2018济南中考数学试卷分析
2018济南中考数学试卷分析
2018济南中考试卷分析一、选择题:(本题共12 小题,每小题4分,共48分)1、考点:有理数的乘法。
专题:计算题。
考纲要求:本题考查了有理数的乘法,2、考点:简单几何体的三视图。
考纲要求:本题考查了三视图的知识3、考点:科学记数法—表示较大的数。
考纲要求:此题主要考查了科学记数法的表示方法.科ax ion的形式,其中1w|a| v 10, n为整数,表示时关键要正确确a的值以及n的值.4、考点:轴对称和中心对称图形。
专题:几何题。
考纲要求:了解轴对称和中心对称的基本性质,会找对称轴和对称中心5、考点:相交线与平行线。
考纲要求:理解对顶角、余角、补角等概念,理解平行线的概念和平行线的性质以及证明方法。
6、考点:整式的混合运算;考纲要求:了解整式的性质,掌握合并同类型和去括号的运算,能推导乘法公式,并利用公式进行计算7、考点:一元一次方程与不等式。
考纲要求:此题考查了解一元一次方程的能力,能解一元一次不等式,并求出解集范围8、考点:反比例函数。
考纲要求:本题主要考查了反比例函数变量之间的关系9、考点:平面直角坐标系。
考纲要求:本题考查了平面直角坐标系中,一个图形的顶点坐标沿两个坐标轴方向平移后图形的顶点坐标,并指导对应顶点坐标之间的关系。
1 0、考点:频数分布直方图。
考纲要求:考察了实用频数分布直方图解释数据中蕴含信息的能力11、考点:圆、扇形和三角形的面积。
考纲要求:此题考查了圆形和扇形的面积公式,也考察了轴对称的相关知识点12、考点:二次函数综合。
考纲要求:本题主要考察了二次函数对称轴、最大值和最小值、顶点坐标,说出图像开口方向,画出图像的对称轴和图像与坐标轴交点。
二、填空题(本大题共6小题,每小题4 分,共24分)1 3、考点:分解因式。
考纲要求:本题主要考查了因式分解计算,要求学生能用提公因式法、公式法进行因式分解14、考点:概率计算:考纲要求:本题主要考查了根据已知条件运用列表法、画树状图列出简单随机事件所有可能结果,以及指定事件发生的所有可能的结果,了解事件的概率。
2018济南中考数学解答题详细解析
提示:我们判断四边形ADMQ是平行四 边形首先证明两条对边平行, 用到平行线的判定定理。
式y=1 ������2 − 3x + 4 得D(6,4)。
2
∴DH=4,AH=OH-OA=6-2=4
y
C
MD
P E
Q OA
┌┐ BG H
x
N
(3)如上图所示,过点A,P的直线 与y轴交于点N,过点P作PM⊥CD垂足 为点M,直线MN与x轴交于点Q,试判 断四边形ADMQ的形状,并说明理由。
求tan ∠ACB的值;
首先过点A作AE⊥BC垂足为E如图所示
∵0A=2;0B=4 ∴AB=2
∵点C在y轴的抛物线上,设点C(0,y)
带入抛物线表达式
y=1 ������2 − 3x + 4 得 y=4
2
∴C(0,4)即 0C=4
∵OB=4,OC=4
∴△COA是等腰直角三角形
∴BC=4 2 ∵∠CBA=45。;∠AEB=90。
解:∵点A(2,0),B(4,0)带入
x
抛物线 Y=a������2+bx+4得
a=1
2
b=-3
∴抛物线的表达式为:
y=1
2
������2
−
3x
+
4
y
C
D
E
OA
B
x
(1)求抛物线的表达式和 ∠ACB的正切值
提示:第二问考点是首先要知道
正切的公式tan∠������������������
=
对边 临边
解:如图(2),过点P 作PF⊥CD垂足为F
已知点P的横坐标为m,且点P在抛物线上,
根据表达式y=1 ������2 − 3x + 4 ,将m带入得
2018年山东省济南市中考数学试题(答案)(最新整理)
接 EF 交 BD 于点 O.
求证:OB=OD.
证明:∵□ABCD 中,
∴AD=BC,AD∥BC.
∴∠ADB=∠CBD.
又∵AE=CF,
∴AE+AD=CF+BC.
∴ED=FB.
又∵∠EOD=∠FOB,
∴△EOD≌△FOB.
∴OB=OD.
22.(2018 济南,22,8 分)
本学期学校开展以“感受中华传统买德”为主题的研学部动,组织 150 名学生多观历史好物馆
精心整理
山东省济南市 2018 年学业水平考试数学试题
一、选择题(本大题共 12 小题,每小题 4 分,共 48 分) 1.(2018 济南,1,4 分)4 的算术平方根是() A.2B.-2C.±2D. 【答案】A 2.(2018 济南,2,4 分)如图所示的几何体,它的俯视图是() A.B.C.D. 【答案】D 3.(2018 济南,3,4 分)2018 年 1 月,“墨子号”量子卫星实现了距离达 7600 千米的洲际量子
二、填空题(本大题共 6 小题,每小题 4 分,共 24 分)
精心整理 13.(2018 济南,13,4 分)分解因式:m2-4=____________; 【答案】(m+2)(m-2) 14.(2018 济南,14,4 分)在不透明的盒子中装有 5 个黑色棋子和若于个白色做子,每个棋子除
颜色外都相同,任意摸出一个棋子,摸到黑包棋子的概率是,则白色棋子的个数是= ____________; 【答案】15 15.(2018 济南,15,4 分)一个正多边形的每个内角等于 108°,则它的边数是=____________; 【答案】5 16.(2018 济南,16,4 分)若代数式的值是 2,则 x=____________; 【答案】6 17.(2018 济南,17,4 分)A、B 两地相距 20km,甲乙两人沿同一条路线从 A 地到 B 地.甲先出发, 匀速行驶,甲出发 1 小时后乙再出发,乙以 2km/h 的速度度匀速行驶 1 小时后提高速度并继续 匀速行驶,结果比甲提前到达.甲、乙两人离开 A 地的距离 s(km)与时间 t(h)的关系如图 所示,则甲出发____________小时后和乙相遇. 【答案】. 【解析】y 甲=4t(0≤t≤4);y 乙=; 由方程组解得Error!. ∴答案为. 18.(2018 济南,18,4 分)如图,矩形 EFGH 的四个顶点分别在矩形 ABCD 的各条边上,AB=EF,FG=2, GC=3.有以下四个结论:①∠BGF=∠CHG;②△BFG≌△DHE;③tan∠BFG=;④矩形 EFGH 的 面积是 4.其中一定成立的是____________.(把所有正确结论的序号填在横线上) 【答案】①②④. 【解析】设 EH=AB=a,则 CD=GH=a. ∵∠FGH=90°,∴∠BGF+∠CGH=90°. 又∵∠CGH+∠CHG=90°, ∴∠BGF=∠CHG…………………………………故①正确. 同理可得∠DEH=∠CHG. ∴∠BGF=∠DEH. 又∵∠B=∠D=90°,FG=EH, ∴△BFG≌△DHE…………………………………故②正确. 同理可得△AFE≌△CHG.∴AF=CH. 易得△BFG∽△CGH.∴=.∴=.∴BF=. ∴AF=AB-BF=a-.∴CH=AF=a-. 在 Rt△CGH 中,∵CG2+CH2=GH2, ∴32+(a-)2=a2.解得 a=2.∴GH=2.∴BF=a-=. 在 Rt△BFG 中,∵cos∠BFG==Error!,∴∠BFG=30°. ∴tan∠BFG=tan30°=Error!.…………………………………故③正确. 矩形 EFGH 的面积=FG×GH=2×2=4…………………………………故④正确. 三、解答题(本大题共 9 小题,共 78 分) 19.(2018 济南,19,6 分) 计算:2-1+│-5│-sin30°+(π-1)0. 解:2-1+│-5│-sin30°+(π-1)0. =+5-+1
2018年山东省济南市中考数学试卷含解析(完美打印版)
2018年山东省济南市中考数学试卷(含解析)一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)4的算术平方根是()A.2B.﹣2C.±2D.2.(4分)如图所示的几何体,它的俯视图是()A.B.C.D.3.(4分)2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A.0.76×104B.7.6×103C.7.6×104D.76×1024.(4分)“瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(4分)如图,AF是∠BAC的平分线,DF∥AC,若∠1=35°,则∠BAF的度数为()A.17.5°B.35°C.55°D.70°6.(4分)下列运算正确的是()A.a2+2a=3a3B.(﹣2a3)2=4a5C.(a+2)(a﹣1)=a2+a﹣2D.(a+b)2=a2+b27.(4分)关于x的方程3x﹣2m=1的解为正数,则m的取值范围是()A.m<﹣B.m>﹣C.m>D.m<8.(4分)在反比例函数y=﹣图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<0<x2<x3,则下列结论正确的是()A.y3<y2<y1B.y1<y3<y2C.y2<y3<y1D.y3<y1<y29.(4分)如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将△ABC绕点P顺时针方向旋转90°,得到△A′B′C′,则点P的坐标为()A.(0,4)B.(1,1)C.(1,2)D.(2,1)10.(4分)下面的统计图大致反应了我国2012年至2017年人均阅读量的情况.根据统计图提供的信息,下列推断不合理的是()A.与2016年相比,2017年我国电子书人均阅读量有所降低B.2012年至2017年,我国纸质书的人均阅读量的中位数是4.57C.从2014年到2017年,我国纸质书的人均阅读量逐年增长D.2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多11.(4分)如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.6π﹣B.6π﹣9C.12π﹣D.12.(4分)若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P(1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m﹣2(m>0)与x轴交于点A、B两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是()A.≤m<1B.<m≤1C.1<m≤2D.1<m<2二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)分解因式:m2﹣4=.14.(4分)在不透明的盒子中装有5个黑色棋子和若干个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数是.15.(4分)一个正多边形的每个内角等于108°,则它的边数是.16.(4分)若代数式的值是2,则x=.17.(4分)A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离y(km)与时间t(h)的关系如图所示,则甲出发小时后和乙相遇.18.(4分)如图,矩形EFGH的四个顶点分别在矩形ABCD的各条边上,AB=EF,FG=2,GC=3.有以下四个结论:①∠BGF=∠CHG;②△BFG≌△DHE;③tan∠BFG=;④矩形EFGH的面积是4.其中一定成立的是.(把所有正确结论的序号填在横线上)三、解答题(本大题共9小题,共78分)19.(6分)计算:2﹣1+|﹣5|﹣sin30°+(π﹣1)0.20.(6分)解不等式组:21.(6分)如图,在▱ABCD中,连接BD,E是DA延长线上的点,F是BC延长线上的点,且AE=CF,连接EF交BD于点O.求证:OB=OD.22.(8分)本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?23.(8分)如图AB是⊙O的直径,P A与⊙O相切于点A,BP与⊙O相交于点D,C为⊙O上的一点,分别连接CB、CD,∠BCD=60°.(1)求∠ABD的度数;(2)若AB=6,求PD的长度.24.(10分)某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表.请您根据图表中提供的信息回答下列问题:(1)统计表中的a=,b=;(2)“D”对应扇形的圆心角为度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.25.(10分)如图,直线y=ax+2与x轴交于点A(1,0),与y轴交于点B(0,b).将线段AB先向右平移1个单位长度、再向上平移t(t>0)个单位长度,得到对应线段CD,反比例函数y=(x>0)的图象恰好经过C、D两点,连接AC、BD.(1)求a和b的值;(2)求反比例函数的表达式及四边形ABDC的面积;(3)点N在x轴正半轴上,点M是反比例函数y=(x>0)的图象上的一个点,若△CMN是以CM为直角边的等腰直角三角形时,求所有满足条件的点M的坐标.26.(12分)在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,直接写出∠ADE的度数;(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB=6,求CF的最大值.27.(12分)如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC.点P是该抛物线上一动点,设点P的横坐标为m (m>4).(1)求该抛物线的表达式和∠ACB的正切值;(2)如图2,若∠ACP=45°,求m的值;(3)如图3,过点A、P的直线与y轴于点N,过点P作PM⊥CD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由.2018年山东省济南市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)4的算术平方根是()A.2B.﹣2C.±2D.【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:A.2.(4分)如图所示的几何体,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:从几何体上面看,2排,上面3个,下面1个,左边2个正方形.故选:D.3.(4分)2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A.0.76×104B.7.6×103C.7.6×104D.76×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:7600=7.6×103,故选:B.4.(4分)“瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,也不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,是中心对称图形.故选:D.5.(4分)如图,AF是∠BAC的平分线,DF∥AC,若∠1=35°,则∠BAF的度数为()A.17.5°B.35°C.55°D.70°【分析】根据两直线平行,同位角相等,可得∠F AC=∠1,再根据角平分线的定义可得∠BAF=∠F AC.【解答】解:∵DF∥AC,∴∠F AC=∠1=35°,∵AF是∠BAC的平分线,∴∠BAF=∠F AC=35°,故选:B.6.(4分)下列运算正确的是()A.a2+2a=3a3B.(﹣2a3)2=4a5C.(a+2)(a﹣1)=a2+a﹣2D.(a+b)2=a2+b2【分析】根据多项式的乘法法则、幂的乘方与积的乘方、完全平方公式、合并同类项法则一一判断即可;【解答】解:A、错误.不是同类项不能合并;B、错误.应该是(﹣2a3)2=4a6;C、正确;D、错误.应该是(a+b)2=a2+2ab+b2;故选:C.7.(4分)关于x的方程3x﹣2m=1的解为正数,则m的取值范围是()A.m<﹣B.m>﹣C.m>D.m<【分析】先求出方程的解,再根据题意得出不等式,求出不等式的解集即可.【解答】解:解方程3x﹣2m=1得:x=,∵关于x的方程3x﹣2m=1的解为正数,∴>0,解得:m>﹣,故选:B.8.(4分)在反比例函数y=﹣图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<0<x2<x3,则下列结论正确的是()A.y3<y2<y1B.y1<y3<y2C.y2<y3<y1D.y3<y1<y2【分析】根据反比例函数图象上点的坐标特征解答.【解答】解:∵A(x1,y1)在反比例函数y=﹣图象上,x1<0,∴y1>0,对于反比例函数y=﹣,在第二象限,y随x的增大而增大,∵0<x2<x3,∴y2<y3<0,∴y2<y3<y1故选:C.9.(4分)如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将△ABC绕点P顺时针方向旋转90°,得到△A′B′C′,则点P的坐标为()A.(0,4)B.(1,1)C.(1,2)D.(2,1)【分析】选两组对应点,连接后作其中垂线,两中垂线的交点即为点P.【解答】解:由图知,旋转中心P的坐标为(1,2),故选:C.10.(4分)下面的统计图大致反应了我国2012年至2017年人均阅读量的情况.根据统计图提供的信息,下列推断不合理的是()A.与2016年相比,2017年我国电子书人均阅读量有所降低B.2012年至2017年,我国纸质书的人均阅读量的中位数是4.57C.从2014年到2017年,我国纸质书的人均阅读量逐年增长D.2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多【分析】利用折线统计图结合相应数据,分别分析得出符合题意的答案.【解答】解:A、与2016年相比,2017年我国电子书人均阅读量有所降低,正确;B、2012年至2017年,我国纸质书的人均阅读量的中位数是4.615,错误;C、从2014年到2017年,我国纸质书的人均阅读量逐年增长,正确;D、2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多,正确;故选:B.11.(4分)如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.6π﹣B.6π﹣9C.12π﹣D.【分析】连接OD,如图,利用折叠性质得由弧AD、线段AC和CD所围成的图形的面积等于阴影部分的面积,AC=OC,则OD=2OC=6,CD=3,从而得到∠CDO=30°,∠COD=60°,然后根据扇形面积公式,利用由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD﹣S△COD,进行计算即可.【解答】解:连接OD,如图,∵扇形纸片折叠,使点A与点O恰好重合,折痕为CD,∴AC=OC,∴OD=2OC=6,∴CD==3,∴∠CDO=30°,∠COD=60°,∴由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD﹣S△COD=﹣•3•3=6π﹣,∴阴影部分的面积为6π﹣.故选:A.12.(4分)若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P(1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m﹣2(m>0)与x轴交于点A、B两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是()A.≤m<1B.<m≤1C.1<m≤2D.1<m<2【分析】画出图象,利用图象可得m的取值范围【解答】解:∵y=mx2﹣4mx+4m﹣2=m(x﹣2)2﹣2且m>0,∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x=2.由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意.①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意.将(1,﹣1)代入y=mx2﹣4mx+4m﹣2得到﹣1=m﹣4m+4m﹣2.解得m=1.此时抛物线解析式为y=x2﹣4x+2.由y=0得x2﹣4x+2=0.解得x1=2﹣≈0.6,x2=2+≈3.4.∴x轴上的点(1,0)、(2,0)、(3,0)符合题意.则当m=1时,恰好有(1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意.∴m≤1.【注:m的值越大,抛物线的开口越小,m的值越小,抛物线的开口越大】答案图1(m=1时)答案图2(m=时)②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意.此时x轴上的点(1,0)、(2,0)、(3,0)也符合题意.将(0,0)代入y=mx2﹣4mx+4m﹣2得到0=0﹣4m+0﹣2.解得m=.此时抛物线解析式为y=x2﹣2x.当x=1时,得y=×1﹣2×1=﹣<﹣1.∴点(1,﹣1)符合题意.当x=3时,得y=×9﹣2×3=﹣<﹣1.∴点(3,﹣1)符合题意.综上可知:当m=时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,﹣1)、(3,﹣1)、(2,﹣2)、(2,﹣1)都符合题意,共有9个整点符合题意,∴m=不符合题.∴m>.综合①②可得:当<m≤1时,该函数的图象与x轴所围成的区域(含边界)内有七个整点,故选:B.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)分解因式:m2﹣4=(m+2)(m﹣2).【分析】本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:a2﹣b2=(a+b)(a ﹣b).【解答】解:m2﹣4=(m+2)(m﹣2).故答案为:(m+2)(m﹣2).14.(4分)在不透明的盒子中装有5个黑色棋子和若干个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数是15.【分析】黑色棋子除以相应概率算出棋子的总数,减去黑色棋子的个数即为白色棋子的个数;【解答】解:5÷﹣5=15.∴白色棋子有15个;故答案为:15.15.(4分)一个正多边形的每个内角等于108°,则它的边数是5.【分析】根据相邻的内角与外角互为邻补角求出每一个外角的度数为72°,再用外角和360°除以72°,计算即可得解.【解答】解:∵正多边形的每个内角等于108°,∴每一个外角的度数为180°﹣108°=72°,∴边数=360°÷72°=5,∴这个正多边形是正五边形.故答案为:5.16.(4分)若代数式的值是2,则x=6.【分析】根据解分式方程的步骤依次计算可得.【解答】解:=2,去分母得:x﹣2=2(x﹣4),x﹣2=2x﹣8,x=6,经检验:x=6是原方程的解.故答案为:6.17.(4分)A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离y(km)与时间t(h)的关系如图所示,则甲出发小时后和乙相遇.【分析】由图象得出解析式后联立方程组解答即可.【解答】解:由图象可得:y甲=4t(0≤t≤5);y乙=;由方程组,解得t=.故答案为.18.(4分)如图,矩形EFGH的四个顶点分别在矩形ABCD的各条边上,AB=EF,FG=2,GC=3.有以下四个结论:①∠BGF=∠CHG;②△BFG≌△DHE;③tan∠BFG=;④矩形EFGH的面积是4.其中一定成立的是①②④.(把所有正确结论的序号填在横线上)【分析】根据矩形的性质和全等三角形的判定分析各小题即可;【解答】解:∵∠FGH=90°,∴∠BGF+∠CGH=90°.又∵∠CGH+∠CHG=90°,∴∠BGF=∠CHG,故①正确.同理可得∠DEH=∠CHG.∴∠BGF=∠DEH.又∵∠B=∠D=90°,FG=EH,∴△BFG≌△DHE,故②正确.同理可得△AFE≌△CHG.∴AF=CH.易得△BFG∽△CGH.设GH、EF为a,∴=.∴=.∴BF=.∴AF=AB﹣BF=a﹣.∴CH=AF=a﹣.在Rt△CGH中,∵CG2+CH2=GH2,∴32+(a﹣)2=a2.解得a=2.∴GH=2.∴BF=a﹣=.在Rt△BFG中,∵cos∠BFG==,∴∠BFG=30°.∴tan∠BFG=tan30°=,故③错误.矩形EFGH的面积=FG×GH=2×2=4,故④正确.故答案为:①②④三、解答题(本大题共9小题,共78分)19.(6分)计算:2﹣1+|﹣5|﹣sin30°+(π﹣1)0.【分析】先利用负指数,绝对值,特殊角的三角函数,零次幂化简,最后合并即可得出结论.【解答】解:2﹣1+|﹣5|﹣sin30°+(π﹣1)0.=+5﹣+1=620.(6分)解不等式组:【分析】分别求出不等式①②的解集,同大取大;同小取小;大小小大中间找;大大小小找不到求出不等式组解集.【解答】解:由①,得3x﹣2x<3﹣1.∴x<2.由②,得4x>3x﹣1.∴x>﹣1.∴不等式组的解集为﹣1<x<2.21.(6分)如图,在▱ABCD中,连接BD,E是DA延长线上的点,F是BC延长线上的点,且AE=CF,连接EF交BD于点O.求证:OB=OD.【分析】欲证明OB=OD,只要证明△EOD≌△FOB即可;【解答】证明:∵▱ABCD中,∴AD=BC,AD∥BC.∴∠ADB=∠CBD.又∵AE=CF,∴AE+AD=CF+BC.∴ED=FB.又∵∠EOD=∠FOB,∴△EOD≌△FOB.∴OB=OD.22.(8分)本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?【分析】(1)设参观历史博物馆的有x人,参观民俗展览馆的有y人,根据等量关系:①一共150名学生;②一共支付票款2000元,列出方程组求解即可;(2)原来的钱数﹣参观历史博物馆的钱数,列出算式计算可求能节省票款多少元.【解答】解:(1)设参观历史博物馆的有x人,参观民俗展览馆的有y人,依题意,得,解得.答:参观历史博物馆的有100人,则参观民俗展览馆的有50人.(2)2000﹣150×10=500(元).答:若学生都去参观历史博物馆,则能节省票款500元.23.(8分)如图AB是⊙O的直径,P A与⊙O相切于点A,BP与⊙O相交于点D,C为⊙O上的一点,分别连接CB、CD,∠BCD=60°.(1)求∠ABD的度数;(2)若AB=6,求PD的长度.【分析】(1)解法一:要的圆周角定理得:∠ADB=90°,由同弧所对的圆周角相等和直角三角形的性质可得结论;解法二:根据同弧所对的圆心角是圆周角的2倍可得∠BOD=120°,由同圆的半径相等和等腰三角形的性质可得结论;(2)如图1,根据切线的性质可得∠BAP=90°,根据直角三角形30°角的性质可计算AD的长,由勾股定理计算DB的长,由三角函数可得PB的长,从而得PD的长.【解答】解:(1)方法一:如图1,连接AD.∵BA是⊙O直径,∴∠BDA=90°.∵=,∴∠BAD=∠C=60°.∴∠ABD=90°﹣∠BAD=90°﹣60°=30°.方法二:如图2,连接DA、OD,则∠BOD=2∠C=2×60°=120°.∵OB=OD,∴∠OBD=∠ODB=(180°﹣120°)=30°.即∠ABD=30°.(2)如图1,∵AP是⊙O的切线,∴∠BAP=90°.在Rt△BAD中,∵∠ABD=30°,∴DA=BA=×6=3.∴BD=DA=3.在Rt△BAP中,∵cos∠ABD=,∴cos30°==.∴BP=4.∴PD=BP﹣BD=4﹣3=.24.(10分)某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表.请您根据图表中提供的信息回答下列问题:(1)统计表中的a=80,b=0.20;(2)“D”对应扇形的圆心角为36度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.【分析】(1)根据题意列出算式,再求出即可;(2)根据题意列出算式,再求出即可;(3)根据题意列出算式,再求出即可;(4)先列出表格,再根据题意列出算式,再求出即可.【解答】解:(1)a=36÷0.45=80,b=16÷80=0.20,故答案为:80,0.20;(2)“D”对应扇形的圆心角的度数为:8÷80×360°=36°,故答案为:36;(3)估计该校2000名学生中最喜欢“数学史”校本课程的人数为:2000×0.25=500(人);(4)列表格如下:共有9种等可能的结果,其中两人恰好选中同一门校本课程的结果有3种,所以两人恰好选中同一门校本课程的概率为:=.25.(10分)如图,直线y=ax+2与x轴交于点A(1,0),与y轴交于点B(0,b).将线段AB先向右平移1个单位长度、再向上平移t(t>0)个单位长度,得到对应线段CD,反比例函数y=(x>0)的图象恰好经过C、D两点,连接AC、BD.(1)求a和b的值;(2)求反比例函数的表达式及四边形ABDC的面积;(3)点N在x轴正半轴上,点M是反比例函数y=(x>0)的图象上的一个点,若△CMN是以CM为直角边的等腰直角三角形时,求所有满足条件的点M的坐标.【分析】(1)利用坐标轴上的点的特点即可得出结论;(2)先表示出点C,D坐标,进而代入反比例函数解析式中求解得出k,再判断出BC⊥AD,最后用对角线积的一半即可求出四边形的面积;(3)分两种情况,构造全等的直角三角形即可得出结论.【解答】解:(1)将点A(1,0)代入y=ax+2,得0=a+2.∴a=﹣2.∴直线的解析式为y=﹣2x+2.将x=0代入上式,得y=2.∴b=2.(2)由(1)知,b=2,∴B(0,2),由平移可得:点C(2,t)、D(1,2+t).将点C(2,t)、D(1,2+t)分别代入y=,得∴.∴反比例函数的解析式为y=,点C(2,2)、点D(1,4).如图1,连接BC、AD.∵B(0,2)、C(2,2),∴BC∥x轴,BC=2.∵A(1,0)、D(1,4),∴AD⊥x轴,AD=4.∴BC⊥AD.∴S四边形ABDC=×BC×AD=×2×4=4.(3)①当∠NCM=90°、CM=CN时,如图2,过点C作直线l∥x轴,交y轴于点G.过点M作MF⊥直线l于点F,交x轴于点H.过点N作NE⊥直线l于点E.∵∠MCN=90°,∴∠MCF+∠NCE=90°.∵NE⊥直线l于点E,∴∠ENC+∠NCE=90°.∴∠MCF=∠ENC.又∵∠MFC=∠NEC=90°,CN=CM,∴△NEC≌△CFM(AAS).∴CF=EN=2,FM=CE.∴FG=CG+CF=2+2=4.∴x M=4.将x=4代入y=,得y=1.∴点M(4,1);②当∠NMC=90°、MC=MN时,如图3,过点C作直线l⊥y轴与点F,则CF=x C=2.过点M作MG⊥x轴于点G,MG交直线l与点E,则MG⊥直线l于点E,EG=y C=2.∵∠CMN=90°,∴∠CME+∠NMG=90°.∵ME⊥直线l于点E,∴∠ECM+∠CME=90°.∴∠NMG=∠ECM.又∵∠CEM=∠NGM=90°,CM=MN,∴△CEM≌△MGN(AAS).∴CE=MG,EM=NG.设CE=MG=n,则y M=n,x M=CF+CE=2+n.∴点M(2+n,n).将点M(2+n,n)代入y=,得n=.解得n1=﹣1,n2=﹣﹣1(因为点M在第一象限,所以n大于0,所以舍去).∴x M=2+n=+1.∴点M(+1,﹣1).综合①②可知:点M的坐标为(4,1)或(+1,﹣1).26.(12分)在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,直接写出∠ADE的度数;(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB=6,求CF的最大值.【分析】(1)利用SAS定理证明△ABD≌△ACE,根据相似三角形的性质得到AD=AE,∠CAE=∠BAD,根据等腰三角形的性质、三角形内角和定理计算即可证明;(2)同(1)的证明方法相同;(3)证明△ADF∽△ACD,根据相似三角形的性质得到AF=,求出AD的最小值,得到AF的最小值,求出CF的最大值.【解答】解:(1)∠ADE=30°.理由如下:∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵∠ACM=∠ACB,∴∠ACM=∠ABC,在△ABD和△ACE中,,∴△ABD≌△ACE,∴AD=AE,∠CAE=∠BAD,∴∠DAE=∠BAC=120°,∴∠ADE=30°;(2)(1)中的结论成立,证明:∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°.∵∠ACM=∠ACB,∴∠B=∠ACM=30°.在△ABD和△ACE中,,∴△ABD≌△ACE.∴AD=AE,∠BAD=∠CAE.∴∠CAE+∠DAC=∠BAD+∠DAC=∠BAC=120°.即∠DAE=120°.∵AD=AE,∴∠ADE=∠AED=30°;(3)∵AB=AC,AB=6,∴AC=6,∵∠ADE=∠ACB=30°且∠DAF=∠CAD,∴△ADF∽△ACD.∴=.∴AD2=AF•AC.∴AD2=6AF.∴AF=.∴当AD最短时,AF最短、CF最长.易得当AD⊥BC时,AF最短、CF最长,此时AD=AB=3.∴AF最短===.∴CF最长=AC﹣AF最短=6﹣=.27.(12分)如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC.点P是该抛物线上一动点,设点P的横坐标为m (m>4).(1)求该抛物线的表达式和∠ACB的正切值;(2)如图2,若∠ACP=45°,求m的值;(3)如图3,过点A、P的直线与y轴于点N,过点P作PM⊥CD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由.【分析】(1)由点A、B坐标利用待定系数法求解可得抛物线解析式为y=x2﹣3x+4,作BG⊥CA,交CA的延长线于点G,证△GAB∽△OAC得=,据此知BG=2AG.在Rt△ABG中根据BG2+AG2=AB2,可求得AG=.继而可得BG=,CG=AC+AG=,根据正切函数定义可得答案;(2)作BH⊥CD于点H,交CP于点K,连接AK,易得四边形OBHC是正方形,应用“全角夹半角”可得AK=OA+HK,设K(4,h),则BK=h,HK=HB﹣KB=4﹣h,AK=OA+HK=2+(4﹣h)=6﹣h.在Rt△ABK中,由勾股定理求得h=,据此求得点K(4,).待定系数法求出直线CK的解析式为y =﹣x+4.设点P的坐标为(x,y)知x是方程x2﹣3x+4=﹣x+4的一个解.解之求得x的值即可得出答案.(3)先求出点D坐标为(6,4),设P(m,m2﹣3m+4)知M(m,4),H(m,0).及PH=m2﹣3m+4),OH=m,AH=m﹣2,MH=4.①当4<m<6时,由△OAN∽△HAP知=.据此得ON=m﹣4.再证△ONQ∽△HMQ得=.据此求得OQ=m﹣4.从而得出AQ=DM=6﹣m.结合AQ∥DM可得答案.②当m>6时,同理可得.【解答】解:(1)将点A(2,0)和点B(4,0)分别代入y=ax2+bx+4,得,解得:.∴该抛物线的解析式为y=x2﹣3x+4.过点B作BG⊥CA,交CA的延长线于点G(如图1所示),则∠G=90°.∵∠COA=∠G=90°,∠CAO=∠BAG,∴△GAB∽△OAC.∴=═=2.∴BG=2AG.在Rt△ABG中,∵BG2+AG2=AB2,∴(2AG)2+AG2=22.解得:AG=.∴BG=,CG=AC+AG=2+=.在Rt△BCG中,tan∠ACB═=.(2)如图2,过点B作BH⊥CD于点H,交CP于点K,连接AK.易得四边形OBHC是正方形.应用“全角夹半角”可得AK=OA+HK.设K(4,h),则BK=h,HK=HB﹣KB=4﹣h,AK=OA+HK=2+(4﹣h)=6﹣h.在Rt△ABK中,由勾股定理,得AB2+BK2=AK2.∴22+h2=(6﹣h)2.解得h=.∴点K(4,).设直线CK的解析式为y=hx+4.将点K(4,)代入上式,得=4h+4.解得h=﹣.∴直线CK的解析式为y=﹣x+4.设点P的坐标为(x,y),则x是方程x2﹣3x+4=﹣x+4的一个解.将方程整理,得3x2﹣16x=0.解得x1=,x2=0(不合题意,舍去).将x1=代入y=﹣x+4,得y=.∴点P的坐标为(,),故点P的横坐标m的值为.(3)四边形ADMQ是平行四边形.理由如下:∵CD∥x轴,∴y C=y D=4.将y=4代入y=x2﹣3x+4,得4=x2﹣3x+4.解得x1=0,x2=6.∴点D(6,4).根据题意,得P(m,m2﹣3m+4),M(m,4),H(m,0).∴PH=m2﹣3m+4,OH=m,AH=m﹣2,MH=4.①当4<m<6时,DM=6﹣m,如图3,∵△OAN∽△HAP,∴=.∴=.∴ON===m﹣4.∵△ONQ∽△HMQ,∴=.∴=.∴=.∴OQ=m﹣4.∴AQ=OA﹣OQ=2﹣(m﹣4)=6﹣m.∴AQ=DM=6﹣m.又∵AQ∥DM,∴四边形ADMQ是平行四边形.②当m>6时,同理可得:四边形ADMQ是平行四边形.综上,四边形ADMQ是平行四边形.。
2018年山东济南中考数学试卷解析答案
2018年山东省济南市中考数学试卷+解析答案一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)4的算术平方根是()A.2B.﹣2C.±2D.2.(4分)如图所示的几何体,它的俯视图是()A.B.C.D.3.(4分)2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A.0.76×104B.7.6×103C.7.6×104D.76×1024.(4分)“瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(4分)如图,AF是∠BAC的平分线,DF∥AC,若∠1=35°,则∠BAF的度数为()A.17.5°B.35°C.55°D.70°6.(4分)下列运算正确的是()A.a2+2a=3a3B.(﹣2a3)2=4a5C.(a+2)(a﹣1)=a2+a﹣2D.(a+b)2=a2+b27.(4分)关于x的方程3x﹣2m=1的解为正数,则m的取值范围是()A.m<﹣B.m>﹣C.m>D.m<8.(4分)在反比例函数y=﹣图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<0<x2<x3,则下列结论正确的是()A.y3<y2<y1B.y1<y3<y2C.y2<y3<y1D.y3<y1<y29.(4分)如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将△ABC绕点P顺时针方向旋转90°,得到△A′B′C′,则点P的坐标为()A.(0,4)B.(1,1)C.(1,2)D.(2,1)10.(4分)下面的统计图大致反应了我国2012年至2017年人均阅读量的情况.根据统计图提供的信息,下列推断不合理的是()A.与2016年相比,2017年我国电子书人均阅读量有所降低B.2012年至2017年,我国纸质书的人均阅读量的中位数是4.57C.从2014年到2017年,我国纸质书的人均阅读量逐年增长D.2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多11.(4分)如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.6π﹣B.6π﹣9C.12π﹣D.12.(4分)若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P (1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m﹣2(m>0)与x轴交于点A、B两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是()A.≤m<1B.<m≤1C.1<m≤2D.1<m<2二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)分解因式:m2﹣4=.14.(4分)在不透明的盒子中装有5个黑色棋子和若干个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑包棋子的概率是,则白色棋子的个数是=.15.(4分)一个正多边形的每个内角等于108°,则它的边数是.16.(4分)若代数式的值是2,则x=.17.(4分)A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离s(km)与时间t(h)的关系如图所示,则甲出发小时后和乙相遇.18.(4分)如图,矩形EFGH的四个顶点分别在矩形ABCD的各条边上,AB=EF,FG=2,GC=3.有以下四个结论:①∠BGF=∠CHG;②△BFG≌△DHE;③tan∠BFG=;④矩形EFGH的面积是4.其中一定成立的是.(把所有正确结论的序号填在横线上)三、解答题(本大题共9小题,共78分)19.(6分)计算:2﹣1+|﹣5|﹣sin30°+(π﹣1)0.20.(6分)解不等式组:21.(6分)如图,在▱ABCD中,连接BD,E是DA延长线上的点,F是BC延长线上的点,且AE=CF,连接EF交BD于点O.求证:OB=OD.22.(8分)本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生多观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?23.(8分)如图AB是⊙O的直径,PA与⊙O相切于点A,BP与⊙O相交于点D,C为⊙O上的一点,分别连接CB、CD,∠BCD=60°.(1)求∠ABD的度数;(2)若AB=6,求PD的长度.24.(10分)某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表.请您根据图表中提供的信息回答下列问题:(1)统计表中的a=,b=;(2)“D”对应扇形的圆心角为度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.25.(10分)如图,直线y=ax+2与x轴交于点A(1,0),与y轴交于点B(0,b).将线段AB先向右平移1个单位长度、再向上平移t(t>0)个单位长度,得到对应线段CD,反比例函数y=(x >0)的图象恰好经过C、D两点,连接AC、BD.(1)求a和b的值;(2)求反比例函数的表达式及四边形ABDC的面积;(3)点N在x轴正半轴上,点M是反比例函数y=(x>0)的图象上的一个点,若△CMN是以CM 为直角边的等腰直角三角形时,求所有满足条件的点M的坐标.26.(12分)在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D 为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,直接写出∠ADE的度数;(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB=6,求CF的最大值.27.(12分)如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x 轴的平行线与抛物线上的另一个交点为D,连接AC、BC.点P是该抛物线上一动点,设点P的横坐标为m(m>4).(1)求该抛物线的表达式和∠ACB的正切值;(2)如图2,若∠ACP=45°,求m的值;(3)如图3,过点A、P的直线与y轴于点N,过点P作PM⊥CD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由.2018年山东省济南市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)4的算术平方根是()A.2B.﹣2C.±2D.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:A.2.(4分)如图所示的几何体,它的俯视图是()A.B.C.D.【解答】解:从几何体上面看,2排,上面3个,下面1个,左边2个正方形.故选:D.3.(4分)2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A.0.76×104B.7.6×103C.7.6×104D.76×102【解答】解:7600=7.6×103,故选:B.4.(4分)“瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,也不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,是中心对称图形.故选:D.5.(4分)如图,AF是∠BAC的平分线,DF∥AC,若∠1=35°,则∠BAF的度数为()A.17.5°B.35°C.55°D.70°【解答】解:∵DF∥AC,∴∠FAC=∠1=35°,∵AF是∠BAC的平分线,∴∠BAF=∠FAC=35°,故选:B.6.(4分)下列运算正确的是()A.a2+2a=3a3B.(﹣2a3)2=4a5C.(a+2)(a﹣1)=a2+a﹣2D.(a+b)2=a2+b2【解答】解:A、错误.不是同类项不能合并;B、错误.应该是(﹣2a3)2=4a6;C、正确;D、错误.应该是(a+b)2=a2+2ab+b2;故选:C.7.(4分)关于x的方程3x﹣2m=1的解为正数,则m的取值范围是()A.m<﹣B.m>﹣C.m>D.m<【解答】解:解方程3x﹣2m=1得:x=,∵关于x的方程3x﹣2m=1的解为正数,∴>0,解得:m>﹣,故选:B.8.(4分)在反比例函数y=﹣图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<0<x2<x3,则下列结论正确的是()A.y3<y2<y1B.y1<y3<y2C.y2<y3<y1D.y3<y1<y2【解答】解:∵A(x1,y1)在反比例函数y=﹣图象上,x1<0,∴y1>0,对于反比例函数y=﹣,在第二象限,y随x的增大而增大,∵0<x2<x3,∴y2<y3<0,∴y2<y3<y1故选:C.9.(4分)如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将△ABC绕点P顺时针方向旋转90°,得到△A′B′C′,则点P的坐标为()A.(0,4)B.(1,1)C.(1,2)D.(2,1)【解答】解:由图知,旋转中心P的坐标为(1,2),故选:C.10.(4分)下面的统计图大致反应了我国2012年至2017年人均阅读量的情况.根据统计图提供的信息,下列推断不合理的是()A.与2016年相比,2017年我国电子书人均阅读量有所降低B.2012年至2017年,我国纸质书的人均阅读量的中位数是4.57C.从2014年到2017年,我国纸质书的人均阅读量逐年增长D.2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多【解答】解:A、与2016年相比,2017年我国电子书人均阅读量有所降低,正确;B、2012年至2017年,我国纸质书的人均阅读量的中位数是4.615,错误;C、从2014年到2017年,我国纸质书的人均阅读量逐年增长,正确;D、2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多,正确;故选:B.11.(4分)如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A .6π﹣B .6π﹣9C .12π﹣D .【解答】解:连接OD ,如图,∵扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD , ∴AC=OC , ∴OD=2OC=3,∴CD==3,∴∠CDO=30°,∠COD=60°,∴由弧AD 、线段AC 和CD 所围成的图形的面积=S 扇形AOD ﹣S △COD =﹣•3•3=6π﹣,∴阴影部分的面积为6π﹣.故选:A .12.(4分)若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”.例如:P (1,0)、Q (2,﹣2)都是“整点”.抛物线y=mx 2﹣4mx +4m ﹣2(m >0)与x 轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( ) A .≤m <1B .<m ≤1C .1<m ≤2D .1<m <2【解答】解:∵y=mx 2﹣4mx +4m ﹣2=m (x ﹣2)2﹣2且m >0, ∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x=2. 由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意.①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意. 将(1,﹣1)代入y=mx 2﹣4mx +4m ﹣2得到﹣1=m ﹣4m +4m ﹣2.解得m=1. 此时抛物线解析式为y=x 2﹣4x +2.由y=0得x2﹣4x+2=0.解得x1=2﹣≈0.6,x2=2+≈3.4.∴x轴上的点(1,0)、(2,0)、(3,0)符合题意.则当m=1时,恰好有(1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意.∴m≤1.【注:m的值越大,抛物线的开口越小,m的值越小,抛物线的开口越大】答案图1(m=1时)答案图2(m=时)②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意.此时x轴上的点(1,0)、(2,0)、(3,0)也符合题意.将(0,0)代入y=mx2﹣4mx+4m﹣2得到0=0﹣4m+0﹣2.解得m=.此时抛物线解析式为y=x2﹣2x.当x=1时,得y=×1﹣2×1=﹣<﹣1.∴点(1,﹣1)符合题意.当x=3时,得y=×9﹣2×3=﹣<﹣1.∴点(3,﹣1)符合题意.综上可知:当m=时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,﹣1)、(3,﹣1)、(2,﹣2)、(2,﹣1)都符合题意,共有9个整点符合题意,∴m=不符合题.∴m>.综合①②可得:当<m≤1时,该函数的图象与x轴所围城的区域(含边界)内有七个整点,故选:B.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)分解因式:m2﹣4=(m+2)(m﹣2).【解答】解:m2﹣4=(m+2)(m﹣2).故答案为:(m+2)(m﹣2).14.(4分)在不透明的盒子中装有5个黑色棋子和若干个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑包棋子的概率是,则白色棋子的个数是=15.【解答】解:5÷﹣5=15.∴白色棋子有15个;故答案为:15.15.(4分)一个正多边形的每个内角等于108°,则它的边数是五.【解答】解:∵正多边形的每个内角等于108°,∴每一个外角的度数为180°﹣108°=72°,∴边数=360°÷72°=5,∴这个正多边形是正五边形.故答案为:五.16.(4分)若代数式的值是2,则x=6.【解答】解:=2,去分母得:x﹣2=2(x﹣4),x﹣2=2x﹣8,x=6,经检验:x=6是原方程的解.故答案为:6.17.(4分)A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离s(km)与时间t(h)的关系如图所示,则甲出发小时后和乙相遇.【解答】解:由图象可得:y甲=4t(0≤t≤5);y乙=;由方程组,解得t=.故答案为.18.(4分)如图,矩形EFGH的四个顶点分别在矩形ABCD的各条边上,AB=EF,FG=2,GC=3.有以下四个结论:①∠BGF=∠CHG;②△BFG≌△DHE;③tan∠BFG=;④矩形EFGH的面积是4.其中一定成立的是①②④.(把所有正确结论的序号填在横线上)【解答】解:∵∠FGH=90°,∴∠BGF+∠CGH=90°.又∵∠CGH+∠CHG=90°,∴∠BGF=∠CHG,故①正确.同理可得∠DEH=∠CHG.∴∠BGF=∠DEH.又∵∠B=∠D=90°,FG=EH,∴△BFG≌△DHE,故②正确.同理可得△AFE≌△CHG.∴AF=CH.易得△BFG∽△CGH.设GH、EF为a,∴=.∴=.∴BF=.∴AF=AB﹣BF=a﹣.∴CH=AF=a﹣.在Rt△CGH中,∵CG2+CH2=GH2,∴32+(a﹣)2=a2.解得a=2.∴GH=2.∴BF=a﹣=.在Rt△BFG中,∵cos∠BFG==,∴∠BFG=30°.∴tan∠BFG=tan30°=,故③错误.矩形EFGH的面积=FG×GH=2×2=4,故④正确.故答案为:①②④三、解答题(本大题共9小题,共78分)19.(6分)计算:2﹣1+|﹣5|﹣sin30°+(π﹣1)0.【解答】解:2﹣1+|﹣5|﹣sin30°+(π﹣1)0.=+5﹣+1=620.(6分)解不等式组:【解答】解:由①,得3x﹣2x<3﹣1.∴x<2.由②,得4x>3x﹣1.∴x>﹣1.∴不等式组的解集为﹣1<x<2.21.(6分)如图,在▱ABCD中,连接BD,E是DA延长线上的点,F是BC延长线上的点,且AE=CF,连接EF交BD于点O.求证:OB=OD.【解答】证明:∵▱ABCD中,∴AD=BC,AD∥BC.∴∠ADB=∠CBD.又∵AE=CF,∴AE+AD=CF+BC.∴ED=FB.又∵∠EOD=∠FOB,∴△EOD≌△FOB.∴OB=OD.22.(8分)本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生多观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?【解答】解:(1)设参观历史博物馆的有x人,参观民俗展览馆的有y人,依题意,得,解得.答:参观历史博物馆的有100人,则参观民俗展览馆的有50人.(2)2000﹣150×10=500(元).答:若学生都去参观历史博物馆,则能节省票款500元.23.(8分)如图AB是⊙O的直径,PA与⊙O相切于点A,BP与⊙O相交于点D,C为⊙O上的一点,分别连接CB、CD,∠BCD=60°.(1)求∠ABD的度数;(2)若AB=6,求PD的长度.【解答】解:(1)方法一:如图1,连接AD.∵BA是⊙O直径,∴∠BDA=90°.∵=,∴∠BAD=∠C=60°.∴∠ABD=90°﹣∠BAD=90°﹣60°=30°.方法二:如图2,连接DA、OD,则∠BOD=2∠C=2×60°=120°.∵OB=OD,∴∠OBD=∠ODB=(180°﹣120°)=30°.即∠ABD=30°.(2)如图1,∵AP是⊙O的切线,∴∠BAP=90°.在Rt△BAD中,∵∠ABD=30°,∴DA=BA=×6=3.∴BD=DA=3.在Rt△BAP中,∵cos∠ABD=,∴cos30°==.∴BP=4.∴PD=BP﹣BD=4﹣3=.24.(10分)某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表.请您根据图表中提供的信息回答下列问题:(1)统计表中的a=80,b=0.20;(2)“D”对应扇形的圆心角为36度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.【解答】解:(1)a=36÷0.45=80,b=16÷80=0.20,故答案为:80,0.20;(2)“D”对应扇形的圆心角的度数为:8÷80×360°=36°,故答案为:36;(3)估计该校2000名学生中最喜欢“数学史”校本课程的人数为:2000×0.25=500(人);(4)列表格如下:共有9种等可能的结果,其中两人恰好选中同一门校本课程的结果有3种,所以两人恰好选中同一门校本课程的概率为:=.25.(10分)如图,直线y=ax+2与x轴交于点A(1,0),与y轴交于点B(0,b).将线段AB先向右平移1个单位长度、再向上平移t(t>0)个单位长度,得到对应线段CD,反比例函数y=(x >0)的图象恰好经过C、D两点,连接AC、BD.(1)求a和b的值;(2)求反比例函数的表达式及四边形ABDC的面积;(3)点N在x轴正半轴上,点M是反比例函数y=(x>0)的图象上的一个点,若△CMN是以CM 为直角边的等腰直角三角形时,求所有满足条件的点M的坐标.【解答】解:(1)将点A(1,0)代入y=ax+2,得0=a+2.∴a=﹣2.∴直线的解析式为y=﹣2x+2.将x=0代入上式,得y=2.∴b=2.(2)由(1)知,b=2,∴B(0,2),由平移可得:点C(2,t)、D(1,2+t).将点C(2,t)、D(1,2+t)分别代入y=,得∴.∴反比例函数的解析式为y=,点C(2,2)、点D(1,4).如图1,连接BC、AD.∵B(0,2)、C(2,2),∴BC∥x轴,BC=2.∵A(1,0)、D(1,4),∴AD⊥x轴,AD=4.∴BC⊥AD.∴S=×BC×AD=×2×4=4.四边形ABDC(3)①当∠NCM=90°、CM=CN时,如图2,过点C作直线l∥x轴,交y轴于点G.过点M作MF⊥直线l于点F,交x轴于点H.过点N 作NE⊥直线l于点E.设点N(m,0)(其中m>0),则ON=m,CE=2﹣m.∵∠MCN=90°,∴∠MCF+∠NCE=90°.∵NE⊥直线l于点E,∴∠ENC+∠NCE=90°.∴∠MCF=∠ENC.又∵∠MFC=∠NEC=90°,CN=CM,∴△NEC≌△CFM.∴CF=EN=2,FM=CE=2﹣m.∴FG=CG+CF=2+2=4.∴x M=4.将x=4代入y=,得y=1.∴点M(4,1);②当∠NMC=90°、MC=MN时,如图3,过点C作直线l⊥y轴与点F,则CF=x C=2.过点M作MG⊥x轴于点G,MG交直线l与点E,则MG⊥直线l于点E,EG=y C=2.∵∠CMN=90°,∴∠CME+∠NMG=90°.∵ME⊥直线l于点E,∴∠ECM+∠CME=90°.∴∠NMG=∠ECM.又∵∠CEM=∠NGM=90°,CM=MN,∴△CEM≌△MGN.∴CE=MG,EM=NG.设CE=MG=a,则y M=a,x M=CF+CE=2+a.∴点M(2+a,a).将点M(2+a,a)代入y=,得a=.解得a1=﹣1,a2=﹣﹣1.∴x M=2+a=+1.∴点M(+1,﹣1).综合①②可知:点M的坐标为(4,1)或(+1,﹣1).26.(12分)在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D 为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,直接写出∠ADE的度数;(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB=6,求CF的最大值.【解答】解:(1)∠ADE=30°.理由如下:∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵∠ACM=∠ACB,∴∠ACM=∠ABC,在△ABD和△ACE中,,∴△ABD≌△ACE,∴AD=AE,∠CAE=∠BAD,∴∠DAE=∠BAC=120°,∴∠ADE=30°;(2)(1)中的结论成立,证明:∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°.∵∠ACM=∠ACB,∴∠B=∠ACM=30°.在△ABD和△ACE中,,∴△ABD≌△ACE.∴AD=AE,∠BAD=∠CAE.∴∠CAE+∠DAC=∠BAD+∠DAC=∠BAC=120°.即∠DAE=120°.∵AD=AE,∴∠ADE=∠AED=30°;(3)∵AB=AC,AB=6,∴AC=6,∵∠ADE=∠ACB=30°且∠DAF=∠CAD,∴△ADF∽△ACD.∴=.∴AD2=AF•AC.∴AD2=6AF.∴AF=.∴当AD最短时,AF最短、CF最长.易得当AD ⊥BC 时,AF 最短、CF 最长,此时AD=AB=3.∴AF 最短===.∴CF 最长=AC ﹣AF 最短=6﹣=.27.(12分)如图1,抛物线y=ax 2+bx +4过A (2,0)、B (4,0)两点,交y 轴于点C ,过点C 作x 轴的平行线与抛物线上的另一个交点为D ,连接AC 、BC .点P 是该抛物线上一动点,设点P 的横坐标为m (m >4).(1)求该抛物线的表达式和∠ACB 的正切值; (2)如图2,若∠ACP=45°,求m 的值;(3)如图3,过点A 、P 的直线与y 轴于点N ,过点P 作PM ⊥CD ,垂足为M ,直线MN 与x 轴交于点Q ,试判断四边形ADMQ 的形状,并说明理由.【解答】解:(1)将点A (2,0)和点B (4,0)分别代入y=ax 2+bx +4,得,解得:.∴该抛物线的解析式为y=x 2﹣3x +4.过点B 作BG ⊥CA ,交CA 的延长线于点G (如图1所示),则∠G=90°.∵∠COA=∠G=90°,∠CAO=∠BAG ,∴△GAB∽△OAC.∴=═=2.∴BG=2AG.在Rt△ABG中,∵BG2+AG2=AB2,∴(2AG)2+AG2=22.解得:AG=.∴BG=,CG=AC+AG=2+=.在Rt△BCG中,tan∠ACB═=.(2)如图2,过点B作BH⊥CD于点H,交CP于点K,连接AK.易得四边形OBHC是正方形.应用“全角夹半角”可得AK=OA+HK.设K(4,h),则BK=h,HK=HB﹣KB=4﹣h,AK=OA+HK=2+(4﹣h)=6﹣h.在Rt△ABK中,由勾股定理,得AB2+BK2=AK2.∴22+h2=(6﹣h)2.解得h=.∴点K(4,).设直线CK的解析式为y=hx+4.将点K(4,)代入上式,得=4h+4.解得h=﹣.∴直线CK的解析式为y=﹣x+4.设点P的坐标为(x,y),则x是方程x2﹣3x+4=﹣x+4的一个解.将方程整理,得3x2﹣16x=0.解得x1=,x2=0(不合题意,舍去).将x1=代入y=﹣x+4,得y=.∴点P的坐标为(,).(3)四边形ADMQ是平行四边形.理由如下:∵CD∥x轴,∴y C=y D=4.将y=4代入y=x2﹣3x+4,得4=x2﹣3x+4.解得x1=0,x2=6.∴点D(6,4).根据题意,得P(m,m2﹣3m+4),M(m,4),H(m,0).∴PH=m2﹣3m+4),OH=m,AH=m﹣2,MH=4.①当4<m<6时,DM=6﹣m,如图3,∵△OAN∽△HAP,∴=.∴=.∴ON===m﹣4.∵△ONQ∽△HMP,∴=.∴=.∴=.∴OQ=m﹣4.∴AQ=OA﹣OQ=2﹣(m﹣4)=6﹣m.∴AQ=DM=6﹣m.又∵AQ∥DM,∴四边形ADMQ是平行四边形.②当m>6时,同理可得:四边形ADMQ是平行四边形.综上,四边形ADMQ是平行四边形.。
2018年济南中考数学 精品
5分数人数(人)15 6分 0 2010 8分 10分第7题图济南市2018年初三年级学业水平考试数 学 试 题注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.考试时间120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用2B 铅笔涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的地方. 3.选择题选出答案后,用2B 铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效.4.数学考试不允许使用计算器,考试结束后,应将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共48分)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.2+(-2)的值是A .-4B .14- C .0 D .42.一组数据0、1、2、2、3、1、3、3的众数是 A .0 B .1 C .2 D .33.图中的几何体是由7个大小相同的小正方体组成的,该几何体的俯视图为4.作为历史上第一个正式提出“低碳世博”理念的世博会,上海世博会从一开始就确定以“低碳、和谐、可持续发展的城市”为主题.如今在世博场馆和周边共运行着一千多辆新能源汽车,为目前世界上规模最大的新能源汽车示范运行,预计将减少温室气体排放约28400吨.将28400吨用科学记数法表示为A .0.284×105 吨B .2.84×104吨C .28.4×103吨D .284×102吨 5.二元一次方程组42x y x y -=⎧⎨+=⎩的解是A .37x y =⎧⎨=-⎩B .11x y =⎧⎨=⎩C .73x y =⎧⎨=⎩D .31x y =⎧⎨=-⎩6.下列各选项的运算结果正确的是A .236(2)8x x =B .22523a b a b -=C .623x x x ÷=D .222()a b a b -=- 7.在一次体育课上,体育老师对九年级一班的40名同学进行了立定跳远项目的测试,测试所得分数及相应的人数如图所示,则这次测试的平均分为A .53分 B .354分 C .403分 D .8分第4题图 A .B .C .D . 第3题图A BC DEF第14题图第10题图A DPE第12题图ABCDM NO 第9题图⑴ 1+8=? 1+8+16=?⑵ ⑶ 1+8+16+24=? 第11题图…… 8.一次函数21y x =-+的图象经过哪几个象限 A .一、二、三象限 B .一、二、四象限 C .一、三、四象限D .二、三、四象限9.如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点,则cos∠OMN 的值为A .12BC D .110.二次函数22y x x =--的图象如图所示,则函数值y <0时x 的取值范围是A .x <-1B .x >2C .-1<x <2D .x <-1或x >211.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+……+8n (n 是正整数)的结果为A .2(21)n +B .2(21)n -C .2(2)n +D .2n 12.如图所示,矩形ABCD 中,AB =4,BC =,点E 是折线段A -D -C 上的一个动点(点E 与点A 不重合),点P 是点A 关于BE 的对称点.在点E 运动的过程中,使△PCB 为等腰三角形的点E 的位置共有A .2个B .3个C .4个D .5个 绝密★启用前济南市2018年初三年级学业水平考试数 学 试 题注意事项:1.第Ⅱ卷共6页.用蓝、黑色钢笔或圆珠笔直接答在考试卷上. 2.答卷前将密封线内的项目填写清楚.第Ⅱ卷(非选择题 共72分)二、填空题(本大题共5个小题,每小题3分,共15分.把答案填在题 中的横线上.)13.分解因式:221x x ++= . 14.如图所示,△DEF 是△ABC 沿水平方向ABCD第19题图第16题图第17题图向右平移后的对应图形,若∠B =31°,∠C =79°,则∠D 的度数是 度.15.解方程23123x x =-+的结果是 . 16.如图所示,点A 是双曲线1y x=-在第二象限的分支上的任意一点,点B 、C 、D 分别是点A关于x 轴、原点、y 轴的对称点,则四边形ABCD 的面积是 .17.如图所示,△ABC 的三个顶点的坐标分别为A (-1,3)、B (-2,-2)、C (4,-2),则△ABC7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.)18.(本小题满分7分)⑴解不等式组:224x x x +>-⎧⎨-⎩≤⑵如图所示,在梯形ABCD 中,BC ∥AD ,AB =DC ,点M 是AD 的中点. 求证:BM =CM .19.(本小题满分7分)0(3)-⑵如图所示,△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线,若B ACDM第18题图第21题图 第22题图AC求线段AD 的长.20.(本小题满分8分)如图所示,有一个可以自由转动的圆形转盘,被平均分成四个扇形,四个扇形内分别标有数字1、2、-3、-4.若将转盘转动两次,每一次停止转动后,指针指向的扇形内的数字分别记为a 、b (若指针恰好指在分界线上,则该次不计,重新转动一次,直至指针落在扇形内).请你用列表法或树状图求a 与 b 的乘积等于2的概率.21.(本小题满分8分) 如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD .求该矩形草坪BC 边的长.22.(本小题满分9分)如图所示,菱形ABCD 的顶点A 、B 在x 轴上,点A 在点B 的左侧,点D 在y 轴的正半轴上,∠BAD =60°,点A 的坐标为(-2,0).⑴求线段AD 所在直线的函数表达式. ⑵动点P 从点A 出发,以每秒1个单位长度的速度,按照A →D →C →B →A 的顺序在菱形的边上匀速运动一周,设运动时间为t 秒.求t 为何值时,以点P 为圆心、以1为半径的圆与对角线AC 相切?第20题图A B C N M PA M N P 1 C P 2B ACMNP 1 P 2 P 2009 ……B 第23题图2 第23题图1第23题图323.(本小题满分9分)已知:△ABC 是任意三角形.⑴如图1所示,点M 、P 、N 分别是边AB 、BC 、CA 的中点.求证:∠MPN =∠A .⑵如图2所示,点M 、N 分别在边AB 、AC 上,且13AM AB =,13AN AC =,点P 1、P 2是边BC的三等分点,你认为∠MP 1N +∠MP 2N =∠A 是否正确?请说明你的理由. ⑶如图3所示,点M 、N 分别在边AB 、AC 上,且12010AM AB =,12010AN AC =,点P 1、P 2、……、P 2009是边BC 的2018等分点,则∠MP 1N +∠MP 2N +……+∠MP 2009N =____________.(请直接将该小问的答案写在横线上.)24.(本小题满分9分)如图所示,抛物线223y x x =-++与x 轴交于A 、B 两点,直线BD 的函数表达式为y =+l 与直线BD 交于点C 、与x 轴交于点E .⑴求A 、B 、C 三个点的坐标.⑵点P 为线段AB 上的一个动点(与点A 、点B 不重合),以点A 为圆心、以AP 为半径的圆弧与线段AC 交于点M ,以点B 为圆心、以BP 为半径的圆弧与线段BC 交于点N ,分别连接AN 、BM 、MN .①求证:AN =BM .②在点P 运动的过程中,四边形AMNB 的面积有最大值还是有最小值?并求出该最大值或最小值.济南市2018年初三年级学业水平考试数学试题参考答案及评分标准二、填空题13. 2(1)x + 14. 70 15.9x =- 三、解答题18.(1)解:224x xx +-⎧⎨-⎩>≤解不等式①,得1x ->, (1)分 解不等式②,得2x ≥-, ················· 2分 ∴不等式组的解集为1x ->. ················· 3分 (2) 证明:∵BC ∥AD ,AB =DC ,∴∠BAM =∠CDM , ·················· 1分 ∵点M 是AD 的中点,∴AM =DM , ····················· 2分∴△ABM ≌△DCM , ·················· 3分 ∴BM =CM . ····················· 4分 19.(1)解:原式0(3)- ·············· 1分2+1 ···················· 2分 1 ····················· 3分(2)解:∵△ABC 中,∠C =90º,∠B =30º,∴∠BAC =60º,∵AD 是△ABC 的角平分线,∴∠CAD =30º, ···················· 1分 ∴在Rt△ADC 中,cos30ACAD =︒············· 2分①②第22题图··········· 3分=2 . ·············· 4分20.解:a····························· 6分总共有16种结果,每种结果出现的可能性相同,其中ab =2的结果有2种, ································ 7分∴a 与 b 的乘积等于2的概率是18. ·············· 8分21.解:设BC 边的长为x 米,根据题意得 ············· 1分321202xx -=, ···················· 4分解得:121220x x ==,, ··················· 6分∵20>16,∴220x =不合题意,舍去, ················ 7分答:该矩形草坪BC 边的长为12米. ············ 8分 22. 解:⑴∵点A 的坐标为(-2,0),∠BAD =60°,∠AOD =90°,∴OD =OA ·tan60°=,∴点D 的坐标为(0,), ··············· 1分 设直线AD 的函数表达式为y kx b =+,20k b b -+=⎧⎪⎨=⎪⎩,解得k b ⎧⎪⎨=⎪⎩ ∴直线AD 的函数表达式为y +. ·········· 3分 ⑵∵四边形ABCD 是菱形, ∴∠DCB =∠BAD =60°,∴∠1=∠2=∠3=∠4=30°, AD =DC =CB =BA =4, ···················· 5分 如图所示:①点P 在AD 上与AC 相切时, AP 1=2r =2, ∴t 1=2.②点P 在DC 上与AC 相切时, CP 2=2r =2,DCMNO A B P 第24题图lxy FE AB C M N P 1第23题图P21 2 ∴AD +DP 2=6, ∴t 2=6. ········· 7分 ③点P 在BC 上与AC 相切时, CP 3=2r =2,∴AD +DC +CP 3=10, ∴t 3=10. ········· 8分 ④点P 在AB 上与AC 相切时, AP 4=2r =2,∴AD +DC +CB +BP 4=14, ∴t 4=14,∴当t =2、6、10、14时,以点P 为圆心、以1为半径的圆与对角线AC 相切. ··············· 9分23. ⑴证明:∵点M 、P 、N 分别是AB 、BC 、CA 的中点, ∴线段MP 、PN 是△ABC 的中位线,∴MP ∥AN ,PN ∥AM , ······ 1分∴四边形AMPN 是平行四边形, · 2分∴∠MPN =∠A . ······· 3分⑵∠MP 1N +∠MP 2N =∠A 正确. ····· 4分 如图所示,连接MN , ······· 5分 ∵13AM AN AB AC ==,∠A =∠A ,∴△AMN ∽△ABC ,∴∠AMN =∠B ,13MN BC =,∴MN ∥BC ,MN =13BC , ······· 6分∵点P 1、P 2是边BC 的三等分点,∴MN 与BP 1平行且相等,MN 与P 1P 2平行且相等,MN 与P 2C 平行且相等, ∴四边形MBP 1N 、MP 1P 2N 、MP 2CN 都是平行四边形, ∴MB ∥NP 1,MP 1∥NP 2,MP 2∥AC ,·················· 7分 ∴∠MP 1N =∠1,∠MP 2N =∠2,∠BMP 2=∠A , ∴∠MP 1N +∠MP 2N =∠1+∠2=∠BMP 2=∠A .················· 8分 ⑶∠A . ············· 9分24.解:⑴令2230x x -++=,解得:121,3x x =-=, ∴A (-1,0),B (3,0) ······· 2分 ∵223y x x =-++=2(1)4x --+, ∴抛物线的对称轴为直线x =1,将x=1代入y=+y∴C(1,. ········3分⑵①在Rt△ACE中,tan∠CAE=CE AE=∴∠CAE=60º,由抛物线的对称性可知l是线段AB的垂直平分线,∴AC=BC,∴△ABC为等边三角形,················· 4分∴AB= BC =AC = 4,∠ABC=∠ACB= 60º,又∵AM=AP,BN=BP,∴BN = CM,∴△ABN≌△BCM,∴AN=BM. ························ 5分②四边形AMNB的面积有最小值.············· 6分设AP=m,四边形AMNB的面积为S,由①可知AB= BC= 4,BN = CM=BP,S△ABC×42=∴CM=BN= BP=4-m,CN=m,过M作MF⊥BC,垂足为F,则MF=MC)m -,∴S△CMN=12CN MF=12m)m-=2,······· 7分∴S=S△ABC-S△CMN=-(2+)22)m-+···················· 8分∴m=2时,S取得最小值··············· 9分。
2018山东中考数学试卷答案解析
2018山东中考数学试卷答案解析2018年中考逼近,山东的同学都有认真在备考吗?数学的试卷都做了吗?下面由店铺为大家提供关于2018山东中考数学试卷答案解析,希望对大家有帮助!2018山东中考数学试卷一、选择题本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 的相反数是( )A. B. C. D.【考点】相反数.【分析】根据:“性质符号相反,绝对值相等的两个数是互为相反数”求解即可.【解答】解:的相反数是,故选:C.2.C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个.请将100万用科学记数法表示为( )A. B. C. D.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a| <10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:100万=1000000=1×106,故答案为:A.3.下列几何体中,其主视图为三角形的是( )A. B. C. D.【分析】主视图是从物体的正面看,所得到的图形.【解答】解:主视图是从物体的正面看,所得到的图形为三角形的是D故选:D.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.4.下列运算正确的是( )A. B.C. D.【分析】根据整式的运算法则即可求出答案.【解答】解:A原式=a5,故A不正确;B原式=a﹣6,故B不正确;D原式=b2c2,故D不正确;故选C【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.5.若分式的值为零,则的值是( )A.1B.- 1C.D.2【分析】分式的分母不能为0【解答】解:∵ =0∴∴故选A【点评】本题考查分式的意义,解题的关键是熟练记住知识点,本题属于基础题型.6.若,,则等于( )A.2B.1C.-2D.-1【考点】完全平方公式,代数式的值,整体思想【分析】根据完全平方公式对变形,再整体代入可得.【解答】解:∵∴∵∴ =1故选B7.将二次函数的图象沿轴向右平移2个单位长度,得到的函数表达式是( )A. B.C. D.【考点】二次函数平移【分析】利用二次函数平移规律:①将抛物线解析式转化为顶点式,确定其顶点坐标;② 值正右移,负左移; 值正上移,负下移,概括成八字诀“左加右减,上加下减”,求出即可。
2018山东济南市中考数学试题[答案解析]
山东省济南市2018年学业水平考试数学试题一、选择题(本大题共12小题,每小题4分,共48分)1.(2018济南,1,4分)4的算术平方根是()A.2 B.-2 C.±2 D. 2【答案】A2.(2018济南,2,4分)如图所示的几何体,它的俯视图是()A. B. C. D.【答案】D3.(2018济南,3,4分)2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A.0.76×104 B.7.6×103 C.7.6×104 D.76×102【答案】B4.(2018济南,4,4分)“瓦当”是中国古建筑装饰××头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是()A B C D【答案】D5.(2018济南,5,4分)如图,AF是∠BAC的平分线,DF∥AC,若∠1=35°,则∠BAF的度数为()A.17.5° B.35° C.55° D.70°【答案】B6.(2018济南,6,4分)下列运算正确的是()A.a2+2a=3a3 B.(-2a3)2=4a51ABCDFC .(a +2)(a -1)=a 2+a -2D .(a +b )2=a 2+b 2【答案】C 7.(2018济南,7,4分)关于x 的方程3x -2m =1的解为正数,则m 的取值范围是( ) A .m <-12 B .m >-12 C .m >12 D .m <12【答案】B8.(2018济南,8,4分)在反比例函数y =-2x图象上有三个点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3),若x 1<0<x 2<x 3,则下列结论正确的是( )A .y 3<y 2<y 1B .y 1<y 3<y 2C .y 2<y 3<y 1D .y 3<y 1<y 2【答案】C 9.(2018济南,9,4分)如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( ) A .(0,4) B .(1,1) C .(1,2) D .(2,1)【答案】C 10.(2018济南,10,4分)下面的统计图大致反应了我国2012年至2017年人均阅读量的情况.根据统计图提供的信息,下列推断不合理...的是( ) A .与2016年相比,2017年我国电子书人均阅读量有所降低 B .2012年至2017年,我国纸质书的人均阅读量的中位数是4.57C .从2014年到2017年,我国纸质书的人均阅读量逐年增长D .2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多【答案】B 11.(2018济南,11,4分)如图,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( ) A .6π-92 3 B .6π-9 3 C .12π-92 3 D .9π4【答案】A12.(2018济南,11,4分)若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”.例如:P (1,0)、Q (2,-2)都是“整点”.抛物线y =mx 2-4mx +4m -2(m >0)与x 轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( ) A .12≤m <1 B .12<m ≤1 C .1<m ≤2 D .1<m <2【答案】B【解析】解:∵y =mx 2-4mx +4m -2=m (x -2)2-2且m >0,∴该抛物线开口向上,顶点坐标为(2,-2),对称轴是直线x =2.由此可知点(2,0)、点(2,-1)、顶点(2,-2)符合题意. 方法一:①当该抛物线经过点(1,-1)和(3,-1)时(如答案图1),这两个点符合题意.将(1,-1)代入y =mx 2-4mx +4m -2得到-1=m -4m +4m -2.解得m =1.此时抛物线解析式为y =x 2-4x +2.由y =0得x 2-4x +2=0.解得x 1=2-2≈0.6,x 2=2+2≈3.4.AB CDO (A ) ABO年份电子书纸质书62345∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意.则当m =1时,恰好有 (1,0)、(2,0)、(3,0)、(1,-1)、(3,-1)、(2,-1)、(2,-2)这7个整点符合题意. ∴m ≤1.【注:m 的值越大,抛物线的开口越小,m 的值越小,抛物线的开口越大,】答案图1(m =1时) 答案图2( m =12时)②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意. 此时x 轴上的点 (1,0)、(2,0)、(3,0)也符合题意.将(0,0)代入y =mx 2-4mx +4m -2得到0=0-4m +0-2.解得m =12.此时抛物线解析式为y =12x 2-2x .当x =1时,得y =12×1-2×1=-32<-1.∴点(1,-1)符合题意.当x =3时,得y =12×9-2×3=-32<-1.∴点(3,-1) 符合题意.综上可知:当m =12时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,-1)、(3,-1)、(2,-2)、(2,-1)都符合题意,共有9个整点符合题意, ∴m =12不符合题.∴m >12.综合①②可得:当12<m ≤1时,该函数的图象与x 轴所围城的区域(含边界)内有七个整点,故答案选B .方法二:根据题目提供的选项,分别选取m =12,m =1,m =2,依次加以验证.①当m =12时(如答案图3),得y =12x 2-2x .由y =0得12x 2-2x =0.解得x 1=0,x 2=4.∴x 轴上的点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)符合题意. 当x =1时,得y =12×1-2×1=-32<-1.∴点(1,-1)符合题意.当x =3时,得y =12×9-2×3=-32<-1.∴点(3,-1) 符合题意.综上可知:当m =12时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,-1)、(3,-1)、(2,-2)、(2,-1)都符合题意,共有9个整点符合题意, ∴m =12不符合题.∴选项A 不正确.答案图3( m =12时) 答案图4(m =1时) 答案图5(m =2时)②当m =1时(如答案图4),得y =x 2-4x +2.由y =0得x 2-4x +2=0.解得x 1=2-2≈0.6,x 2=2+2≈3.4. ∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意.当x =1时,得y =1-4×1+2=-1.∴点(1,-1)符合题意. 当x =3时,得y =9-4×3+2=-1.∴点(3,-1) 符合题意.综上可知:当m =1时,点(1,0)、(2,0)、(3,0)、(1,-1)、(3,-1)、(2,-2) 、(2,-1)都符合题意,共有7个整点符合题意, ∴m =1符合题. ∴选项B 正确.③当m =2时(如答案图5),得y =2x 2-8x +6.由y =0得2x 2-8x +6=0.解得x 1=1,x 2=3. ∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意.综上可知:当m =2时,点(1,0)、(2,0)、(3,0)、(2,-2) 、(2,-1)都符合题意,共有5个整点符合题意, ∴m =2不符合题.二、填空题(本大题共6小题,每小题4分,共24分)13.(2018济南,13,4分)分解因式:m 2-4=____________; 【答案】(m +2)(m -2) 14.(2018济南,14,4分)在不透明的盒子中装有5个黑色棋子和若于个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑包棋子的概率是14,则白色棋子的个数是=____________; 【答案】15 15.(2018济南,15,4分)一个正多边形的每个内角等于108°,则它的边数是=____________; 【答案】516.(2018济南,16,4分)若代数式x -2x -4的值是2,则x =____________; 【答案】6 17.(2018济南,17,4分)A 、B 两地相距20km ,甲乙两人沿同一条路线从A 地到B 地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h 的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离s (km )与时间t (h )的关系如图所示,则甲出发____________小时后和乙相遇.【答案】165.【解析】y 甲=4t (0≤t ≤4);y 乙=⎩⎨⎧2(t -1)(1≤t ≤2)9(t -2)t (2<t ≤4);由方程组⎩⎨⎧y =4ty =9(t -2)解得⎩⎨⎧t =165y =645. ∴答案为165.18.(2018济南,18,4分)如图,矩形EFGH 的四个顶点分别在矩形ABCD 的各条边上,AB=EF ,FG =2,GC =3.有以下四个结论:①∠BGF =∠CHG ;②△BFG ≌△DHE ;③tan ∠BFG =12;④矩形EFGH 的面积是43.其中一定成立的是____________.(把所有正确结论的序号填在横线上)F【答案】①②④.【解析】设EH =AB =a ,则CD =GH =a . ∵∠FGH =90°,∴∠BGF +∠CGH =90°. 又∵∠CGH +∠CHG =90°,∴∠BGF =∠CHG …………………………………故①正确.同理可得∠DEH =∠CHG . ∴∠BGF =∠DEH .又∵∠B =∠D =90°,FG =EH ,∴△BFG ≌△DHE …………………………………故②正确. 同理可得△AFE ≌△CHG .∴AF =CH . 易得△BFG ∽△CGH .∴BF CG =FG GH .∴BF 3=2a .∴BF =6a.∴AF =AB -BF =a -6a.∴CH =AF =a -6a.在Rt △CGH 中,∵CG 2+CH 2=GH 2,∴32+( a -6a )2=a 2.解得a =2 3.∴GH =2 3.∴BF = a -6a= 3.在Rt △BFG 中,∵cos ∠BFG =BF FG =32,∴∠BFG =30°. ∴tan ∠BFG =tan30°=33.…………………………………故③正确. 矩形EFGH 的面积=FG ×GH =2×23=43…………………………………故④正确.三、解答题(本大题共9小题,共78分)19.(2018济南,19,6分)计算:2-1+│-5│-sin30°+(π-1)0.解:2-1+│-5│-sin30°+(π-1)0.=12+5-12+1=620.(2018济南,20,6分)解不等式组:⎩⎪⎨⎪⎧3x +1<2x +3 ①2x >3x -12 ② 解:由① ,得3x -2x <3-1. ∴x <2. 由② ,得 4x >3x -1. ∴x >-1.∴不等式组的解集为-1<x <2.21.(2018济南,21,6分)如图,在□ABCD 中,连接BD ,E 是DA 延长线上的点,F 是BC 延长线上的点,且 AE =CF ,连接EF 交BD 于点O .求证:OB =O D .证明:∵□ABCD中,∴AD=BC,AD∥B C.∴∠ADB=∠CB D.又∵AE=CF,∴AE+AD=CF+B C.∴ED=F B.又∵∠EOD=∠FOB,∴△EOD≌△FO B.∴OB=O D.22.(2018济南,22,8分)本学期学校开展以“感受中华传统买德”为主题的研学部动,组织150名学生多观历史好物馆和民俗晨览馆,每一名学生只能参加其中全顺活动,共支付票款2000元,票价信息如下:(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?解:(1)设参观历史博物馆的有x人,则参观民俗展览馆的有(150-x)人,依题意,得10x+20(150-x)2000.10x+3000-20x=2000.-10x=-1000.∴x=100.∴150-x=50.答:参观历史博物馆的有100人,则参观民俗展览馆的有50人.(2)2000-150×10=500(元).答:若学生都去参观历史博物馆,则能节省票款500元.23.(2018济南,23,8分)如图AB是⊙O的直径,PA与⊙O相切于点A,BP与⊙O相较于点D,C为⊙O上的一点,分别连接CB、CD,∠BCD=60°.(1)求∠ABD的度数;(2)若AB=6,求PD的长度.C【解析】解:(1)方法一:连接AD (如答案图1所示). ∵BA 是⊙O 直径,∴∠BDA =90°.∵⌒BD =⌒BD ,∴∠BAD =∠C =60°.∴∠ABD =90°-∠BAD =90°-60°=30°.CC第23题答案图1 第23题答案图2 方法二:连接DA 、OD (如答案图2所示),则∠BOD =2∠C =2×60°=120°. ∵OB =OD ,∴∠OBD =∠ODB =12(180°-120°)=30°.即∠ABD =30°.(2)∵AP 是⊙O 的切线,∴∠BAP =90°. 在Rt △BAD 中,∵∠ABD =30°,∴DA =12BA =12×6=3.∴BD =3DA =33.在Rt △BAP 中,∵cos ∠ABD =AB PB ,∴cos30°=6PB =32.∴BP =43.∴PD =BP -BD =43-33=3.24.(2018济南,24,10分)某校开设了“3D ”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1 、图2两幅均不完整的统计图表.请您根据图表中提供的信息回答下列问题:(1)统计表中的a =________,b =_______; (2)“D ”对应扇形的圆心角为_______度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数; (4)小明和小亮参加校本课程学习,若每人从“A ”、“B ”、“C ”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率. 解:(1)a =36÷0.45=80. b =16÷80=0.20.(2)“D ”对应扇形的圆心角的度数为:8÷80×360°=36°.(3)估计该校2000名学生中最喜欢“数学史”校本课程的人数为: 2000×0.25=500(人). (4)列表格如下:3种,所以两人恰好选中同一门校本课程的概率为:39=13.25.(2018济南,25,10分)如图,直线y =ax +2与x 轴交于点A (1,0),与y 轴交于点B (0,b ).将线段AB 先向右平移1个单位长度、再向上平移t (t >0)个单位长度,得到对应线段CD ,反比例函数y=k x(x >0)的图象恰好经过C 、D 两点,连接AC 、B D . (1)求a 和b 的值;(2)求反比例函数的表达式及四边形ABDC 的面积;(3)点N 在x 轴正半轴上,点M 是反比例函数y =k x(x >0)的图象上的一个点,若△CMN 是以CM 为直角边的等腰直角三角形时,求所有满足条件的点M 的坐标.第25题图 第25题备用图【解析】解:(1)将点A (1,0)代入y =ax +2,得0=a +2.∴a =-2. ∴直线的解析式为y =-2x +2.将x =0代入上式,得y =2.∴b =2.∴点B (0,2). (2)由平移可得:点C (2,t )、D (1,2+t ).将点C (2,t )、D (1,2+t )分别代入y =kx ,得 ⎩⎨⎧t =k 22+t =k 1.解得⎩⎨⎧k =4t =2.∴反比例函数的解析式为y =4x,点C (2,2)、点D (1,4).分别连接BC 、AD (如答案图1).∵B (0,2)、C (2,2),∴BC ∥x 轴,BC =2. ∵A (1,0)、D (1,4),∴AD ⊥x 轴,AD =4. ∴BC ⊥A D .∴S 四边形ABDC =12×BC ×AD =12×2×4=4.第25题答案图1(3)①当∠NCM =90°、CM =CN 时(如答案图2所示),过点C 作直线l ∥x 轴,交y 轴于点G .过点M 作MF ⊥直线l 于点F ,交x 轴于点H .过点N 作NE ⊥直线l 于点E . 设点N (m ,0)(其中m >0),则ON =m ,CE =2-m . ∵∠MCN =90°,∴∠MCF +∠NCE =90°.∵NE ⊥直线l 于点E ,∴∠ENC +∠NCE =90°.∴∠MCF =∠EN C .又∵∠MFC =∠NEC =90°,CN =CM ,∴△NEC ≌△CFM . ∴CF =EN =2,FM =CE =2-m .∴FG =CG +CF =2+2=4.∴x M =4. 将x =4代入y =4x,得y =1.∴点M (4,1).l第25题答案图2 第25题答案图3 ②当∠NMC =90°、MC =MN 时(如答案图3所示),过点C 作直线l ⊥y 轴与点F ,则CF =x C =2.过点M 作MG ⊥x 轴于点G ,MG 交直线l 与点E ,则MG ⊥直线l 于点E ,EG =y C =2.∵∠CMN =90°,∴∠CME +∠NMG =90°.∵ME ⊥直线l 于点E ,∴∠ECM +∠CME =90°.∴∠NMG =∠ECM .又∵∠CEM =∠NGM =90°,CM =MN ,∴△CEM ≌△MGN .∴CE =MG ,EM =NG .设CE =MG =a ,则y M =a ,x M =CF +CE =2+a .∴点M (2+a ,a ).将点M (2+a ,a ) 代入y =4x ,得a =42+a.解得a 1=5-1,a 2=-5-1.∴x M=2+a=5+1.∴点M(5+1,5-1).综合①②可知:点M的坐标为(4,1)或(5+1,5-1).26.(2018济南,26,12分)在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,直接写出∠ADE的度数;(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB=6,求CF的最大值.第26题图1 第26题图2【解析】解:(1) ∠ADE=30°.(2) (1)中的结论是否还成立证明:连接AE(如答案图1所示).∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°.又∵∠ACM=∠ACB,∴∠B=∠ACM=30°.又∵CE=BD,∴△ABD≌△ACE.∴AD=AE,∠1=∠2.∴∠2+∠3=∠1+∠3=∠BAC=120°.即∠DAE=120°.又∵AD =AE ,∴∠ADE =∠AED =30°.D答案图1 答案图2(3) ∵AB =AC ,AB =6,∴AC =6.∵∠ADE =∠ACB =30°且∠DAF =∠CAD ,∴△ADF ∽△AC D.∴AD AC =AF AD .∴AD 2=AF ·A C .∴AD 2=6AF .∴AF =AD 26.∴当AD 最短时,AF 最短、CF 最长.易得当AD ⊥BC 时,AF 最短、CF 最长(如答案图2所示),此时AD =12AB =3.∴AF 最短=AD 26=326=32. ∴CF 最长=AC - AF 最短=6-32=92.27.(2018济南,27,12分)如图1,抛物线y =ax 2+bx +4过A (2,0)、B (4,0)两点,交y 轴于点C ,过点C 作x 轴的平行线与不等式抛物线上的另一个交点为D ,连接AC 、B C .点P 是该抛物线上一动点,设点P 的横坐标为m (m >4).(1)求该抛物线的表达式和∠ACB 的正切值; (2)如图2,若∠ACP =45°,求m 的值;(3)如图3,过点A 、P 的直线与y 轴于点N ,过点P 作PM ⊥CD ,垂足为M ,直线MN 与x 轴交于点Q ,试判断四边形ADMQ 的形状,并说明理由.第27题图1 第27题图2 第27题图3【解析】解:(1)将点A (2,0)和点B (4,0)分别代入y =ax 2+bx +4,得⎩⎨⎧0=4a +2x +40=16a +4b +4.解得⎩⎪⎨⎪⎧a =12b =-3.∴该抛物线的解析式为y =12x 2-3x +4.将x =0代入上式,得y =4.∴点C (0,4),OC =4.在Rt △AOC 中,AC =OA 2+OC 2=22+42=2 5.设直线AC 的解析式为y =kx +4,将点A (2,0)代入上式,得0=2k +4.解得k =-2. ∴直线AC 的解析式为y =-2x +4.同理可得直线BC 的解析式为y =-x +4. 求tan ∠ACB 方法一:过点B 作BG ⊥CA ,交CA 的延长线于点G (如答案图1所示),则∠G =90°.∵∠COA =∠G =90°,∠CAO =∠BAG ,∴△GAB ∽△OA C.∴BG AG =OC OA =42=2.∴BG =2AG . 在Rt △ABG 中,∵BG 2+AG 2=AB 2,∴(2AG )2+AG 2=22.AG =25 5.∴BG =455,CG =AC +AG =25+255=125 5.在Rt △BCG 中,tan ∠ACB =BG CQ =4551255=13.第27题答案图1 第27题答案图2求tan ∠ACB 方法二:过点A 作AE ⊥AC ,交BC 于点E (如答案图2所示),则k AE ·k AC =-1.∴-2k AE =-1.∴k AE =12.∴可设直线AE 的解析式为y =12x +m .将点A (2,0)代入上式,得0=12×2+m .解得m =-1.∴直线AE 的解析式为y =12x -1.由方程组⎩⎪⎨⎪⎧y =12x -1y =-x +4解得⎩⎨⎧x =103y =23.∴点E (103,23).∴AE =⎝ ⎛⎭⎪⎫2-1032+⎝ ⎛⎭⎪⎫0-232=235. 在Rt △AEC 中,tan ∠ACB =AE AC =23525=13.求tan ∠ACB 方法三:过点A 作AF ⊥BC ,交BC 点E (如答案图3所示),则k AF ·k BC =-1. ∴-k AF =-1.∴k AF =1.∴可设直线AF 的解析式为y =x +n .将点A (2,0)代入上式,得0=2+n .解得n =-2.∴直线AF 的解析式为y =x -2.由方程组⎩⎨⎧y =x -2y =-x +4解得⎩⎨⎧x =3y =1.∴点F (3,1).∴AF =(3-2)2+(1-0)2=2,CF =(3-0)2-(1-4)2=3 2.在Rt △AEC 中,tan ∠ACB =AF CF =232=13.第27题答案图3(2)方法一:利用“一线三等角”模型将线段AC 绕点A 沿顺时针方向旋转90°,得到线段AC ′,则 AC ′=AC ,∠C ′AC =90°,∠CC ′A =∠ACC ′=45°. ∴∠CAO +∠C ′AB =90°. 又∵∠OCA +∠CAO =90°, ∴∠OCA =∠C ′A B .过点C ′作C ′E ⊥x 轴于点E .则∠C ′EA =∠COA =90°. ∵∠C ′EA =∠COA =90°,∠OCA =∠C ′AB ,AC ′=AC ,∴△C ′EA ≌△AO C .∴C ′E =OA =2,AE =OC =4.∴OE =OA +AE =2+4=6. ∴点C ′(6,2).设直线C ′C 的解析式为y =hx +4.将点C ′(6,2)代入上式,得2=6h +4.解得h =-13.∴直线C ′C 的解析式为y =-13x +4.∵∠ACP =45°,∠ACC ′=45°,∴点P 在直线C ′C 上.设点P 的坐标为(x ,y ),则x 是方程12x 2-3x +4=-13x +4的一个解.将方程整理,得3x 2-14x =0.解得x 1=163,x 2=0(不合题意,舍去).将x 1=163代入y =-13x +4,得y =209.∴点P 的坐标为(163,209).第27题答案图4 第27题答案图5(2)方法二:利用正方形中的“全角夹半角”模型.过点B 作BH ⊥CD 于点H ,交CP 于点K ,连接AK .易得四边形OBHC 是正方形. 应用“全角夹半角”可得AK =OA +HK .设K (4,h ),则BK =h ,HK =HB -KB =4-h ,AK =OA +HK =2+(4-h )=6-h .在Rt △ABK 中,由勾股定理,得AB 2+BK 2=AK 2.∴22+ h 2=(6-h )2.解得h =83.∴点K (4,83).设直线CK 的解析式为y =hx +4.将点K (4,83)代入上式,得83=4h +4.解得h =-13.∴直线CK 的解析式为y =-13x +4.设点P 的坐标为(x ,y ),则x 是方程12x 2-3x +4=-13x +4的一个解.将方程整理,得3x 2-14x =0.解得x 1=163,x 2=0(不合题意,舍去).将x 1=163代入y =-13x +4,得y =209.∴点P 的坐标为(163,209).(3)四边形ADMQ 是平行四边形.理由如下: ∵CD ∥x 轴,∴y C =y D =4.将y =4代入y =12x 2-3x +4,得 4=12x 2-3x +4.解得x 1=0,x 2=6.∴点D (6,4).根据题意,得P (m ,12m 2-3m +4),M (m ,4),H (m ,0).∴PH =12m 2-3m +4),OH =m ,AH =m -2,MH =4.①当4<m <6时(如答案图5所示),DM =6-m∵△OAN ∽△HAP ,∴ON PH =OA AH .∴ON 12m 2-3m +4=2m -2.∴ON =m 2-6m +8m -2=(m -4)(m -2)m -2=m -4.∵△ONQ ∽△HMP ,∴ON HM =OQ HQ .∴ON 4=OQm -OQ .∴m -44=OQm -OQ.∴OQ =m -4. ∴AQ =OA -OQ =2-(m -4)=6-m . ∴AQ = DM =6-m .又∵AQ ∥DM ,∴四边形ADMQ 是平行四边形.第27题答案图6 第27题答案图7②当m>6时(如答案图6所示),同理可得:四边形ADMQ是平行四边形.综合①、②可知:四边形ADMQ是平行四边形.。
2018年山东省济南市中考数学试卷含答案
2018年济南中考数学试卷解读一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.=9=﹣<、亿吨的有分析: 科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 解答: 解:28.3亿=28.3×108=2.83×109. 故选D .点评: 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.D=74°,则∠B 的度数为< )DXDiTa9E3dA . 68°B . 32°C . 22°D . 16° 考点:平行线的性质;等腰三角形的性质. 分析: 根据等腰三角形两底角相等求出∠C 的度数,再根据两直线平行,内错角相等解答即可. 解答: 解:∵CD=CE , ∴∠D=∠DEC ,∵∠D=74°,∴∠C=180°﹣74°×2=32°, ∵AB ∥CD ,∴∠B=∠C=32°. 故选B .点评: 本题考查了两直线平行,内错角相等的性质,等腰三角形两底角相等的性质,熟记性质是解题的关键.A .B .C .D .考点:由三视图判断几何体. 分析: 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解解:从俯视图可以看出直观图的下面部分为长方体,上面部分t<秒)的关系如图所示,则下列说法正确的是< )RTCrpUDGiTy=y=,匀的骰子<六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过关;否则不算过关,则能过第二关的概率是< )次抛掷所出现的点数之和大于n2n26 7 8 9 10 11 125 6 7 8 9 10 114 5 6 7 8 9 103 4 5 6 7 8 92 3 4 5 6 7 81 2 3 4 5 6 71 2 3 4 5 6∴能过第二关的概率是:=.AB为直径画半圆,则图中阴影部分的面积为< )jLBHrnAILg==×<πAOB=OB×OA=,OBA==AOB=.①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+<b﹣1)x+c<0.xHAQX74J0X其中正确的个数为< )A .1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=1时,y=1+b+c=1;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.解答:解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误;当x=1时,y=1+b+c=1,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+<b﹣1)x+c<0.故④正确.故选B.点评:主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2018次碰到矩形的边时,点P的坐标为< )LDAYtRyKfEA .<1,4)B.<5,0)C.<6,4)D.<8,3)考点:规律型:点的坐标.专题:规律型.4分.13.<4分)<2018•济南)cos30°的值是.解:cos30°=×=故答案为:数学知识解释出这一现象的原因两点之间线段最短.Zzz6ZB2Ltk析:解答:解:为抄近路践踏草坪原因是:两点之间线段最短.故答案为:两点之间线段最短.点评:本题考查了线段的性质,是基础题,主要利用了两点之间线段最短.品种第1年第2年第3年第4年第5年甲9.89.910.11010.2乙9.410.310.89.79.8甲中水稻品种的产量比较稳考点:方差.分析:根据方差公式S2=[<x1﹣)2+<x2﹣)2+…+<xn﹣)2]分别求出两种水稻的产量的方差,再进行比较即可.解答:解:甲种水稻产量的方差是:[<9.8﹣10)2+<9.9﹣10)2+<10.1﹣10)2+<10﹣10)2+<10.2﹣10)2]=0.02,乙种水稻产量的方差是:[<9.4﹣10)2+<10.3﹣10)2+<10.8﹣10)2+<9.7﹣10)2+<9.8﹣10)2]=0.124.∴0.02<0.124,∴产量比较稳定的小麦品种是甲,故答案为:甲点评:此题考查了方差,用到的知识点是方差和平均数的计算公式,一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[<x1﹣)2+<x2﹣)2+…+<xn﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.16.<4分)<2018•济南)函数y=与y=x﹣2图象交点的横坐标分别为a,b,则+的值为﹣2 .dvzfvkwMI1考点:反比例函数与一次函数的交点问题.专题:计算题.分析:先根据反比例函数与一次函数的交点坐标满足两函数的解读式得到=x﹣2,去分母化为一元二次方程得到x2﹣2x﹣1=0,根据根与系数的关系得到a+b=2,ab=﹣1,然后变形+得,再利用整体思想计算即可.解:根据题意得=x﹣2,∵函数y=与y=x﹣2图象交点的横坐标分别为a,b,∴+===AEF 的顶点E、F分别在BC和CD上,下列结论:rqyn14ZNXI①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+.其中正确的序号是①②④<把你认为正确的都填上).,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAD≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,a2+<a﹣)2=4,解得a=,则a2=2+,S正方形ABCD=2+,④说法正确,故答案为①②④.点评:本题主要考查正方形的性质的知识点,解答本题的关键是熟练掌握全等三角形的证明以及辅助线的正确作法,此题难度不大,但是有一点麻烦.程或演算步骤.18.<6分)<2018•济南)先化简,再求值:÷,其中考点:分式的化简求值.专题:计算题.分析:将括号内的部分通分后相减,再将除法转化为乘法后代入求值.解答:解:原式=[﹣]•=•=•=.当a=﹣1时,原式==1.进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量<单位:吨),并将调查数据进行如下整理:EmxvxOtOco4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5正正118.0<2)从直方图中你能得到什么信息?<写出两条即可);<3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?SixE2yXPq511+19=30,故家庭月均用水量应该定为5吨.解答:解:<1)频数分布表如下:分组划记频数2.0<x≤3.5 正正113.5<x≤5.0 195.0<x≤6.56.5<x≤8.01358.0<x≤9.5合计250频数分布直方图如下:<2)从直方图可以看出:①居民月平均用水量大部分在2.0至6.5之间;②居民月平均用水量在3.5<x≤5.0范围内的最多,有19户;<3)要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为5吨,因为月平均用水量不超过5吨的有30户,30÷50=60%.点评:本题考查读频数分布直方图和频数分布表的能力及利用统计图表获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.6ewMyirQFL<1)求AD的长;<2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.考点:切线的判定与性质;直角三角形斜边上的中线;平行四边形的性质.专题:计算题.分<1)连接BD,由ED为圆O的直径,利用直径所对的圆周角为AD=1设一项水利工程,工程需要运送的土石方总量为360万M3.kavU42VRUs<1)写出运输公司完成任务所需的时间y<单位:天)与平均每天的工作量x<单位:万M3)之间的函数关系式,并给出自变量x的取值范围;y6v3ALoS89<2)由于工程进度的需要,实际平均每天运送土石比原计划多5000M3,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万M3?把y=120代入y=,得x=3y=∴y=<2≤x≤3);根据题意得:一行<或某一列)各数之和为负数,则改变该行<或该列)中所有数的符号,称为一次“操作”.0YujCfmUCw<1)数表A如表1所示,如果经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负整数,请写出每次“操作”后所得的数表;<写出一种方法即可)eUts8ZQVRd表1的各数之和与每列的各数之和均为非负整数,求整数a的值sQsAEJkW5T表2.列行解得:≤a,ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;<尺规作图,不写做法,保留作图痕迹);GMsIasNXkA<2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;TIrRGchYzg<3)运用<1)、<2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100M,AC=AE,求BE的长.7EqZcWLZNX。
2018年山东省济南市中考数学试题(word答案)(可编辑修改word版)
D1F 精心整理山东省济南市2018 年学业水平考试数学试题一、选择题(本大题共12 小题,每小题4 分,共48 分)1.(2018济南,1,4 分)4 的算术平方根是() A.2B.-2C.±2D.【答案】A2.(2018 济南,2,4 分)如图所示的几何体,它的俯视图是()A.B.C.D.【答案】D3.(2018 济南,3,4 分)2018 年 1 月,“墨子号”量子卫星实现了距离达 7600 千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字 7600 用科学记数法表示为()A.0.76×104B.7.6×103C.7.6×104D.76×102【答案】B4.(2018 济南,4,4 分)“瓦当”是中国古建筑装饰××头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是()ABCD【答案】D5.(2018 济南,5,4 分)如图,AF是∠BAC的平分线,DF∥AC,若∠1=35°,则∠BAF的度数为()A.17.5°B.35°C.55°D.70°BC【答案】B6.(2018 济南,6,4 分)下列运算正确的是() A.a2+2a=3a3B.(-2a3)2=4a5C.(a+2)(a-1)=a2+a-2D.(a+b)2=a2+b2【答案】C7.(2018 济南,7,4 分)关于x的方程 3x-2m=1 的解为正数,则m的取值范围是()A.m<-B.m>-C.m>D.m<【答案】B8.(2018 济南,8,4 分)在反比例函数y=-图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<0<x2<x3,则下列结论正确的是()A.y3<y2<y1B.y1<y3<y2C.y2<y3<y1D.y3<y1<y2【答案】C9.(2018 济南,9,4 分)如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转 90°,得到△A′B′C′,则点P 的坐标为()A.(0,4)B.(1,1)C.(1,2)D.(2,1)【答案】CA CD 10.(2018 济南,10,4 分)下面的统计图大致反应了我国 2012 年至 2017 年人均阅读量的情况.根据统计图提供的信息,下列推断不合理的是() A .与 2016 年相比,2017 年我国电子书人均阅读量有所降低B .2012 年至 2017 年,我国纸质书的人均阅读量的中位数是 4.57 C .从 2014 年到 2017 年,我国纸质书的人均阅读量逐年增长D .2013 年我国纸质书的人均阅读量比电子书的人均阅读量的 1.8 倍还多书书书/书65 4.3944.7 74.5 63.24.5 84.6 54.6 63 2.3 522.4 82 3.26 3.21 3.12书书书书书书【答案】B O 20122013 2014 2015 20162017书书11.(2018 济南,11,4 分)如图,一个扇形纸片的圆心角为 90°,半径为 6.如图 2,将这张扇形纸片折叠,使点 A 与点 O 恰好重合,折痕为 CD ,图中阴影为重合部分,则阴影部分的面积为() A .6π-B .6π-9C .12π-D .AOB【答案】A O (A B)12.(2018 济南,11,4 分)若平面直角坐标系内的点 M 满足横、纵坐标都为整数,则把点 M 叫做“整点”.例如:P (1,0)、Q (2,-2)都是“整点”.抛物线 y =mx 2-4mx +4m -2(m >0)与 x 轴交于点 A 、B 两点,若该抛物线在 A 、B 之间的部分与线段 AB 所围成的区域(包括边界)恰有七个整点,则 m 的取值范围是()A .≤m <1B .<m ≤1C .1<m ≤2D .1<m <2 【答案】B 【解析】解:∵y =mx 2-4mx +4m -2=m (x -2)2-2 且 m >0,∴该抛物线开口向上,顶点坐标为(2,-2),对称轴是直线 x =2. 由此可知点(2,0)、点(2,-1)、顶点(2,-2)符合题意. 方法一:①当该抛物线经过点(1,-1)和(3,-1)时(如答案图 1),这两个点符合题意.将(1,-1)代入y=mx2-4mx+4m-2 得到-1=m-4m+4m-2.解得m=1.此时抛物线解析式为y=x2-4x+2.由y=0 得x2-4x+2=0.解得x1=2-≈0.6,x2=2+≈3.4.∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意.则当m=1 时,恰好有(1,0)、(2,0)、(3,0)、(1,-1)、(3,-1)、(2,-1)、(2,-2)这 7 个整点符合题意.∴m≤1.【注:m的值越大,抛物线的开口越小,m的值越小,抛物线的开口越大,】答案图 1(m=1 时)答案图 2(m=时)②当该抛物线经过点(0,0)和点(4,0)时(如答案图 2),这两个点符合题意.此时x 轴上的点(1,0)、(2,0)、(3,0)也符合题意.将(0,0)代入y=mx2-4mx+4m-2 得到 0=0-4m+0-2.解得m=.此时抛物线解析式为y=x2-2x.当x=1 时,得y=×1-2×1=-<-1.∴点(1,-1)符合题意.当x=3 时,得y=×9-2×3=-<-1.∴点(3,-1)符合题意.综上可知:当m=时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,-1)、(3,-1)、(2,-2)、(2,-1)都符合题意,共有 9 个整点符合题意,∴m=不符合题.∴m>.综合①②可得:当<m≤1时,该函数的图象与x 轴所围城的区域(含边界)内有七个整点,故答案选B.方法二:根据题目提供的选项,分别选取m=,m=1,m=2,依次加以验证.①当m=时(如答案图 3),得y=x2-2x.由y=0 得x2-2x=0.解得x1=0,x2=4.∴x 轴上的点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)符合题意.当x=1 时,得y=×1-2×1=-<-1.∴点(1,-1)符合题意.当x=3 时,得y=×9-2×3=-<-1.∴点(3,-1)符合题意.综上可知:当m=时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,-1)、(3,-1)、(2,-2)、(2,-1)都符合题意,共有 9 个整点符合题意,∴m=不符合题.∴选项A 不正确.答案图 3(m=时)答案图 4(m=1 时)答案图 5(m=2 时)②当m=1 时(如答案图 4),得y=x2-4x+2.由y=0 得x2-4x+2=0.解得x1=2-≈0.6,x2=2+≈3.4.∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意.当x=1 时,得y=1-4×1+2=-1.∴点(1,-1)符合题意.当x=3 时,得y=9-4×3+2=-1.∴点(3,-1)符合题意.综上可知:当m=1 时,点(1,0)、(2,0)、(3,0)、(1,-1)、(3,-1)、(2,-2)、(2,-1) 都符合题意,共有 7 个整点符合题意,∴m=1 符合题.∴选项B 正确.③当m=2 时(如答案图 5),得y=2x2-8x+6.由y=0 得 2x2-8x+6=0.解得x1=1,x2=3.∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意.综上可知:当m=2 时,点(1,0)、(2,0)、(3,0)、(2,-2)、(2,-1)都符合题意,共有5 个整点符合题意,∴m=2 不符合题.二、填空题(本大题共6 小题,每小题4 分,共24 分)13.(2018 济南,13,4 分)分解因式:m2-4=;【答案】(m+2)(m-2)14.(2018 济南,14,4 分)在不透明的盒子中装有 5 个黑色棋子和若于个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑包棋子的概率是,则白色棋子的个数是=;【答案】1515.(2018 济南,15,4 分)一个正多边形的每个内角等于108°,则它的边数是=;【答案】516.(2018 济南,16,4 分)若代数式的值是2,则x=;【答案】617.(2018 济南,17,4 分)A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h 的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离s(km)与时间t(h)的关系如图所示,则甲出发小时后和乙相遇.【答案】.【解析】y 甲=4t(0≤t≤4);y 乙=;由方程组解得Error!.∴答案为.18.(2018 济南,18,4 分)如图,矩形E FGH的四个顶点分别在矩形A BCD的各条边上,AB=EF,FG=2,GC=3.有以下四个结论:①∠BGF=∠CHG;②△BFG≌△DHE;③tan∠BFG=;④矩形EFGH 的面积是4.其中一定成立的是.(把所有正确结论的序号填在横线上)【答案】①②④.【解析】设EH=AB=a,则CD=GH=a.∵∠FGH=90°,∴∠BGF+∠CGH=90°.又∵∠CGH+∠CHG=90°,∴∠BGF=∠CHG ...................................................... 故①正确.同理可得∠DEH=∠CHG.∴∠BGF=∠DEH.又∵∠B=∠D=90°,FG=EH,∴△BFG≌△DHE ...................................................... 故②正确.同理可得△AFE≌△CHG.∴AF=CH.易得△BFG∽△CGH.∴=.∴=.∴BF=.∴AF=AB-BF=a-.∴CH=AF=a-.在 Rt△CGH 中,∵CG2+CH2=GH2,∴32+(a-)2=a2.解得a=2.∴GH=2.∴BF=a-=.在 Rt△BFG 中,∵cos∠BFG==Error!,∴∠BFG=30°.∴tan∠BFG=tan30°=Error! ............................................................................. 故③正确.矩形E FGH 的面积=FG×GH=2×2=4… ................................................... 故④正确.三、解答题(本大题共9 小题,共78 分)19.(2018 济南,19,6 分)计算:2-1+│-5│-sin30°+(π-1)0.解:2-1+│-5│-sin30°+(π-1)0.=+5-+1=620.(2018 济南,20,6 分)解不等式组:Error!解:由①,得3x-2x<3-1.∴x<2.由②,得4x>3x-1.∴x>-1.∴不等式组的解集为-1<x<2.21.(2018 济南,21,6 分)如图,在□ABCD中,连接BD,E 是DA 延长线上的点,F 是BC 延长线上的点,且AE=CF,连接EF 交BD 于点O.求证:OB=O D.证明:∵□ABCD中,∴AD=BC,AD∥B C.∴∠ADB=∠CB D.又∵AE=CF,∴AE+AD=CF+B C.∴ED=F B.又∵∠EOD=∠FOB,∴△EOD≌△FO B.∴OB=O D.22.(2018 济南,22,8 分)本学期学校开展以“感受中华传统买德”为主题的研学部动,组织 150 名学生多观历史好物馆和民俗晨览馆,每一名学生只能参加其中全顺活动,共支付票款 2000 元,票价信息如下:(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?解:(1)设参观历史博物馆的有x 人,则参观民俗展览馆的有(150-x)人,依题意,得10x+20(150-x)2000.10x+3000-20x=2000.-10x=-1000.∴x=100.∴150-x=50.答:参观历史博物馆的有 100 人,则参观民俗展览馆的有 50 人.(2)2000-150×10=500(元).答:若学生都去参观历史博物馆,则能节省票款 500元. 23.(2018 济南,23,8 分)如图AB 是⊙O 的直径,PA 与⊙O 相切于点A,BP 与⊙O 相较于点D,C 为⊙O 上的一点,分别连接CB、CD,∠BCD=60°.(1)求∠ABD 的度数;(2)若AB=6,求PD 的长度.【解析】解:(1)方法一:连接AD(如答案图 1 所示).∵BA 是⊙O 直径,∴∠BDA=90°.∵=,∴∠BAD=∠C=60°.∴∠ABD=90°-∠BAD=90°-60°=30°.第 23 题答案图 1 第 23 题答案图 2方法二:连接DA、OD(如答案图 2 所示),则∠BOD=2∠C=2×60°=120°.∵OB=OD,∴∠OBD=∠ODB=(180°-120°)=30°.即∠ABD=30°.(2)∵AP 是⊙O 的切线,∴∠BAP=90°.在 Rt△BAD 中,∵∠ABD=30°,∴DA=BA=×6=3.∴BD=DA=3.在 Rt△BAP 中,∵cos∠ABD=,∴cos30°==Error!.∴BP=4.∴PD=BP-BD=4-3=.24.(2018 济南,24,10 分)某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图 1、图 2 两幅均不完整的统计图表.请您根据图表中提供的信息回答下列问题:(1)统计表中的a=,b=;(2)“D”对应扇形的圆心角为度;(3)根据调查结果,请您估计该校 2000 名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.解:(1)a=36÷0.45=80.b=16÷80=0.20.(2)“D”对应扇形的圆心角的度数为:8÷80×360°=36°.(3)估计该校 2000 名学生中最喜欢“数学史”校本课程的人数为:2000×0.25=500(人).(43 种,所以两人恰好选中同一门校本课程的概率为:=.25.(2018 济南,25,10 分)如图,直线y=ax+2 与x 轴交于点A(1,0),与y 轴交于点B(0,b).将线段AB 先向右平移 1 个单位长度、再向上平移t(t>0)个单位长度,得到对应线段CD,反比例函数y=(x>0)的图象恰好经过C、D 两点,连接AC、B D.(1)求a 和b 的值;(2)求反比例函数的表达式及四边形ABDC 的面积;(3)点N在x轴正半轴上,点M 是反比例函数y=(x>0)的图象上的一个点,若△CMN 是以CM为直角边的等腰直角三角形时,求所有满足条件的点M 的坐标.第 25 题图第 25 题备用图【解析】解:(1)将点A(1,0)代入y=ax+2,得 0=a+2.∴a=-2.∴直线的解析式为y=-2x+2.将x=0 代入上式,得y=2.∴b=2.∴点B(0,2).(2)由平移可得:点C(2,t)、D(1,2+t).将点C(2,t)、D(1,2+t)分别代入y=,得Error!.解得.∴反比例函数的解析式为y=,点C(2,2)、点D(1,4).分别连接BC、AD(如答案图 1).∵B(0,2)、C(2,2),∴BC∥x 轴,BC=2.∵A(1,0)、D(1,4),∴AD⊥x 轴,AD=4.∴BC⊥A D.∴S 四边形ABDC=×BC×AD=×2×4=4.第 25 题答案图 1(3)①当∠NCM=90°、CM=CN 时(如答案图 2 所示),过点C作直线l∥x 轴,交y轴于点G.过点M作M F⊥直线l 于点F,交x 轴于点H.过点N 作N E⊥直线l 于点E.设点N(m,0)(其中m>0),则ON=m,CE=2-m.∵∠MCN=90°,∴∠MCF+∠NCE=90°.∵NE⊥直线l 于点E,∴∠ENC+∠NCE=90°.∴∠MCF=∠EN C.又∵∠MFC=∠NEC=90°,CN=CM,∴△NEC≌△CFM.∴CF=EN=2,FM=CE=2-m.∴FG=CG+CF=2+2=4.∴x M=4.将x=4 代入y=,得y=1.∴点M(4,1).第25 题答案图 2 第25 题答案图 3②当∠NMC=90°、MC=MN时(如答案图 3 所示),过点C作直线l⊥y轴与点F,则CF=x C=2.过点M 作M G⊥x 轴于点G,MG 交直线l 与点E,则MG⊥直线l 于点E,EG=y C=2.∵∠CMN=90°,∴∠CME+∠NMG=90°.∵ME⊥直线l 于点E,∴∠ECM+∠CME=90°.∴∠NMG=∠ECM.又∵∠CEM=∠NGM=90°,CM=MN,∴△CEM≌△MGN.∴CE=MG,EM=NG.设CE=MG=a,则y M=a,x M=CF+CE=2+a.∴点M(2+a,a).将点M(2+a,a)代入y=,得a=.解得a1=-1,a2=--1.∴x M=2+a=+1.∴点M(+1,-1).综合①②可知:点M 的坐标为(4,1)或(+1,-1).26.(2018 济南,26,12 分)在△ABC 中,AB=AC,∠BAC=120°,以CA 为边在∠ACB 的另一侧作∠ACM=∠ACB,点D 为射线BC 上任意一点,在射线CM 上截取CE=BD,连接AD、DE、AE.(1)如图 1,当点D 落在线段BC 的延长线上时,直接写出∠ADE 的度数;(2)如图 2,当点D 落在线段BC(不含边界)上时,AC 与DE 交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB=6,求CF 的最大值.第 26 题图 1 第 26 题图 2【解析】解:(1)∠ADE=30°.(2)(1)中的结论是否还成立证明:连接AE(如答案图 1 所示).∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°.又∵∠ACM=∠ACB,∴∠B=∠ACM=30°.又∵CE=BD,∴△ABD≌△ACE.∴AD=AE,∠1=∠2.∴∠2+∠3=∠1+∠3=∠BAC=120°.即∠DAE=120°. 又∵AD=AE,∴∠ADE=∠AED=30°.答案图 1 答案图 2 (3)∵AB=AC,AB=6,∴AC=6.∵∠ADE=∠ACB=30°且∠DAF=∠CAD,∴△ADF∽△AC D.∴=.∴AD2=AF·A C.∴AD2=6AF.∴AF=.∴当AD 最短时,AF 最短、CF 最长.易得当AD⊥BC时,AF最短、CF最长(如答案图 2 所示),此时AD=AB=3.∴AF 最短===.∴CF 最长=AC-AF 最短=6-=.27.(2018 济南,27,12 分)如图 1,抛物线y=ax2+bx+4 过A(2,0)、B(4,0)两点,交y 轴于点C,过点C 作x 轴的平行线与不等式抛物线上的另一个交点为D,连接AC、B C.点P 是该抛物线上一动点,设点P 的横坐标为m (m>4).(1)求该抛物线的表达式和∠ACB 的正切值;(2)如图 2,若∠ACP=45°,求m 的值;(3)如图 3,过点A、P 的直线与y 轴于点N,过点P 作PM⊥CD,垂足为M,直线MN 与x 轴交于点Q,试判断四边形ADMQ 的形状,并说明理由.第27 题图1 第27 题图2 第27 题图3【解析】解:(1)将点A(2,0)和点B(4,0)分别代入y=ax2+bx+4,得.解得Error!.∴该抛物线的解析式为y=x2-3x+4.将x=0 代入上式,得y=4.∴点C(0,4),OC=4.在Rt△AOC 中,AC===2.设直线AC 的解析式为y=kx+4,将点A(2,0)代入上式,得 0=2k+4.解得k=-2.∴直线AC 的解析式为y=-2x+4.同理可得直线BC 的解析式为y=-x+4.求tan∠ACB 方法一:过点B作BG⊥CA,交CA的延长线于点G(如答案图 1 所示),则∠G=90°.∵∠COA=∠G=90°,∠CAO=∠BAG,∴△GAB∽△OA C.∴===2.∴BG=2AG.在 Rt△ABG 中,∵BG2+AG2=AB2,∴(2AG)2+AG2=22.AG=.∴BG=,CG=AC+AG=2+=.在 Rt△BCG 中,tan∠ACB==Error!=.第 27 题答案图 1 第 27 题答案图 2求tan∠ACB 方法二:过点A作AE⊥AC,交BC于点E(如答案图 2 所示),则k AE·k AC=-1.∴-2k AE=-1.∴k AE=.∴可设直线AE 的解析式为y=x+m.将点A(2,0)代入上式,得 0=×2+m.解得m=-1.∴直线AE 的解析式为y=x-1.由方程组Error!解得Error!.∴点E(,).∴AE==.在 Rt△AEC 中,tan∠ACB==Error!=.求tan∠ACB 方法三:过点A作AF⊥BC,交BC点E(如答案图 3 所示),则k AF·k BC=-1.∴-k AF=-1.∴k AF=1.∴可设直线AF 的解析式为y=x+n.将点A(2,0)代入上式,得 0=2+n.解得n=-2.∴直线AF 的解析式为y=x-2.由方程组解得.∴点F(3,1).∴AF==,CF==3.在 Rt△AEC 中,tan∠ACB==Error!=.第 27 题答案图 3(2)方法一:利用“一线三等角”模型将线段AC 绕点A 沿顺时针方向旋转 90°,得到线段AC′,则AC′=AC,∠C′AC=90°,∠CC′A=∠ACC′=45°.∴∠CAO+∠C′AB=90°.又∵∠OCA+∠CAO=90°,∴∠OCA=∠C′A B.过点C′作C′E⊥x 轴于点E.则∠C′EA=∠COA=90°.∵∠C′EA=∠COA=90°,∠OCA=∠C′AB,AC′=AC,∴△C′EA≌△AO C.∴C′E=OA=2,AE=OC=4.∴OE=OA+AE=2+4=6.∴点C′(6,2).设直线C′C 的解析式为y=hx+4.将点C′(6,2)代入上式,得 2=6h+4.解得h=-.∴直线C′C 的解析式为y=-x+4.∵∠ACP=45°,∠ACC′=45°,∴点P 在直线C′C 上.设点P 的坐标为(x,y),则x 是方程x2-3x+4=-x+4 的一个解.将方程整理,得 3x2-14x=0.解得x1=,x2=0(不合题意,舍去).将x1=代入y=-x+4,得y=.∴点P 的坐标为(,).第 27 题答案图 4 第 27 题答案图 5(2)方法二:利用正方形中的“全角夹半角”模型.过点B 作BH⊥CD 于点H,交CP 于点K,连接AK.易得四边形OBHC 是正方形.应用“全角夹半角”可得AK=OA+HK.设K(4,h),则BK=h,HK=HB-KB=4-h,AK=OA+HK=2+(4-h)=6-h.在Rt△ABK 中,由勾股定理,得AB2+BK2=AK2.∴22+h2=(6-h)2.解得h=.∴点K(4,).设直线CK 的解析式为y=hx+4.将点K(4,)代入上式,得=4h+4.解得h=-.∴直线CK 的解析式为y=-x+4.设点P 的坐标为(x,y),则x 是方程x2-3x+4=-x+4 的一个解.将方程整理,得 3x2-14x=0.解得x1=,x2=0(不合题意,舍去).将x1=代入y=-x+4,得y=.∴点 P 的坐标为(,). (3) 四边形 ADMQ 是平行四边形.理由如下: ∵CD ∥x 轴,∴y C =y D =4.将 y =4 代入 y =x 2-3x +4,得 4=x 2-3x +4.解得 x 1=0,x 2=6. ∴点 D (6,4).根据题意,得 P (m ,m 2-3m +4),M (m ,4),H (m ,0). ∴PH =m 2-3m +4),OH =m ,AH =m -2,MH =4. ①当 4<m <6 时(如答案图 5 所示),DM =6-m∵△OAN ∽△HAP ,∴=.∴Error!=.∴ON ===m -4.∵△ONQ ∽△HMP ,∴=.∴=.∴=.∴OQ =m -4.∴AQ =OA -OQ =2-(m -4)=6-m . ∴AQ =DM =6-m .又∵AQ ∥DM ,∴四边形 ADMQ 是平行四边形.第 27 题答案图 6 第 27 题答案图 7②当 m >6 时(如答案图 6 所示),同理可得:四边形 ADMQ 是平行四边形. 综合①、②可知:四边形 ADMQ 是平行四边形.。
山东省济南市2018年中考数学试卷(含答案解析)
山东省济南市2018年中考数学试卷一、选择题1.4的算术平方根为( )A. 2B. -2C. ±2D. 162.如图,点O在直线AB上,若∠1=40°,则∠2的度数是()A. 50°B. 60°C. 140°D. 150°3.下列运算中,结果是的是( )A. B. a10÷a2 C. (a2)3 D. (-a)54.我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家,嫦娥三号探测器的发射总质量约为3700千克,3700用科学记数法表示为()A. 3.7×102B. 3.7×103C. 37×102D. 0.37×1045.下列图案既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A. 从前面看到的形状图的面积为5B. 从左面看到的形状图的面积为3C. 从上面看到的形状图的面积为3D. 三种视图的面积都是47.化简的结果是()A. B. C. D.8.下列命题中,真命题是()A. 两对角线相等的四边形是矩形B. 两对角线互相平分的四边形是平行四边形C. 两对角线互相垂直的四边形是菱形D. 两对角线相等的四边形是等腰梯形9.若一次函数的函数值随的增大而增大,则()A. B. C. D.10.在▱ABCD中,延长AB到E,使BE=AB,连结DE交BC于F,则下列结论不一定成立的是( )A. ∠E=∠CDFB. EF=DFC. AD=2BFD. BE=2CF11.学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率是()A. B. C. D.12.如图,直线与x轴、y轴分别交于A、B两点,把△AOB沿直线AB翻折后得到△AO′B,则点O′的坐标是()A. (,3)B. (,)C. (2,)D. (,4)13.如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D、E在圆上,四边形BCDE为矩形,这个矩形的面积是()A. 2B.C.D.14.现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是()A. (1,2,1,2,2)B. (2,2,2,3,3)C. (1,1,2,2,3)D. (1,2,1,1,2)15.二次函数y=x2+bx的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解,则t的取值范围是()A. t≥﹣1B. ﹣1≤t<3C. ﹣1≤t<8D. 3<t<8二、填空题16.|﹣7﹣3|=________.17.分解因式:x2+2x+1=________18.在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,如果口袋中装有3个红球且摸到红球的概率为,那么口袋中球的总个数为________.19.若和的值相等,则________.20.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.21.如图,和都是等腰直角三角形,,反比例函数在第一象限的图象经过点B,若,则的值为________.三、解答题22.(1)化简:(a+3)(a-3)+a(4-a)(2)解不等式组:.23.(1)如图,在四边形ABCD是矩形,点E是AD的中点,求证:EB=EC.(2)如图,AB与相切于C,,⊙O的半径为6,AB=16,求OA的长.24. 2014年世界杯足球赛在巴西举行,小李在网上预定了小组赛和淘汰赛两个阶段的球票共10张,总价为5800元,其中小组赛球票每张550元,淘汰赛球票每张700元,问小李预定了小组赛和淘汰赛的球票各多少张?25.在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:(1)统计表中的x=________,y=________;(2)被调查同学劳动时间的中位数是________时;(3)请将频数分布直方图补充完整;(4)求所有被调查同学的平均劳动时间.26.如图1,反比例函数的图象经过点A(,1),射线AB与反比例函数图象交与另一点B(1,),射线AC与轴交于点C,轴,垂足为D.(1)求和a的值;(2)直线AC的解析式;(3)如图2,M是线段AC上方反比例函数图象上一动点,过M作直线轴,与AC相交于N,连接CM,求面积的最大值.27.如图1,有一组平行线,正方形的四个顶点分别在上,过点D且垂直于于点E,分别交于点F,G,.(1)AE=________,正方形ABCD的边长=________;(2)如图2,将绕点A顺时针旋转得到,旋转角为,点在直线上,以为边在的左侧作菱形,使点分别在直线上.①写出与的函数关系并给出证明;②若=30°,求菱形的边长.28.如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积 ;(2)如图2,直线AB 与 轴相交于点P ,点M 为线段OA 上一动点, 为直角,边MN 与AP 相交于点N ,设 ,试探求: ① 为何值时为等腰三角形;② 为何值时线段PN 的长度最小,最小长度是多少.答案解析部分一、选择题1.【答案】A【解析】【解答】解:4的平方根是±2,所以4的算术平方根是2.【分析】一个正数有两个平方根,其中正的平方根是算术平方根。
济南中考试题分析
对济南数学中考试卷的分析对19,18,17年的济南中考试题认又做了一遍,真看了好几遍,对这三年的试题做了全面的比较,对试题有了一定的认识,对试题的分析感触还是颇深的。
一:选择题 18年19年是12个选择,每个4分,17年是15个选择,每个3分。
一般是按照从易到难的顺序编排的。
我一直认为前10个选择是送分题,除了极个别题不清出错外,都必须做对。
这10个题的基本题型是:(1)对于数的认识,(2)三视图(3)科学计数法(4)轴对称或中心对称图形(5)平行线的性质或定(6)基本的整式运算或分式化简(7)对方程的认识(8)反比例函数或一函数的基本性质(9)概率(10)旋转求坐标。
18年的11题和19年的第10题都求阴影面积,这种题型由于练习比较多,大部分同学都能交熟练的掌握。
19年11题是三角函数的题,考察三角函数的应用,有些同学可能忘记公式或计算能不强,导致失分。
最难的要数12题了,近几年考察的都是某个变量的取值范围。
例如19年的12题:关于x的一元二次方程ax2+bx+=0有一个根是﹣1,若二次函数y=ax2+bx+的图象的顶点在第一象限,设t=2a+b,则t的取值范围是()A.<t<B.﹣1<t≤C.﹣≤t<D.﹣1<t<这个题第一印象很难,特别是在中考这样的环境下,更是觉得特别难,当我们仔细分析,每个条件逐一分析时,就会发现这道题的突破口。
首先,一个根是-1,这个条件怎么用?把-1代入表示出a,b之间的关系。
这样t就可以只用a 来表示了。
其次,顶点在第一象限有什么用?通过简单的画图,可以先判断出a <0,这样必然有b>0,求出a的临界点,代入t的表达式,t的取值范围就求出来了。
这个题教会我的是:对于每一个条件的精准应该,每个条件必须分析透彻,都用上,才有可能做对。
二;填空题。
这两年的填空都非常固定,有6个题,题型分别是(13)因式分解(14)概率(15)n边形的相关性质(16)分式或整式计算(17)一次函数的综合应用(18)矩形的综合应用。
2018年山东省济南市中考数学试卷含解析答案
2018年山东省济南市中考数学试卷含解析答案一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)4的算术平方根是()A.2B.﹣2C.±2D.2.(4分)如图所示的几何体,它的俯视图是()A.B.C.D.3.(4分)2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A.0.76×104B.7.6×103C.7.6×104D.76×1024.(4分)“瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(4分)如图,AF是∠BAC的平分线,DF∥AC,若∠1=35°,则∠BAF的度数为()A.17.5°B.35°C.55°D.70°6.(4分)下列运算正确的是()A.a2+2a=3a3B.(﹣2a3)2=4a5C.(a+2)(a﹣1)=a2+a﹣2D.(a+b)2=a2+b27.(4分)关于x的方程3x﹣2m=1的解为正数,则m的取值范围是()A.m<﹣B.m>﹣C.m>D.m<8.(4分)在反比例函数y=﹣图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<0<x2<x3,则下列结论正确的是()A.y3<y2<y1B.y1<y3<y2C.y2<y3<y1D.y3<y1<y29.(4分)如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将△ABC绕点P顺时针方向旋转90°,得到△A′B′C′,则点P的坐标为()A.(0,4)B.(1,1)C.(1,2)D.(2,1)10.(4分)下面的统计图大致反应了我国2012年至2017年人均阅读量的情况.根据统计图提供的信息,下列推断不合理的是()A.与2016年相比,2017年我国电子书人均阅读量有所降低B.2012年至2017年,我国纸质书的人均阅读量的中位数是4.57C.从2014年到2017年,我国纸质书的人均阅读量逐年增长D.2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多11.(4分)如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.6π﹣B.6π﹣9C.12π﹣D.12.(4分)若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P(1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m﹣2(m>0)与x轴交于点A、B两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是()A.≤m<1B.<m≤1C.1<m≤2D.1<m<2二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)分解因式:m2﹣4= .14.(4分)在不透明的盒子中装有5个黑色棋子和若干个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑包棋子的概率是,则白色棋子的个数是= .15.(4分)一个正多边形的每个内角等于108°,则它的边数是.16.(4分)若代数式的值是2,则x= .17.(4分)A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离s(km)与时间t(h)的关系如图所示,则甲出发小时后和乙相遇.18.(4分)如图,矩形EFGH的四个顶点分别在矩形ABCD的各条边上,AB=EF,FG=2,GC=3.有以下四个结论:①∠BGF=∠CHG;②△BFG≌△DHE;③tan∠BFG=;④矩形EFGH的面积是4.其中一定成立的是.(把所有正确结论的序号填在横线上)三、解答题(本大题共9小题,共78分)19.(6分)计算:2﹣1+|﹣5|﹣sin30°+(π﹣1)0.20.(6分)解不等式组:21.(6分)如图,在▱ABCD中,连接BD,E是DA延长线上的点,F是BC延长线上的点,且AE=CF,连接EF交BD于点O.求证:OB=OD.22.(8分)本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生多观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:地点票价历史博物馆10元/人民俗展览馆20元/人(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?23.(8分)如图AB是⊙O的直径,PA与⊙O相切于点A,BP与⊙O相交于点D,C为⊙O上的一点,分别连接CB、CD,∠BCD=60°.(1)求∠ABD的度数;(2)若AB=6,求PD的长度.24.(10分)某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表.校本课程频数频率A360.45B0.25C16bD8合计a1请您根据图表中提供的信息回答下列问题:(1)统计表中的a= ,b= ;(2)“D”对应扇形的圆心角为度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.25.(10分)如图,直线y=ax+2与x轴交于点A(1,0),与y轴交于点B(0,b).将线段AB 先向右平移1个单位长度、再向上平移t(t>0)个单位长度,得到对应线段CD,反比例函数y=(x>0)的图象恰好经过C、D两点,连接AC、BD.(1)求a和b的值;(2)求反比例函数的表达式及四边形ABDC的面积;(3)点N在x轴正半轴上,点M是反比例函数y=(x>0)的图象上的一个点,若△CMN是以CM为直角边的等腰直角三角形时,求所有满足条件的点M的坐标.26.(12分)在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,直接写出∠ADE的度数;(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB=6,求CF的最大值.27.(12分)如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C 作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC.点P是该抛物线上一动点,设点P 的横坐标为m(m>4).(1)求该抛物线的表达式和∠ACB的正切值;(2)如图2,若∠ACP=45°,求m的值;(3)如图3,过点A、P的直线与y轴于点N,过点P作PM⊥CD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由.2018年山东省济南市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)4的算术平方根是()A.2B.﹣2C.±2D.【解答】解:∵2的平方为4,∴4的算术平方根为2.故选:A.2.(4分)如图所示的几何体,它的俯视图是()A.B.C.D.【解答】解:从几何体上面看,2排,上面3个,下面1个,左边2个正方形.故选:D.3.(4分)2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为()A.0.76×104B.7.6×103C.7.6×104D.76×102【解答】解:7600=7.6×103,故选:B.4.(4分)“瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,也不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,是中心对称图形.故选:D.5.(4分)如图,AF是∠BAC的平分线,DF∥AC,若∠1=35°,则∠BAF的度数为()A.17.5°B.35°C.55°D.70°【解答】解:∵DF∥AC,∴∠FAC=∠1=35°,∵AF是∠BAC的平分线,∴∠BAF=∠FAC=35°,故选:B.6.(4分)下列运算正确的是()A.a2+2a=3a3B.(﹣2a3)2=4a5C.(a+2)(a﹣1)=a2+a﹣2D.(a+b)2=a2+b2【解答】解:A、错误.不是同类项不能合并;B、错误.应该是(﹣2a3)2=4a6;C、正确;D、错误.应该是(a+b)2=a2+2ab+b2;故选:C.7.(4分)关于x的方程3x﹣2m=1的解为正数,则m的取值范围是()A.m<﹣B.m>﹣C.m>D.m<【解答】解:解方程3x﹣2m=1得:x=,∵关于x的方程3x﹣2m=1的解为正数,∴>0,解得:m>﹣,故选:B.8.(4分)在反比例函数y=﹣图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<0<x2<x3,则下列结论正确的是()A.y3<y2<y1B.y1<y3<y2C.y2<y3<y1D.y3<y1<y2【解答】解:∵A(x1,y1)在反比例函数y=﹣图象上,x1<0,∴y1>0,对于反比例函数y=﹣,在第二象限,y随x的增大而增大,∵0<x2<x3,∴y2<y3<0,∴y2<y3<y1故选:C.9.(4分)如图,在平面直角坐标系中,△ABC的顶点都在方格线的格点上,将△ABC绕点P顺时针方向旋转90°,得到△A′B′C′,则点P的坐标为()A.(0,4)B.(1,1)C.(1,2)D.(2,1)【解答】解:由图知,旋转中心P的坐标为(1,2),故选:C.10.(4分)下面的统计图大致反应了我国2012年至2017年人均阅读量的情况.根据统计图提供的信息,下列推断不合理的是()A.与2016年相比,2017年我国电子书人均阅读量有所降低B.2012年至2017年,我国纸质书的人均阅读量的中位数是4.57C.从2014年到2017年,我国纸质书的人均阅读量逐年增长D.2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多【解答】解:A、与2016年相比,2017年我国电子书人均阅读量有所降低,正确;B、2012年至2017年,我国纸质书的人均阅读量的中位数是4.615,错误;C、从2014年到2017年,我国纸质书的人均阅读量逐年增长,正确;D、2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多,正确;故选:B.11.(4分)如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.6π﹣B.6π﹣9C.12π﹣D.【解答】解:连接OD,如图,∵扇形纸片折叠,使点A与点O恰好重合,折痕为CD,∴AC=OC,∴OD=2OC=3,∴CD==3,∴∠CDO=30°,∠COD=60°,∴由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD﹣S△COD=﹣•3•3=6π﹣,∴阴影部分的面积为6π﹣.故选:A.12.(4分)若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P(1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m﹣2(m>0)与x轴交于点A、B两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是()A.≤m<1B.<m≤1C.1<m≤2D.1<m<2【解答】解:∵y=mx2﹣4mx+4m﹣2=m(x﹣2)2﹣2且m>0,∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x=2.由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意.①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意.将(1,﹣1)代入y=mx2﹣4mx+4m﹣2得到﹣1=m﹣4m+4m﹣2.解得m=1.此时抛物线解析式为y=x2﹣4x+2.由y=0得x2﹣4x+2=0.解得x1=2﹣≈0.6,x2=2+≈3.4.∴x轴上的点(1,0)、(2,0)、(3,0)符合题意.则当m=1时,恰好有(1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意.∴m≤1.【注:m的值越大,抛物线的开口越小,m的值越小,抛物线的开口越大】答案图1(m=1时)答案图2(m=时)②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意.此时x轴上的点(1,0)、(2,0)、(3,0)也符合题意.将(0,0)代入y=mx2﹣4mx+4m﹣2得到0=0﹣4m+0﹣2.解得m=.此时抛物线解析式为y=x2﹣2x.当x=1时,得y=×1﹣2×1=﹣<﹣1.∴点(1,﹣1)符合题意.当x=3时,得y=×9﹣2×3=﹣<﹣1.∴点(3,﹣1)符合题意.综上可知:当m=时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,﹣1)、(3,﹣1)、(2,﹣2)、(2,﹣1)都符合题意,共有9个整点符合题意,∴m=不符合题.∴m>.综合①②可得:当<m≤1时,该函数的图象与x轴所围城的区域(含边界)内有七个整点,故选:B.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)分解因式:m2﹣4= (m+2)(m﹣2).【解答】解:m2﹣4=(m+2)(m﹣2).故答案为:(m+2)(m﹣2).14.(4分)在不透明的盒子中装有5个黑色棋子和若干个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑包棋子的概率是,则白色棋子的个数是= 15 .【解答】解:5÷﹣5=15.∴白色棋子有15个;故答案为:15.15.(4分)一个正多边形的每个内角等于108°,则它的边数是五.【解答】解:∵正多边形的每个内角等于108°,∴每一个外角的度数为180°﹣108°=72°,∴边数=360°÷72°=5,∴这个正多边形是正五边形.故答案为:五.16.(4分)若代数式的值是2,则x= 6 .【解答】解:=2,去分母得:x﹣2=2(x﹣4),x﹣2=2x﹣8,x=6,经检验:x=6是原方程的解.故答案为:6.17.(4分)A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离s(km)与时间t(h)的关系如图所示,则甲出发小时后和乙相遇.【解答】解:由图象可得:y甲=4t(0≤t≤5);y乙=;由方程组,解得t=.故答案为.18.(4分)如图,矩形EFGH的四个顶点分别在矩形ABCD的各条边上,AB=EF,FG=2,GC=3.有以下四个结论:①∠BGF=∠CHG;②△BFG≌△DHE;③tan∠BFG=;④矩形EFGH的面积是4.其中一定成立的是①②④.(把所有正确结论的序号填在横线上)【解答】解:∵∠FGH=90°,∴∠BGF+∠CGH=90°.又∵∠CGH+∠CHG=90°,∴∠BGF=∠CHG,故①正确.同理可得∠DEH=∠CHG.∴∠BGF=∠DEH.又∵∠B=∠D=90°,FG=EH,∴△BFG≌△DHE,故②正确.同理可得△AFE≌△CHG.∴AF=CH.易得△BFG∽△CGH.设GH、EF为a,∴=.∴=.∴BF=.∴AF=AB﹣BF=a﹣.∴CH=AF=a﹣.在Rt△CGH中,∵CG2+CH2=GH2,∴32+(a﹣)2=a2.解得a=2.∴GH=2.∴BF=a﹣=.在Rt△BFG中,∵cos∠BFG==,∴∠BFG=30°.∴tan∠BFG=tan30°=,故③错误.矩形EFGH的面积=FG×GH=2×2=4,故④正确.故答案为:①②④三、解答题(本大题共9小题,共78分)19.(6分)计算:2﹣1+|﹣5|﹣sin30°+(π﹣1)0.【解答】解:2﹣1+|﹣5|﹣sin30°+(π﹣1)0.=+5﹣+1=620.(6分)解不等式组:【解答】解:由①,得3x﹣2x<3﹣1.∴x<2.由②,得4x>3x﹣1.∴x>﹣1.∴不等式组的解集为﹣1<x<2.21.(6分)如图,在▱ABCD中,连接BD,E是DA延长线上的点,F是BC延长线上的点,且AE=CF,连接EF交BD于点O.求证:OB=OD.【解答】证明:∵▱ABCD中,∴AD=BC,AD∥BC.∴∠ADB=∠CBD.又∵AE=CF,∴AE+AD=CF+BC.∴ED=FB.又∵∠EOD=∠FOB,∴△EOD≌△FOB.∴OB=OD.22.(8分)本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生多观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:地点票价历史博物馆10元/人民俗展览馆20元/人(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?【解答】解:(1)设参观历史博物馆的有x人,参观民俗展览馆的有y人,依题意,得,解得.答:参观历史博物馆的有100人,则参观民俗展览馆的有50人.(2)2000﹣150×10=500(元).答:若学生都去参观历史博物馆,则能节省票款500元.23.(8分)如图AB是⊙O的直径,PA与⊙O相切于点A,BP与⊙O相交于点D,C为⊙O上的一点,分别连接CB、CD,∠BCD=60°.(1)求∠ABD的度数;(2)若AB=6,求PD的长度.【解答】解:(1)方法一:如图1,连接AD.∵BA是⊙O直径,∴∠BDA=90°.∵=,∴∠BAD=∠C=60°.∴∠ABD=90°﹣∠BAD=90°﹣60°=30°.方法二:如图2,连接DA、OD,则∠BOD=2∠C=2×60°=120°.∵OB=OD,∴∠OBD=∠ODB=(180°﹣120°)=30°.即∠ABD=30°.(2)如图1,∵AP是⊙O的切线,∴∠BAP=90°.在Rt△BAD中,∵∠ABD=30°,∴DA=BA=×6=3.∴BD=DA=3.在Rt△BAP中,∵cos∠ABD=,∴cos30°==.∴BP=4.∴PD=BP﹣BD=4﹣3=.24.(10分)某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表.校本课程频数频率A360.45B0.25C16bD8合计a1请您根据图表中提供的信息回答下列问题:(1)统计表中的a= 80 ,b= 0.20 ;(2)“D”对应扇形的圆心角为36 度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A”、“B”、“C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.【解答】解:(1)a=36÷0.45=80,b=16÷80=0.20,故答案为:80,0.20;(2)“D”对应扇形的圆心角的度数为:8÷80×360°=36°,故答案为:36;(3)估计该校2000名学生中最喜欢“数学史”校本课程的人数为:2000×0.25=500(人);(4)列表格如下:A B CA A,A B,A C,AB A,B B,B C,BC A,C B,C C,C共有9种等可能的结果,其中两人恰好选中同一门校本课程的结果有3种,所以两人恰好选中同一门校本课程的概率为:=.25.(10分)如图,直线y=ax+2与x轴交于点A(1,0),与y轴交于点B(0,b).将线段AB 先向右平移1个单位长度、再向上平移t(t>0)个单位长度,得到对应线段CD,反比例函数y=(x>0)的图象恰好经过C、D两点,连接AC、BD.(1)求a和b的值;(2)求反比例函数的表达式及四边形ABDC的面积;(3)点N在x轴正半轴上,点M是反比例函数y=(x>0)的图象上的一个点,若△CMN是以CM为直角边的等腰直角三角形时,求所有满足条件的点M的坐标.【解答】解:(1)将点A(1,0)代入y=ax+2,得0=a+2.∴a=﹣2.∴直线的解析式为y=﹣2x+2.将x=0代入上式,得y=2.∴b=2.(2)由(1)知,b=2,∴B(0,2),由平移可得:点C(2,t)、D(1,2+t).将点C(2,t)、D(1,2+t)分别代入y=,得∴.∴反比例函数的解析式为y=,点C(2,2)、点D(1,4).如图1,连接BC、AD.∵B(0,2)、C(2,2),∴BC∥x轴,BC=2.∵A(1,0)、D(1,4),∴AD⊥x轴,AD=4.∴BC⊥AD.∴S四边形ABDC=×BC×AD=×2×4=4.(3)①当∠NCM=90°、CM=CN时,如图2,过点C作直线l∥x轴,交y轴于点G.过点M作MF⊥直线l于点F,交x轴于点H.过点N作NE⊥直线l于点E.设点N(m,0)(其中m>0),则ON=m,CE=2﹣m.∵∠MCN=90°,∴∠MCF+∠NCE=90°.∵NE⊥直线l于点E,∴∠ENC+∠NCE=90°.∴∠MCF=∠ENC.又∵∠MFC=∠NEC=90°,CN=CM,∴△NEC≌△CFM.∴CF=EN=2,FM=CE=2﹣m.∴FG=CG+CF=2+2=4.∴x M=4.将x=4代入y=,得y=1.∴点M(4,1);②当∠NMC=90°、MC=MN时,如图3,过点C作直线l⊥y轴与点F,则CF=x C=2.过点M作MG⊥x轴于点G,MG交直线l与点E,则MG⊥直线l于点E,EG=y C=2.∵∠CMN=90°,∴∠CME+∠NMG=90°.∵ME⊥直线l于点E,∴∠ECM+∠CME=90°.∴∠NMG=∠ECM.又∵∠CEM=∠NGM=90°,CM=MN,∴△CEM≌△MGN.∴CE=MG,EM=NG.设CE=MG=a,则y M=a,x M=CF+CE=2+a.∴点M(2+a,a).将点M(2+a,a)代入y=,得a=.解得a1=﹣1,a2=﹣﹣1.∴x M=2+a=+1.∴点M(+1,﹣1).综合①②可知:点M的坐标为(4,1)或(+1,﹣1).26.(12分)在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,直接写出∠ADE的度数;(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若AB=6,求CF的最大值.【解答】解:(1)∠ADE=30°.理由如下:∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵∠ACM=∠ACB,∴∠ACM=∠ABC,在△ABD和△ACE中,,∴△ABD≌△ACE,∴AD=AE,∠CAE=∠BAD,∴∠DAE=∠BAC=120°,∴∠ADE=30°;(2)(1)中的结论成立,证明:∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°.∵∠ACM=∠ACB,∴∠B=∠ACM=30°.在△ABD和△ACE中,,∴△ABD≌△ACE.∴AD=AE,∠BAD=∠CAE.∴∠CAE+∠DAC=∠BAD+∠DAC=∠BAC=120°.即∠DAE=120°.∵AD=AE,∴∠ADE=∠AED=30°;(3)∵AB=AC,AB=6,∴AC=6,∵∠ADE=∠ACB=30°且∠DAF=∠CAD,∴△ADF∽△ACD.∴=.∴AD2=AF•AC.∴AD2=6AF.∴AF=.∴当AD最短时,AF最短、CF最长.易得当AD⊥BC时,AF最短、CF最长,此时AD=AB=3.∴AF最短===.∴CF最长=AC﹣AF最短=6﹣=.27.(12分)如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C 作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC.点P是该抛物线上一动点,设点P 的横坐标为m(m>4).(1)求该抛物线的表达式和∠ACB的正切值;(2)如图2,若∠ACP=45°,求m的值;(3)如图3,过点A、P的直线与y轴于点N,过点P作PM⊥CD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由.【解答】解:(1)将点A(2,0)和点B(4,0)分别代入y=ax2+bx+4,得,解得:.∴该抛物线的解析式为y=x2﹣3x+4.过点B作BG⊥CA,交CA的延长线于点G(如图1所示),则∠G=90°.∵∠COA=∠G=90°,∠CAO=∠BAG,∴△GAB∽△OAC.∴=═=2.∴BG=2AG.在Rt△ABG中,∵BG2+AG2=AB2,∴(2AG)2+AG2=22.解得:AG=.∴BG=,CG=AC+AG=2+=.在Rt△BCG中,tan∠ACB═=.(2)如图2,过点B作BH⊥CD于点H,交CP于点K,连接AK.易得四边形OBHC是正方形.应用“全角夹半角”可得AK=OA+HK.设K(4,h),则BK=h,HK=HB﹣KB=4﹣h,AK=OA+HK=2+(4﹣h)=6﹣h.在Rt△ABK中,由勾股定理,得AB2+BK2=AK2.∴22+h2=(6﹣h)2.解得h=.∴点K(4,).设直线CK的解析式为y=hx+4.将点K(4,)代入上式,得=4h+4.解得h=﹣.∴直线CK的解析式为y=﹣x+4.设点P的坐标为(x,y),则x是方程x2﹣3x+4=﹣x+4的一个解.。
2018年山东省济南市中考数学试卷试题及答案
2018年山东省济南市中考数学试卷一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)4的算术平方根是()A.2 B.2-C.2±D2.(4分)如图所示的几何体,它的俯视图是()A.B.C.D.3.(4分)2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为( )A.4⨯D.27.6107610⨯7.610⨯C.40.7610⨯B.34.(4分)“瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(4分)如图,AF是BAC∠的度数为(∠=︒,则BAFDF AC,若135∠的平分线,//)A .17.5︒B .35︒C .55︒D .70︒6.(4分)下列运算正确的是( )A .2323a a a +=B .325(2)4a a -=C .2(2)(1)2a a a a +-=+-D .222()a b a b +=+7.(4分)关于x 的方程321x m -=的解为正数,则m 的取值范围是( )A .12m <-B .12m >-C .12m >D .12m < 8.(4分)在反比例函数2y x=-图象上有三个点1(A x ,1)y 、2(B x ,2)y 、3(C x ,3)y ,若1230x x x <<<,则下列结论正确的是( )A .321y y y <<B .132y y y <<C .231y y y <<D .312y y y <<9.(4分)如图,在平面直角坐标系中,ABC ∆的顶点都在方格线的格点上,将ABC ∆绕点P 顺时针方向旋转90︒,得到△A B C ''',则点P 的坐标为( )A .(0,4)B .(1,1)C .(1,2)D .(2,1)10.(4分)下面的统计图大致反应了我国2012年至2017年人均阅读量的情况.根据统计图提供的信息,下列推断不合理的是( )A .与2016年相比,2017年我国电子书人均阅读量有所降低B .2012年至2017年,我国纸质书的人均阅读量的中位数是4.57C .从2014年到2017年,我国纸质书的人均阅读量逐年增长D .2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多11.(4分)如图1,一个扇形纸片的圆心角为90︒,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .6πB .6π-C .12πD .94π 12.(4分)若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”.例如:(1,0)P 、(2,2)Q -都是“整点”.抛物线2442(0)y mx mx m m =-+->与x 轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( )A .112m <…B .112m <…C .12m <…D .12m <<二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)分解因式:24m -= .14.(4分)在不透明的盒子中装有5个黑色棋子和若干个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是14,则白色棋子的个数是 .15.(4分)一个正多边形的每个内角等于108︒,则它的边数是 .16.(4分)若代数式24x x --的值是2,则x = . 17.(4分)A 、B 两地相距20km ,甲乙两人沿同一条路线从A 地到B 地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2/km h 的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离()y km 与时间()t h 的关系如图所示,则甲出发 小时后和乙相遇.18.(4分)如图,矩形EFGH 的四个顶点分别在矩形ABCD 的各条边上,AB EF =,2FG =,3GC =.有以下四个结论:①BGF CHG ∠=∠;②BFG DHE ∆≅∆;③1tan 2BFG ∠=;④矩形EFGH的面积是.其中一定成立的是 .(把所有正确结论的序号填在横线上)三、解答题(本大题共9小题,共78分)19.(6分)计算:102|5|sin 30(1)π-+--︒+-.20.(6分)解不等式组:31233122x x x x +<+⎧⎪⎨->⎪⎩①② 21.(6分)如图,在ABCD 中,连接BD ,E 是DA 延长线上的点,F 是BC 延长线上的点,且AE CF =,连接EF 交BD 于点O .求证:OB OD =.22.(8分)本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?23.(8分)如图AB是O的直径,PA与O相切于点A,BP与O相交于点D,C为O 上的一点,分别连接CB、CD,60∠=︒.BCD(1)求ABD∠的度数;(2)若6AB=,求PD的长度.24.(10分)某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表.请您根据图表中提供的信息回答下列问题:(1)统计表中的a = ,b = ;(2)“D ”对应扇形的圆心角为 度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A ”、“ B ”、“ C ”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.25.(10分)如图,直线2y ax =+与x 轴交于点(1,0)A ,与y 轴交于点(0,)B b .将线段AB 先向右平移1个单位长度、再向上平移(0)t t >个单位长度,得到对应线段CD ,反比例函数(0)k y x x=>的图象恰好经过C 、D 两点,连接AC 、BD . (1)求a 和b 的值;(2)求反比例函数的表达式及四边形ABDC 的面积;(3)点N 在x 轴正半轴上,点M 是反比例函数(0)k y x x=>的图象上的一个点,若CMN ∆是以CM 为直角边的等腰直角三角形时,求所有满足条件的点M 的坐标.26.(12分)在ABC ∆中,AB AC =,120BAC ∠=︒,以CA 为边在ACB ∠的另一侧作ACM ACB∠=∠,点D 为射线BC 上任意一点,在射线CM 上截取CE BD =,连接AD 、DE 、AE .(1)如图1,当点D 落在线段BC 的延长线上时,直接写出ADE ∠的度数;(2)如图2,当点D 落在线段BC (不含边界)上时,AC 与DE 交于点F ,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若6AB =,求CF 的最大值.27.(12分)如图1,抛物线24y ax bx =++过(2,0)A 、(4,0)B 两点,交y 轴于点C ,过点C 作x 轴的平行线与抛物线上的另一个交点为D ,连接AC 、BC .点P 是该抛物线上一动点,设点P 的横坐标为(4)m m >.(1)求该抛物线的表达式和ACB ∠的正切值;(2)如图2,若45ACP ∠=︒,求m 的值;(3)如图3,过点A 、P 的直线与y 轴于点N ,过点P 作PM CD ⊥,垂足为M ,直线MN 与x 轴交于点Q ,试判断四边形ADMQ 的形状,并说明理由.2018年山东省济南市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)4的算术平方根是()A.2 B.2-C.2±D【分析】算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果.【解答】解:2的平方为4,4∴的算术平方根为2.故选:A.【点评】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.2.(4分)如图所示的几何体,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可.【解答】解:从几何体上面看,2排,上面3个,下面1个,左边2个正方形.故选:D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.解答此题时要有一定的生活经验.3.(4分)2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为( )A.4⨯D.27610⨯7.610⨯C.4⨯B.37.6100.7610【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:376007.610=⨯,故选:B .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.(4分)“瓦当”是中国古建筑装饰檐头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是( )A .B .C .D .【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、不是轴对称图形,也不是中心对称图形;B 、不是轴对称图形,是中心对称图形;C 、是轴对称图形,不是中心对称图形;D 、是轴对称图形,是中心对称图形.故选:D .【点评】本题主要考查轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识.5.(4分)如图,AF 是BAC ∠的平分线,//DF AC ,若135∠=︒,则BAF ∠的度数为()A .17.5︒B .35︒C .55︒D .70︒【分析】根据两直线平行,同位角相等,可得1FAC ∠=∠,再根据角平分线的定义可得BAF FAC ∠=∠.【解答】解://DF AC ,135FAC ∴∠=∠=︒, AF 是BAC ∠的平分线,35BAF FAC ∴∠=∠=︒,故选:B .【点评】本题考查了平行线的性质,角平分线的定义,熟记平行线的性质是解题的关键.6.(4分)下列运算正确的是( )A .2323a a a +=B .325(2)4a a -=C .2(2)(1)2a a a a +-=+-D .222()a b a b +=+【分析】根据多项式的乘法法则、幂的乘方与积的乘方、完全平方公式、合并同类项法则一一判断即可;【解答】解:A 、错误.不是同类项不能合并;B 、错误.应该是326(2)4a a -=;C 、正确;D 、错误.应该是222()2a b a ab b +=++;故选:C .【点评】本题考查多项式的乘法法则、幂的乘方与积的乘方、完全平方公式、合并同类项法则等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.(4分)关于x 的方程321x m -=的解为正数,则m 的取值范围是( )A .12m <- B .12m >- C .12m > D .12m <【分析】先求出方程的解,再根据题意得出不等式,求出不等式的解集即可. 【解答】解:解方程321x m -=得:123mx +=, 关于x 的方程321x m -=的解为正数,∴1203m+>, 解得:12m >-,故选:B .【点评】本题考查了解一元一次不等式和解一元一次方程、一元一次方程的解,能得出关于m 的不等式是解此题的关键.8.(4分)在反比例函数2y x=-图象上有三个点1(A x ,1)y 、2(B x ,2)y 、3(C x ,3)y ,若1230x x x <<<,则下列结论正确的是( )A .321y y y <<B .132y y y <<C .231y y y <<D .312y y y <<【分析】根据反比例函数图象上点的坐标特征解答. 【解答】解:1(A x ,1)y 在反比例函数2y x=-图象上,10x <, 10y ∴>,对于反比例函数2y x =-,在第二象限,y 随x 的增大而增大,230x x <<, 230y y ∴<<, 231y y y ∴<<故选:C .【点评】本题考查的是反比例函数图象上点的坐标特征,掌握反比例函数的性质、反比例函数的增减性是解题的关键.9.(4分)如图,在平面直角坐标系中,ABC ∆的顶点都在方格线的格点上,将ABC ∆绕点P 顺时针方向旋转90︒,得到△A B C ''',则点P 的坐标为( )A.(0,4)B.(1,1)C.(1,2)D.(2,1)【分析】选两组对应点,连接后作其中垂线,两中垂线的交点即为点P.【解答】解:由图知,旋转中心P的坐标为(1,2),故选:C.【点评】本题主要考查坐标与图形的变化 旋转,解题的关键是掌握旋转变换的性质.10.(4分)下面的统计图大致反应了我国2012年至2017年人均阅读量的情况.根据统计图提供的信息,下列推断不合理的是()A.与2016年相比,2017年我国电子书人均阅读量有所降低B.2012年至2017年,我国纸质书的人均阅读量的中位数是4.57C.从2014年到2017年,我国纸质书的人均阅读量逐年增长D .2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多 【分析】利用折线统计图结合相应数据,分别分析得出符合题意的答案.【解答】解:A 、与2016年相比,2017年我国电子书人均阅读量有所降低,正确;B 、2012年至2017年,我国纸质书的人均阅读量的中位数是4.615,错误;C 、从2014年到2017年,我国纸质书的人均阅读量逐年增长,正确;D 、2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多,正确;故选:B .【点评】此题主要考查了折线统计图,利用折线统计图获取正确信息是解题关键. 11.(4分)如图1,一个扇形纸片的圆心角为90︒,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为()A .6πB .6π-C .12πD .94π 【分析】连接OD ,如图,利用折叠性质得由弧AD 、线段AC 和CD 所围成的图形的面积等于阴影部分的面积,AC OC =,则26OD OC ==,CD =从而得到30CDO ∠=︒,60COD ∠=︒,然后根据扇形面积公式,利用由弧AD 、线段AC 和CD 所围成的图形的面积COD AOD S S ∆=-扇形,进行计算即可. 【解答】解:连接OD ,如图,扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD , AC OC ∴=, 26OD OC ∴==,CD ∴==, 30CDO ∴∠=︒,60COD ∠=︒,∴由弧AD 、线段AC 和CD 所围成的图形的面积26061363602CODAOD S S ππ∆⋅⋅=-=-⋅⋅=扇形,∴阴影部分的面积为6π. 故选:A .【点评】本题考查了扇形面积的计算:阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.记住扇形面积的计算公式.也考查了折叠性质.12.(4分)若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”.例如:(1,0)P 、(2,2)Q -都是“整点”.抛物线2442(0)y mx mx m m =-+->与x 轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( ) A .112m <…B .112m <… C .12m <… D .12m <<【分析】画出图象,利用图象可得m 的取值范围 【解答】解:22442(2)2y mx mx m m x =-+-=--且0m >,∴该抛物线开口向上,顶点坐标为(2,2)-,对称轴是直线2x =.由此可知点(2,0)、点(2,1)-、顶点(2,2)-符合题意.①当该抛物线经过点(1,1)-和(3,1)-时(如答案图1),这两个点符合题意. 将(1,1)-代入2442y mx mx m =-+-得到1442m m m -=-+-.解得1m =. 此时抛物线解析式为242y x x =-+.由0y =得2420x x -+=.解得120.6x =,22 3.4x =+≈. x ∴轴上的点(1,0)、(2,0)、(3,0)符合题意.则当1m =时,恰好有(1,0)、(2,0)、(3,0)、(1,1)-、(3,1)-、(2,1)-、(2,2)-这7个整点符合题意.1m ∴….【注:m 的值越大,抛物线的开口越小,m 的值越小,抛物线的开口越大】答案图1(1m =时) 答案图2( 12m =时) ②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意. 此时x 轴上的点(1,0)、(2,0)、(3,0)也符合题意.将(0,0)代入2442y mx mx m =-+-得到00402m =-+-.解得12m =. 此时抛物线解析式为2122y x x =-. 当1x =时,得13121122y =⨯-⨯=-<-.∴点(1,1)-符合题意.当3x =时,得13923122y =⨯-⨯=-<-.∴点(3,1)-符合题意.综上可知:当12m =时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,1)-、(3,1)-、(2,2)-、(2,1)-都符合题意,共有9个整点符合题意, 12m ∴=不符合题. 12m ∴>. 综合①②可得:当112m <…时,该函数的图象与x 轴所围城的区域(含边界)内有七个整点, 故选:B .【点评】本题考查了二次函数图象与系数的关系,抛物线与x 轴的交点的求法,利用图象解决问题是本题的关键.二、填空题(本大题共6小题,每小题4分,共24分) 13.(4分)分解因式:24m -= (2)(2)m m +- .【分析】本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:22()()a b a b a b -=+-.【解答】解:24(2)(2)m m m -=+-.故答案为:(2)(2)m m+-.【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项;符号相反.14.(4分)在不透明的盒子中装有5个黑色棋子和若干个白色做子,每个棋子除颜色外都相同,任意摸出一个棋子,摸到黑色棋子的概率是14,则白色棋子的个数是15.【分析】黑色棋子除以相应概率算出棋子的总数,减去黑色棋子的个数即为白色棋子的个数;【解答】解:155154÷-=.∴白色棋子有15个;故答案为:15.【点评】本题主要考查了概率的求法,概率=所求情况数与总情况数之比.15.(4分)一个正多边形的每个内角等于108︒,则它的边数是5.【分析】根据相邻的内角与外角互为邻补角求出每一个外角的度数为72︒,再用外角和360︒除以72︒,计算即可得解.【解答】解:正多边形的每个内角等于108︒,∴每一个外角的度数为18010872︒-︒=︒,∴边数360725=︒÷︒=,∴这个正多边形是正五边形.故答案为:5.【点评】本题考查了多边形的内角与外角,对于正多边形,利用多边形的外角和除以每一个外角的度数求边数更简便.16.(4分)若代数式24xx--的值是2,则x=6.【分析】根据解分式方程的步骤依次计算可得.【解答】解:224xx-=-,去分母得:22(4)x x-=-,228x x-=-,6x=,经检验:6x=是原方程的解.故答案为:6.【点评】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.17.(4分)A 、B 两地相距20km ,甲乙两人沿同一条路线从A 地到B 地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2/km h 的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离()y km 与时间()t h 的关系如图所示,则甲出发165小时后和乙相遇.【分析】由图象得出解析式后联立方程组解答即可.【解答】解:由图象可得:()405y t t =甲剟;()()2112916(24)t t y t t ⎧-=⎨-<⎩乙剟…;由方程组4916y t y t =⎧⎨=-⎩,解得165t =.故答案为165. 【点评】此题考查一次函数的应用,关键是由图象得出解析式解答.18.(4分)如图,矩形EFGH 的四个顶点分别在矩形ABCD 的各条边上,AB EF =,2FG =,3GC =.有以下四个结论:①BGF CHG ∠=∠;②BFG DHE ∆≅∆;③1tan 2BFG ∠=;④矩形EFGH 的面积是.其中一定成立的是 ①②④ .(把所有正确结论的序号填在横线上)【分析】根据矩形的性质和全等三角形的判定分析各小题即可; 【解答】解:90FGH ∠=︒,90BGF CGH ∴∠+∠=︒.又90CGH CHG ∠+∠=︒, BGF CHG ∴∠=∠,故①正确.同理可得DEH CHG ∠=∠. BGF DEH ∴∠=∠.又90B D ∠=∠=︒,FG EH =, BFG DHE ∴∆≅∆,故②正确.同理可得AFE CHG ∆≅∆. AF CH ∴=.易得BFG CGH ∆∆∽. 设GH 、EF 为a ,∴BF FG CG GH =.∴23BF a=.6BF a∴=. 6AF AB BF a a∴=-=-. 6CH AF a a∴==-. 在Rt CGH ∆中, 222CG CH GH +=,22263()a a a ∴+-=.解得a =GH ∴=.6BF a a∴=-=在Rt BFG ∆中,cos BF BFG FG ∠==,30BFG ∴∠=︒.tan tan30BFG ∴∠=︒=,故③错误.矩形EFGH 的面积2FG GH =⨯=⨯ 故答案为:①②④【点评】此题是几何变换综合题,主要考查了全等三角形的判定和性质,矩形的判定和性质,属于基础题.三、解答题(本大题共9小题,共78分) 19.(6分)计算:12|5|sin 30(1)π-+--︒+-.【分析】先利用负指数, 绝对值, 特殊角的三角函数, 零次幂化简, 最后合并即可得出结论 .【解答】解:102|5|sin 30(1)π-+--︒+-.115122=+-+ 6=【点评】此题主要考查了负指数, 绝对值, 特殊角的三角函数, 零次幂, 熟记性质是解本题的关键 .20.(6分)解不等式组:31233122x x x x +<+⎧⎪⎨->⎪⎩①② 【分析】分别求出不等式①②的解集,同大取大;同小取小;大小小大中间找;大大小小找不到求出不等式组解集. 【解答】解:由①,得 3231x x -<-. 2x ∴<.由②,得 431x x >-. 1x ∴>-.∴不等式组的解集为12x -<<.【点评】本题考查了解一元一次不等式组的解法,利用同大取大;同小取小;大小小大中间找;大大小小找不到求不等式组解集是本题关键.21.(6分)如图,在ABCD 中,连接BD ,E 是DA 延长线上的点,F 是BC 延长线上的点,且AE CF =,连接EF 交BD 于点O .求证:OB OD =.【分析】欲证明OB OD =,只要证明EOD FOB ∆≅∆即可; 【解答】证明:ABCD 中,AD BC ∴=,//AD BC . ADB CBD ∴∠=∠.又AE CF =,AE AD CF BC ∴+=+.ED FB ∴=.又EOD FOB ∠=∠, EOD FOB ∴∆≅∆. OB OD ∴=.【点评】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.22.(8分)本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每一名学生只能参加其中一项活动,共支付票款2000元,票价信息如下:(1)请问参观历史博物馆和民俗展览馆的人数各是多少人? (2)若学生都去参观历史博物馆,则能节省票款多少元?【分析】(1)设参观历史博物馆的有x 人,参观民俗展览馆的有y 人,根据等量关系:①一共150名学生;②一共支付票款2000元,列出方程组求解即可;(2)原来的钱数-参观历史博物馆的钱数,列出算式计算可求能节省票款多少元. 【解答】解:(1)设参观历史博物馆的有x 人,参观民俗展览馆的有y 人,依题意,得 15010202000x y x y +=⎧⎨+=⎩, 解得10050x y =⎧⎨=⎩.答:参观历史博物馆的有100人,则参观民俗展览馆的有50人. (2)200015010500-⨯=(元).答:若学生都去参观历史博物馆,则能节省票款500元.【点评】考查了二元一次方程的应用,(1)找出问题中的已知条件和未知量及它们之间的关系.(2)找出题中的两个关键的未知量,并用字母表示出来.(3)挖掘题目中的关系,找出等量关系,列出二元一次方程.(4)根据未知数的实际意义求其整数解. 23.(8分)如图AB 是O 的直径,PA 与O 相切于点A ,BP 与O 相交于点D ,C 为O上的一点,分别连接CB 、CD ,60BCD ∠=︒. (1)求ABD ∠的度数; (2)若6AB =,求PD 的长度.【分析】(1)解法一:要的圆周角定理得:90ADB ∠=︒,由同弧所对的圆周角相等和直角三角形的性质可得结论;解法二:根据同弧所对的圆心角是圆周角的2倍可得120BOD ∠=︒,由同圆的半径相等和等腰三角形的性质可得结论;(2)如图1,根据切线的性质可得90BAP ∠=︒,根据直角三角形30︒角的性质可计算AD 的长,由勾股定理计算DB 的长,由三角函数可得PB 的长,从而得PD 的长. 【解答】解:(1)方法一:如图1,连接AD .BA 是O 直径,90BDA ∴∠=︒.BD BD =, 60BAD C ∴∠=∠=︒.90906030ABD BAD ∴∠=︒-∠=︒-︒=︒.方法二:如图2,连接DA 、OD ,则2260120BOD C ∠=∠=⨯︒=︒. OB OD =,1(180120)302OBD ODB ∴∠=∠=︒-︒=︒.即30ABD ∠=︒. (2)如图1,AP 是O 的切线,90BAP ∴∠=︒.在Rt BAD ∆中,30ABD ∠=︒, 116322DA BA ∴==⨯=.BD∴==在Rt BAP∆中,cosAB ABDPB∠=,6cos30PB∴︒==BP∴=PD BP BD∴=-=【点评】本题考查切线的性质、等腰三角形的性质、圆周角定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.(10分)某校开设了“3D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制例图1、图2两幅均不完整的统计图表.请您根据图表中提供的信息回答下列问题:(1)统计表中的a=80,b=;(2)“D”对应扇形的圆心角为度;(3)根据调查结果,请您估计该校2000名学生中最喜欢“数学史”校本课程的人数;(4)小明和小亮参加校本课程学习,若每人从“A”、“ B”、“ C”三门校本课程中随机选取一门,请用画树状图或列表格的方法,求两人恰好选中同一门校本课程的概率.【分析】(1)根据题意列出算式,再求出即可;(2)根据题意列出算式,再求出即可;(3)根据题意列出算式,再求出即可;(4)先列出表格,再根据题意列出算式,再求出即可.【解答】解:(1)360.4580a=÷=,b=÷=,16800.20故答案为:80,0.20;(2)“D”对应扇形的圆心角的度数为:÷⨯︒=︒,88036036故答案为:36;(3)估计该校2000名学生中最喜欢“数学史”校本课程的人数为:20000.25500⨯=(人);(4)列表格如下:共有9种等可能的结果,其中两人恰好选中同一门校本课程的结果有3种,所以两人恰好选中同一门校本课程的概率为:3193=.【点评】本题考查了列表法或树形图、用样本估计总体、频数分布表、扇形统计图等知识点,能根据题意列出算式是解此题的关键.25.(10分)如图,直线2y ax =+与x 轴交于点(1,0)A ,与y 轴交于点(0,)B b .将线段AB 先向右平移1个单位长度、再向上平移(0)t t >个单位长度,得到对应线段CD ,反比例函数(0)ky x x=>的图象恰好经过C 、D 两点,连接AC 、BD .(1)求a 和b 的值;(2)求反比例函数的表达式及四边形ABDC 的面积;(3)点N 在x 轴正半轴上,点M 是反比例函数(0)ky x x=>的图象上的一个点,若CMN ∆是以CM 为直角边的等腰直角三角形时,求所有满足条件的点M 的坐标.【分析】(1)利用坐标轴上的点的特点即可得出结论;(2)先表示出点C ,D 坐标,进而代入反比例函数解析式中求解得出k ,再判断出BC AD ⊥,最后用对角线积的一半即可求出四边形的面积; (3)分两种情况,构造全等的直角三角形即可得出结论. 【解答】解:(1)将点(1,0)A 代入2y ax =+,得02a =+. 2a ∴=-.∴直线的解析式为22y x =-+.将0x =代入上式,得2y =. 2b ∴=.(2)由(1)知,2b =,(0,2)B ∴, 由平移可得:点(2,)C t 、(1,2)D t +.将点(2,)C t 、(1,2)D t +分别代入k y x =,得221k t k t ⎧=⎪⎪⎨⎪+=⎪⎩∴42k t =⎧⎨=⎩.∴反比例函数的解析式为4y x=,点(2,2)C 、点(1,4)D . 如图1,连接BC 、AD . (0,2)B 、(2,2)C , //BC x ∴轴,2BC =.(1,0)A 、(1,4)D , AD x ∴⊥轴,4AD =. BC AD ∴⊥.1124422ABDC S BC AD ∴=⨯⨯=⨯⨯=四边形.(3)①当90NCM ∠=︒、CM CN =时,如图2,过点C 作直线//l x 轴,交y 轴于点G .过点M 作MF ⊥直线l 于点F ,交x 轴于点H .过点N 作NE ⊥直线l 于点E .90MCN ∠=︒, 90MCF NCE ∴∠+∠=︒. NE ⊥直线l 于点E , 90ENC NCE ∴∠+∠=︒. MCF ENC ∴∠=∠.又90MFC NEC ∠=∠=︒,CN CM =,()NEC CFM AAS ∴∆≅∆. 2CF EN ∴==,FM CE =. 224FG CG CF ∴=+=+=. 4M x ∴=.将4x =代入4y x=,得1y =. ∴点(4,1)M ;②当90NMC ∠=︒、MC MN =时,如图3,过点C 作直线l y ⊥轴与点F ,则2C CF x ==.过点M 作MG x ⊥轴于点G ,MG 交直线l 与点E ,则MG ⊥直线l 于点E ,2C EG y ==. 90CMN ∠=︒, 90CME NMG ∴∠+∠=︒.ME ⊥直线l 于点E ,90ECM CME ∴∠+∠=︒. NMG ECM ∴∠=∠.又90CEM NGM ∠=∠=︒,CM MN =, ()CEM MGN AAS ∴∆≅∆. CE MG ∴=,EM NG =.设CE MG n ==,则M y n =,2M x CF CE n =+=+.∴点(2,)M n n +.将点(2,)M n n +代入4y x =,得42n n=+.解得11n =,21n =(因为点M 在第一象限,所以n 大于0,所以舍去).21M x n ∴=+=.∴点1M 1).综合①②可知:点M 的坐标为(4,1)或11).【点评】此题是反比例函数综合题,主要考查了待定系数法,全等三角形的判定和性质,四边形的面积的计算方法,构造出全等三角形是解本题的关键.26.(12分)在ABC∠=︒,以CA为边在ACBBAC∠的另一侧作=,120∆中,AB AC=,连接AD、ACM ACB∠=∠,点D为射线BC上任意一点,在射线CM上截取CE BDDE、AE.(1)如图1,当点D落在线段BC的延长线上时,直接写出ADE∠的度数;(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,请问(1)中的结论是否仍成立?如果成立,请给出证明;如果不成立,请说明理由;(3)在(2)的条件下,若6AB=,求CF的最大值.【分析】(1)利用SAS 定理证明ABD ACE ∆≅∆,根据相似三角形的性质得到AD AE =,CAE BAD ∠=∠,根据等腰三角形的性质、三角形内角和定理计算即可证明;(2)同(1)的证明方法相同;(3)证明ADF ACD ∆∆∽,根据相似三角形的性质得到26AD AF =,求出AD 的最小值,得到AF 的最小值,求出CF 的最大值. 【解答】解:(1)30ADE ∠=︒. 理由如下:AB AC =,120BAC ∠=︒,30ABC ACB ∴∠=∠=︒, ACM ACB ∠=∠, ACM ABC ∴∠=∠,在ABD ∆和ACE ∆中, AB AC ABC ACE BD CE =⎧⎪∠=∠⎨⎪=⎩, ABD ACE ∴∆≅∆,AD AE ∴=,CAE BAD ∠=∠,120DAE BAC ∴∠=∠=︒, 30ADE ∴∠=︒;(2)(1)中的结论成立,证明:120BAC ∠=︒,AB AC =, 30B ACB ∴∠=∠=︒. ACM ACB ∠=∠,30B ACM ∴∠=∠=︒.在ABD ∆和ACE ∆中, AB AC ABC ACE BD CE =⎧⎪∠=∠⎨⎪=⎩, ABD ACE ∴∆≅∆.AD AE ∴=,BAD CAE ∠=∠.120CAE DAC BAD DAC BAC ∴∠+∠=∠+∠=∠=︒.即120DAE ∠=︒.AD AE =,30ADE AED ∴∠=∠=︒;(3)AB AC =,6AB =,6AC ∴=,30ADE ACB ∠=∠=︒且DAF CAD ∠=∠, ADF ACD ∴∆∆∽.∴AD AFAC AD=. 2AD AF AC ∴=. 26AD AF ∴=.26AD AF ∴=. ∴当AD 最短时,AF 最短、CF 最长.易得当AD BC ⊥时,AF 最短、CF 最长,此时132AD AB ==. 2323662AD AF ∴===最短.39622CF AC AF ∴=-=-=最长最短. 【点评】本题考查的是相似三角形的判定和性质、全等三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.27.(12分)如图1,抛物线24y ax bx =++过(2,0)A 、(4,0)B 两点,交y 轴于点C ,过点C 作x 轴的平行线与抛物线上的另一个交点为D ,连接AC 、BC .点P 是该抛物线上一动点,设点P 的横坐标为(4)m m >. (1)求该抛物线的表达式和ACB ∠的正切值;。
2018年山东省济南市中考数学试题及解析
一、选择题(共 15 小题,每小题 3 分,满分 45 分,每小题只有一个选项符合题意) 1. (3 分) (2018•济南)﹣6 的绝对值是( ) A. 6 B.﹣6 C . ±6 D.
2. (3 分) (2018•济南)新亚欧大陆桥东起太平洋西岸中国连云港,西达大西洋东岸荷兰鹿特丹等港口,横贯 亚欧两大洲中部地带,总长约为 10900 公里,10900 用科学记数法表示为( ) A.0.109×105 B.1.09×104 C.1.09×103 D.109×102 )
A.
B.
C.
D.
6. (3 分) (2018•济南)若代数式 4x﹣5 与 A. 1 B. C.
的值相等,则 x 的值是( D. 2
)
7. (3 分) (2018•济南)下列图标既是轴对称图形又是中心对称图形的是( A. B. C. D.
)
8. (3 分) (2018•济南)济南某中学足球队的 18 名队员的年龄如表所示: 年龄(单位:岁) 12 人数 A. 13 岁,14 岁 3 13 5 B.14 岁,14 岁 14 6 ) C.14 岁,13 岁 D.14 岁,15 岁 15 4
19. (3 分) (2018•济南)小球在如图所示的地板上自由滚动,并随机地停留在某块方砖上,每一块方砖的除颜 色外完全相同,它最终停留在黑色方砖上的概率是 .
20. (3 分) (2018•济南)如图,等边三角形 AOB 的顶点 A 的坐标为(﹣4,0) ,顶点 B 在反比例函数 y= (x <0)的图象上,则 k= .
四个类别,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.根据图表提供的信息, 回答下列问题: 类别 小说 戏剧 散文 其他 合计 4 10 6 m 1 0.25 频数(人数) 频率 0.5
(真题)2018-2019学年山东省济南市数学中考试题附答案
山东省济南市2018年学业水平考试数学试题D. ,'2这标志着墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为(A . 0.76 X 104B . 7.6X 103【答案】B【答案】D5. (2018济南,5, 4分)如图,AF是/ BAC的平分线,【答案】B6. (2018济南,6, 4分)下列运算正确的是(、选择题(本大题共12小题,每小题4分,共48 分)1. (2018 济南, 4分) 4的算术平方根是(【答案】A)【答案】DD.3. (2018 济南, 3, 4分)2018年1月,墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,4. (2018济南,4, 4分)瓦当”是中国古建筑装饰XX头的附件,是中国特有的文化艺术遗产,下面瓦当”图案中既是轴对称图形又是中心对称图形的是)C DA . 17.5 B. 35 °C. 55 D .70 °OC .土27.6 X 104 D . 76 X 102DF // AC,若/ 1 = 35。
,则/ BAF 的度数为(A . a2+ 2a = 3a3B . (—2a3)2= 4a5C. (a+ 2)(a—1) = a2+ a—2D. (a+ b)2= a2+ b2【答案】C7. (2018济南,7, 4分)关于x的方程3x—2m= 1的解为正数,则m的取值范围是()1A . m v —1B . m>—1C . m >1D . m<【答案】B8 . (2018 济南,8, 4分)在反比例函数y =2—2图象上有三个点XA (X1, y1)、B (X2, y2)、C (X3, y3),若X1 v 0v X2VX3,则下列结论正确的是()A . y3V y2V y1B . y1 v y3< y2C . y2< y3< y1D . y3< y1 < y2【答案】C9.(2018济南,9,4分)如图,在平面直角坐标系中,A ABC的顶点都在方格线的格点上,将A ABC绕点P顺时针方向旋转90°得到△A,BC,,则点P的坐标为()A . (0, 4)B . (1, 1)C . (1 , 2)D . (2, 1)【答案】C图提供的信息,下列推断不合理的是(A .与2016年相比,2017年我国电子书人均阅读量有所降低B . 2012年至2017年,我国纸质书的人均阅读量的中位数是 4.57C .从2014年到2017年,我国纸质书的人均阅读量逐年增长D . 2013年我国纸质书的人均阅读量比电子书的人均阅读量的 1.8倍还多10. ( 2018 济南,10 ,4分)下面的统计图大致反应了我国2012年至2017年人均阅读量的情况. 根据统计【答案】B11. (2018济南,11, 4分)如图,一个扇形纸片的圆心角为90°半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为 CD ,图中阴影为重合部分,则阴影部分的面积为()9 n~4【答案】A12. (2018济南,11,4分)若平面直角坐标系内的点 M 满足横、纵坐标都为整数,则把点M 叫做 整点”.例 女口:P (1, 0)、Q (2, — 2)都是 整点”抛物线y = mx 2 — 4mx + 4m — 2(m >0)与x 轴交于点A 、B 两点, 若该抛物线在 A 、 B 之间的部分与线段 AB 所围成的区域 (包括边界)恰有七个整点,则m 的取值范围是( )A . \;m v 11B . _v m W 1C . 1v m W 2D . 1 v m v 22【答案】B【解析】解:•••y = mx 2 —4mx + 4m — 2= m(x — 2)2— 2且 m >0,•••该抛物线开口向上,顶点坐标为 (2, — 2),对称轴是直线x = 2. 由此可知点(2, 0)、点(2, — 1)、顶点(2, — 2)符合题意. 方法一:① 当该抛物线经过点(1,— 1 )和(3, — 1 )时(如答案图1),这两个点符合题意.B . 6 n — 9.3C . 12 n —9、3D .将(1,—1)代入y= mx2—4mx+ 4m— 2 得到—1 = m—4m+ 4m—2.解得m= 1 . 此时抛物线解析式为y= x2—4x+ 2.由 y = 0 得 x 2- 4x + 2= 0 .解得 X 1 = 2— 2~ 0.6 • x 轴上的点(1 , 0)、(2, 0)、(3, 0)符合题意.符合题意.②当该抛物线经过点(0, 0)和点(4, 0)时(如答案图2),这两个点符合题意.此时x 轴上的点(1, 0)、(2, 0)、(3, 0)也符合题意.1将(0, 0)代入 y = mx 2— 4mx + 4m — 2 得到 0 = 0 — 4m + 0 — 2.解得 m = ?.1此时抛物线解析式为 y = ^x 2— 2x . 1 3当 x = 1 时,得 y = ?X1 — 2X1 = —1 .•点(1, — 1)符合题意.1 3当x = 3时,得y = 2刈一 2 X 3=— 2<— 1 .•点(3, — 1)符合题意.1综上可知:当 m = 2时,点(0, 0)、(1, 0)、(2 , 0)、(3 , 0)、(4, 0)、(1 , — 1)、(3 , — 1)、(2 ,— 2)、(2 , - 1)都符合题意,共有 9个整点符合题意, 1•m = 2■不符合题. • m > 2.案选B .1:根据题目提供的选项,分别选取m = 2 , m = 1, ①当m = 2时(如答案图3), 得 y =詁—2x .—2x = 0 .解得 X 1= 0, x 2= 4.• x 轴上的点(0 , 0)、(1, 0)、(2 , 0)、(3 , 0)、(4 , 0)符合题意.X 2 = 2 + .2 3.4则当m = 1时, 恰好有(1 , 0)、(2, 0)、(3, 0)、(1 , — 1)、(3, — 1)、(2, — 1)、(2, — 2)这 7 个整点m 的值越大,抛物线的开口越小, m 的值越小,抛物线的开口越大,】L 27----- --------- 31 O25*〉21 '1 !1/-3答案图1(m = 1时) 1答案图2( m = 2■时)综合①②可得:当2v mwi 时,该函数的图象与x 轴所围城的区域(含边界)内有七个整点, 故答方法 m = 2,依次加以验证.1 3当 x = 1 时,得 y = iX1 — 2X1 = — 3<一 1•二点(1,一 1)符合题意. 1 3当x = 3时,得y = 2刈一 2 X 3 = 一 2< — 1 •二点(3, — 1)符合题意. 1综上可知:当 m = 1 时,点(0, 0)、(1, 0)、(2, 0)、(3 , 0)、(4, 0)、(1 , 2)、(2 , — 1)都符合题意,共有 9个整点符合题意, 1.•.m = 2■不符合题.「•选项A 不正确.由 y = 0 得 x 2— 4x + 2 = 0 •解得 X 1= 2 — 2 0.6 x 2= 2+ 2 3.4 • x 轴上的点(1 , 0)、(2, 0)、(3, 0)符合题意.当 x = 1 时,得 y = 1 — 4X1 + 2=— 1..点(1, — 1)符合题意. 当 x = 3 时,得 y = 9 — 4X 3 + 2= — 1 .•点(3, — 1)符合题意.综上可知:当 m = 1 时,点(1, 0)、(2, 0)、(3 , 0)、(1 , — 1)、(3 , — 1)、(2 , — 2)、(2 , — 1)都符 合题意,共有7个整点符合题意, • m = 1符合题. •选项B 正确.③ 当m = 2时(如答案图 5),得y = 2x 2— 8x + 6. 由 y = 0 得 2x 2 — 8x + 6= 0.解得 X 1= 1 , x 2 = 3. • x 轴上的点(1 , 0)、(2 , 0)、(3 , 0)符合题意.综上可知:当 m = 2时,点(1, 0)、(2 , 0)、(3 , 0)、(2 , — 2)、(2 , — 1)都符合题意,共有 5个 整点符合题意, • m = 2不符合题.二、填空题(本大题共6小题,每小题4分,共24分)13. ( 2018 济南,13 , 4 分)分解因式: m 2— 4= _____________ : 【答案】(m + 2)(m — 2)14. ( 2018济南,14 , 4分)在不透明的盒子中装有5个黑色棋子和若于个白色做子,每个棋子除颜色外都1)、(3,1)、(2,—②当m = 1时(如答案图 4),得 y = x 2 — 4x + 2.答案图3( m = *时)答案图4(m = 1时) 答案图5(m = 2时)相同,任意摸出一个棋子,摸到黑包棋子的概率是4,则白色棋子的个数是二 ------------------ 【答案】15 15. ( 2018济南,15,4分)一个正多边形的每个内角等于 108 °则它的边数是= _______________ ;【答案】5x — 216. ( 2018济南,16, 4分)若代数式 的值是2,贝V x= ; X — 4【答案】617.(2018济南,17, 4分)A 、B两地相距20km ,甲乙两人沿同一条路线从A 地到B 地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以 2km/h 的速度度匀速行驶 1小时后提高速度并继续匀速行驶, 结果比甲提前到达•甲、乙两人离开 A 地的距离s (km )与时间t (h )的关系如图所示,则甲出发_____________ 小时后和乙相遇.=2, GC= 3.有以下四个结论:1①/ BGF = Z CHG .②厶 BFG 刍\ DHE .③tan Z BFG = ④矩形 EFGH18.( 2018济南,18,4分)如图,矩形 EFGH 的四个顶点分别在矩形ABCD 的各条边上, AB = EF ,FG的面积是4西•其中一定成立的是 ______________ •(把所有正确结论的序号填在横线上)【答案】【解析】y 甲=4t (0 << 4) y 乙=2(t — 1)(1W <2 . 9(t — 2)t(2 V t <4; 由方程组y = 4t y = 9(t — 2)解得 •••答案为165t =16 564 -解:由①,得3x — 2x V 3 — 1.• x V 2.由②,得 4x > 3x — 1.【答案】①②④.【解析】 设EH = AB = a ,贝U CD = GH = a .•••/ FGH = 90° •••/ BGF + Z CGH = 90° 又•••/ CGH + Z CHG= 90°•••/ BGF = Z CHG ............................................... 故①正确.同理可得/ DEH =Z CHG .•••/ BGF = Z DEH .又•••/ B =Z D = 90° FG = EH,••• △BFG ◎△ DHE ......................................... 故②正确.同理可得 A AFE ◎△ CHG .• AF = CH.易得 △BFGCGH.A BF = CG = FG BF 26GH .•亍=BF =a. 6 6•AF = AB — BF = a — CH = AF = a — 一. a a在 Rt △CGH 中,T CG2+ CH2 = GH2,• 32 + ( a — |)2= a 2.解得 a = 2.3..GH = 2.3. • BF = a —1= 3. 在 Rt △BFG 中,T cos / BFG =些= ^3,.Z BFG = 30°FG 2• ...................................................................................... tan / BFG = tan30〜亍. ....................................... 故③正确.矩形 EFGH 的面积=FG XGH = 2X2 3= 4 3 ...........................................故④正确.三、解答题(本大题共9小题,共78 分)19. ( 2018 济南,19, 6 分)计算:2 1 + I — 5 | — sin30 + ( — 1)0. 解:2—1+ | — 5 | — sin30 °+ ( n-=620. (2018 济南,解不等式组: 20, 6 分) 3x + 1v 2x + 3 ① 2x >②--X > —1.•••不等式组的解集为一1 v X V 2.21. (2018 济南,21, 6 分)如图,在口ABCD中,连接BD , E是DA延长线上的点,F是BC延长线上的点,且AE= CF,连接EF交BD于点O.求证:OB = OD .证明:••• OABCD 中,••• AD = BC,AD // BC.•••/ ADB =Z CBD.又••• AE = CF ,• AE + AD = CF + BC.• ED = FB.又•••/ EOD = Z FOB,•••△ EOD ◎△ FOB.• OB = OD.22. (2018 济南,22, 8 分)本学期学校开展以感受中华传统买德”为主题的研学部动,组织150名学生多观历史好物馆和民俗晨览馆,每一名学生只能参加其中全顺活动,共支付票款2000元,票价信息如下:(1)请问参观历史博物馆和民俗展览馆的人数各是多少人?(2)若学生都去参观历史博物馆,则能节省票款多少元?解:(1 )设参观历史博物馆的有x人,则参观民俗展览馆的有(150-x)人,依题意,得10x+ 20(150 - x)2000.10x+ 3000-20x= 2000.-10x=- 1000.•- x= 100.• 150 —x= 50.答:参观历史博物馆的有100人,则参观民俗展览馆的有50人.(2)2000- 150X 10= 500 (元).答:若学生都去参观历史博物馆,则能节省票款 500 元.23. ( 2018 济南,23, 8 分)第23题答案图1 第23题答案图2方法二: 连接DA 、OD (如答案图 2所示),则Z BOD = 2Z C = 200° = 120° 1•••OB = OD ,•••/ OBD = Z ODB = ^(180 — 120 ° = 30 ° 即Z ABD = 30°.⑵•/ AP 是O O 的切线,•••/ BAP = 90 —在 RtABAD 中,T Z ABD = 30 —• DA = |B A = 10= 3. • BD = 3DA = 3 .3.如图AB 是O O 的直径, PA 与O O 相切于点A , BP 与O O 相较于点D , C 为O O 上的一点,分别连接CB 、CD ,/ BCD = 60 °⑴求/ ABD 的度数;(2)若AB = 6,求PD 的长度.【解析】解:⑴方法一:连接AD (如答案图1所示).•/ BA 是O O 直径,•••/ BDA = 90 °•/ BD = BD ,•/ BAD = Z C = 60 °•••/ ABD = 90°-Z BAD = 90° — 60° = 30°.在 RtABAP 中,「cos / ABD = P|」cos30=着=*・ B P = 4 3- ••• PD = BP - ID = 4 3- 3 3= 3.24. ( 2018 济南,24, 10 分)某校开设了 “D”打印、数学史、诗歌欣赏、陶艺制作四门校本课程,为了解学生对这四门校本课程的 喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示) ,将调查结果整理后绘制例图1、图2两幅均不完整的统计图表.最受欢迎的校本课程问卷调查您好!这是一份关于您最喜欢的校本课程 问卷调查表,请在表格中选择一个(只能选一 个)您最喜欢的课程选项,在其后空格内打“ V” 非常感谢您的合作.请您根据图表中提供的信息回答下列问题: (1) 统计表中的 a= ________ , b = _______ ;(2) ____________________________ D ”对应扇形的圆心角为 度; (3) 根据调查结果,请您估计该校 2000名学生中最喜欢 数学史”校本课程的人数;A ” I ” C ”三门校本课程中随机选取一门,请用画树状 图或列表格的方法,求两人恰好选中同一门校本课程的概率.解:(1) a = 36P45= 80.b = 16 充0= 0.20. (2)D ”对应扇形的圆心角的度数为: 8 吒0 X 360 °= 36 °(3) 估计该校2000名学生中最喜欢数学史”校本课程的人数为:2000 X .25 = 500 (人). (4) 列表格如下:校本课程频数(人数)频率 A360.45 I0.25C16bD 8合计a 1选项 校本课程A 3D ”打印I 数学史C 诗歌欣赏D陶艺制作(4)小明和小亮参加校本课程学习,若每人从A B CA A,A B,A C,AB A,B B,B C,BC A,C B,C C,C共有93 1一门校本课程的概率为:9=25. ( 2018 济南,25, 10 分)如图,直线y= ax+ 2与x轴交于点A(1, 0),与y轴交于点B(0, b).将线段AB先向右平移1个单位k 长度、再向上平移t (t> 0)个单位长度,得到对应线段CD,反比例函数y= k(x> 0)的图象恰好经过C、xD两点,连接AC、BD .(1) 求a和b的值;⑵求反比例函数的表达式及四边形ABDC的面积;k⑶点N在x轴正半轴上,点M是反比例函数y= -( x> 0)的图象上的一个点,若△CMN是以CM为直x角边的等腰直角三角形时,求所有满足条件的点M的坐标.【解析】解:⑴将点A(1, 0)代入y= ax+ 2,得0 = a + 2.二a=—2.•••直线的解析式为y=—2x+ 2.将x= 0代入上式,得y= 2 .二b = 2..••点(2) 由平移可得:点C(2, t)、D(1, 2 + t).4•••反比例函数的解析式为y =;,点C(2, 2)、点D(1, 4).B(0, 2).将点C(2, t)、D(1, 2 +1)分别代入y = £,得kt=2k2+1= k.解得分别连接BC 、AD (如答案图1).•/ B(0, 2)、C(2, 2),「. BC // x 轴,BC = 2 . •/ A(1, 0)、D(1, 4) ,••• AD 丄x 轴,AD = 4. ••• BC 丄 AD ..o 1 1…S 四边形 ABDC = 2 XBC XAD = 2^2 >A = 4.m >0),贝U ON = m , CE = 2 — m .vZ MCN = 90 ° .Z MCF + Z NCE = 90 ° v NE 丄直线 I 于点 E ,.Z ENC + Z NCE = 90°• / MCF =Z ENC .又 V z MFC = Z NEC = 90° CN = CM ,CF = EN = 2, FM = CE = 2 — m .M 作MG 丄x 轴于点G , MG 交直线l 与点E ,贝U MG 丄直线I 于点 vZ CMN = 90° .Z CME + Z NMG = 90°⑶①当/ NCM = 90 ° MF 丄直线I 于点F, CM = CN 时(如答案图2所示),过点C 作直线交x 轴于点H .过点N 作NE 丄直线I 于点E .I // x 轴,交y 轴于点G .过点M 作设点N (m , 0)(其中 1).②当 Z NMC = 90 ° MC = MN 时 (如答案图3所示),过点C 作直线 I 丄y 轴与点F ,贝U CF = X C = 2.过点E , EG = y c = 2.第25题答案图1• - FG = CG + CF = 2+ 2= 4.. X M = 4.M(4, 第25题答案图2 l第25题答案图3•/ ME 丄直线 I 于点 E ,「./ ECM +Z CME = 90° • •• / NMG = Z ECM .又•••/ CEM =Z NGM = 90° CM = MNCEM ◎△ MGN .• CE = MG , EM = NG .设 CE = MG = a ,贝V y M = a , X M = CF + CE = 2+ a . •点 M (2 + a , a). 4 4将点 M(2+ a , a)代入 y = -,得 a = •解得 a i = 5- 1, a 2=— 5 — 1.X 2十a •・X M = 2十 a = 5+ 1. •••点 M( 5十 1 , 5— 1).综合①②可知:点 M 的坐标为(4, 1)或(.5+ 1,,5 — 1).26. ( 2018 济南,26, 12 分)在△ABC 中,AB = AC ,/ BAC = 120°以CA 为边在/ ACB 的另一侧作/ ACM = Z ACB ,点D 为射线 BC 上任意一点,在射线 CM 上截取CE = BD ,连接AD 、DE 、AE .(1) 如图1,当点D 落在线段BC 的延长线上时,直接写出/ ADE 的度数;(2) 如图2,当点D 落在线段BC (不含边界)上时,AC 与DE 交于点F ,请问(1)中的结论是否仍 成立?如果成立,请给出证明;如果不成立,请说明理由;(3) 在(2)的条件下,若 AB = 6,求CF 的最大值.第26题图2【解析】第26题图1 M解:(1) / ADE = 30°•CF最长=AC —AF最短=6 - 2= |.27. ( 2018 济南,27, 12 分)(2) (1)中的结论是否还成立证明:连接AE (如答案图1所示).•••/ BAC = 120 ° AB = AC ,:/ B =Z ACB = 30 °又•••/ ACM = / ACB ,: / B =/ ACM = 30° 又••• CE = BD ,•••△ ABD ◎△ ACE. ••• AD = AE,/ 1 = / 2.•••/ 2+/ 3=/ 1 + / 3 =/ BAC = 120 ° 即/ DAE = 120 °又••• AD = AE,:/ ADE = / AED = 30 °答案图1答案图2(3) •/ AB = AC , AB = 6, • AC = 6.•••/ ADE = / ACB = 30°且/ DAF =/ CAD ,AD AF AD 2 • △ ADF s^ACD.二乔二晶•••• AD 2= AFAC .: AD 2= 6AF .• AF =—-.AC AD 6 当AD 最短时,AF 最短、CF 最长.易得当AD 丄BC 时,AF 最短、CF 最长(如答案图2所示),此时AD = ^AB = 3. • AF 最短=AD 2 3^ 36 = 6 = 2E A C DEAC D如图1抛物线y = ax 2 + bx + 4过A(2, 0)、B(4, 0)两点,交y 轴于点C ,过点C 作x 轴的平行线与不 等式抛物线上的另一个交点为D ,连接AC 、BC .点P 是该抛物线上一动点,设点P 的横坐标为m (m >4).(1) 求该抛物线的表达式和/ ACB 的正切值; (2) 如图2,若/ ACP = 45°求m 的值;(3) 如图3,过点A 、P 的直线与y 轴于点N ,过点P 作PM 丄CD ,垂足为M ,直线MN 与x 轴交于点Q , 试判断四边形ADMQ 的形状,并说明理由.【解析】设直线AC 的解析式为y = kx + 4,将点A(2, 0)代入上式,得0= 2k + 4.解得k =— 2. •••直线AC 的解析式为y =— 2x + 4. 同理可得直线 BC 的解析式为y = — x + 4. 求tan / ACB 方法一:过点B 作BG 丄CA ,交CA 的延长线于点 G (如答案图1所示),则/ G = 90° •// COA = / G = 90° / CAO =/GAB s^ OAC.•BG…AG =OC 4 「OA = 2= 2.…B G = 2AG.在 Rt A ABG 中,T BG 2+ AG 2 = AB 2, • (2AG)2+ AG 2= 22.AG =鉅.• BG =牯,CG = AC + AG = 2诉+ 紀=半丘.在 Rt ^BCG 中, tan / ACB =器解:(1)将点A(2, 0)和点B(4, 0)分别代入y = ax 2 + bx + 4,得0= 4a + 2x + 4 0= 16a + 4b + 4解得1a =2. •该抛物线的解析式为 b =— 3y = 2x 2— 3x + 4.将x = 0代入上式, 得 y = 4.二点 C (0, 4), OC = 4. 第27题图1在 Rt A AOC 中,AC =+ OC 2= '22+ 42= 2 5.求tan / ACB 方法二:1-•— 2k AE =— 1. • k AE = 21 V = —x 一1 由方程组y2 解得y =— x + 4• AE = 7 2- 晋2+ 0一 22=罪AE 討51 在Rt “EC 中,tan /ACB =AC =苹3求tan / ACB 方法三:过点A 作AF 丄BC ,交BC 点E (如答案图3所示),贝U k AF R BC = — 1.k AF =— 1. • k AF = 1.•••可设直线 AF 的解析式为y = x +n . 将点A(2, 0)代入上式,得0= 2 + n .解得n = — 2.•直线AF 的解析式为y = x — 2.• AF = ; (3 — 2)2+ (1 — 0)2= . 2, CF = (3 — 0)2— (1 — 4)2= 3 2. AF V 2 1 在 Rt A AEC 中,ta n /ACB =-=厂=1由方程组y = x 一 2 y =— x + 4 解得:=1 .•点 F (3, 1).y =1过点A 作AE 丄AC ,交BC 于点E(如答案图 2 所示),贝U k AE k AC = 一 1.•••可设直线AE 的解析式为1y = ?x + m . 将点A(2, 0)代入上式,得10= 2&+ m .解得•直线AE 的解析式为 y = ^x — 1.10 x= 32.•点 E y= 210 2、(亍 3).(2)方法一:利用一线三等角”模型将线段AC绕点A沿顺时针方向旋转90°得到线段AC',贝UAC'= AC,/ C AC = 90 ° / CC A=Z ACC = 45 °•••/ CAO + / CAB = 90°又•••/ OCA + / CAO = 90°•••/ OCA =/ CAB.过点C作C E丄x轴于点E.则/ C EA = / COA = 90°•// C EA = / COA = 90° / OCA = / C AB, AC '= AC,•△C EA也厶AOC.• C E= OA = 2, AE = OC = 4.• OE = 0A + AE = 2 + 4= 6.•点C,(6 2).设直线C C的解析式为y= hx + 4.1 将点C,(6 2)代入上式,得2= 6h + 4.解得h = —3. •直线C C的解析式为y=— , + 4.3ACP= 45° / ACC '= 45° •点P在直线C C 上.1 1设点P的坐标为(x, y),则x是方程~x2—3x+ 4=—~x+ 4的一个解.2 3将方程整理,得3x2—14x= 0.解得x i =晋,x2= 0 (不合题意,舍去).16 1 20将x1= "3"代入y= —§x+ 4,得y=亍.•点P的坐标为(£, 20).x(2)方法二:利用正方形中的全角夹半角"模型. 过点B 作BH 丄CD 于点H ,交CP 于点K ,连接AK .易得四边形 OBHC 是正方形. 应用 全角夹半角”可得AK = OA + HK .设 K(4, h),贝U BK = h , HK = HB — KB = 4 — h , AK = OA + HK = 2+ (4 — h)= 6- h . 在 Rt △ABK 中,由勾股定理,得 AB 2+ BK 2= AK 2.: 22 + h 2= (6 — h)2 .解得 h = £. 3•••点 K(4, 8).设直线CK 的解析式为y = hx + 4.8 8 1将点K(4, 3)代入上式,得3= 4h + 4 •解得h = — 3.1• •直线CK 的解析式为y =— + 4.1 1设点P 的坐标为(x , y),贝U x 是方程~x 2— 3x + 4=— ~x + 4的一个解. 2 3将方程整理,得 3x 2 — 14x = 0.16解得X 1 = T , x 2= 0 (不合题意,舍去).将 X 1=晋代入 y = — fx + 4, 得 y = 20.••点 P 的坐标为(詈,20).(3)四边形ADMQ 是平行四边形.理由如下:■/ CD // x 轴,• y c = y D = 4.将 y = 4 代入 y = ,2-3x + 4, 得 4 =扶-3x + 4•解得 X 1= 0, x 2= 6.•点 D (6, 4).1根据题意,得 P ( m , ^m 2— 3m + 4), M ( m , 4), H (m , 0).HDK' OA B K P第27题答案图4第27题答案图5m—4 = OQ4 m—OQ.--OQ = m —4./• AQ= OA —OQ = 2 —(m —4) = 6—m.AQ= DM = 6 —m.又••• AQ // DM ,•••四边形ADMQ是平行四边形.1PH = ^m2—3m+ 4), OH = m, AH = m—2, MH = 4.①当4v m v 6时(如答案图5所示),DM = 6- m•••△ OAN- △HAP ,• ON=AHAm2—6m+ 8 (m—4)(m —2)…ON = ---------- =•/△ ONQ S AHMPON2m2—3m + 4 m —2m—4..ON = OQ . ON = OQ,• HM = HQ . 4 = m —OQ6所示),同理可得:四边形ADMQ是平行四边形.②当m>6时(如答案图综合①、②可知:四边形ADMQ 是平行四边形.。
(2021年整理)2018年山东省济南市中考数学试题(word答案)(2)
(完整)2018年山东省济南市中考数学试题(word答案)(2)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2018年山东省济南市中考数学试题(word答案)(2))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2018年山东省济南市中考数学试题(word答案)(2)的全部内容。
山东省济南市2018年学业水平考试数学试题一、选择题(本大题共12小题,每小题4分,共48分)1.(2018济南,1,4分)4的算术平方根是()A.2 B.-2 C.±2 D.错误!【答案】A2.(2018济南,2,4分)如图所示的几何体,它的俯视图是()正面A. B. C. D.【答案】D3.(2018济南,3,4分)2018年1月,“墨子号"量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号"具备了洲际量子保密通信的能力.数字7600用科学记数法表示为( )A.0。
76×104 B.7.6×103 C.7.6×104 D.76×102【答案】B4.(2018济南,4,4分)“瓦当”是中国古建筑装饰××头的附件,是中国特有的文化艺术遗产,下面“瓦当”图案中既是轴对称图形又是中心对称图形的是( )A B C D【答案】D5.(2018济南,5,4分)如图,AF是∠BAC的平分线,DF∥AC,若∠1=35°,则∠BAF的度数为( )A .17。
5° B.35° C .55° D.70°【答案】B6.(2018济南,6,4分)下列运算正确的是( ) A .a 2+2a =3a 3B .(-2a 3)2=4a 5C .(a +2)(a -1)=a 2+a -2 D .(a +b )2=a 2+b 2【答案】C7.(2018济南,7,4分)关于x 的方程3x -2m =1的解为正数,则m 的取值范围是( ) A .m <-错误! B .m >-错误! C .m >错误! D .m <错误! 【答案】B8.(2018济南,8,4分)在反比例函数y =-错误!图象上有三个点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3),若x 1<0<x 2<x 3,则下列结论正确的是( )A .y 3<y 2<y 1B .y 1<y 3<y 2C .y 2<y 3<y 1D .y 3<y 1<y 2 【答案】C9.(2018济南,9,4分)如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( ) A .(0,4) B .(1,1) C .(1,2) D .(2,1)1ABCDF【答案】C10.(2018济南,10,4分)下面的统计图大致反应了我国2012年至2017年人均阅读量的情况.根据统计图提供的信息,下列推断不合理...的是( ) A .与2016年相比,2017年我国电子书人均阅读量有所降低 B .2012年至2017年,我国纸质书的人均阅读量的中位数是4.57C .从2014年到2017年,我国纸质书的人均阅读量逐年增长D .2013年我国纸质书的人均阅读量比电子书的人均阅读量的1.8倍还多【答案】B11.(2018济南,11,4分)如图,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .6π-错误!错误!B .6π-9错误!C .12π-错误!错误!D .错误!年份电子书纸质书62345【答案】A12.(2018济南,11,4分)若平面直角坐标系内的点M 满足横、纵坐标都为整数,则把点M 叫做“整点”.例如:P (1,0)、Q (2,-2)都是“整点”.抛物线y =mx 2-4mx +4m -2(m >0)与x 轴交于点A 、B 两点,若该抛物线在A 、B 之间的部分与线段AB 所围成的区域(包括边界)恰有七个整点,则m 的取值范围是( )A .错误!≤m <1B .错误!<m ≤1C .1<m ≤2D .1<m <2 【答案】B 【解析】解:∵y =mx 2-4mx +4m -2=m (x -2)2-2且m >0,∴该抛物线开口向上,顶点坐标为(2,-2),对称轴是直线x =2.由此可知点(2,0)、点(2,-1)、顶点(2,-2)符合题意. 方法一:①当该抛物线经过点(1,-1)和(3,-1)时(如答案图1),这两个点符合题意. 将(1,-1)代入y =mx 2-4mx +4m -2得到-1=m -4m +4m -2.解得m =1. 此时抛物线解析式为y =x 2-4x +2.由y =0得x 2-4x +2=0.解得x 1=2-错误!≈0.6,x 2=2+错误!≈3.4. ∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意.则当m =1时,恰好有 (1,0)、(2,0)、(3,0)、(1,-1)、(3,-1)、(2,-1)、(2,-2)这7个整点符合题意.∴m ≤1.【注:m 的值越大,抛物线的开口越小,m 的值越小,抛物线的开口越大,】AB CDO (A ) ABO答案图1(m=1时) 答案图2(m=错误!时)②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意.此时x轴上的点(1,0)、(2,0)、(3,0)也符合题意.将(0,0)代入y=mx2-4mx+4m-2得到0=0-4m+0-2.解得m=错误!.此时抛物线解析式为y=错误!x2-2x.当x=1时,得y=错误!×1-2×1=-错误!<-1.∴点(1,-1)符合题意.当x=3时,得y=错误!×9-2×3=-错误!<-1.∴点(3,-1) 符合题意.综上可知:当m=错误!时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,-1)、(3,-1)、(2,-2)、(2,-1)都符合题意,共有9个整点符合题意,∴m=错误!不符合题.∴m>错误!.综合①②可得:当错误!<m≤1时,该函数的图象与x轴所围城的区域(含边界)内有七个整点,故答案选B.方法二:根据题目提供的选项,分别选取m=错误!,m=1,m=2,依次加以验证.①当m=错误!时(如答案图3),得y=错误!x2-2x.由y=0得错误!x2-2x=0.解得x1=0,x2=4.∴x轴上的点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)符合题意.当x=1时,得y=错误!×1-2×1=-错误!<-1.∴点(1,-1)符合题意.当x=3时,得y=错误!×9-2×3=-错误!<-1.∴点(3,-1) 符合题意.综上可知:当m=错误!时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,-1)、(3,-1)、(2,-2)、(2,-1)都符合题意,共有9个整点符合题意,∴m=错误!不符合题.∴选项A不正确.答案图3( m=错误!时) 答案图4(m=1时)答案图5(m=2时)②当m=1时(如答案图4),得y=x2-4x+2.由y=0得x2-4x+2=0.解得x1=2-错误!≈0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018济南中考试卷分析
一、选择题:(本题共12小题,每小题4分,共48分)
1、考点:有理数的乘法。
专题:计算题。
考纲要求:本题考查了有理数的乘法,
2、考点:简单几何体的三视图。
考纲要求:本题考查了三视图的知识
3、考点:科学记数法—表示较大的数。
考纲要求:此题主要考查了科学记数法的表示方法.科a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确a的值以及n的值.
4、考点:轴对称和中心对称图形。
专题:几何题。
考纲要求:了解轴对称和中心对称的基本性质,会找对称轴和对称中心
5、考点:相交线与平行线。
考纲要求:理解对顶角、余角、补角等概念,理解平行线的概念和平行线的性质以及证明方法。
6、考点:整式的混合运算;考纲要求:了解整式的性质,掌握合并同类型和去括号的运算,能推导乘法公式,并利用公式进行计算
7、考点:一元一次方程与不等式。
考纲要求:此题考查了解一元一次方程的能力,能解一元一次不等式,并求出解集范围
8、考点:反比例函数。
考纲要求:本题主要考查了反比例函数变量之间的关系
9、考点:平面直角坐标系。
考纲要求:本题考查了平面直角坐标系中,一个图形的顶点坐标沿两个坐标轴方向平移后图形的顶点坐标,并指导对应顶点坐标之间的关系。
10、考点:频数分布直方图。
考纲要求:考察了实用频数分布直方图解释数据中蕴含信息的能力
11、考点:圆、扇形和三角形的面积。
考纲要求:此题考查了圆形和扇形的面积公式,也考察了轴对称的相关知识点
12、考点:二次函数综合。
考纲要求:本题主要考察了二次函数对称轴、最大值和最小值、顶点坐标,说出图像开口方向,画出图像的对称轴和图像与坐标轴交点。
二、填空题(本大题共6小题,每小题4分,共24分)
13、考点:分解因式。
考纲要求:本题主要考查了因式分解计算,要求学生能用提公因式法、公式法进行因式分解
14、考点:概率计算:考纲要求:本题主要考查了根据已知条件运用列表法、画树状图列出简单随机事件所有可能结果,以及指定事件发生的所有可能的结果,了解事件的概率。
15、考点:多边形内角和与边的关系。
考纲要求:本题考查了多边形边、内角等概念,多边形内角和公式。
16、考点:分式。
考纲要求:本题考查的是分式的性质,用到的知识点为:分式和最简分式的概念,能利用分式的基本性质进行约分和通分,并求出未知数。
17、考点:一次函数与数形结合。
考纲要求:本题主要考查利用一次函数图像解决实际问题的能力
18、考点:多边形综合。
考纲要求:探索并证明矩形、三角形的性质定理以及他们的判定定理,还要掌握轴对称图形的性质。
三、解答题(本大题共9小题,共78分)
19、(本小题满分6分)考点:实数综合运算,三角函数值。
20、(本小题满分6分)考点:解不等式。
考纲要求:能解数字系数一元一次不等式,并能在数轴上表示出解集,会用数轴确定由两个一元一次不等式组成的解集。
21、(本小题满分6分)考点,简单平面几何。
考纲要求:掌握平行线的性质定理并加以应用;此题考查了平行线的性质与邻补角的定义.注意两直线平行,同位角相等.
22、(本小题满分8分)考点:一次方程。
考纲要求:本题考查的是方程与方程组,要求考生能根据具体问题中的数量关系列出方程,掌握等式的基本性质,能解一元一次方程、可化为一元一次方程的分式方程。
23、(本小题满分8分)考点:直线与圆的位置关系;等腰三角形的性质。
考纲要求:此题考查了直线和圆相切时数量之间的关系,能够正确分析出以O为圆心、错误!未找到引用源。
为半径的圆在运动过程中与△ABC的边第二次相切时的位置.
24、(本小题满分10分)考点;统计与概率。
考纲要求:考察了学生对于数据处理和简单随机抽样的了解,要求学生理解平均数的意义,能计算中位数、众数、加权平均数,了解它们是数据集中趋势的描述;会急速那简单数据的方差,知道通过样本平均数、样本方差推断总体的平均数和总体方差。
25、(本小题满分10分)考点:反比例函数。
考纲要求:要求学生能根据已知条件确定反比例函数表达式;根据图像和表达式理解图像的变化情况,能用反比例函数解决实际问题。
等腰三角形的性质和定义。
26、(本小题满分12分)平面几何综合题。
考纲要求:理解三角形的概念,识别三角形的对应角对应边,证明三角形全等,利用三角形全等的性质解决问题;理解线段垂直平分线、中线、高和中位线等概念并加以利用;了解特殊三角形的概念,如等腰三角形、等边三角形、直角三角形;能运用勾股定理及其逆定理解决一些简单的实际问题。
27、(本小题满分12分)二次函数综合题。
考纲要求:要求学生通过图像了解二次函数的性质。
会用配方法江数字系数的二次函数化为y=a(x-h)2+k(k≠0)的形式,并能由此得到二次函数图像的顶点左边,说出图像的开口方向,画出图像的对称轴,并能解决简单实际问题。
2019济南中考试卷分析。