因式分解平方差公式 上课用
用平方差公式因式分解公开课教案
![用平方差公式因式分解公开课教案](https://img.taocdn.com/s3/m/0edab8e4970590c69ec3d5bbfd0a79563d1ed401.png)
用平方差公式因式分解公开课教案一、教学目标:1. 让学生掌握平方差公式的概念和应用。
2. 培养学生运用平方差公式进行因式分解的能力。
3. 提高学生解决实际问题的能力。
二、教学内容:1. 平方差公式的定义和特点。
2. 平方差公式的记忆方法。
3. 运用平方差公式进行因式分解的方法和步骤。
三、教学重点:1. 平方差公式的记忆和应用。
2. 运用平方差公式进行因式分解的方法和技巧。
四、教学难点:1. 平方差公式的灵活运用。
2. 因式分解中的特殊情况的处理。
五、教学方法:1. 采用讲解、演示、练习、讨论等多种教学方法,引导学生主动参与、积极思考。
2. 通过例题和练习题,让学生巩固所学知识,提高解题能力。
3. 鼓励学生提问和发表自己的观点,培养学生的思维能力和创新能力。
一、平方差公式的定义和特点1. 引入平方差公式:a^2 b^2 = (a + b)(a b)2. 解释平方差公式的概念和特点3. 让学生熟记平方差公式二、平方差公式的记忆方法1. 平方差公式记忆口诀:平方差,加减号,乘积不变性质牢2. 讲解记忆方法,引导学生自主记忆3. 进行记忆测试,检查学生掌握情况三、运用平方差公式进行因式分解的方法和步骤1. 讲解因式分解的方法和步骤2. 示例题:因式分解ax^2 + bx + c3. 让学生独立完成练习题,巩固所学知识四、平方差公式的灵活运用1. 讲解平方差公式的灵活运用方法2. 示例题:解决实际问题中的应用3. 让学生尝试解决实际问题,提高应用能力五、因式分解中的特殊情况1. 讲解特殊情况:完全平方公式和平方差公式的结合2. 示例题:因式分解中含有完全平方项的题目3. 让学生练习特殊情况下的因式分解,巩固知识点六、练习题讲解和分析1. 讲解练习题,分析解题思路和方法2. 引导学生总结解题规律,提高解题能力3. 鼓励学生提问和发表自己的观点,培养思维能力七、课堂小结1. 总结本节课所学知识:平方差公式、因式分解的方法和步骤2. 强调平方差公式的记忆和应用重要性3. 布置课后作业,巩固所学知识八、课后作业布置1. 布置练习题:因式分解和应用平方差公式2. 提醒学生按时完成作业,加强练习3. 鼓励学生自主学习,提高解题能力九、作业讲解和反馈1. 讲解作业题目,分析学生解题情况2. 针对学生错误进行讲解和指导3. 给予学生鼓励和反馈,提高学习积极性十、课程总结和反思1. 总结本节课的教学目标和内容2. 反思教学过程中的优点和不足3. 提出改进措施,为下一节课做好准备六、教学活动设计:1. 导入新课:通过复习完全平方公式,引导学生发现平方差公式的规律。
平方差公式因式分解优质课
![平方差公式因式分解优质课](https://img.taocdn.com/s3/m/d53d2a3edd88d0d232d46a85.png)
3、若a、b、c是三角形的三边长且满足
(a+b)2-(a+c)2=0,则此三角形是( )
A、等腰三角形
B、等边三角形
C、直角三角形
D、不能确定
自主小结
从今天的课程中,你学到了哪些知识? 掌握了哪些方法?
(1)有公因式(包括负号)则先提取公因式; (2)整式乘法的平方差公式与因式分解的平方差公式是互逆关系; (3)平方差公式中的a与b既可以是单项式,又可以是多项式;
(2)9(m + n)2 - (m - n)2
例3
2x3 -8x
方法:
先考虑能否用提取公因式法,再考虑能否用 平方差公式分解因式。
结论: 分解因式的一般步骤:“一提二公式” 多项式的因式分解要分解到不能再分解为止。
应用拓展
1.计算
562 - 442
20142 - 2013 2015
2、设n为整数,用因式分解说明(2n+1)2 - 25 能被4整除。
&4.3.1 公式法因式分解 平方差公式
回顾
填空: (1)(x+5)(x-5) = x2–25 ; (2)(3x+y)(3x-y)= 9x2–y2 ; (3)(3m+2n)(3m–2n)= 9m2–4n 2.
平方差公式:
(a + b)(a - b) = a2 - b2
思考 a²-b² =(a+b)(a-b)成立吗?
如图,大正方形的边长是a,空白部分正方形边长是b
a
b
a-b a+b
∴a²-b² =(a+b)(a-b)成立
平方差公式:
整式乘法
(a + b)(a - b) = a2 - b2
《利用平方差公式进行因式分解》教案 (公开课)2022年湘教版数学
![《利用平方差公式进行因式分解》教案 (公开课)2022年湘教版数学](https://img.taocdn.com/s3/m/b74f926e51e79b8969022635.png)
第1课时 利用平方差公式进行因式分解1.理解平方差公式,弄清平方差公式的形式和特点;(重点)2.掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式.(难点)一、情境导入1.同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的?请与大家交流.2.你能将a 2-b 2分解因式吗?你是如何思考的?二、合作探究探究点一:用平方差公式因式分解【类型一】 判定能否利用平方差公式分解因式以下多项式中能用平方差公式分解因式的是( )A .a 2+(-b )2B .5m 2-20mnC .-x 2-y 2D .-x 2+9解析:A 中a 2+(-b )2符号相同,不能用平方差公式分解因式,错误;B 中5m 2-20mn 两项都不是平方项,不能用平方差公式分解因式,错误;C 中-x 2-y 2符号相同,不能用平方差公式分解因式,错误;D 中-x 2+9=-x 2+32,两项符号相反,能用平方差公式分解因式,正确.应选D.方法总结:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.【类型二】 利用平方差公式分解因式分解因式:(1)a 4-116b 4;(2)x 3y 2-xy 4. 解析:(1)a 4-116b 4可以写成(a 2)2-(14b 2)2的形式,这样可以用平方差公式分解因式,而其中有一个因式a 2-14b 2仍可以继续用平方差公式分解因式;(2)x 3y 2-xy 4有公因式xy 2,应先提公因式再进一步分解因式.解:(1)原式=(a 2+14b 2)(a 2-14b 2)=(a 2+14b 2)(a -12b )(a +12b ); (2)原式=xy 2(x 2-y 2)=xy 2(x +y )(x -y ).方法总结:分解因式前应先分析多项式的特点,一般先提公因式,再套用公式.分解因式必须进行到每一个多项式都不能再分解因式为止.【类型三】 利用因式分解整体代换求值x 2-y 2=-1,x +y =12,求x -y 的值.解析:第一个等式左边利用平方差公式化简,将x +y 的值代入计算即可求出x -y 的值.解:∵x 2-y 2=(x +y )(x -y )=-1,x +y =12,∴x -y =-2. 方法总结:有时给出的条件不是字母的具体值,就需要先进行化简,求出字母的值,但有时很难或者根本就求不出字母的值,根据题目特点,将一个代数式的值整体代入可使运算简便.探究点二:用平方差公式因式分解的应用【类型一】 利用因式分解解决整除问题248-1可以被60和70之间某两个自然数整除,求这两个数.解析:先利用平方差公式分解因式,再找出范围内的解即可.解:248-1=(224+1)(224-1)=(224+1)(212+1)(212-1)=(224+1)(212+1)(26+1)(26-1).∵26=64,∴26-1=63,26+1=65,∴这两个数是65和63.方法总结:解决整除的根本思路就是将代数式化为整式乘积的形式,然后分析被哪些数或式子整除.【类型二】 利用平方差公式进行简便运算利用因式分解计算:(1)1012-992;(2)5722×14-4282×14. 解析:(1)根据平方差公式进行计算即可;(2)先提取公因式,再根据平方差公式进行计算即可.解:(1)1012-992=(101+99)(101-99)=400;(2)5722×14-4282×14=(5722-4282)×14=(572+428)(572-428)×14=1000×144×14=36000.方法总结:一些比较复杂的计算,如果通过变形可转化为平方差公式的形式,那么可以使运算简便.【类型三】 因式分解的实际应用如图,100个正方形由小到大套在一起,从外向里相间画上阴影,最里面一个小正方形没有画阴影,最外面一层画阴影,最外面的正方形的边长为100cm ,向里依次为99cm ,98cm ,…,1cm ,那么在这个图形中,所有画阴影局部的面积和是多少?解析:相邻两正方形面积的差表示一块阴影局部的面积,而正方形的面积是边长的平方,所以能用平方差公式进行因式分解.解:每一块阴影的面积可以表示成相邻正方形的面积的差,而正方形的面积是其边长的平方,这样就可以逆用平方差公式计算了.那么S 阴影=(1002-992)+(982-972)+…+42-32+22-12=100+99+98+97+…+2+1=5050(cm 2).答:所有阴影局部的面积和是5050cm2.方法总结:首先应找出图形中哪些局部发生了变化,是按照什么规律变化的,通过分析找到各局部的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、板书设计1.平方差公式:a2-b2=(a+b)(a-b);2.平方差公式的特点:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.运用平方差公式因式分解,首先应注意每个公式的特征.分析多项式的次数和项数,然后再确定公式.如果多项式是二项式,通常考虑应用平方差公式;如果多项式中有公因式可提,应先提取公因式,而且还要“提〞得彻底,最后应注意两点:一是每个因式要化简;二是分解因式时,每个因式都要分解彻底4.5一次函数的应用第1课时利用一次函数解决实际问题1.根据问题条件找出能反映出实际问题的函数;(重点)2.能利用一次函数图象解决简单的实际问题,开展学生的应用能力;(重点)3.建立一次函数模型解决实际问题.(难点)一、情境导入联通公司 话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.(1)分别表示出y 1与x ,y 2与x 的函数关系式;(2)月通话时间为多长时,A 、B 两种套餐收费一样?(3)什么情况下A 套餐更省钱?二、合作探究探究点:一次函数与实际问题【类型一】 利用图象(表)解决实际问题我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费的方法收费:月用水10t 以内(包括10t)的用户,每吨收水费a 元;月用水超过10t 的用户,10t 水仍按每吨a 元收费,超过10t 的局部,按每吨b 元(b >a )收费.设某户居民月用水x t ,应收水费y 元,y 与x 之间的函数关系如以下列图.(1)求a 的值,并求出该户居民上月用水8t 应收的水费;(2)求b 的值,并写出当x >10时,y 与x 之间的函数表达式;(3)上月居民甲比居民乙多用4t 水,两家共收水费46元,他们上月分别用水多少吨?解析:(1)用水量不超过10t 时,设其函数表达式为y =ax ,由上图可知图象经过点(10,15),从而求得a 的值;再将x =8代入即可求得应收的水费;(2)可知图象过点(10,15)和(20,35),利用待定系数法可求得b 的值和函数表达式;(3)分别判断居民甲和居民乙用水比10t 多还是比10t 少,然后用相对应的表达式分别求出甲、乙上月用水量.解:(1)当0≤x ≤10时,图象过原点,所以设y =ax .把(10,15)代入,解得ayx (0≤x ≤10).当x =8时,y ×8=12,即该户居民的水费为12元;(2)当x >10时,设y =bx +m (b ≠0).把(10,15)和(20,35)代入,得⎩⎪⎨⎪⎧10b +m =15,20b +m =35,解得⎩⎪⎨⎪⎧b =2,m =-5,即超过10t 的局部按每吨2元收费,此时函数表达式为y =2x -5(x >10); (3)因为10×1.5+10×1.5+4×2=38<46,所以居民乙用水比10t 多.设居民乙上月用水x t ,那么居民甲上月用水(x +4)t.y 甲=2(x +4)-5,y 乙=2x ,得[2(x +4)-5]+(2x -5)=46,解得x t ,居民乙用水12t.方法总结:此题的关键是读懂图象,从图象中获取有用信息,列出二元一次方程组得出函数关系式,根据关系式再得出相关结论.广安某水果店方案购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:(1)假设该水果店预计进货款为1000元,那么这两种水果各购进多少千克?(2)假设该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?此时利润为多少元?解析:(1)根据方案购进甲、乙两种新出产的水果共140千克,进而利用该水果店预计进货款为1000元,得出等式求出即可;(2)利用两种水果每千克的利润表示出总利润,再利用一次函数增减性得出最大值即可.解:(1)设购进甲种水果x千克,那么购进乙种水果(140-x)千克,根据题意可得5x+9(140-x)=1000,解得x=65,∴140-x=75(千克).答:购进甲种水果65千克,乙种水果75千克;(2)由图表可得甲种水果每千克利润为3元,乙种水果每千克利润为4元.设总利润为W,由题意可得W=3x+4(140-x)=-x+560,故W随x的增大而减小,那么x越小,W 越大.∵该水果店决定乙种水果的进货量不超过甲种水果的进货量的3倍,∴140-x≤3x,解得x≥35,∴当x=35时,W最大=-35+560=525(元),故140-35=105(千克).答:当购进甲种水果35千克,购进乙种水果105千克时,此时利润最大为525元.方法总结:利用一次函数增减性得出函数最值是解题关键.如图①,底面积为30cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体〞,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答以下问题:(1)圆柱形容器的高为多少?匀速注水的水流速度(单位:cm3/s)为多少?(2)假设“几何体〞的下方圆柱的底面积为15cm2,求“几何体〞上方圆柱的高和底面积.解析:(1)根据图象,分三个局部:注满“几何体〞下方圆柱需18s;注满“几何体〞上方圆柱需24-18=6(s);注满“几何体〞上面的空圆柱形容器需42-24=18(s),再设匀速注水的水流速度为x cm3/s,根据圆柱的体积公式列方程,再解方程;(2)由图②知几何体下方圆柱的高为a cm,根据圆柱的体积公式得a·(30-15)=18×5,解得a=6,于是得到“几何体〞上方圆柱的高为5cm,设“几何体〞上方圆柱的底面积为S cm2,根据圆柱的体积公式得5×(30-S)=5×(24-18),再解方程即可.解:(1)根据函数图象得到圆柱形容器的高为14cm,两个实心圆柱组成的“几何体〞的高度为11cm,水从刚满过由两个实心圆柱组成的“几何体〞到注满用了42-24=18(s),这段高度为14-11=3(cm).设匀速注水的水流速度为x cm3/s,那么18·x=30×3,解得x=5,即匀速注水的水流速度为5cm3/s;(2)由图②知“几何体〞下方圆柱的高为a cm,那么a·(30-15)=18×5,解得a=6,所以“几何体〞上方圆柱的高为11-6=5(cm).设“几何体〞上方圆柱的底面积为S cm2,根据题意得5×(30-S)=5×(24-18),解得S=24,即“几何体〞上方圆柱的底面积为24cm2.方法总结:此题考查了一次函数的应用:把分段函数图象中自变量与对应的函数值转化为实际问题中的数量关系,然后运用方程的思想解决实际问题.【类型二】 建立一次函数模型解决实际问题某商场欲购进A 、B 两种品牌的饮料共500箱,两种饮料每箱的进价和售价如下表所示.设购进A 种饮料x 箱,且所购进的两种饮料能全部卖出,获得的总利润为y 元.(1)求y 关于x 的函数表达式;(2)如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润.(注:利润=售价-本钱)解析:再根据它们的数量求出利润,进而利用函数的图象性质求出最大利润.解:(1)由题意,知B 种饮料有(500-x )箱,那么y =(63-55)x +(40-35)(500-x )=3xy =3x +2500(0≤x ≤500);(2)由题意,得55x +35(500-x )≤x ≤125.∴当x =125时,y 最大值=3×125+2500=2875.∴该商场购进A 、B 两种品牌的饮料分别为125箱、375箱时,能获得最大利润2875元.方法总结:此类题型往往取材于日常生活中的事件,通过分析、整理表格中的信息,得到函数表达式,并运用函数的性质解决实际问题.解题的关键是读懂题目的要求和表格中的数据,注意思考的层次性及其中蕴含的数量关系.【类型三】 两个一次函数图象在同一坐标系内的问题为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行〞活动.自行车队从甲地出发,途经乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,,如图表示自行车队、邮政车离甲地的路程y (km)与自行车队离开甲地时间x (h)的函数关系图象,请根据图象提供的信息解答以下各题:(1)自行车队行驶的速度是________km/h ;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?解析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a 小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B 的坐标和C 的坐标,由自行车的速度就可以D 的坐标,由待定系数法就可以求出BC ,ED 的解析式就可以求出结论.解:(1)由题意得,自行车队行驶的速度是72÷3=24km/h.(2)由题意得,邮政车的速度为24×2.5=60(km/h).设邮政车出发a 小时两车相遇,由题意得24(a +1)=60a ,解得a =23. 答:邮政车出发23小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地所需的时间为135÷60=94(h),∴邮政车从丙地出发的时间为94+2+1=214(h),∴B (214,135),C ,0).自行车队到达丙地的时间为:135÷24+0.5=458+0.5=498(h),∴D (498,135).设BC 的解析式为y 1=k 1x +b 1,由题意得⎩⎪⎨⎪⎧135=214k 1+b 1,0k 1+b 1,∴⎩⎪⎨⎪⎧k 1=-60,b 1=450,∴y 1=-60x +450,设ED 的解析式为y 2=k 2x +b 2,由题意得⎩⎪⎨⎪⎧72k 2+b 2,135=498k 2+b 2,解得⎩⎪⎨⎪⎧k 2=24,b 2=-12,∴y 2=24xy 1=y 2时,-60x +450=24x -12,解得x =5.5.y 1=-60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.方法总结:此题考查了待定系数法求一次函数的解析式,一次函数与一元一次方程的综合运用,解答时求出函数的解析式是关键.三、板书设计一次函数与实际问题1.建立一次函数模型解实际问题2.利用图象(表)解决实际问题对于分段函数的实际应用问题中,学生往往无视了自变量的取值范围,同时解决有交点的两个一次函数图象的问题还存在一定的困难,有待在以后的教学中加大训练,力争逐步提高.。
因式分解——平方差公式PPT教学课件
![因式分解——平方差公式PPT教学课件](https://img.taocdn.com/s3/m/232dab8f6294dd88d1d26b67.png)
(2)1 6a4 1
(3)2b2 8
试一试:举一个要同时用两种方 法进行因式分解的多项式。
2020/12/10
10
1、把下列各式分解因式:
(1)a-a5
(2)2(x-y)-
1 2
a2(x-y)
2、计算:25×1012-992×25
3、在实数范围内分解因式:
①x2-3
②3x2-5
2020/12/10
)(2x-
31y)
2020/12/10
2
问题:你学了什么方法进行分解 因式? 提公因式法
把下列各式因式分解:
(1) ax - ay = a( x – y ) (2) 9a2 - 6ab+3a =3a(a-2b+1) (3) 3a(a+b)-5(a+b) =(a+b)(3a - 5)
2020/12/10
14.3因式分解 ——平方差公式
2020/12/10
人教新课标
1
问题: 什么叫多项式的因式分解?
判断下列变形过程,哪个是因式分解?
(1) (x-2)(x-2)=x2- 4
(2) x2- 4+3x=(x+2)(x-2)+3x
(3) 7m-7n-7=7(m-n-1)
(4)
4x2-
1 9y2
=(2x+
1 3y能Leabharlann (4) -x2 - y2 不能
2020/12/10
5
例1:把下列各式分解因式 (1)1 25b2 (2) x 2 y 2 z 2 (3) 4 m2 0.01n2 (4) 9 16a 2
9
(1) 1-25b2 =12-(5b)2 =(1+5b)(1-5b) (2) x2y2-z2 =(xy)2-z2 =(xy+z)(xy-z)
人教版八年级上册14.3.2因式分解-平方差公式(教案)
![人教版八年级上册14.3.2因式分解-平方差公式(教案)](https://img.taocdn.com/s3/m/ea3c29aef80f76c66137ee06eff9aef8951e4817.png)
(二)新课讲授(用时10分钟)
在小组讨论环节,我发现同学们的参与度很高,能够积极提出自己的观点,并尝试解决实际问题。但我也注意到,部分小组在讨论过程中可能会偏离主题,这需要我在以后的课堂上更加注意引导,确保讨论的内容紧扣教学目标。
此外,对于平方差公式与完全平方公式的混淆问题,我觉得在今后的教学中,我应该设计一些对比练习,帮助同学们明确这两个公式的区别和适用场景。通过具体的练习,让他们在实际操作中感受到这两个公式的不同。
五、教学反思
在今天的教学过程中,我发现同学们对于平方差公式的理解整体上是积极的,但也存在一些需要我进一步关注和引导的地方。在讲解平方差公式时,我注意到有些同学在推导过程中对(a + b)(a - b) = a² - b²的理解还不够深入,可能需要通过更多的实际例题来加强他们的理解。
课堂上,我尝试通过引入日常生活中的例子来激发同学们的兴趣,这种方式似乎收到了不错的效果。大家对于将数学知识应用到实际生活中的讨论非常积极,这让我感到欣慰。然而,我也意识到在接下来的课程中,需要更多地设计这样的环节,让同学们感受到数学的实用性和趣味性。
3.成展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平方差公式在实际数学题中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
用平方差公式因式分解 优秀教案
![用平方差公式因式分解 优秀教案](https://img.taocdn.com/s3/m/57a76f1231b765ce04081424.png)
平方差公式法因式分解教学设计【教材依据】本节课是苏科版数学七年级下册第九章整式乘法与因式分解第五节公式法第二课时内容。
【教材分析】因式分解是初中数学的一个重要内容,是代数式恒等变形的重要手段之一。
它贯穿、渗透在各种代数式问题之中,为以后学习分式运算、解方程和方程组及代数式和三角函数式的恒等变形提供必要的基础。
本节课是在学习了整式的乘法、乘法公式和提公因式法因式分解之后,让学生利用逆向思维而得到平方差公式因式分解的方法,而运用平方差公式分解因式又是因式分解中的一个重要内容。
它对学习完全平方公式因式分解和后面即将要学习的分式化简和计算,对九年级学习一元二次方程的解法和二次函数,高中学习一元二次不等式和分式不等式等都有着重要的影响,所以学好本节课对后面的学习至关重要!【学情分析】学生已有学习的整式运算的基础知识,在前一节课中已经学习了提公因式法分解因式,初步体会到了因式分解与乘法运算的互逆关系,通过对乘法公式(a+b)(a-b)=a2-b2的逆向变形,容易得出a2-b2= (a+b)(a-b),但准确理解和掌握公式的结构特征,进行因式分解对学生来说还有很大的难度,学生的观察、归纳、类比、概括等能力,有条理的思考及语言表达能力还有待加强。
【指导思想】以新课标要求“培养学生的合作探究和归纳总结”的教育理念为指导,引导学生通过复习旧知逐步过渡到新知,进一步应用生活问题作为课堂学习的载体,培养学生学有用数学的理念,贯穿类比、换元的数学思想方法。
通过学生讲解习题的过程培养学生数学文字语言应用和准确应用数学符号表达问题的能力,从而达到素质教育要求发展学生综合素养的目标。
【教学目标】知识与技能:理解平方差公式的特点,掌握使用平方差公式进行因式分解的方法,并能熟练使用平方差公式进行因式分解;过程与方法:通过知识的迁移经历运用平方差公式分解因式的过程;培养探究知识、合作学习的能力,深化逆向思维的能力和数学的应用意识,渗透整体思想和转化思想。
华师大版数学八年级上册《用平方差公式进行因式分解》说课稿2
![华师大版数学八年级上册《用平方差公式进行因式分解》说课稿2](https://img.taocdn.com/s3/m/482d7b48fd4ffe4733687e21af45b307e871f9cf.png)
华师大版数学八年级上册《用平方差公式进行因式分解》说课稿2一. 教材分析华师大版数学八年级上册《用平方差公式进行因式分解》这一节,是在学生已经掌握了有理数的乘法、平方根的基础上进行学习的。
平方差公式是初中数学中的一个重要公式,它不仅可以简化运算,还可以把一些复杂的代数式进行因式分解。
这一节内容既有理论性,又有实践性,通过学习,让学生体会数学的简洁美,提高他们学习数学的兴趣。
二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和运算能力,他们已经学习过了有理数的乘法、平方根等知识,对代数式有一定的认识。
但是,学生对平方差公式的理解和运用还需要加强,因此,在教学过程中,我们需要引导学生理解平方差公式的推导过程,掌握公式的运用方法。
三. 说教学目标1.知识与技能:让学生理解和掌握平方差公式,学会运用平方差公式进行因式分解。
2.过程与方法:通过学生的自主学习、合作交流,培养学生的探究能力和团队协作能力。
3.情感态度与价值观:让学生感受数学的简洁美,提高学生学习数学的兴趣,培养学生的自信心。
四. 说教学重难点1.教学重点:平方差公式的理解和运用,以及因式分解的方法。
2.教学难点:平方差公式的推导过程,以及如何把复杂的代数式进行因式分解。
五. 说教学方法与手段在本节课的教学过程中,我将采用自主学习、合作交流的教学方法,让学生在探究中发现问题、解决问题。
同时,我会利用多媒体教学手段,为学生提供丰富的学习资源,帮助学生更好地理解和掌握平方差公式。
六. 说教学过程1.导入:通过复习有理数的乘法、平方根等知识,为学生引入平方差公式。
2.探究:让学生自主探究平方差公式的推导过程,引导学生发现公式的特点。
3.讲解:讲解平方差公式的运用方法,以及如何把复杂的代数式进行因式分解。
4.练习:让学生进行相关的练习,巩固所学知识。
5.总结:对本节课的内容进行总结,让学生明确学习的重点和难点。
七. 说板书设计板书设计要简洁明了,能够突出平方差公式的特点和运用方法。
《运用平方差公式因式分解》优质课件(3套)
![《运用平方差公式因式分解》优质课件(3套)](https://img.taocdn.com/s3/m/89cdb3928bd63186bcebbc65.png)
a2 b2 (a b)(a b)
9x2 4 y2 (3x )2 (2y )2 (3x 2y)(3x 2y)
a2 b2 (a b)(a b)
【例1 】把下列各式分解因式.
⑴ 1 25b2 ⑵ 25x2 4 y2 ⑶ 4 m2 0.01n2
(3)体会整式乘法与分解因式之间的联系。
(4)通过乘法公式:(a+b)(a+b)=a2-b2逆向变形, 进一步发展观察、归纳、类比、概括等能力,发 展有条理地思考及语言表达能力。
1、什么叫因式分解?因式分解与整式乘法有 什么关系?
2、判断下列各式是因式分解的有 (2)
(1)(x+2)(x-2)=x2-4 (2) x2-4 =(x+2)(x-2)
322-312
( 185
2
)
-
( 175
2
)
682-672 5.52-4.52
在横线内填上适当的式子,使等式成立:
(1)(x+5)(x-5)=
x2-25 ;
(2)(a+b)(a-b)=
a2-b2 ;
(3) x2-25 = (x+5)( x-5 );
(4) a2-b2 = (a+b)( a-b )。
(4)x2 -25y = x2 -(5y)2
2
(5) -x2 -25y2 不能转化为平方差形式 (6) -x2+25y2 = 25y2-x2 =(5y)2 -
x2
下列各式能否用平方差公式分解?如果 能分解,分解成什么?如不能说明理由。
①x2+y2 ② x2-y2 =(x+y)(x-y) ③ -x2+y2 =y2-x2=(y+x)(y-x) ④ -x2-y2
用平方差公式因式分解公开课教案
![用平方差公式因式分解公开课教案](https://img.taocdn.com/s3/m/f140a438f111f18582d05a0c.png)
用平方差公式因式分解公开课教案
一、教材分析一、教材分析
苏霍姆林斯基曾说过:“教师越是能够运用自如的掌握教材,那么,他的讲述就越是情感鲜明,学生听课,需要花在抠教科书上的时间就越少”。
可见,熟悉教材、分析教材、开发教材资源是制定教法、开展学法指导的主要依据,是教学设计、测试、评价的基础。
二、学情分析
《分解因式——运用平方差公式》是人教版义务教育课程标准实验教科书《数学》八年级(上)整式的乘法第四节的内容。
分解因式是整式乘法的逆运用,与整式乘法运算有着密切的联系。
分解因式的变形不仅体现了一种“化归”的思想,也为学习分式,利用因式分解解一元二次方程奠定基础,对整个教科书也起到了承上启下的作用。
探索分解因式的方法,实际上是对整式乘法的再认识,因此要借助学生已有的整式乘法运算的基础,给学生创设一个新的、具有启发性的情境,激励学生通过独立思考与讨论交流发现问题情境中的变形关系,并运用数学符号进行表示,然后再运用所学的知识去解决相关的问题。
同时在这一对比整式的乘法而探索分解因式方法的相关活动过程中,力图渗透类比思想,让学生体会、理解、认识分解因式的意义,感受其间的联系,学生不仅能够理解,归纳分解因式变形的特点,同时也可以充分感受到这种互逆变形的过程和数学知识的整体性。
三、教学目标:
(一)知识与技能:
1.使学生了解运用公式法分解因式的意义;
2.会用平方差公式进行因式分解;
3.使学生了解提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式.。
数学人教版八年级上册14.3.2 因式分解 公式法(第一课时)
![数学人教版八年级上册14.3.2 因式分解 公式法(第一课时)](https://img.taocdn.com/s3/m/d05de12503d8ce2f006623fe.png)
14.3.2 因式分解公式法(第一课时)一、内容和内容解析1.内容因式分解平方差公式2.内容解析本节课是在学习了提公因式法后,公式法因式分解的第一课时,它是整式乘法中平方差公式的逆向应用,在教材中处于重要的地位。
平方差公式因式分解要充分理解公式的含义,掌握公式的形式与特点. 公式左边的多项式形式上是二项式,且两项符号相反;公式左边的每一项都可以化成某一个数或式的平方形式。
基于以上分析,确定本节课的教学重点:运用平方差公式分解因式。
二、目标和目标解析1、目标(1)进一步理解因式分解的概念,体会因式分解在简化计算上的应用。
(2)会用平方差公式进行因式分解,并从中体验“整体”的思路,树立“换元”的意识。
2、目标解析达成目标(1)的标志是:学生能说出因式分解中平方差公式的特点。
知道这里的平方差公式与整式乘法中的平方差公式是互逆变形的关系。
达成目标(2)的标志是:学生在数学活动过程中,体会平方差公式的结构、特征及公式中字母的广泛含义,理解平方差公式的意义,掌握运用平方差公式解决问题的方法.并在练习中,对发生的错误做具体分析,加深对公式的理解。
三、教学问题诊断分析虽然有了第一节提公因式法做基础,但学生有时还会出现因式分解后又反转回去做乘法的错误,解决此问题的关键是让学生正确认识因式分解的概念,理解它与整式乘法的互逆变形关系。
学生在运用平方差公式分解因式的过程中经常遇到的困难是找不准哪个数或式相当于公式中的a , b 。
因此,教学中引导学生分析公式的结构特征,并运用变式训练揭示公式的本质特征,以加深学生对公式的理解.本节课的教学难点是:灵活运用平方差公式分解因式,并理解因式分解的要求。
四、教学过程设计1.复习引入问题1 你能叙述多项式因式分解的定义吗?提公因式法的定义是什么?因式分解:(1)3mx-6nx 2;(2)4a 2b+10ab-2ab 3;(3)252 y 师生活动:学生独立思考并解答,找同学的答案投影展示。
用平方差公式因式分解公开课教案
![用平方差公式因式分解公开课教案](https://img.taocdn.com/s3/m/37956c78ec630b1c59eef8c75fbfc77da2699785.png)
用平方差公式因式分解公开课教案一、教学目标1. 让学生掌握平方差公式的概念和运用。
2. 培养学生运用平方差公式进行因式分解的能力。
3. 提高学生解决问题的能力和对数学的兴趣。
二、教学内容1. 平方差公式的介绍和记忆。
2. 平方差公式的运用和因式分解。
3. 例题讲解和练习。
三、教学方法1. 采用讲解法,引导学生理解和记忆平方差公式。
2. 采用示例法,展示平方差公式的运用和因式分解的过程。
3. 采用练习法,让学生通过练习巩固所学知识。
四、教学步骤1. 导入新课,介绍平方差公式的概念。
2. 讲解平方差公式的推导过程,让学生理解并记忆公式。
3. 通过示例,展示平方差公式的运用和因式分解的过程。
4. 布置练习题,让学生独立完成,并进行讲解和点评。
五、教学评价1. 课后收集学生的练习册,进行批改和评价。
2. 在课堂上,对学生的练习进行点评和指导。
3. 关注学生在课堂上的参与度和对平方差公式的掌握程度。
六、教学资源1. 教学PPT,展示平方差公式的推导过程和示例。
2. 练习题,供学生进行练习和巩固。
七、教学时间1课时八、教学拓展1. 引导学生思考:平方差公式在实际生活中的应用。
2. 布置课后作业,让学生进一步巩固平方差公式的运用和因式分解的能力。
九、教学反思2. 根据学生的反馈,调整教学方法和策略,以便更好地引导学生理解和运用平方差公式。
十、教学预案1. 针对学生的不同程度,准备不同难度的练习题,以满足不同学生的需求。
2. 在课堂上,关注学生的疑问,及时进行解答和指导。
六、教学活动1. 课堂互动:邀请学生上台演示平方差公式的运用和因式分解的过程,鼓励其他学生提问和参与讨论。
2. 小组活动:学生分组进行练习,互相讲解和讨论解题方法,促进合作学习。
七、学习任务1. 学生通过课堂讲解和练习,掌握平方差公式的运用和因式分解的方法。
2. 学生能够独立解决相关问题,并能够解释解题过程。
八、学习评估1. 课堂练习:学生当场完成练习题,教师及时进行点评和指导。
八年级数学下册《利用平方差公式进行因式分解》教案、教学设计
![八年级数学下册《利用平方差公式进行因式分解》教案、教学设计](https://img.taocdn.com/s3/m/72016d05814d2b160b4e767f5acfa1c7aa0082d5.png)
c.各小组展示解题过程和答案,其他小组进行评价和反馈。
(四)课堂练习,500字
1.教学内容:设计不同难度的练习题,让学生在课堂上即时巩固所学知识。
2.教学步骤:
a.教师出示练习题,学生独立完成。
b.教师针对学生的答案进行讲解,分析解题思路和注意事项。
5.教学拓展:
-结合数学史,介绍平方差公式的发现过程,激发学生的学习兴趣。
-引导学生探索平方差公式在其他领域的应用,如物理、几何等,培养学生的跨学科思维能力。
-组织课后研究性学习活动,让学生在更广泛的范围内运用平方差公式,提高学生的实践能力。
四、教学内容与过程
(一)导入新课,500字
1.教学活动:教师出示两个连续整数的平方差计算题目,如(a+1)^2 - a^2,让学生尝试计算并思考是否有简化的方法。
5.培养学生具备良好的团队合作精神,学会尊重他人、倾听他人意见。
二、学情分析
八年级学生已经具备了一定的数学基础,掌握了基本的代数运算和因式分解方法。在此基础上,他们对平方差公式的学习有以下特点:
1.学生对平方差概念的理解较为模糊,需要通过具体实例和形象生动的教学手段来帮助学生理解。
2.学生在运用平方差公式进行因式分解时,可能存在一定的困难,如对公式的记忆、运用不熟练等,需要教师耐心引导和反复练习。
3.教学过程:
(1)导入新课:通过一个简单的实际例子,如计算两个连续整数的平方差,引出平方差公式。
(2)新课讲解:详细讲解平方差公式的推导过程,强调公式中各部分的含义,以便学生理解。
(3)例题解析:选择具有代表性的例题,引导学生运用平方差公式进行因式分解,并对解题过程进行详细讲解。
利用平方差公式进行因式分解 教学设计
![利用平方差公式进行因式分解 教学设计](https://img.taocdn.com/s3/m/b177f65da98271fe910ef9b6.png)
说说你对平方差公
式结构特征的认
识?
生略
引导学生从第一环节的感性认识上升到理性认识,区别整式乘法与分解因式的同时,认识学习新的分解因式的方法——公式法。通过自己的归纳能找到因式分解中平方差公式的特征。
环节三、
指导运用,巩固知识
1、把下列各式因式分解:
2、把下列各式因式分解:
小组独立完成,小组黑板板书并交流。
二、教学目标(知识、技能、情感价值观)
1、知识:
(1)使学生了解运用公式法分解因式的意义;
(2)会用平方差公式进行因式分解;
(3)使学生了解提公因式法是因式分解首先要考虑的方法,再考虑用平方差公式分解因式.
2、能力:
在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识,同时让学生了解换元的思想方法。
学生的活动经验基础:通过前几节课的活动和探索,学生对类比思想、数学对象之间的对比、观察等活动形式有了一定的认识和基础,本节课采用的活动方法是学生较为熟悉的观察、对比、讨论等方法,学生有较好的活动经验。
四、教学策略
(1)由于所学的是运用平方差公式分解因式,因此指导学生学会运用比较、类比学习方法记忆、理解知识。
(3)(3m+2n)(3m–2n)=.
问题1:它们的结果你运用了整式乘法的什么知识?
尝试将它们的结果分别写成两个因式的乘积:
问题2:说说第二组的结果你
是怎么得到的?
利用交互式电子白板展示、书写功能小组展示交流.
对问题1:那公式的形式是什么呢?
对问题2师:引出课题,书写课题,并书写整式
乘法的平方差公式.
生1:运用了整式乘法的平方差公式.
生2:(a+b)(a-b)=a2– b2
“平方差公式因式分解”说课稿
![“平方差公式因式分解”说课稿](https://img.taocdn.com/s3/m/7230cb699e314332396893e4.png)
说课稿昆明学院数学系20XX级3班李龙学号:20081501243因式分解(十字相乘法)大家好!我叫李龙,我是数学系20XX级的学生。
我本节讲的教材是义务教育课程标准实验教科书(数学)八年级上册第十五章《整式的乘除与因式分解》的第四节《因式分解》,本节内容分三课时完成,本节课设计是第二课时的教学主要内容是学习因式分解的另一种方法——十字相乘法。
一、说教材1、关于地位与作用。
本说课的内容是八年级上册第十五章的《因式分解》。
因式分解不言而喻,就整数学而言,它是打开整个代数宝库的一把钥匙。
就本节课而言,着重阐述了两个方面,一是因式分解的概念,二是与整式乘法的相互关系。
它是继乘法的基础上来讨论因式分解概念,继而,通过探究与整式乘法的关系,来寻求因式分解的原理。
这一思想实质贯穿后继学习的各种因式分解方法。
通过这节课的学习,不仅使学生掌握因式分解的概念和原理,而且又为后面学习因式分解作好了充分的准备。
因此,它起到了承上启下的作用。
2、关于教学目标。
根据因式分解一节课的内容,对于掌握各种因式分解的方法,乃至整个代数教学中的地位和作用,特制定如下教学目标:(一)知识与技能目标:①了解因式分解的必要性;②深刻理解因式分解的概念;③掌握从整式乘法得出因式分解的方法。
(二)体验性目标:①感受整式乘法与因式分解矛盾的对立统一观点;②体验由和差到积的形成过程,初步获得因式分解的经验。
3、关于教学重点与难点。
重点是因式分解的概念。
理由是理解因式分解的概念的本质属性是学习整章因式分解的灵魂,难点是理解因式分解与整式乘法的相互关系,以及它们之间的关系进行因式分解的思想。
理由是学生由乘法到因式分解的变形是一个逆向思维。
在前一章整式乘法的较长时间的学习,造成思维定势,学生容易产生“倒摄抑制”作用,阻碍学生新概念的形成。
4、关于教法与学法。
教法与学法是互相联系和统一的,不能孤立去研究。
什么样的教法必带来相应的学法。
因此,我们应该重点阐述教法。
华师大版数学八年级上册《用平方差公式进行因式分解》说课稿
![华师大版数学八年级上册《用平方差公式进行因式分解》说课稿](https://img.taocdn.com/s3/m/b5a424bfb9f67c1cfad6195f312b3169a451eaf7.png)
华师大版数学八年级上册《用平方差公式进行因式分解》说课稿一. 教材分析华师大版数学八年级上册《用平方差公式进行因式分解》这一节的内容,是在学生已经掌握了有理数的乘法、完全平方公式的基础上进行学习的。
平方差公式的引入,既是对完全平方公式的扩展,又是为后续学习多项式的乘法、因式分解等知识打下基础。
在这一节中,学生需要理解平方差公式的含义,并能够运用平方差公式进行因式分解。
教材通过例题和练习题的形式,帮助学生掌握平方差公式的应用,从而提高学生的数学解题能力。
二. 学情分析在八年级的学生中,大部分学生已经掌握了有理数的乘法和完全平方公式,但他们对平方差公式的理解和运用还存在一定的困难。
另外,学生在学习过程中,可能受到之前学习习惯的影响,对于新的学习内容,需要一定的时间去适应和理解。
三. 说教学目标1.知识与技能目标:学生能够理解平方差公式的含义,并能够运用平方差公式进行因式分解。
2.过程与方法目标:通过小组合作、讨论交流的方式,培养学生发现问题、解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 说教学重难点1.教学重点:学生能够理解并掌握平方差公式的含义,能够运用平方差公式进行因式分解。
2.教学难点:学生对平方差公式的灵活运用,能够解决实际问题。
五. 说教学方法与手段在这一节课中,我将采用讲授法、引导法、实践法等多种教学方法,引导学生通过自主学习、合作交流,掌握平方差公式的运用。
同时,利用多媒体教学手段,如PPT、视频等,丰富教学内容,提高学生的学习兴趣。
六. 说教学过程1.导入新课:通过一个实际问题,引导学生思考如何进行因式分解,激发学生的学习兴趣。
2.讲解新课:讲解平方差公式的含义和运用,通过例题和练习题,让学生理解和掌握平方差公式。
3.实践环节:学生自主完成练习题,教师巡回指导,解答学生的疑问。
4.小组讨论:学生分组讨论,分享各自的学习心得,互相学习和交流。
用平方差公式因式分解公开课教案
![用平方差公式因式分解公开课教案](https://img.taocdn.com/s3/m/5e28c8331611cc7931b765ce05087632311274d8.png)
XX
感谢观看
汇报人:XX
课堂互动与小组讨论相结合
教学方法:通过课堂互动和小组讨论,引导学生主动思考和探索 目的:激发学生的学习兴趣和积极性,培养他们的合作精神和沟通能力 实施方式:教师提出问题或任务,学生分组讨论,然后分享讨论成果 注意事项:教师需要合理分组,关注学生的参与情况,及时给予指导和反馈
练习与反馈相结合
添加标题
步骤:首先,将多项式表示为平方差的形式;其次, 利用平方差公式进行因式分解;最后,对因式分解 后的多项式进行简化。
添加标题
技巧:在应用平方差公式进行因式分解时,需要 注意观察多项式的结构特点,灵活运用公式,同 时要注意公式的适用范围和限制条件。
添加标题
实例:通过具体的实例演示如何运用平方差公式进 行因式分解,帮助学生更好地理解和掌握方法。
课堂互动:引导学生进行小组讨论,探讨平方差公式 因式分解的常见题型及解题思路
练习巩固:布置相关练习题,让学生实际操作,加深 对知识的理解和掌握
讲解:讲解平方差公式的原 理和应用方法
练习巩固:布置相关练习题, 让学生实际操作,加深对知
识的理解和掌握
导入:回顾旧知识,引出新 知识
总结:总结本节课的重点和 难点,强调平方差公式的重
01
教学过程
导入新课:回顾旧知,引出新概念
回顾旧知识:平方差公式及其应用 引出新概念:因式分解的概念和意义 展示教学目标:掌握因式分解的方法和步骤 引导学生思考:如何将多项式进行因式分解?
讲解新课:讲解平方差公式因式分解的原理、步骤和 技巧
添加标题
原理:平方差公式因式分解的数学原理是利用平方 差公式将多项式进行因式分解,从而简化计算过程。
教学方法:通过课堂 练习和反馈,使学生 更好地掌握平方差公 式因式分解的技巧。
北师大版数学八年级下册《利用平方差公式进行因式分解》说课稿7
![北师大版数学八年级下册《利用平方差公式进行因式分解》说课稿7](https://img.taocdn.com/s3/m/aaaf011132687e21af45b307e87101f69f31fb66.png)
北师大版数学八年级下册《利用平方差公式进行因式分解》说课稿7一. 教材分析北师大版数学八年级下册《利用平方差公式进行因式分解》这一节,是在学生已经掌握了有理数的乘方、平方差公式、多项式的乘法等知识的基础上进行讲解的。
通过这一节课的学习,让学生能够理解并掌握平方差公式的结构特征,能够运用平方差公式进行因式分解,进一步培养学生的数学思维能力和解决问题的能力。
二. 学情分析学生在学习这一节内容时,已经有了一定的数学基础,对于有理数的乘方、平方差公式、多项式的乘法等知识有一定的了解。
但是,对于平方差公式的灵活运用和因式分解的方法还需要进一步的引导和培养。
因此,在教学过程中,要注重学生对平方差公式的理解,以及让学生通过实践操作,掌握因式分解的方法。
三. 说教学目标1.知识与技能目标:让学生理解平方差公式的结构特征,能够运用平方差公式进行因式分解。
2.过程与方法目标:通过学生的自主探究和合作交流,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:让学生在解决数学问题的过程中,体验到数学的乐趣,增强对数学学习的信心。
四. 说教学重难点1.教学重点:平方差公式的结构特征,以及运用平方差公式进行因式分解的方法。
2.教学难点:平方差公式的灵活运用,以及因式分解的方法。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作交流法等,引导学生自主探究,培养学生的数学思维能力和解决问题的能力。
2.教学手段:利用多媒体课件,进行直观演示,帮助学生理解平方差公式的结构特征,以及因式分解的方法。
六. 说教学过程1.导入:通过一个具体的例子,让学生尝试进行因式分解,引出平方差公式。
2.自主探究:让学生通过小组合作,探讨平方差公式的结构特征,以及如何运用平方差公式进行因式分解。
3.讲解与演示:教师对学生的探究结果进行讲解和演示,让学生进一步理解平方差公式,以及因式分解的方法。
4.实践操作:让学生进行实际的练习,运用平方差公式进行因式分解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a2 - b2=(a+b)(a - b)
考考你
你知道99 能否被100整除吗 你知道992-1能否被100整除吗? 整除吗? 说说你 平方差公式:
(a+b)(a-b)=a2-b2 a+b)(aa2-b2= (a+b)(a-b) (a+b)(a-
整式乘法 因式分解
这种分解因式的方法称为公式法。 这种分解因式的方法称为公式法。
平方差公式: 平方差公式:
+ b)(a − b) = a 2 − b 2 (a
两个数的和与两个数的差 乘积, 两个数的和与两个数的差的乘积, 等于这两个数的平方差 平方差。 等于这两个数的平方差。
是 否
把下列各式进行因式分解 1. a3b3-a2b-ab ab(a2b2-a-1) 3xy(3x2. -9x2y+3xy2-6xy -3xy(3x-y+2)
比一比 和老师比一比,看谁算的又快又准确!
322-312 8 2- 7 2 ( 15 ) ( 15 )
682-672 5.52-4.52
在横线内填上适当的式子,使等式成立: 在横线内填上适当的式子,使等式成立: (1)(x+5)(x-5)= )(x+5)(xx+5)(x (2)(a+b)(a-b)= )(a+b)(a(3) x2-25 = (x+5)( (4) a2-b2 = (a+b)( x2-25 a2-b2 x -5 a -b ; ; ); )。 )。
★被分解的多项式含有两项,且这两项异号, 被分解的多项式含有两项,且这两项异号, 两项 异号 并且能写成( 的形式。 并且能写成( )2-( )2的形式。
(2) 公式右边 公式右边: (是分解因式的结果) 分解因式的结果)
★分解的结果是两个底数的和乘以两个底数 分解的结果是两个底数的 乘以两个底数 底数 两个 的形式。 的差的形式。
a2 - b2= (a + b) (a - b)
看 谁 快 又
把下列各式分解因式: 把下列各式分解因式:
1
a2-82 = (a+8) (a -8) 16x2 -y2 =(4x+y) (4x -y)
2 2
对 (3) - 1 y2 + 4x2 1 1 3 =(2x + y) (2x - y) 9 3 3
牛刀小试(一)
把下列各式分解因式: 2 - 1 y2 ①x 16 ② 0.25m2n2 – 1 ③ (2a+b)2 - (a+2b)2 ④ 25(x+y)2 - 16(x-y)2
牛刀小试(二) 牛刀小试(
利用因式分解计算: (1)2.882-1.882; (2)782-222。
不信难不倒你! 不信难不倒你!
)2;
(3)9m2 = ( ± ) (5) 4(a-b)2=[ ± (6)
1 (x+y)2=[ 16
)2; 3m
) 2; 5ab
] 2; 2(a-b) 2(a1 4
±
(x+y) ]2。
首页
上页
下页
做一做
你能试着把下列各式分解因式吗? 你能试着把下列各式分解因式吗?
(1)a2-16 =a2-( 4 )2 =(a+4)(a-4) =(a+4)(a(2)64-b2 =( 8 ) 2-b2=(8+b)(8-b) 64=(8+b)(8-
整式乘法
a − b = ( a+ b)( a − b)
2 2
因式分解
两个数的平方差, 两个数的平方差,等于这两个数 平方差 与这两个数的差 乘积. 的和与这两个数的差的乘积.
− a ▲b
2
2
= ( a ▲ b )( a − b ) + ▲
被分解因式的多项式 (1)公式左边:(是一个将要被分解因式的多项式) 公式左边: 是一个将要被分解因式的多项式)
a2 - b2= (a + b) (a - b)
下列多项式能转化成( 的形式吗? 下列多项式能转化成( )2-( )2的形式吗? 如果能,请将其转化成( 的形式。 如果能,请将其转化成( )2-( )2的形式。
(1) m2 -1 = m2 -12 (2)4m2 -9 (3)4m2+9 = (2m)2 -32 不能转化为平方差形式
(4) 4k2 -25m2n2 =(2k+5mn) (2k -5mn) 4
a −b
2
2
= ( a + b )( a − b )
((x+z)22-20053xy)2 = 2mn)2 −y+p)2 = − 2= 2006) ( ( 3xy)
结论: 结论: 公式中的a 无论表示数 单项式、还是多 公式中的a、b无论表示数、单项式、还是多 转化成 项式,只要被分解的多项式能转化 项式,只要被分解的多项式能转化成平方差 的形式,就能用平方差公式因式分解。 的形式,就能用平方差公式因式分解。
(4)x2 -25y 2 = x2 -(5y)2 (5) -x2 -25y2 不能转化为平方差形式 (6) -x2+25y2 = 25y2-x2 =(5y)2 -x2
铺路之石
填空: 填空:
1 =( (1) ) ( 36
±
1 )2 ; 6
(2) 0.81=( =( ± (4) 25a2b2=(±
0.9
分解因式: 分解因式:
1. 4x3 - 4x
2. x4-y4
解:1. 4x3-4x=4x(x2-1)=x(x+1)(x-1) 1)=x(x+1)(x2. x4-y4=(x2+y2) (x2-y2)=(x2+y2)(x+y)(x-y) )(x+y)(x结论: 结论: 分解因式的一般步骤: 分解因式的一般步骤:一提二套 多项式的因式分解要分解到不能再分解为止。 分解到不能再分解为止 多项式的因式分解要分解到不能再分解为止。
解决问题
在使用平方差公式分解因式时, 注意: 在使用平方差公式分解因式时,要 注意: 先把要计算的式子与平方差公式对照, 先把要计算的式子与平方差公式对照, 明确哪个相当于 a , 哪个相当于 b.
例1:把下列各式分解因式: 把下列各式分解因式: (1) 16a2-9b2 (2) 9(a+b)2-4(a-b)2 4(a(3) (x+p)2-(x+q)2
用你学过的方法分解因式: 用你学过的方法分解因式: 学过的方法分解因式 方法: 方法:
4x3 − 9xy2
先考虑能否用提取公因式法, 先考虑能否用提取公因式法,再考虑能否用 提取公因式法 平方差公式分解因式 分解因式。 平方差公式分解因式。 结论: 结论: 多项式的因式分解要分解到不能再分解为止。 多项式的因式分解要分解到不能再分解为止。 分解到不能再分解为止