝⎛++=10sin cos 2)(~)(n n n l x n b l x n a a x S x f ππ(1)在[-l , l ]上展开:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰---l ln l l n l l dx l x n x f l b dx l x n x f l a dx x f l a ππsin )(1cos )(1)(10;(2)正弦级数与余弦级数:①奇函数(或在非对称区间上作奇延拓)展开成正弦级数:⎪⎪⎩⎪⎪⎨⎧===⎰l n n dxl x n x f l b a a 00sin )(200π;②偶函数(或在非对称区间上作偶延拓)展开成余弦级数:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰0cos )(2)(2000n l n l b dx l x n x f l a dx x f l a π;4.一些在展开时常用的积分: (1);0cos ;1)1(sin 010=+-=⎰⎰+ππnxdx nnxdx n(2)2sin 1cos ;1sin 2020πππn n nxdx n nxdx ==⎰⎰;(3)2022010)1(2cos 1)1(cos ;)1(sin n nxdx x n nxdx x n nxdx x n n n -=--=-=⎰⎰⎰+πππππ;; (4)C nx n nx a e n a nxdx e axax +-+=⎰)cos sin (1sin 22; C nx a nx n e na nxdx e ax ax +++=⎰)cos sin (1cos 22; (5)C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21sin sin ;C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21cos cos .注:①求多项式与三角函数乘积的积分时可采用列表法,注意代入端点后可能有些项为0; ②展开时求积分要特别注意函数的奇偶性及区间端点和间断点的特殊性; ③对于π≠l 的情形,事先令x lt π=对求积分通常是有帮助的.。

第4章无穷级数3-7(函数项级数 幂级数收敛半径)

第4章无穷级数3-7(函数项级数 幂级数收敛半径)
对一切x , an x n绝对收敛. R .
n 0
an1 ( 3)若 lim , n an un1 an1 则 lim lim x ( x 0) n un n an
则 lim un 0, 故 an x n发散. R 0. 定理证毕.
(2) 幂级数对一切x 都收敛,R ,
收敛域( , ).
问题
如何求幂级数的收敛半径?
4. 标准幂级数收敛半径、收敛域的求法
n a x 如果幂级数 定理2 n 的所有系数a n 0 , n 0
a n1 设 lim n a n
1 则 (1) 当 0 时, R ; (2) 当 0 时, R ;
当 x 1时, lim sn ( x )不存在.
n
1 , 当 x 1时 n 收敛于 x . 1 x n 0 当 x 1时 发散,

2. 阿贝尔(Abel)定理
(1) 如果级数 a n x n 在 x x 0 ( x 0 0) 处收敛,则
n 0
函数项级数的部分和 s n ( x ), lim sn ( x ) s( x ) 余项 rn ( x ) s( x ) sn ( x )
lim rn ( x ) 0
n
n
(x在收敛域上)
注意: (1) 函数项级数在某点x的收敛问题,实质上是数 项级数的收敛问题.
( 2)
n 1

n
1 a n 1 lim 0, 解 lim n n 1 n a n
R ,
收敛域( , ).
5. 一般幂级数收敛域的求法
对于 an ( x x0 )n有两种方法求其收敛域.

级数敛散性总结

级数敛散性总结

摘要级数理论是数学分析的重要组成部分,研究级数对于深入探讨数学分析问题有着深远的意义。

级数理论中最重要的问题和学者研究最多的问题则是关于级数收敛与发散的问题。

级数的收敛与发散性质更是级数存在当中的最基本的立足点。

基于级数发散和收敛的问题,本文对级数进行了比较详细和系统的介绍,并在级数收敛性方面进行了较为详细的概括,包括级数的分类和收敛性的总结和应用。

本文第一个部分首先对常见的级数:常数项级数、正项级数、交错级数、函数项级数、幂级数、傅立叶级数,进行了大概的介绍,并从常见级数的定义、常见级数的分类、级数收敛发散的充要条件和对应级数常用的收敛判别方法进行详细的分析概括。

本文的第二个部分针对具体的级数收敛方法,从方法的定义和方法的具体例子应用两个方面对其进行较为全面的介绍和分析,其中包括:判别级数发散与收敛的简单方法、比较判别法、比值判别法、高斯判别法、达朗贝尔判别法、对数判别法、积分判别法、拉贝判别法、柯西判别法。

最后,本文第三部分通过整理级数散敛性判断的方法,对本文进行一个综合的概括,主要从基于级数类型的方法和基于通项特征的方法两个方面总结了解答收敛性问题的分析思路和如何更快的寻找有效的方法。

关键词:级数敛散性方法AbstractProgression theory is an important part of the mathematical analysis. The study of series is of profound significance for further discussing mathematical analysis problems. Series convergence and divergence problem is the most important question in progression theory that many researchers research on. For the analysis, series convergence and series divergence is of the basic foothold existing in mathematical analysis.Firstly, based on the series convergence and series divergence, this thesis gives a detailed and systematical introduction to series, and a more detailed summary of series convergence, including the classification of series, application of convergence. Firstly, this paper has a general introduction to common series, including constant series, series of positive term, staggered series, series with function terms, power series, fourier series. Besides, the paper has detailed analysis and summary of the definition of common series, the classification of common series, and the sufficient and necessary conditions for the convergence series, together with the commonly used identification methods of corresponding series.And then the second part of this article has a comprehensive introduction and analysis of the method’s definition and specific examples application of the method, including: simple method distinguishing the divergence of a series , comparative method, ratio method, Gauss method, D'Alembert discriminant method, Logarithmic method, integral method, Rabe method, and Cauchy method.Finally, the third part of this paper made a comprehensive summary through sorting out identifying methods of series convergence and divergence. Based on the types of series and the methods of general term characteristics, this paper summarized the analysis mentality and effective ways of solutions to convergence problem.Key words: Series Convergence Mathod第一章引言级数理论是数学分析的重要组成部分,与极限理论有密切的联系,它与另一个分支微积分学一起作为基础知识和工具出现在其余各分支中。

无穷级数 知识点总复习

无穷级数 知识点总复习

无穷级数 知识点总复习本章重点是判断数项级数的敛散性,幂级数与傅里叶级数的展开与求和. §7.1 数项级数本节重点是级数的性质,正项级数的几个判别法,交错级数的莱布尼兹判别法,任意项级数绝对收敛与条件收敛.● 常考知识点精讲一、数项级数的概念1.数项级数定义定义:设{}n u 是一个数列,则称表达式121nn n uu u u ∞==++++∑L L为一个数项级数,简称级数,其中第n 项n u 称为级数的通项或一般项,1nn kk S u==∑称为级数的前n 项部分和. 2.级数收敛的定义 定义:若数项级数1nn u∞=∑的部分和数列{}n S 有极限,则称级数1nn u∞=∑收敛,极限值lim n n S →∞称为此级数的和.当lim n n S →∞不存在时,则称级数1nn u∞=∑发散.利用级数收敛的定义,易知当1q <时,几何级数1nn q∞=∑收敛,和为11q-;当1q ≥,几何级数发散.[例1.1] 判断下列级数的敛散性⑴11(1)n n n ∞=+∑ ⑵1(1)n n n ∞=+-∑解:⑴由于 1111223(1)n S n n =+++⋅⋅+L 111111(1)()()122311n n n =-+-++-=-++L 所以 1lim lim(1)11n n n S n →∞→∞=-=+,故级数11(1)n n n ∞=+∑收敛.⑵ 由于(21)(32)(1)11n S n n n =-+-+++-=+-L所以lim n n S →∞=+∞,故级数1(1)n n n ∞=+-∑发散.二、级数的基本性质及收敛的必要条件1.设11,n nn n u v∞∞==∑∑都收敛,和分别为,a b ,则1()nn n uv ∞=±∑必收敛,且1()n n n u v a b ∞=±=±∑;评注:若1nn u∞=∑收敛,1nn v∞=∑发散,则1()nn n uv ∞=±∑必发散;若11,n n n n u v ∞∞==∑∑都发散,则1()nn n uv ∞=±∑可能发散也可能收敛.2.设k 为非零常数,则级数1nn u∞=∑与1nn ku∞=∑有相同的敛散性;3.改变级数的前有限项,不影响级数的敛散性; 4.级数收敛的必要条件:如果1nn u∞=∑收敛,则lim 0n n u →∞=;5.收敛的级数在不改变各项次序前提下任意加括号得到的新级数仍然收敛且和不变.评注:若某级数添加括号后所成的级数发散,则原级数亦发散. [例1.2] 判断下列级数的敛散性⑴111111210420210n n +++++++L L ⑵ 1(21)(1)(2)n n n n n ∞=+++∑解:⑴由于112n n ∞=∑收敛,1110n n ∞=∑发散,所以 111()210n n n ∞=+∑发散, 由性质5的“注”可知级数111111210420210n n+++++++L L 发散; ⑵ 由于(21)lim20(1)(2)n n n n n →∞+=≠++,不满足级数收敛的必要条件,所以级数1(21)(1)(2)n n n n n ∞=+++∑发散. 三、正项级数及其敛散性判别法各项为非负(0n u ≥)的级数1nn u∞=∑称为正项级数.1.正项级数收敛的基本定理 定理:设{}n S 是正项级数1nn u∞=∑的部分和数列,则正项级数1nn u∞=∑收敛的充要条件是数列{}n S 有界.当1p >时,p 级数11pn n∞=∑收敛;当1p ≤时,p 级数发散.(1p =时的p 级数也叫调和级数)2.正项级数的比较判别法 定理:(正项级数比较判别法的非极限形式) 设11,n nn n u v∞∞==∑∑都是正项级数,并设0,()n n u v n N ≤≥,则⑴ 若1nn v∞=∑收敛,则1nn u∞=∑收敛;⑵ 若1nn u∞=∑发散,则1nn v∞=∑发散.定理:(正项级数比较判别法的极限形式) 设11,n nn n u v∞∞==∑∑都是正项级数,并设limnn nu v ρ→∞=或为+∞,则⑴ 当ρ为非零常数时,级数11,n nn n u v∞∞==∑∑有相同的敛散性;⑵ 当0ρ=时,若1nn v∞=∑收敛,则必有1nn u∞=∑收敛;⑶ 当ρ=+∞时,若1nn v∞=∑发散,则必有1nn u∞=∑发散.评注:用比较判别法的比较对象常取p -级数与等比级数及211ln 1pn p n n p ∞=>⎧⎨≤⎩∑时,收敛时,发散. 3.正项级数的比值判别法定理:设1n n u ∞=∑是正项级数,若1limn n nu u ρ+→∞=或为+∞,则级数1n n u ∞=∑有 ⑴ 当1ρ<时,收敛; ⑵ 当1ρ>或∞时,发散; ⑶ 当1ρ=时,敛散性不确定.评注:⑴ 若11n n u u +≥(1,2,)n =L ,则级数1n n u ∞=∑必发散; ⑵ 如果正项级数通项中含有阶乘,一般用比值判别法判定该级数的敛散性; ⑶ 当1limn n nu u +→∞=1或不存在(但不为∞),则比值判别法失效.4.正项级数的根值判别法将比值判别法中的1n nu u +改成n n u ,其它文字叙述、结论均不改动,即为根值判别法. 5.利用通项关于无穷小1n的阶判定正项级数的敛散性 定理:设1n n u ∞=∑是正项级数,n u 为1()n n →∞的k 阶无穷小,则当1k >时,正项级数1nn u ∞=∑收敛;当1k ≤时,正项级数1nn u∞=∑发散.[例1.3] 判断下列级数的敛散性 ⑴1111n nn∞+=∑⑵213n n n ∞=∑ ⑶11(ln(1))n n n ∞=+∑ ⑷21(1)n n n n ∞=+∑ 解:⑴ 由于1111lim lim 11nn n n nn n+→∞→∞==,而级数11n n ∞=∑发散,故原级数发散; ⑵ 由于2112(1)31lim lim 133n n n n n nu n u n ++→∞→∞+=⨯=<,所以由比值判别法可得,原级数收敛;⑶ 由于11lim lim 01(ln(1))ln(1)nn n n n n →∞→∞==<++,所以由根值判别法可知,原级数收敛;⑷ 由于2(1)n n n +为1()n n→∞的32阶无穷小,所以原级数收敛. 四、交错级数及其敛散性判别法1.交错级数定义定义:若级数的各项是正项与负项交错出现,即形如112341(1),(0)n n n n u u u u u u ∞-=-=-+-+>∑L的级数,称为交错级数.2.交错级数的莱布尼兹判别法 定理:若交错级数11(1),(0)n n n n u u ∞-=->∑满足条件⑴ 1(1,2,)n n u u n +≥=L ; ⑵ lim 0n n u →∞=,则交错级数11(1),(0)n n n n u u ∞-=->∑收敛,其和1S u ≤其余项n S S -满足1n n S S u +-≤.五、任意项级数及其绝对收敛若级数1nn u∞=∑的各项为任意实数,则称它为任意项级数.1.条件收敛、绝对收敛 若1nn u∞=∑收敛,则称1nn u∞=∑绝对收敛;若1nn u∞=∑发散但1nn u∞=∑收敛,则称1nn u∞=∑条件收敛.评注:绝对收敛的级数不因改变各项的位置而改变其敛散性与其和. 2.任意项级数的判别法 定理:若级数1nn u∞=∑收敛,则级数1nn u∞=∑收敛.即绝对收敛的级数一定收敛.[例1.4] 判断下列级数是否收敛?若收敛,指明是绝对收敛还是条件收敛 ⑴111(1)3n n n n ∞--=-∑ ⑵111(1)ln(1)n n n ∞-=-+∑ 解:⑴ 记11(1)3n n n nu --=- 因为 11131lim lim 133n n n n n nu n u n -+→∞→∞+=⨯=<所以级数1nn u∞=∑收敛,故原级数收敛且为绝对收敛;⑵ 记11(1)ln(1)n n u n -=-+由于1n u n >,而11n n ∞=∑发散,所以级数1n n u ∞=∑发散又1nn u∞=∑是一交错级数,10()ln(1)n u n n =→→∞+,且1n n u u +>,由莱布尼兹定理知,原级数收敛,故原级数条件收敛.●● 常考题型及其解法与技巧一、概念、性质的理解[例7.1.1] 已知11(1)2n n n a ∞-=-=∑,2115n n a ∞-==∑,则级数1n n a ∞=∑的和等于__________.解:由于11(1)2n n n a ∞-=-=∑,所以根据级数的性质可得 21212()n n n a a ∞-==-∑从而21212211352[()]n n n n n n aa a a ∞∞--===-=--=∑∑因此21211()538n n n n n a aa ∞∞-===+=+=∑∑.[例7.1.2] 设10n u n≤≤,则下列级数中肯定收敛的是 (A )1nn u∞=∑; (B )1(1)nnn u∞=-∑; (C )1n n u ∞=∑; (D )21(1)nnn u∞=-∑解:取11n u n =+,则10n u n ≤≤,此时(A )1n n u ∞=∑与(C )1n n u ∞=∑都发散;若取1(1)2n n u n +-=,则10n u n ≤≤,此时(B )111(1)2nn n n u n∞∞==-=∑∑发散;由排除法可得应选(D ).事实上,若10n u n ≤≤,则2210n u n≤≤,根据“比较判别法”得21nn u∞=∑收敛.从而21(1)nnn u∞=-∑收敛,故应选(D ).[例7.1.3] 已知级数2121()n n n uu ∞-=+∑发散,则(A )1nn u∞=∑一定收敛, (B )1nn u∞=∑一定发散(C )1nn u=∑不一定收敛 (D )lim 0n n u →∞≠解:假设1nn u∞=∑收敛,则根据级数敛散的性质,不改变各项的次序加括号后得到的新级数仍然收敛,即2121()n n n uu ∞-=+∑也收敛.这与已知矛盾,故1n n u ∞=∑一定发散.应选(B ).[例7.1.4] 设正项级数1n n u ∞=∑的部分和为n S ,又1n nv S =,已知级数1n n v ∞=∑收敛,则级数1nn u ∞=∑必(A )收敛 (B )发散 (C )敛散性不定 (D )可能收敛也可能发散 解:由于级数1n n v ∞=∑收敛,所以根据收敛的必要条件可得lim 0n n v →∞=,又1n nv S =,所以lim n n S →∞=∞,故级数1n n u ∞=∑发散,故应选(B ). [例7.1.5] 设有命题 (1) 若1nn a∞=∑收敛,则21nn a∞=∑收敛;(2)若1n n a ∞=∑为正项级数,且11(1,2,)n n a n a +<=L ,则1n n a ∞=∑收敛; (3)若存在极限lim 0nn nu l v →∞=≠,且1n n v ∞=∑收敛,则1n n u ∞=∑收敛; (4)若(1,2,3,)n n n w u v n <<=L ,又1nn v∞=∑与1nn w∞=∑都收敛,则1nn u∞=∑收敛.则上述命题中正确的个数为(A )1 (B )2 (C )3 (D )4解:关于命题(1),令(1)n n a n -=,则1n n a ∞=∑收敛,但21112n n n a n ∞∞===∑∑发散,所以不正确;关于命题(2),令1n a n =,则1n n a ∞=∑为正项级数,且11(1,2,)n n a n a +<=L ,但1n n a ∞=∑发散,所以不正确;关于命题(3),令1(1)(1),nnn n u v n nn --=+=,则在极限lim0n n n u l v →∞=≠,且1n n v ∞=∑收敛,但1nn u=∑发散,所以不正确;关于命题(4),因为(1,2,3,)n n n w u v n <<=L ,所以0n n n n u w v w <-<-,因为1nn v∞=∑与1nn w∞=∑都收敛,所以由“比较判别法”知1()nn n uw ∞=-∑收敛,故1n n u ∞=∑收敛.故应选(A ).二、正项级数敛散性的判定正项级数1nn u∞=∑判别敛散的思路:①首先考察lim n n u →∞(若不为零,则级数发散;若等于零,需进一步判定);②根据一般项的特点选择相应的判别法判定.评注:⑴ 若一般项中含有阶乘或者n 的乘积形式,通常选用比值判别法: ⑵ 若一般项中含有以n 为指数幂的因式,通常采用根值判别法:⑶ 若一般项中含有形如n α(α为实数)的因式,通常采用比较判别法.⑷ 如果以上方法还行不通时,则可考虑用敛散的定义判定. [例7.1.6] 判断下列级数的敛散性(1)21sin 2n n n π∞=∑ (2)1!2n n n n n∞=∑ (3)221(1)2n n n n n n ∞=+∑ (4)312ln n n n∞=∑(5)2111n n n∞=++∑(6)321(1)n nn n∞=+∑ 解:(1)用比值法.221122(1)sin(1)122limlim12sin22n n n n nn n n n n ππππ++→∞→∞++⋅==<⋅,所以原级数收敛. (2)用比值法.11(1)!22(1)lim2lim 1!2(1)n n n n n n n nn n n n n en ++→∞→∞++==<+, 所以原级数收敛. (3)用根值法.22(1)1(1)lim lim 1222n n nn nn n n n n e n n→∞→∞++==>,所以原级数发散. (4)用比较法.取541n v n =,因为14ln lim lim 0n n n nu n v n →∞→∞==,而5141n n ∞=∑收敛,所以原级数收敛.(5)用比较法.取1n v n =,因为2lim lim 11n n n nu n v n n →∞→∞==++,而11n n ∞=∑发散, 所以原级数发散. (6)由于32lim10(1)n nn n→∞=≠+,故由级数收敛的必要条件知原级数发散.评注:在考研题中遇到该类问题应①先看当n →∞时,级数的通项n u 是否趋向于零(如果不易看出,可跳过这一步),若不趋于零,则级数发散;若趋于零,则②再看级数是否为几何级数或p 级数,因为这两种级数的敛散性已知.如果不是几何级数或p 级数,则③用比值判别法进行判定,如果比值判别法失效,则④再用比较判别法进行判定.常用来做比较的级数主要有几何级数、p 级数等. [例7.1.7] 判断下列级数的敛散性(1)1(sin )n nn ππ∞=-∑ (2)111(ln(1))n n n ∞=-+∑ 分析:用比值判别法失效,用比较判别法不易找到用来作比较的级数,此时一般利用通项关于无穷小1n的阶判定正项级数的敛散性. 解:(1)考查 sin lim 1()n k nn nππ→∞-换成连续变量x ,再用罗必达法则,2110001()sin()cos()2lim lim lim k k k x x x x x x x x kx kx πππππππ+++--→→→--== 取3k =,上述极限值为316π.所以原级数与311n n ∞=∑同敛散,故原级数收敛.(2)考查 11ln(1)lim 1()n k nn n→∞-+ 换成连续变量x ,再用罗必达法则,1200011ln(1)11lim lim lim (1)k k k x x x x x x x kx kx x +++--→→→--++==+ 取2k =,上述极限值为12. 所以原级数与211n n ∞=∑同敛散,故原级数收敛. [例7.1.8] 研究下列级数的敛散性(1)1!n n n a n n∞=∑(0a >是常数); (2)1nn n αβ∞=∑,这里α为任意实数,β为非负实数.分析:此例中两个级数的通项都含有参数.一般说来,级数的敛散性与这些参数的取值有关.对这种情况通常由比值判别法进行讨论.解:(1)记!n n n a n u n=,由比值判别法可得111(1)!lim lim lim 1(1)!(1)n n n n n n n n n n u a n n a au n a n e n+++→∞→∞→∞+=⋅==++ 显然,当a e <时,级数收敛;当a e >时,级数发散;当a e =时,由于111(1)!11(1)!(1)n n n n n nn u e n n eu n e n n++++=⋅=>++,所以lim 0n n u →∞≠,故级数发散. (2)记nn u n αβ=,由比值判别法可得11(1)1lim lim lim()n n n n n n nu n n u n n αααββββ++→∞→∞→∞++==⋅= 显然,当01β≤<,α为任意实数时,级数收敛;当1β>时,α为任意实数时,级数发散;当1β=时,比值判别法失效.这时n u n α=,由p 级数的敛散性知,当1α<-时,级数收敛;当1α≥-时,级数发散. [例7.1.9] 判别下列级数的敛散性(1)14011n n xdx x ∞=+∑⎰(2)11n x n n e dx ∞+-=∑⎰ 分析:此例两个级数的通项都是由积分给出的正项级数.如果能把积分求出来,再判定其敛散性,这样做固然可以,但一般工作量较大.常用的方法是利用积分的性质对积分进行估值.估值要适当:若放大则不等式右端应是某收敛的正项级数的通项;若缩小,则不等式左端应是某发散的正项级数的通项. 解:(1)因为10x n <<时,411x x x n<<+,所以 132410()1n x dx x n<<+⎰由于级数3211()n n∞=∑收敛,所以原级数收敛.(2)因为函数xe-在区间[,1]n n +上单减,所以110n n x n n nne dx e dx e ++---<<=⎰⎰由于22limlim 01n n n n e n e n-→∞→∞==,又因为级数211n n∞=∑收敛,所以原级数收敛. 三、交错级数判定敛散判别交错级数1(1),(0)nnnn u u∞=->∑敛散性的方法:法一:利用莱布尼兹定理;法二:判定通项取绝对值所成的正项级数的敛散性,若收敛则原级数绝对收敛;法三:将通项拆成两项,若以此两项分别作通项的级数都收敛则原级数收敛;若一收敛另一发散,则原级数发散;法四:将级数并项,若并项后的级数发散,则原级数发散.评注:法二、法三和法四适应于{}n u 不单调减少或判定单调很困难的交错级数. [例7.1.10] 判定下列级数的敛散性 (1)111(1)ln n n n n ∞-=--∑ (2)2(1)(1)nnn n ∞=-+-∑ (3)11111112223334-+-+-+⨯⨯⨯L (4)2011sin 46(1)2n n n n n ∞-=-∑ 解:(1)该级数是交错级数,显然1lim0ln n n n→∞=-.令1()ln f x x x =-,则211()0,(1)(ln )x f x x x x -+'=<≥-,所以1ln n n ⎧⎫⎨⎬-⎩⎭单调减少. 由莱布尼兹判别法可知,原级数收敛.(2)不难得到数列1(1)n n ⎧⎫⎨⎬+-⎩⎭不单调.而(1)(1)((1))1(1)111(1)n n n nnn n n n n n --+-==-+---+-, 显然,级数211n n ∞=-∑发散; 又级数2(1)1nn nn ∞=--∑是交错级数,显然满足lim01n n n →∞=-, 令2(),(2)1x f x x x =≥-,则2221()0(1)x f x x --'=<-,所以1n n ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭单调减少,由莱布尼兹判别法可得,级数2(1)1nn nn ∞=--∑收敛. 故由级数敛散的性质可得,原级数发散. (3)不难得到{}n u 不单调,但有1111111(1)()()122233341n n ∞=-+-+-+=⨯⨯⨯+∑L即加括号后得到的新级数发散,利用级数的性质可知,原级数发散.(4)显然判定数列20sin 462n nn ⎧⎫⎨⎬⎩⎭的单调性很麻烦. 但 20sin 4622n nn n n ≤,而由比值判别法易得到级数12n n n ∞=∑收敛,所以级数201sin 462n n n n ∞=∑收敛.从而原级数收敛,且绝对收敛.四、判定任意项级数的敛散性对任意项级数1nn u∞=∑,主要研究它绝对收敛性和条件收敛性.解题的一般思路:①先看当n →∞时,级数的通项n u 是否趋向于零,若不趋于零,则级数发散;若趋于零,则②按正项级数敛散性的判别法,判定1nn u∞=∑是否收敛,若收敛,则级数1nn u∞=∑绝对收敛;若发散,则③若上述发散是由正项级数的比值判别法或根值判别法得到,则原级数发散;若是由比较判别法判定的,此时应利用交错级数莱布尼兹判别法或级数敛散的性质判定1nn u∞=∑是否收敛(若收敛则为条件收敛).[例7.1.11] 讨论下列级数的敛散性,若收敛,指出是条件收敛还是绝对收敛,说明理由(1)21sin,,n n n n αβπαβ∞=++∑为常数; (2)(1)1sin n n n x dx x ππ∞+=∑⎰; (3)111111111(0)12345678a a a a a a a a a a +-++-++-+≠++++++++L . 解:(1)2sinsin[()](1)sin()n n n n u n n n nαβββππαπαπ++==++=-+,由于当n 充分大时,sin()nβαπ+保持定号,所以级数从某项起以后为一交错级数.当α不是整数时,不论β取何值,总有lim lim sin()sin 0n n n u nβαπαπ→∞→∞=+=≠,故级数发散;当α是整数时,有(1)sin nn u nαβπ+=-,因而sin n u n βπ=,由于lim1nn u nβπ→∞= 所以利用比较判别法的极限形式可得,当0β≠时级数1nn u∞=∑发散,又因为sinn u nβπ=总是非增的趋于零,故由交错级数的“莱布尼兹判别法”知,级数1nn u∞=∑收敛,且为条件收敛;当0β=时,级数显然收敛,且绝对收敛.(2)由于(1)00sin (1)sin sin (1)n x n t n nnx t t dx dt dt x n tn t πππππππ=++-==-++⎰⎰⎰所以原级数为交错级数. 先判定级数(1)011sin sin n nn n xt dx dt x n t ππππ∞∞+===+∑∑⎰⎰的敛散性由于当0x π<<时,sin sin sin t t t n n t n ππππ≤≤++,所以 02sin 2t dt n n t n πππππ≤≤++⎰由于级数12n n ππ∞=+∑发散,所以级数(1)011sin sin n nn n xt dx dt x n t ππππ∞∞+===+∑∑⎰⎰发散.因为原级数为交错级数,且满足莱布尼兹判别法的条件,因此级数为条件收敛.(3)这是任意项级数.考虑每三项加一括号所成的级数1111()333231n a n a n a n ∞=+-+-+-+-∑22196(1)21(33)(32)(31)n n n a a a a n a n a n ∞=+-+--=+-+-+-∑此级数的通项是n 的有理式,且分子的次数仅比分母的次数低一次,用比较判别法知它是发散的,由级数的基本性质可得,原级数发散.五、关于数项级数敛散性的证明题证明某个未给出通项具体表达式的级数收敛或发散这类题,一般用级数收敛的定义、比较判别法或级数的基本性质. [例7.1.12] 证明:如果级数1nn a∞=∑与1nn b∞=∑收敛,且(1,2,)n n n a c b n ≤≤=L ,则级数1nn c∞=∑也收敛.证明:由n n n a c b ≤≤可得,0n n n n c a b a ≤-≤-; 由级数收敛的基本性质可得1()nn n ba ∞=-∑收敛,故由正项级数的比较判别法可得1()n n n c a ∞=-∑收敛.又由于11[()]n nn n n n c ca a ∞∞===-+∑∑,所以级数1n n c ∞=∑收敛.[例7.1.13] 设11112,()2n n na a a a +==+(1,2,)n =L ,证明 (Ⅰ)lim n n a →∞存在 ;(Ⅱ)级数11(1)nn n a a ∞=+-∑收敛. 证明:(Ⅰ)由于111()2n n n a a a +=+,所以根据均值不等式可得111()12n n na a a +=+≥ 故数列{}n a 有下界.又因为21111()()22n n n n n n na a a a a a a +=+≤+=,所以{}n a 单调不增,从而由单调有界准则可知,lim n n a →∞存在.(Ⅱ)由(Ⅰ)可知,101n n a a +≤-,所以级数11(1)n n n aa ∞=+-∑是正项级数. 又因为11111n n n n n n n a a a a a a a ++++--=≤-, 而正项级数11()nn n aa ∞+=-∑的前n 项和11111()lim nn kk n n n k S aa a a a a ++→∞==-=-→-∑所以正项级数11()nn n aa ∞+=-∑是收敛的,由比较判别法知,原级数收敛.[例7.1.14] 设()f x 在点0x =的某一邻域内有连续二阶导数,且0()lim0x f x x→=,证明级数 11()n f n∞=∑绝对收敛. 分析:已知条件中出现高阶导数,可考虑使用泰勒公式完成. 证明:由于()f x 在点0x =连续,且0()lim0x f x x→=,所以可得(0)0,(0)0f f '==. 将()f x 在点0x =展开成一阶泰勒公式,有 2211()(0)(0)()()2!2f x f f x f x f x ξξ'''''=++=. 由于()f x ''在点0x =的某一邻域内连续,故存在0M >,使得在0x =的某小邻域内()f x M ''≤,从而211()2M f n n≤⋅(当n 充分大时) 由比较判别法可知,级数11()n f n∞=∑绝对收敛. [例7.1.15] 若()f x 满足:⑴在区间[0,)+∞上单增;⑵lim ()x f x A →+∞=;⑶()f x ''存在,且()0f x ''≤.证明(Ⅰ)1[(1)()]n f n f n ∞=+-∑收敛 ;(Ⅱ)1()n f n ∞='∑收敛.证明:(Ⅰ)由于1[(1)()](1)(1)nn k S f k f k f n f ==+-=+-∑,所以lim lim (1)11n n n S f n A →∞→∞=+-=-,从而级数1[(1)()]n f n f n ∞=+-∑收敛.(Ⅱ)由于()f x ''存在,且()0f x ''≤,所以函数()f x '单调不增.又因为()f x 在区间[0,)+∞上单增,所以必有()0f x '≥,即级数1()n f n ∞='∑是正项级数.根据拉格朗日中值定理可得(1)()(),1n n f n f n f n n ξξ'+-=<<+,所以 (1)()()n f n f f n ξ'''+≤≤. 由(Ⅰ)可知1()nn f ξ∞='∑收敛,所以根据正项级数的比较判别法知,级数1(1)n f n ∞='+∑收敛,再根据级数收敛的性质可得级数1()n f n ∞='∑收敛.六、其它[例7.1.16] 设正项数列{}n a 单调减少,且1(1)nn n a ∞=-∑发散,判定级数11()1nn na ∞=+∑的敛散性. 解:正项数列{}n a 单调减少,由单调有界准则可得,lim n n a →∞存在,记为a (0a ≥).因为级数1(1)nn n a ∞=-∑是交错级数,若lim 0n n a →∞=,由莱布尼兹判别法可知,该级数收敛.但题设该级数发散,所以必定有0a >,于是 111lim ()lim 1111n n n n n na a a →∞→∞==<+++.由根值判别法知,级数11()1nn na ∞=+∑收敛.[例7.1.17] 讨论级数11111123421(2)x x x n n -+-++-+-L L 在哪些x 处收敛?在哪些x 处发散?解:⑴ 当1x =时,原级数为11111123456-+-+-+L ,这是交错级数,且满足“莱布尼兹判别法”的条件,故收敛;⑵ 当1x >时,2111111(1)(1)321223n x x x x S n n=+++-++++-L L 当n →∞时,111321n +++→+∞-L , 当n →∞时,1111(1)223x x x x n++++L 趋向定常数,故2lim n n S →∞发散,从而原级数发散;⑶ 当1x <时,211111111()()()2345(2)21n x x x S n n +=-------+L 由于1x <,所以上式中第一项以后的各项都为负的. 考察级数111[](2)21x n n n ∞=-+∑,由于 111lim[]/1(2)21(2)x xn n n n →∞-=+, 所以根据正项级数的“比较判别法”的极限形式知,级数111[](2)21x n n n ∞=-+∑发散. 从而21lim n n S +→∞=-∞,即原级数发散.综上所述,当1x =时,级数收敛;当1x ≠时,级数发散. [例7.1.18] 已知111,cos n n a a a +==,判定级数1n n a ∞=∑的敛散性.分析:该级数的通项以递推公式给出,这给级数类型的判定以及通项n a 是否收敛于零带来困难.不妨先假设级数通项0()n a n →→∞,再看由递推公式两端取极限时能否导出矛盾.一旦产生矛盾,便可确定级数发散.解:若lim 0n n a →∞=,则1lim limcos 1n n n n a a +→∞→∞==.这与假设矛盾.因此lim 0n n a →∞≠,原级数发散.[例7.1.19] 设a 为常数,1a ≠-,讨论级数111nn a∞=+∑的敛散性.解:由于存在na ,因此想到分1,1,1a a a <=>讨论.当1a <时,由于lim 0nn a →∞=,所以1lim101n n a →∞=≠+,级数发散;当1a =时,11n a +=12,所以11lim 012n n a →∞=≠+,级数发散; 当1a >时,由于111111111limlim lim 11111n n n n n n n n na a a a a a aa---++--→∞→∞→∞+++===<+++,所以级数111n n a ∞=+∑收敛,故级数111nn a ∞=+∑收敛且绝对收敛. [例7.1.20] 已知11a =,对于1,2,n =L ,设曲线21y x=上点21(,)n n a a 处的切线与x 轴交点的横坐标是1n a +(Ⅰ)求,2,3,n a n =L ;(Ⅱ)设n S 是以(,0)n a ,21(,)n n a a 和1(,0)n a +为顶点的三角形的面积,求级数1n n S ∞=∑的和解:(Ⅰ)曲线21y x =上点21(,)n n a a 处的切线方程为 2312()n n nY X a a a -=-- 从而13(1,2,)2n n a a n +==L ,从而11133()()22n n n a a --== (Ⅱ)由题意11221111112()()222443n n n n n n n n a S a a a a a -+=⨯⨯-=⨯⨯== 所以11112113()2434413n n n n S ∞∞-====⨯=-∑∑.§7.2 幂级数本节重点是求幂级数的收敛域、求幂级数的和函数、将函数展开成幂级数.● 常考知识点精讲一、函数项级数的概念1.函数项级数的定义定义:设函数()(1,2,3)n u x n =L 都在D 上有定义,则称表达式121()()()nn u x u x u x ∞==++∑L为定义在D 上的一个函数项级数,()n u x 称为通项,1()()n k k S x u x ∞==∑称为部分和函数.2.收敛域 定义:设1()nn ux ∞=∑是定义在D 上的一个函数项级数,0x D ∈,若数项级数01()n n u x ∞=∑收敛,则称0x 是1()nn ux ∞=∑的一个收敛点.所有收敛点构成的集合称为级数的收敛域.3.和函数 定义:设函数项级数1()nn ux ∞=∑的收敛域为I ,则任给x I ∈,存在唯一的实数()S x ,使得1()()n n S x u x ∞==∑成立.定义域为I 的函数()S x 称为级数1()n n u x ∞=∑的和函数.评注:求函数项级数收敛域时,主要利用收敛域的定义及有关的数项级数的判别法.二、幂级数1.幂级数的定义定义:设{}(0,1,2,)n a n =L 是一实数列,则称形如0()nnn a x x ∞=-∑的函数项级数为0x 处的幂级数.00x =时的幂级数为0n n n a x ∞=∑.2.阿贝尔定理 定理:对幂级数()nnn a x x ∞=-∑有如下的结论:⑴ 如果该幂级数在点1x 收敛,则对满足010x x x x -<-的一切的x 对应的级数()nnn a x x ∞=-∑都绝对收敛;⑵ 如果该幂级数在点2x 发散,则对满足020x x x x ->-的一切的x 对应的级数()nnn a x x ∞=-∑都发散.[例2.1] 若幂级数(2)nn n a x ∞=-∑在1x =-处收敛,问此级数在4x =处是否收敛,若收敛,是绝对收敛还是条件收敛? 解:由阿贝尔定理知,幂级数(2)nn n a x ∞=-∑在1x =-处收敛,则对一切适合不等式2123x -<--=(即15x -<<)的x 该级数都绝对收敛.故所给级数在4x =处收敛且绝对收敛.三、幂级数收敛半径、收敛区间如果幂级数()nnn a x x ∞=-∑不是仅在0x x =处收敛,也不是在整个数轴上收敛,则必定存在一个正数R ,它具有下述性质: ⑴ 当0x x R -<时,0()nnn a x x ∞=-∑绝对收敛;⑵ 当0x x R ->时,()nnn a x x ∞=-∑发散.如果幂级数()n n n a x x ∞=-∑仅在0x x =处收敛,定义0R =;如果幂级数()nnn a x x ∞=-∑在(,)-∞+∞内收敛,则定义R =+∞.则称上述R 为幂级数()nnn a x x ∞=-∑的收敛半径.称开区间00(,)x R x R -+为幂级数()nnn a x x ∞=-∑的收敛区间.四、幂级数收敛半径的求法求幂级数()nnn a x x ∞=-∑的收敛半径R法一:⑴ 求极限11000()()lim ()n n nn n a x x x x a x x ρ++→∞--=-⑵ 令00()1x x x x m ρ-<⇒-<则收敛半径为R m =;法二:若n a 满足0n a ≠,则1limnn n a R a →∞+=; 法三;⑴ 求极限00()lim ()nn n n x x a x x ρ→∞-=-⑵ 令00()1x x x x m ρ-<⇒-< 则收敛半径为R m =.[例2.2] 求下列幂级数的收敛域⑴12!nn n x n ∞=∑ ⑵1(5)n n x n ∞=-∑ ⑶221212n n n n x ∞-=-∑ 解:⑴ 收敛半径1112(1)!lim lim 2!1n n n n n n a n R a n +→∞→∞++==⨯=+∞,所以收敛域为(,)-∞+∞;⑵ 收敛半径11limlim 11n n n n a R n a n→∞→∞+==⨯+= 当51x -=-时,对应级数为1(1)nn n ∞=-∑这是收敛的交错级数,当51x -=时,对应级数为11n n∞=∑这是发散的P -级数, 于是该幂级数收敛域为[4,6);⑶ 由于22122212()lim 2(21)2nn n n n x n x x n x ρ+-→∞+=⨯=- 令()1x ρ<,可得2x <,所以收敛半径为2R =当2x =±时,对应的级数为1212n n ∞=-∑,此级数发散, 于是原幂级数的收敛域为(2,2)-.五、幂级数的性质设幂级数()nnn a x x ∞=-∑收敛半径为1R ;()nnn b x x ∞=-∑收敛半径为2R ,则1.000()()()()nnnnnn n n n n a x x b x x ab x x ∞∞∞===-±-=±-∑∑∑,收敛半径12min(,)R R R ≥; 2.00001[()][()]()()nnnn nn i n i n n n i a x x b x x a b x x ∞∞∞-====-⋅-=-∑∑∑∑,收敛半径12min(,)R R R ≥;3.幂级数()nnn a x x ∞=-∑的和函数()S x 在其收敛域I 上连续;4.幂级数在其收敛区间内可以逐项求导,且求导后所得到的幂级数的收敛半径仍为R .即有11()[()][()]()nnn nnnn n n S x a x x a x x na x x ∞∞∞-==='''=-=-=-∑∑∑.5.幂级数在其收敛区间内可以逐项积分,且积分后所得到的幂级数的收敛半径仍为R .即有1000001()[()][()]()1xxxnnn n n n x x x n n n S x dx a x x dx a x x dx a x x n ∞∞∞+====-=-=-+∑∑∑⎰⎰⎰[例2.3] 用逐项求导或逐项积分求下列幂级数在收敛区间内的和函数 ⑴11(11)n n nxx ∞-=-<<∑ ⑵411(11)41n n x x n +∞=-<<+∑解:⑴ 令11()(11)n n S x nxx ∞-==-<<∑,则111()()1xxn n n n x S x dx nxdx x x∞∞-=====-∑∑⎰⎰ 所以2211(),(11)(1)(1)x x S x x x x -+==-<<--;⑵ 令411()(11)41n n x S x x n +∞==-<<+∑,则 4144411()()411n nn n x x S x x n x +∞∞==''===+-∑∑ 所以4422001111()(1)12121xx x S x dx dx x x x==-+⋅+⋅-+-⎰⎰ 111ln arctan 412x x x x +=+--,(11)x -<<. 六、函数展开成幂级数1.函数展开成幂级数的定义定义:设函数()f x 在区间I 上有定义,0x I ∈,若存在幂级数()nnn a x x ∞=-∑,使得()(),nnn f x a x x x I ∞==-∀∈∑则称()f x 在区间I 上能展开成0x 处的幂级数. 2.展开形式的唯一性定理:若函数()f x 在区间I 上能展开成0x 处的幂级数 0()(),nnn f x a x x x I ∞==-∀∈∑则其展开式是唯一的,且()0()(0,1,2,)!n n f x a n n ==L .七、泰勒级数与麦克劳林级数1.泰勒级数与麦克劳林级数的定义定义:如果()f x 在0x 的某一邻域内具有任意阶导数,则称幂级数()()00000000()()()()()()()!1!!n n nn n f x f x f x x x f x x x x x n n ∞='-=+-++-+∑L L 为函数()f x 在0x 点的泰勒级数.当00x =时,称幂级数()()0(0)(0)(0)(0)!1!!n n n nn f f f x f x x n n ∞='=++++∑L L 为函数()f x 的麦克劳林级数. 2.函数展开成泰勒级数的充要条件定理:函数()f x 在0x I ∈处的泰勒级数在I 上收敛到()f x 的充分必要条件是:()f x 在0x 处的泰勒公式()000()()()()!k nk n k f x f x x x R x k ==-+∑的余项()n R x 在I 上收敛到零,即对任意的x I ∈,都有lim ()0n n R x →∞=.八、函数展开成幂级数的方法1.直接法利用泰勒级数的定义及泰勒级数收敛的充要条件,将函数在某个区间上直接展开成指定点的泰勒级数的方法. 2.间接法通过一定的运算将函数转化为其它函数,进而利用新函数的幂级数展开将原来的函数展开成幂级数的方法.所用的运算主要是四则运算、(逐项)积分、(逐项)求导、变量代换.利用的幂级数展开式是下列一些常用函数的麦克劳林展开公式.幂级数常用的七个展开式0,(,)!nxn x e x n ∞==∈-∞+∞∑210sin (1),(,)(21)!n nn x x x n +∞==-∈-∞+∞+∑20cos (1),(,)(2)!nnn x x x n ∞==-∈-∞+∞∑1ln(1)(1),111n nn x x x n +∞=+=--<≤+∑2(1)(1)(2)(1)(1)1,(1,1)2!!n n x x x x x n αααααααα----++=+++++∈-L L L1,(1,1)1n n x x x ∞==∈--∑1(1),(1,1)1n n n x x x ∞==-∈-+∑.●● 常考题型及其解法与技巧一、阿贝尔定理的应用[例7.2.1] 设幂级数nn n a x∞=∑的收敛半径为2,则幂级数1(3)nn n a x ∞=-∑在下列点处必收敛(A ){}2,3,4,e (B )12,1,0,e ⎧⎫--⎨⎬⎩⎭(C ){}1,5 (D ){}1,2,3,4,5,e解:由于nn n a x∞=∑与1(3)nn n a x ∞=-∑有相同的收敛半径,所以当32x -<的时候对应的级数1(3)nn n a x ∞=-∑都绝对收敛,显然集合{}2,3,4,e 中的点都满足不等式32x -<,故选(A )[例7.2.2] 如级数nn n a x∞=∑在2x =处收敛,问级数1()2nn n a x ∞=-∑在2x =-处敛散性怎样?解:由阿贝尔定理,对一切2x <的x 值,级数0nn n a x ∞=∑绝对收敛,从而级数01()2nnn a x ∞=-∑满足:对一切122x -<的x 值,级数01()2nn n a x ∞=-∑绝对收敛.现2x =-显然不满足122x -<,故级数01()2n n n a x ∞=-∑在2x =-处敛散性不确定.[例7.2.3] 设1(1)2nnn n a ∞=-∑收敛,则1n n a ∞=∑(A )条件收敛 (B )绝对收敛 (C )发散 (D )不定 解:考查幂级数1nn n a x∞=∑,由于1(1)2nnn n a ∞=-∑收敛,所以幂级数1n n n a x ∞=∑在2x =-点收敛,根据阿贝尔定理当2x <-时,对应的幂级数都绝对收敛,所以当1x =时,对应的幂级数绝对收敛,而此时对应级数为1nn a∞=∑.所以应选(B )[例7.2.4] 设幂级数1(1)nn n a x ∞=+∑在3x =处条件收敛,则该幂级数的收敛半径为_______.解:由于1(1)nn n a x ∞=+∑在3x =处条件收敛,由阿贝尔定理得,当14x +<时级数1(1)nn n a x ∞=+∑绝对收敛.所以收敛半径4R ≥;假设4R >.由收敛半径的定义知1x R +<时,对应的级数都绝对收敛,所以级数在3x =处应绝对收敛,矛盾.所以4R ≤. 因此收敛半径4R =.二、收敛半径、收敛区间、收敛域求幂级数收敛半径的方法我们在常考知识点中介绍过,如果幂级数中的幂次是按自然数顺序依次递增的,这时幂级数()nnn a x x ∞=-∑的收敛半径的计算公式1limnn n a R a →∞+=如果幂级数中的幂次不是按自然数顺序依次递增的(如缺少奇数次幂或缺偶次幂等),这时不能用上面的公式计算收敛半径,而必须使用正项级数的比值判别法或根值判别法(即常考知识点中介绍的法一与法三)求出幂级数的收敛半径. 设幂级数()nnn a x x ∞=-∑的收敛半径为R .为了求幂级数的收敛域还需判别在x =0x R -与0x x R =+处级数00()n n n a x x ∞=-∑的敛散性.[例7.2.5] 求下列幂级数的收敛半径和收敛域(1)1!()n n x e n n ∞=-∑ (2)2311n n n x n ∞=+∑ (3)2111(1)3(21)n n n n x n +∞-=-+∑ (4)21(21)n n x n n ∞=-∑ (5)14(1)1(1)[4(1)]!n n n xn -∞-=--∑ 解:(1)此级数x e -的幂次是按自然数顺序依次递增的,其收敛半径可直接按公式计算:11!(1)1lim lim lim(1)(1)!n n n n n n n n a n n R e a n n n +→∞→∞→∞++==⨯=+=+在2x e e e =+=处,级数成为1!()nn en n ∞=∑,由[例7.1.8]中的(1)可知该级数发散;在0x e e =-=处,级数成为1!()nn e n n∞=-∑,可判定发散. 故原级数的收敛域为(0,2)e .(2)此级数的收敛半径也可按公式计算:23321(1)1lim lim 11(1)n n n n a n n R a n n →∞→∞+++==⋅=++ 在1x =-处,级数成为231(1)1nn n n ∞=-+∑,这是交错级数,满足莱布尼兹定理的条件,故收敛;在1x =处,级数成为2311n n n ∞=+∑,由于23lim 111n n n n →∞⨯=+,而级数11n n ∞=∑发散,故级数2311n n n ∞=+∑发散.因此所给级数的收敛域为[1,1)-.(3)此级数缺少x 的偶次幂.故需利用比值判别法求收敛半径.2321121(1)3(21)1()lim 3(23)(1)3n n n n n n n x n x x n x ρ++-+→∞-+=⨯=+-令()1x ρ<可得,3x <,故收敛半径为3R =.在3x =-处,级数成为13(1)21nn n ∞=-+∑,这是交错级数,满足莱布尼兹定理的条件,故收敛; 在3x =处,级数成为113(1)21n n n ∞-=-+∑,这是交错级数,满足莱布尼兹定理的条件,故收敛.因此所给级数的收敛域为[3,3]-.(4)此级数缺少x 的奇次幂.故需利用比值判别法求收敛半径.2222(21)()lim (1)(21)n n n x n n x x n n xρ+→∞-=⋅=++ 令()1x ρ<可得,1x <,故收敛半径为1R =.在1x =-处,级数成为11(21)n n n ∞=-∑,该级数显然收敛; 在1x =处,级数成为11(21)n n n ∞=-∑,该级数收敛. 因此所给级数的收敛域为[1,1]-.(5)此级数中的x 的幂次不是按自然顺依次递增的.故需用比值判别法求收敛半径.4414(1)(1)[4(1)]!()lim 0(4)!(1)n n n n n x n x x n xρ--→∞--=⋅=⋅- 令()1x ρ<可得,(,)x ∈-∞+∞,故收敛半径为R =+∞. 于是幂级数的收敛域为(,)-∞+∞.[例7.2.6] 求幂级数21()(,0)n n nn a b x a b nn ∞=+>∑的收敛域.解:设幂级数1n n n a x n ∞=∑,21n nn b x n∞=∑的收敛半径分别为12,R R ,则11R a =,21R b =.因此幂级数的收敛半径为1211min(,)min(,)R R R a b==. (1) 若a b ≥,则1R a =.在1x a =-,级数为21111(1)(1)()n n n n n b n n a ∞∞==-+-∑∑收敛; 在1x a =,级数为21111()n n n b n na ∞∞==+∑∑发散,从而收敛域为11[,)a a -.(2)若a b <,则1R b=. 在1x b =-,级数为21111(1)()(1)n nn n n a n b n ∞∞==-+-∑∑收敛; 在1x b =,级数为21111()n n n a n b n∞∞==+∑∑收敛;,从而收敛域为11[,]b b -.[例7.2.7] 已知幂级数(3)nn n a x ∞=-∑在0x =处收敛,在6x =处发散,求其收敛域.解:由于幂级数级数(3)nnn a x ∞=-∑在0x =处收敛,由阿贝尔定理可得,当3033x -<-=时,对应的幂级数绝对收敛,所以收敛半径3R ≥;假设收敛半径3R >,由收敛半径的定义可知,3x R -<时,对应的级数都绝对收敛,而633R -=<,所以级数(3)nn n a x ∞=-∑在6x =处绝对收敛,与已知矛盾.故3R ≤.综上可得,收敛半径3R =. 又因为级数(3)nn n a x ∞=-∑在0x =处收敛,在6x =处发散,故收敛域为[0,6).三、函数项级数求收敛域函数项级数1()nn ux ∞=∑求收敛域的基本方法:⑴ 用正项级数比值判别法(或根值判别法)求1()()lim ()n n nu x x u x ρ+→∞=(或()lim ()n n n x u x ρ→∞=);⑵解不等式()1x ρ<,求出1()n n u x ∞=∑的收敛区间(,)αβ;⑶ 判定级数1()nn u α∞=∑与1()nn u β∞=∑的敛散性.评注:函数项级数1()nn ux ∞=∑求收敛域有时也利用变量代换化为幂级数,利用幂级数求收敛域的方法来完成,或者利用数项级数其它判别法、及性质完成.。

收敛域和收敛半径

收敛域和收敛半径

收敛域和收敛半径
收敛域指的是函数项无穷级数的收敛范围,这个范围是个区间,如果这个区间关于原点
对称,那么这个区间长度的一半就是收敛半径。

收敛半径r是一个非负的实数或无穷大(),使得在 | za| \uc r时幂级数收敛,在 | za| \ue r时幂级数发散.
收敛区间是个开区间,而收敛域就是判断在收敛区间的端点上是否收敛。

譬如说求出
一个级数的收敛半径为5那么此时收敛区间为(-5,5)而下一步求收敛域就带x=-5和x=5,分别看是否收敛。

如果幂级数的发散半径为r,则不管端点收敛性如何,轻易结论发散区间(-r,r)。


果进一步探讨,该级数在点-r或r处的收敛性,比如说在点-r发散,在点r不发散,则表
示该幂级数的发散域为[-r,r)。

比如在点-r,r处都收敛,则称该幂级数的收敛域为[-r,r],在点-r,r处都不收敛,则该幂级数的收敛域仍为(-r,r)。

简而言之,发散区间轻易根据发散半径而得,发散域就是探讨发散区间两端点收敛性
后的结论。

发散区间可能将同于发散域,可能将就是发散域的子集。

收敛半径公式

收敛半径公式

收敛半径公式
用第n+1项除以第n项,整个的绝对值,小于1,解出x(或x-a这决定
于你级数的展开)的绝对值小于的值就是收敛半径。

收敛域就是求使其收
敛的所有的点构成的区域。

1、收敛半径r是一个非负的实数或无穷大,使得在|z-a|<r时幂级
数收敛,在|z-a|>r时幂级数发散。

幂级数,是数学分析当中重要概念之一,是指在级数的每一项均为与级数项序号n相对应的以常数倍的(x-a)的n次方(n是从0开始计数的整数,a为常数)。

2、如果幂级数中的幂次是按自然数顺序依次递增的,即该级数是不
缺项的幂级数,可用两种方法即系数模比值法和系数模根值法求其收敛半
径R。

如果幂级数中的幂次不是按自然数的顺序依次递增的(比如缺奇次
幂或缺偶次幂等)必须直接使用比值审敛法。

3、因为函数项级数的收敛域其实就是由所有收敛点构成的,而对于
每个收敛点对应的函数项级数的收敛性的判定,其实对应的就是常值级数
收敛性的判定,所以函数项级数的收敛域的计算一般基于常值级数判定的
方法,常用的是基于取项的绝对值的比值审敛法与根值判别法。

无穷级数知识点汇总

无穷级数知识点汇总

无穷级数知识点汇总一、数项级数(一)数项级数的基本性质1.收敛的必要条件:收敛级数的一般项必趋于0.2.收敛的充要条件(柯西收敛原理):对任意给定的正数ε,总存在N 使得对于任何两个N 大于的正整数m 和n ,总有ε<-n m S S .(即部分和数列收敛)3.收敛级数具有线性性(即收敛级数进行线性运算得到的级数仍然收敛),而一个收敛级数和一个发散级数的和与差必发散.4.对收敛级数的项任意加括号所成级数仍然收敛,且其和不变.5.在一个数项级数内去掉或添上有限项不会影响敛散性. (二)数项级数的性质及敛散性判断 1.正项级数的敛散性判断方法(1)正项级数基本定理:如果正项级数的部分和数列有上界,则正项级数收敛. (2)比较判别法(放缩法):若两个正项级数∑∞=1n nu和∑∞=1n nv之间自某项以后成立着关系:存在常数0>c ,使),2,1( =≤n cv u n n ,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.推论:设两个正项级数∑∞=1n n u 和∑∞=1n n v ,且自某项以后有nn n n v v u u 11++≤,那么 (i )当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;(ii )当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.(3)比较判别法的极限形式(比阶法):给定两个正项级数∑∞=1n n u 和∑∞=1n n v ,若0lim >=∞→l v u nnn ,那么这两个级数敛散性相同.(注:可以利用无穷小阶的理论和等价无穷小的内容) 另外,若0=l ,则当级数∑∞=1n nv收敛时,级数∑∞=1n nu亦收敛;若∞=l ,则当级数∑∞=1n nu发散时,级数∑∞=1n nv亦发散.常用度量: ①等比级数:∑∞=0n nq,当1<q 时收敛,当1≥q 时发散;②p -级数:∑∞=11n p n ,当1>p 时收敛,当1≤p 时发散(1=p 时称调和级数); ③广义p -级数:()∑∞=2ln 1n pn n ,当1>p 时收敛,当1≤p 时发散.④交错p -级数:∑∞=--111)1(n pn n ,当1>p 时绝对收敛,当10≤<p 时条件收敛. (4)达朗贝尔判别法的极限形式(商值法):对于正项级数∑∞=1n n u ,当1lim1<=+∞→r u u nn n 时级数∑∞=1n n u 收敛;当1lim1>=+∞→r u u nn n 时级数∑∞=1n n u 发散;当1=r 或1=r 时需进一步判断. (5)柯西判别法的极限形式(根值法):对于正项级数∑∞=1n nu,设n n n u r ∞→=lim ,那么1<r 时此级数必为收敛,1>r 时发散,而当1=r 时需进一步判断. (6)柯西积分判别法:设∑∞=1n nu为正项级数,非负的连续函数)(x f 在区间),[+∞a 上单调下降,且自某项以后成立着关系:n n u u f =)(,则级数∑∞=1n n u 与积分⎰+∞)(dx x f 同敛散.2.任意项级数的理论与性质(1)绝对收敛与条件收敛:①绝对收敛级数必为收敛级数,反之不然; ②对于级数∑∞=1n nu,将它的所有正项保留而将负项换为0,组成一个正项级数∑∞=1n nv,其中2nn n u u v +=;将它的所有负项变号而将正项换为0,也组成一个正项级数∑∞=1n nw,其中2nn n u u w -=,那么若级数∑∞=1n nu绝对收敛,则级数∑∞=1n nv和∑∞=1n nw都收敛;若级数∑∞=1n nu条件收敛,则级数∑∞=1n nv和∑∞=1n nw都发散.③绝对收敛级数的更序级数(将其项重新排列后得到的级数)仍绝对收敛,且其和相同. ④若级数∑∞=1n nu和∑∞=1n nv都绝对收敛,它们的和分别为U 和V ,则它们各项之积按照任何方式排列所构成的级数也绝对收敛,且和为UV .特别地,在上述条件下,它们的柯西乘积⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=11n n n n v u 也绝对收敛,且和也为UV . 注:⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=∑∑∑∞=∞=∞=111n n n n n n v u c ,这里121121v u v u v u v u c n n n n n ++++=-- .(2)交错级数的敛散性判断(莱布尼兹判别法):若交错级数∑∞=--11)1(n n n u 满足0lim =∞→n n u ,且{}n u 单调减少(即1+≥n n u u ),则∑∞=--11)1(n n n u 收敛,其和不超过第一项,且余和的符号与第一项符号相同,余和的值不超过余和第一项的绝对值.二、函数项级数(一)幂级数1.幂级数的收敛半径、收敛区间和收敛域 (1)柯西-阿达马定理:幂级数∑∞=-00)(n n nx x a在R x x <-0内绝对收敛,在Rx x >-0内发散,其中R 为幂级数的收敛半径. (2)阿贝尔第一定理:若幂级数∑∞=-00)(n n nx x a在ξ=x 处收敛,则它必在00x x x -<-ξ内绝对收敛;又若∑∞=-00)(n n nx x a在ξ=x 处发散,则它必在00x x x ->-ξ也发散.推论1:若幂级数∑∞=0n n nx a在)0(≠=ξξx 处收敛,则它必在ξ<x 内绝对收敛;又若幂级数∑∞=0n n nx a在)0(≠=ξξx 处发散,则它必在ξ>x 时发散.推论2:若幂级数∑∞=-00)(n n nx x a在ξ=x 处条件收敛,则其收敛半径0x R -=ξ,若又有0>n a ,则可以确定此幂级数的收敛域.(3)收敛域的求法:令1)()(lim1<+∞→x a x a nn n 解出收敛区间再单独讨论端点处的敛散性,取并集.2.幂级数的运算性质(1)幂级数进行加减运算时,收敛域取交集,满足各项相加;进行乘法运算时,有:∑∑∑∑∞==-∞=∞=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛0000n n n i i n i n n n n n n x b a x b x a ,收敛域仍取交集. (2)幂级数的和函数)(x S 在收敛域内处处连续,且若幂级数∑∞=-00)(n nn x x a在R x x -=0处收敛,则)(x S 在[)R x R x +-00,内连续;又若幂级数∑∞=-00)(n n nx x a在R x x +=0处收敛,则)(x S 在(]R x R x +-00,内连续.(3)幂级数的和函数)(x S 在收敛域内可以逐项微分和逐项积分,收敛半径不变. 3.函数的幂级数展开以及幂级数的求和 (1)常用的幂级数展开:① +++++=nxx n x x e !1!2112∑∞==0!n n n x ,x ∈(-∞, +∞).②=11x -1+x +x 2+···+x n +··· =∑∞=0n n x ,x ∈(-1, 1). 从而,∑∞=-=+0)(11n nx x ,∑∞=-=+022)1(11n n n x x . ③∑∞=+++-=++-+-+-=0121253)!12()1()!12()1(!51!31sin n n nn n n x n x x x x x ,x ∈(-∞, +∞).④∑∞=-=+-+-+-=02242)!2()1()!2()1(!41!211cos n n n n n n x n x x x x ,x ∈(-∞, +∞). ⑤∑∞=-+-=++-+-+-=+11132)1(11)1(3121)1ln(n n n n n n x x n x x x x ,x ∈(-1, 1]. ⑥ ++--++-++=+n x n n x x x !)1()1(!2)1(1)1(2ααααααα,x ∈(-1, 1).⑦1202123)12()!(4)!2(12!)!2(!)!12(321arcsin +∞=+∑+=++-+++=n n n n x n n n n x n n x x x ,x ∈[-1, 1]. ⑧120123121)1(121)1(31arctan +∞=++-=++-++-=∑n n n n n x n x n x x x ,x ∈[-1, 1].(2)常用的求和经验规律:①级数符号里的部分x 可以提到级数外;②系数中常数的幂中若含有n ,可以与x 的幂合并,如将n c 和n x 合并为ncx )(; ③对∑∞=0n nnx a求导可消去n a 分母因式里的n ,对∑∞=0n n n x a 积分可消去n a 分子因式里的1+n ;④系数分母含!n 可考虑x e 的展开,含)!2(n 或)!12(+n 等可考虑正余弦函数的展开; ⑤有些和函数满足特定的微分方程,可以考虑通过求导发现这个微分方程并求解. (二)傅里叶级数1.狄利克雷收敛定理(本定理为套话,不需真正验证,条件在命题人手下必然成立) 若)(x f 以l 2为周期,且在[-l , l ]上满足: ①连续或只有有限个第一类间断点; ②只有有限个极值点;则)(x f 诱导出的傅里叶级数在[-l , l ]上处处收敛. 2. 傅里叶级数)(x S 与)(x f 的关系:⎪⎪⎪⎩⎪⎪⎪⎨⎧-++--++=.2)0()0(2)0()0()()(为边界点,为间断点;,为连续点;,x l f l f x x f x f x x f x S3.以l 2为周期的函数的傅里叶展开展开:∑∞=⎪⎪⎭⎫⎝⎛++=10sin cos 2)(~)(n n n l x n b l x n a a x S x f ππ(1)在[-l , l ]上展开:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰⎰---l ln l l n l l dx l x n x f l b dx l x n x f l a dx x f l a ππsin )(1cos )(1)(10;(2)正弦级数与余弦级数:①奇函数(或在非对称区间上作奇延拓)展开成正弦级数:⎪⎪⎩⎪⎪⎨⎧===⎰l n n dxl x n x f l b a a 00sin )(200π;②偶函数(或在非对称区间上作偶延拓)展开成余弦级数:⎪⎪⎪⎩⎪⎪⎪⎨⎧===⎰⎰0cos )(2)(2000n l n l b dx l x n x f l a dx x f l a π;4.一些在展开时常用的积分: (1);0cos ;1)1(sin 010=+-=⎰⎰+ππnxdx nnxdx n(2)2sin 1cos ;1sin 2020πππn n nxdx n nxdx ==⎰⎰;(3)2022010)1(2cos 1)1(cos ;)1(sin n nxdx x n nxdx x n nxdx x n n n -=--=-=⎰⎰⎰+πππππ;; (4)C nx n nx a e n a nxdx e axax +-+=⎰)cos sin (1sin 22; C nx a nx n e na nxdx e ax ax +++=⎰)cos sin (1cos 22; (5)C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21sin sin ;C x n a n a x n a n a nxdx ax +--+++-=⎰)sin()(21)sin()(21cos cos .注:①求多项式与三角函数乘积的积分时可采用列表法,注意代入端点后可能有些项为0; ②展开时求积分要特别注意函数的奇偶性及区间端点和间断点的特殊性; ③对于π≠l 的情形,事先令x lt π=对求积分通常是有帮助的.。

收敛半径的定义

收敛半径的定义

收敛半径的定义1. 什么是收敛半径?在数学中,收敛半径是指幂级数在其收敛范围内的半径。

幂级数是形如∑(an * x^n)的无穷级数,其中an 是系数,x 是变量。

收敛半径表示幂级数在哪个范围内收敛。

2. 幂级数的收敛范围幂级数的收敛范围取决于收敛半径。

对于给定的幂级数,可以使用收敛半径来确定幂级数在哪个范围内收敛。

如果变量x 的绝对值小于收敛半径,则幂级数绝对收敛。

反之,如果变量x 的绝对值大于收敛半径,则幂级数发散。

当变量x 的绝对值等于收敛半径时,幂级数可能收敛也可能发散,需要通过其他方法来判断。

例如,对于幂级数∑(an * x^n),如果收敛半径为R ,则当|x| < R 时,幂级数绝对收敛。

当|x| > R 时,幂级数发散。

3. 收敛半径的计算方法为了计算幂级数的收敛半径,可以使用根值测试(root test )或比值测试(ratio test )。

3.1 根值测试根值测试是通过计算幂级数中每一项的n 次方根的极限来确定收敛半径。

假设有幂级数∑(an * x^n),首先计算an * x^n 的n 次方根的极限:L =lim n→∞√|an ∗x n |n如果L 存在且有限,则收敛半径R =1L 。

如果L 为0,说明幂级数只有一项,即常数项,收敛半径为无穷。

如果L 为正无穷,说明幂级数发散。

3.2 比值测试比值测试是通过计算幂级数中相邻两项的比值的极限来确定收敛半径。

假设有幂级数∑(an * x^n),首先计算比值的极限:L =lim n→∞|a n+1∗x (n+1)an ∗x n| 如果L 存在且有限,则收敛半径R =1L 。

如果L 为0,说明幂级数只有一项,即常数项,收敛半径为无穷。

如果L 为正无穷,说明幂级数发散。

3.3 例子我们以幂级数∑(1/n * x^n)为例来计算收敛半径。

使用根值测试,我们计算:L =lim n→∞√|1n ∗x n |n=lim ||√n n 由于lim n→∞√n n =1,当|x |<1时,L 存在且有限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s ( x ) u 1 ( x ) u 2 ( x ) u n ( x ) (定义域是?)
函数项级数的部分和 sn ( x), ln i m sn(x)s(x) 余项 r n (x ) s (x ) s n (x ) ln i m rn(x)0
(x在收敛域上)
4. 标准幂级数收敛半径、收敛域的求法

定理2 如 果 幂 级 数anxn的 所 有 系 数 an0,
n0
设 li a n m 1 n a n
则 (1) 当0时,R1;
(2) 当0时,R ;
( 3 ) 当 时 , R 0 .
证 (1)若liman1 (0)
幂级数的收敛域包括幂级数的收敛区间及端点情况.
(R,R),[R,R), (R,R], [R,R]. 规定 (1 )幂 级 数 只 在 x 0 处 收 敛 ,R0,
收 敛 域 为 {0 };
(2)幂 级 数 对 一 切 x都 收 敛 ,R, 收 敛 域 (, ) .
问题 如何求幂级数的收敛半径?
n 0
当 x x 0 1 即 x x 01 时 , a n (x x 0 )n 发 ; 散 n 0
再讨 xx 论 01时 ,n 0an(xx0)n的敛散性.
一般幂级数收敛域的求法习例
例 3 求n1(x2n1n)n的收敛.域
例 4
当 x1时 ,n l i m sn(x)不存 . 在
xn收敛11于 x,
当x1时 .
n0 发散 ,
当x1时
2. 阿贝尔(Abel)定理

(1)如果级数 anxn在xx0(x00)处收敛,则
n0
它在满足不等式xx0的一切 x 处绝对收敛;

(2)如果级数 anxn在xx0处发散,则它在满
x n
n 2
解 n l i m aa nn 1n l i m (nn 2 1)21,
收敛半 R径 1.
当x1时,原幂级数 n 1成 n12, 为 收敛. 当x1时,原幂级数 n 1(n 成 12)n,为 绝对收敛.
收敛域 [1,1为 ].

(2)
3
n1 6
当 收 x 敛 1 3时 域 (, 原 1,为 1)幂 . 级 n 1[6 1 数 ()n(成 1)n]为 ,发散.
33

(3) ( n x ) n
n 1

liman1
n an
nl im (nn1n)n1
lim (n1)1(1)n ,
方法 1.

(1)令 xx0y,得 anyn;
n0
(2)由标准幂级数收敛域的求法可得:
yR ,同时 y 讨 R 的 论 情 ; 况
(3 )再 y x 由 x 0 ,求 x 满 得 足 ,即 的 x 的 为 不 .区
方法 2. (用比值法讨论)
(1 )计n l 算 i m a n a n 1( (x x x x 0 0) )n n 1xx 0, (2 )当 xx 01 即 xx 01时 , a n (xx 0)n 绝对 ;
n1

函 数 项 级 数 un(x)的 所 有 收 敛 点 的 全 体 称 为 收 敛 域 , n1
所 有 发 散 点 的 全 体 称 为 发 散 域 .
3.和函数
在 收 敛 域 上 ,函 数 项 级 数 的 和 是 x的 函 数 s(x),
称 s(x)为 函 数 项 级 数 的 和 函 数 .

(2)若liman1 0,
n an
则 lim un1lim an1xx0<1
n un n an

对一x切 , anxn绝对收 . 敛 R.
n0
(3)若liman1 ,
n an
则 liu m n 1lia m n 1x( x0 )

求幂级数
x 2n1 的收敛域
n1 2n
.
例3
解 方 法 一
令 求xn11(x2yn,1n得 )n的 n 02收 ynnn,敛.域
n l i m a a n n 1n l i m 2n1 2 (n n n 1)1 2, R2.
当y2时,可得 1发散 ,
注意: (1) 函数项级数在某点x的收敛问题,实质上是数 项级数的收敛问题.

(2)un(x)的和函数的定 函义 数域 项的是 级 收敛该 数 域.
n1

例如, 等比级数 xn1xx2xn
n0
它的收敛域是 (1,1),当 x(1,1)时 ,有和函数
xn
1
n0
标准幂级数收敛域的求法习例1
注解 演练例题 内容小结与思考
一般幂级数收敛域的求法 一般幂级数收敛域的求法习例2-3
一、函数项级数
1.定义
设u1(x),u2(x), ,un(x), 是定义在I R 上的

函数,则 un(x) u1(x) u2(x) un(x)
n1
高等数学 A
4第.3 4幂章级数 无穷级 4.3.1 函数项级数
4.3.2 幂级数及其收敛半径
数 中南大学开放式精品示范课堂高等数学建设组
4.3 幂级数
函数项级数的定义
4.3.1函数项级数 收敛点与收敛域
和函数
幂级数的定义

阿贝尔(Abel)定理

收敛半径与收敛域
数 4.3.2 幂级数及其收敛性 标准幂级数收敛半径的求法
n0
n0
可令 x2 y或用比值法 . 讨论
(2)求n0xann的收敛域时 ,
可令1 y或用比值法讨.论 x
(3)求一般函数项级数的收敛域时, 可直接用比值法讨论.
例 4

求幂级数
x 2n1 的收敛域
n1 2n
.
解 级数 2 x为 2 x2 32 x3 5 缺少偶次幂的项
n1n
当 y2时 ,可得 (1)n收.敛
n1 n
2y2 ,从 2 而 x 1 2 1 x 3
收敛域 [1,为 3).
方 由比值法得, 法 二 n l i u m u n n 1 n l i 2 m (n x 1 (1 n ) n 1 1 )(x 2 n 1 n )nx 2 1,
n 0
( 1 )

a n ( x x 0 ) n a 0 a 1 ( x x 0 ) L a n ( x x 0 ) n L( 2 )
n 0
令 Xxx0,则可 (2)化 将 (1为 )的标准形式


an(xx0)n anXn
n0
n0
1 x
它的发散域是 (, 1 ]及 [1 , ) ,或写作 x 1.
又如, 级数
xnxn
n0 n2
(x0),当x 1时收,敛
但0 当 x1时 ,nl i m un(x),级数发散 ;
所以级数的收敛域仅为 x 1.
二、幂级数及其收敛性
1.定义 形如

an(xx0)na0a1(xx0)an(xx0)n
n0
的函数项级数 数的 称一 为.般 幂形 级式
形如

anxn a0 a1x anxn
n0
的函数项级数称为数幂的级标准形. 式

a n x n a 0 a 1 x L a n x n L
n
n
R=0,
级数只在 x 0处收敛.
( 4 ) x n n1 n !

liman1 lim 1 0,
n an
n n 1
R ,
收敛域(,).
5. 一般幂级数收敛域的求法

对于 an(xx0)n有两种方法求其 . 收敛域
n0
敛域 [R,R]或[R,R)或(R,R]或(R,R).
标准幂级数收敛域的求法习例
例 2 求下列幂级数的收敛半径和收敛域

( 1)
n 1
x n
n 2

(3) ( n x ) n n 1

(2)
n1
(1)n 6n 2n
xn
x n
(4) n1 n !

( 1)
n 1
注意: Abel定理对标准幂级数给出.

问 :在 a n (x 2 )n 处 x 1 收 ,在 x 敛 4 处 ?
n 0
几何说明
收敛区域
o
• • •• • • ••• • •
发散区域 R
R 发散区域 x
推论

如果幂级数 anxn不是仅在x0一点收敛,也
n0
不是在整个数轴上都收敛,则必有一个完全确定
等比级 数 Mx
n
收敛 ,
n0 x0


anxn收敛, 即级 数 anxn绝收 对敛 ;
n0
n0
( 2 ) 反 设 有 一 点 x 1 适 合 x 1 x 0使 级 数 收 敛 ,
由结论(1), 则 级 数 当 x x 0 时 应 收 敛 ,
与" 已 xx 0 时 知" 发 相散 .矛盾
n0
足不等式xx0的一切 x 处发散.


(1) anx0n收敛 , ln i m anx0n0,
n0
M, 使 a n x 得 0 n M (n 0 ,1 ,2 , )
anxn
anx0n
xn x0n

an x0n

x x0
n

M
xn x0
当 x 1时, x0
注1 因经变换后, 幂级数(1)与(2)可相互转化, 故下面
相关文档
最新文档