边值问题的数值解法

合集下载

第三章静电场及其边值问题的解法

第三章静电场及其边值问题的解法
路、选频等作用; • 通过电容、电感、电阻的排布,可组合成各种功能的复杂
电路; • 在电力系统中,可利用电容器来改善系统的功率因数,以
减少电能的损失和提高电气设备的利用率;
如何求电容器的电容?
14
电磁场与波
1. 电容 电容是导体系统的一种基本属性,是描述导体系统 储存电荷能
力的物理量。
孤立导体的电容
界条件为

ED11tn
s
0
介质1

E1
1
1
注:媒质1为介质,媒质2为导体
导体
22
电磁场与波
静电位的边界条件
设P1和P2是介质分界面两侧紧贴界面的相邻两点,其电位分
别为ϕ1和ϕ 2
当两点间距离⊿l→0时,C与D趋于同一 点,取作电位参考点
1 2
媒质1 1
1 A
B 2
媒质2 2
D
l
C


2
2
n
1
1
n
S
• 若介质分界面上无自由电荷,即 s 0
2
2
n
1
1
n

导体表面上电位的边界条件:
常数,
n
S
电磁场与波
例 3.5 无限长同轴线内外导体半径分别为a,b,外导体接地,内
导体电位为U,内外导体间部分填充介电常数为ɛ1的介质,其余部
分介电常数为ɛ2 ,(a)图中二介质层分界面半径为c;(b)图 0 1
孤立导体的电容定义为所带电量q与其电位的比值,即
Cq
电位参考点为 无穷远处
例: 真空中半径a的孤立带电导体球,其表面电荷量为q,则电位?
q 4 0 a
C 40a

电磁场与电磁波 第4章 静态场的边值问题

电磁场与电磁波 第4章  静态场的边值问题
像电荷 q’ 应位于球内。由对 称性, q’ 在球心与 q 的连线上。
设 q’ 距球心为b,则 q 和 q’ 在球外 任一点(r,,)处产生的电位为
第四章 静态场的边值问题
1 ( q q) 4π 0 R R
1(
q
4π 0 r 2 d 2 2rd cos
q
)
r 2 b2 2rb cos
径为a 的圆的反演点。
第四章 静态场的边值问题
将式(4-2-3)代入(4-2-2),可得球外任意点(r,,)的电位
q (
1
a
)
4π 0 r 2 d 2 2rd cos d r 2 b2 2rb cos
(4-2-5)
若导体球不接地且不带电,则当球外放置点电荷 q 后,它的
电位不为零,球面上净电荷为零。此情形下,为满足边界条件,
第四章 静态场的边值问题
第四章 静态场的边值问题
在给定的边界条件下求解泊松方程或拉普拉斯方程称为边 值问题。根据场域边界面上所给定的边界条件的不同,边值问 题通常分为 3 类:
第一类边值问题,给定位函数在场域边界面上的值; 第二类边值问题,给定位函数在场域边界面上的法向导数值; 第三类边值问题又称混合边值问题,一部分边界面上给定的 是位函数值,另一部分边界面上给定的是位函数的法向导数 值。
4.3.1 直角坐标系中的分离变量
直角坐标系中,标量拉普拉斯方程为
2 2 2
0 x2 y2 z2
(4-3-1)
第四章 静态场的边值问题
设 (x,y,z) = X (x)Y(y)Z(z),代入方程(4-3-1),整理可得
1 X
d2 X dx2
1 Y
d 2Y dy2
1 Z
d2Z dz2

数值分析的所有知识点总结

数值分析的所有知识点总结

数值分析的所有知识点总结一、数值分析的基本概念1.1 数值分析的定义和作用数值分析是研究利用计算机对数学问题进行数值计算的一门学科。

它旨在发展和分析数值计算方法,以解决实际问题中出现的数学模型。

数值分析的主要作用在于加快科学研究和工程设计的速度,提高计算精度和可靠性,以及发现新的科学规律和工程技术。

1.2 数值计算的基本步骤数值计算通常包括以下基本步骤:建立数学模型、选择适当的数值方法、编写计算程序、进行计算和分析结果。

其中,建立数学模型是数值计算的基础,它将实际问题抽象为数学公式或方程组的形式;选择适当的数值方法是指根据具体问题的特点,选择合适的数值计算方法进行求解;编写计算程序是指将选择的数值方法用计算机程序的形式实现;进行计算和分析结果是指利用计算机进行数值计算,并分析计算结果的准确性和可靠性。

1.3 数值分析的应用范围数值分析广泛应用于科学、工程、经济、金融等领域。

在科学研究中,数值分析常用于数学建模、实验数据处理、科学计算等方面;在工程领域,数值分析常用于工程设计、结构分析、流体力学、传热传质等方面;在经济金融领域,数值分析常用于风险评估、金融工程、市场预测等方面。

二、数值计算方法2.1 插值法插值法是利用已知的离散数据(如实验数据、观测数据)推导出未知的数据值的一种数值计算方法。

常用的插值方法包括拉格朗日插值、牛顿插值、分段插值等。

2.2 数值微分与数值积分数值微分是指利用离散数据计算函数的导数值的数值计算方法。

常用的数值微分方法包括差商法、中心差商法等。

数值积分是指利用离散数据计算函数的积分值的数值计算方法。

常用的数值积分方法包括复合梯形法、复合辛普森法等。

2.3 数值线性代数数值线性代数是研究线性代数问题的数值计算方法。

它涉及到线性方程组的求解、线性方程组的特征值和特征向量的计算、矩阵的LU分解、矩阵的QR分解等内容。

2.4 非线性方程求解非线性方程求解是研究非线性方程的数值计算方法。

monge—ampére方程边值问题的多解

monge—ampére方程边值问题的多解

monge—ampére方程边值问题的多解由于其复杂性以及和数学物理学家们最喜爱的特性,蒙芝-安佩尔方程边值问题已经被广泛研究,并且发现了真正的多解性解决方案。

这篇文章旨在讨论这样的多解性解法,以及如何有效地求解它们。

蒙芝-安佩尔方程主要是一类非线性双曲型偏微分方程,它描述的是一类带有奇异终端约束的力学系统。

它的主要优点在于其定义可以被精确表达,并且它可以表示未知的物理过程及其非线性相互作用,这些相互作用求解困难但又非常重要。

蒙芝-安佩尔方程可以在物理上得到准确的描述,因此其应用广泛,常见的例子包括金属扩散以及流体动力学等研究领域。

蒙芝-安佩尔方程边值问题涉及求解边界条件作用下的方程组,这些边界条件有可能被定义在空间的不同范围,因此可能存在多个解决方案。

例如,针对某个定义在某一空间内的力学系统,可能会存在一系列可行的最优状态或动态的解,它们可能具有不同的性质和功能,也可能存在不可表达的解。

解决蒙芝-安佩尔方程边值问题的不同方法有不同的优缺点,这与数学模型中使用的算法有关。

其中,最常用的方法包括隐式迭代法、显式迭代法、贝尔斯坦(Bellman)迭代法、局部逼近法(Local Approximation)和径向基函数(Radial Basis Function)等。

其中,隐式迭代法可以有效地解决多项式外推、全局最优解和突变模型等求解困难的问题;而显式迭代法可以有效解决分支定界问题和数值最优化问题;贝尔斯坦(Bellman)迭代法可以有效解决求解动态蒙芝安佩尔方程,同时可以有效解决边界条件问题;局部逼近法和径向基函数法,可以有效解决近似问题,它们可以在低消耗的情况下求解边界问题。

虽然传统的求解方法能够有效的解决蒙芝-安佩尔方程边值问题,但是在一定的情况下,它们也可能出现分支定界问题,从而影响上述求解方法的效率。

此外,蒙芝-安佩尔方程边值问题可能存在不可表达的多解,这一点对实际应用具有重要的意义。

静电场边值问题唯一性定理

静电场边值问题唯一性定理

场分布。
02
指导数值计算
在数值计算中,唯一性定理为我们提供了判断计算结果正确性的依据。
如果计算结果不满足唯一性定理,则说明计算过程中存在错误或近似方
法不够精确。
03
简化问题求解
在某些情况下,唯一性定理可以帮助我们简化问题的求解过程。例如,
在某些对称性问题中,我们可以利用唯一性定理直接得出部分解或特殊
01 02 03
深入研究复杂边界条件下的静电场边值问题
目前的研究主要集中在简单边界条件下的问题,对于复杂 边界条件的研究相对较少。未来可以进一步探讨复杂边界 条件下的静电场边值问题,为实际应用提供更广泛的理论 支持。
发展高效稳定的数值计算方法
尽管现有的数值计算方法已经取得了显著的进展,但在处 理大规模、高维度问题时仍面临挑战。未来可以致力于发 展更高效稳定的数值计算方法,以应对日益复杂的实际问 题。
导体表面的电荷分布
导体表面电荷分布的特点
在静电平衡状态下,导体表面电荷分布是不 均匀的,电荷密度与导体表面的曲率有关, 曲率越大电荷密度越大。
导体表面电荷与电场的关系
导体表面电荷产生的电场与导体内部电荷产生的电 场相互抵消,使得导体内部电场为零。
导体表面电荷分布的求解 方法
可以通过求解泊松方程或拉普拉斯方程得到 导体表面的电荷分布。
数值计算方法的改进
针对静电场边值问题的求解,提出了一系列高效的数值计算方法,如有限元法、有限差分法等,这些方法在保持计算 精度的同时,显著提高了计算效率。
实际应用领域的拓展
将静电场边值问题唯一性定理应用于多个实际领域,如电子工程、生物医学等,成功解决了一系列具有 挑战性的实际问题。
对未来研究的展望
解,从而简化计算过程。

边值问题的数值解法在具体求解常微分方程时-2022年学习资料

边值问题的数值解法在具体求解常微分方程时-2022年学习资料

中南大学数学科学与计算技术学院-第八章常微分方程数值解法-=323-z2=-x32+4y2?-y20=0, 20=0。-取h=0.02,用经典R-K法分别求这两个方程组解yx和y2x的计算值y1:和-y2i,然后按 8.6.6得精确解-6=,t2=0.x-y21-的打靶法计算值》:,部分点上的计算值、精确值和误差列于表8 12。-版核防行:小人学影学烧

中南大学数学科学与计算技术学院-第八章常微分方程数值解法-值得指出的是,对于线性边值问题86.2,一个简单 实用的方法是用解-析的思想,将它转化为两个初值问题:-y"+pxyi+qxy =fx-ya=a,ya=0: 「片+px5+gxy2=0,-ly2a=a,y2a=l。-求得这两个初值问题的解yx和y2x,若y2b≠0 容易验证-a高-8.6.6-为线性两点边值问题8.6.2的解。-例8.7用打靶法求解线性边值问题-版核防行 小人学影学烧
中南大学数学科学与计算技术学院-第八章常微分方程数值解法-y”+y-4y=12x2-3x,0<x<1,-1 0=0,y1=2,-其解的解析表达式为yX=x4+x。-解先将该线性边值问题转化为两个初值问题-y0=0, 1=0,-y2+y%-4y2=0,-y20=0,y1=1。-令乙1=2=y?,将上述两个边值问题分别降为一 方程组初值问题-31=-x31+4y1+12x2-3x,-y,0=0,z10=0,-版权防行:小人学影学烧
中南大学数学科学与计算技术学院-第八章常微分方程数值解法-表8-12-Xi-yu-y2i-yx-y-yl-0.2--0.002407991-0.204007989-0.2016000053-,0.2016000 00-0.53×10-8-0.4--0.006655031-0.432255024-0.425600008 -0.4256000000-0.80x108-0.6-0.019672413-0.709927571-0. 2960000830.7296000000-0.83×108-0.145529585-1.06407038 -1.2096000058-1.2096000000-0.58x108-0.475570149-1.524 28455-2.00000000002.0000000000-例8.8用打靶法求解线性边值问题-4y"+y =2x3+16,-y2=8,y3=35/3。-要求误差不超过0.5×106,其解析解是yx=x2+8/x。 解对应于8.6.4的初值问题为-版凤防行:小人学数:学烧

《电磁场理论》3.1 唯一性定理

《电磁场理论》3.1 唯一性定理

第一类边值问题:已知电位函数在全部边界面上的分 布值。 S f 第二类边值问题:已知电位函数在全部边界面上的法 向导数。 f n S 第三类边值问题(混合边值问题):已知一部分边界 面上的电位函数值,和另一部分边界面上电位函数的法 向导数。 S f1 S S1 S2 f 2 1 01:52 2 n S2
+
-
z
+ +++
(r , )
+
+
-
1 (r, ) E0r cos
-
aO
- - -
-
当引入一个不带电的导体小球后, E0 球表面出现感应电荷。 静电平衡下的导体球为等电位体,球内电场为零, r>a空间内的电位由两个部分组成 01:52 12 1 2
1 2
唯一性定理:满足泊松方程或拉普拉斯方程及所给
的全部边界条件的解是唯一的。
利用反证法来证明。假设在一个由表面边界S包围的 体积V内,泊松方程有两个解 1 2 ,则有
2 1 2 * 1 2 2 * 21 22 0 令
01:52 11
例2:一不带电的孤立导体球(半径为a)位于均匀电 场中, E E0 e z ,如图所示,求电位函数。 解:在没有引入导体球时,均匀电场 E 的电位函数为
1 ( z ) E0 e z e z dz C E0 z C
若取z=0为电位参考点,则C=0, 1 ( z) E0 z 在球坐标内,z r cos
常数
n
n
(1)
根据式(1)仍然有
同理,有 C

V
2 ( ) dV 0

第三章 边值问题的解法

第三章  边值问题的解法

解:根据轴对称的特点和无限长的假设, 可确定电位函数满足一维拉普拉斯方程,
R2
采用圆柱坐标系
R1
1 (r ) 0 积分 Aln r B
r r r
由边界条件 U A ln R1 B 0 Aln R2 B
A U ln R1 R2
B


U ln R1
ln
R2
第3章 边值问题的解 法
给定边界条件下求有界空间 的静电场和电源外恒定电场的问 题,称之为边界值问题。
3.1边值问题的提法(分类)
3.1.1边值问题的分类
1 狄利克雷问题:给定整个场域边界面S上各点电位的(函数)

f (s)
2 聂曼问题:给定待求位函数在边界面上的法向导数值
/ n f (s)


q
4π0


(r
2

2dr
1
cos

d
)2 1/ 2

(d
2r2

a
2dra2 cos

a4 )1/ 2

导体球不接地:
q a q d
b a2 d
q q a q d
a

a
导体球不接地:根据电荷守恒定律,导体球上感应电荷代
数和应为零,就必须在原有的镜像电荷之外再附加另一镜
球壳内:边界为r = a1的导体球面,
边界条件为 (a1, ,) 0
➢ 根据球面镜像原理,镜像电荷
的位置和大小分别为
a1 q1
q

1
b1

a12 d1
q1
q1

二阶常微分方程边值问题数值方法

二阶常微分方程边值问题数值方法

其中 p( x),q( x)为,r已( x知) 函数,则由常微分方程的理论知,通过
变量替换总可以消去方程中的 项,不妨y设 变换后的方程为
y( x) q( x) y( x) r( x)
y(a) ,
y(b)
则近似差分方程成离散差分方程为
yi 1
2 yi h2
yi 1
qi
yi
ri
其中 qi q( xi ), ri r( xi ), i 1,2, , n. y0 ,
第一边界问题:
y0 , yn1
(8.9)
第二边界问题:
y1 y0 h , yn1 yn h
(8.10)
第三边界问题:
y1 (1 0h) y0 1h,
(1 0h) yn1 yn 1h
(8.11)
若 f ( x, y,是y) 的y线, y性 函数时,f 可写成
f (x, y, y) p(x) y( x) q( x) y(x) r( x)

y
为待定参数。
0
对第三类边界问题,仍可转化为考虑初值问题(8.5),取
y0 ,
y0 1 0 y0 ,以 y为0 待定参数。
8.2 有限差分法
将区间[a,b]进行等分:
h
ba, n1
xi
a ih, i 0,1,
,n 1,
设在
x xi , i 0,1, , n 1处的数值解为 。 yi 用中心差分近似微分,即
而且还有误差估
计:
Ri
y( xi )
yi
M 24
h2
(
xi
a)(b xi )
其中 M max y(4。) ( x)
x[a ,b]

第3章 边值问题的解法

第3章 边值问题的解法
第三章 边值问题 的 解法
第三章 边值问题 的 解 法
无界
场源( / J )
电场( E / )
分布型
电场( )
求解边值问题通常可以转化为归结在给定边界条件下, 求解拉普拉斯方程或泊松方程的问题。
求解边值问题的方法一般分为解析法和数值法。
1
第三章 边值问题 的 解法
3.1 边值问题的分类*
3.2
法求解,镜像电荷的个数为(3600/θ)-1,再加上原电荷总共 3600/θ个,镜像电荷位于与原电荷关于边界对称的位置上,且 大小相等、符号相反;若3600/θ不为偶数,则镜像电荷就会出 现在所求区域,这将改变该区域内电位所满足的方程,不能 用镜像法求解。
镜像电荷的要求:根据唯一性定理,只要镜像电荷和 实际电荷一起产生的电位能满足给定的边界条件,又在所 求的区域内满足拉普拉斯方程即可。
镜像法是求解静电边值问题的一种间接方法,它巧妙应 用唯一性定理,使某些看来难解的边值问题易于解决。主要 用来求解无限大导体附近的电荷(点电荷/线电荷)产生的 场。
11
第三章 边值问题 的 解法
在z >0的上半平面(除点电荷所在点),▽2φ=0; 在z= 0的平面上,φ=0 ,▽2φ=0 。 当z→∞、|x|→∞、|y|→∞时,φ→0。
根据唯一性定理,式(3-1-1)必是所求问题的解。
14
第三章 边值问题 的 解法
用电位函数反求感应电荷量。
E 4 q0[ r x 2 3 r x 1 3 a x r y 2 3 r y 1 3 a y r z 2 3 r z 1 3 a z]
例1:地球对架空传输线所产生电场的影响。 例2:发射或接收天线的场分布会因支撑它们的金属 导电体的出现而显著改变。 结论:计算空间的电场,不仅要考虑原电荷的电场, 还要考虑感应电荷的电场,这就必须知道表面电荷的分布。 直接分析这些问题既复杂又困难。

第8章常微分方程边值问题的数值解法

第8章常微分方程边值问题的数值解法

第8章常微分方程边值问题的数值解法8.1 引言第7章介绍了求解常微分方程初值问题的常用的数值方法;本章将介绍常微分方程的边值问题的数值方法。

只含边界条件(boundary-value condition)作为定解条件的常微分方程求解问题称为常微分方程的边值问题(boundary-value problem). 为简明起见,我们以二阶边值问题为例介绍常用的数值方法。

一般的二阶常微分方程边值问题(boundary-value problems for second-order ordinary differential equations)为, (8.1.1)其边界条件为下列三种情况之一:(1) 第一类边界条件 (the first-type boundary conditions):(2) 第二类边界条件 (the second-type boundary conditions):(3) 第三类边界条件 (the third-type boundary conditions):定理8.1.1 设(8.1.1)中的函数及其偏导数在上连续. 若(1) 对所有,有;(2) 存在常数,对所有,有,则边值问题(8.1.1)有唯一解。

推论若线性边值问题(8.1.2)满足(1)和上连续;(2) 在上,,则边值问题(8.1.1)有唯一解。

求边值问题的近似解,有三类基本方法:(1) 差分法(difference method),也就是用差商代替微分方程及边界条件中的导数,最终化为代数方程求解;(2) 有限元法(finite element method);(3) 把边值问题转化为初值问题,然后用求初值问题的方法求解。

8.2 差分法8.2.1 一类特殊类型二阶线性常微分方程的边值问题的差分法设二阶线性常微分方程的边值问题为其中在上连续,且用差分法解微分方程边值问题的过程是:(i) 把求解区间分成若干个等距或不等距的小区间,称之为单元;(ii) 构造逼近微分方程边值问题的差分格式. 构造差分格式的方法有差分法, 积分插值法及变分插值法;本节采用差分法构造差分格式;(iii) 讨论差分解存在的唯一性、收敛性及稳定性;最后求解差分方程.现在来建立相应于二阶线性常微分方程的边值问题(8.2.1), (8.2.2)的差分方程.( i ) 把区间等分,即得到区间的一个网格剖分:,其中分点,并称之为网格节点(grid nodes);步长.( ii ) 将二阶常微分方程(8.2.2)在节点处离散化:在内部节点处用数值微分公式(8.2.3)代替方程(8.2.2)中,得, (8.2.4)其中.当充分小时,略去式(8.2.4)中的,便得到方程(8.2.1)的近似方程, (8.2.5)其中,分别是的近似值, 称式(8.2.5)为差分方程(difference equation),而称为差分方程(8.2.5)逼近方程(8.2.2)的截断误差(truncation error). 边界条件(8.7.2)写成(8.2.6)于是方程(8.2.5), (8.2.6)合在一起就是关于个未知量,以及个方程式的线性方程组:(8.2.7)这个方程组就称为逼近边值问题(8.2.1), (8.2.2)的差分方程组(system of difference equations)或差分格式(difference scheme),写成矩阵形式. (8.2.8)用第2章介绍的解三对角方程组的追赶法求解差分方程组(8.2.7)或(8.2.8), 其解称为边值问题(8.2.1), (8.2.2)的差分解(difference solution). 由于(8.2.5)是用二阶中心差商代替方程(8.2.1)中的二阶微商得到的,所以也称式(8.2.7)为中心差分格式(centered-difference scheme).( iii ) 讨论差分方程组(8.2.7)或(8.2.8)的解是否收敛到边值问题(8.2.1), (8.2.2)的解,估计误差.对于差分方程组(8.2.7),我们自然关心它是否有唯一解;此外,当网格无限加密,或当时,差分解是否收敛到微分方程的解. 为此介绍下列极值原理:定理8.2.1 (极值原理) 设是给定的一组不全相等的数,设. (8.2.9)(1) 若, 则中非负的最大值只能是或;(2) 若, 则中非正的最小值只能是或.证只证(1)的情形,而(2)的情形可类似证明.用反证法. 记,假设, 且在中达到. 因为不全相等,所以总可以找到某个,使,而和中至少有一个是小于的. 此时因为,所以, 这与假设矛盾,故只能是或. 证毕!推论差分方程组(8.2.7)或(8.2.8)的解存在且唯一.证明只要证明齐次方程组(8.2.10)只有零解就可以了. 由定理8.7.1知,上述齐次方程组的解的非负的最大值和非正的最小值只能是或. 而,于是证毕!利用定理8.2.1还可以证明差分解的收敛性及误差估计. 这里只给出结果:定理8.2.2 设是差分方程组(8.2.7)的解,而是边值问题(8.2.1), (8.2.2)的解在上的值,其中. 则有(8.2.11)其中.显然当时,. 这表明当时,差分方程组(8.2.7)或(8.2.8)的解收敛到原边值问题(8.7.1), (8.7.2)的解.例8.2.1 取步长,用差分法解边值问题并将结果与精确解进行比较.解因为,, 由式(8.2.7)得差分格式,, 其结果列于表8.2.1.表8.2.1准确值0 1 0 01 0.1 -0. 0332923 -0.03336562 0.2 -0. 0649163 -0.06506043 0.3 -0. 0931369 -0.09334614 0.4 -0. 1160831 -0.11634825 0.5 -0. 1316725 -0.13197966 0.6 -0. 1375288 -0.13785787 0.7 -0. 1308863 -0.13120878 0.8 -0. 1084793 -0.10875539 0.9 -0. 0664114 -0.066586510 1.0 0 0从表8.2.1可以看出, 差分方法的计算结果的精度还是比较高的. 若要得到更精确的数值解,可用缩小步长的方法来实现.8.2.2 一般二阶线性常微分方程边值问题的差分法对一般的二阶微分方程边值问题(8.2.12)假定其解存在唯一.为求解的近似值,类似于前面的做法,( i ) 把区间等分,即得到区间的一个网格剖分:,其中分点,步长.( ii ) 对式(8.2.12)中的二阶导数仍用数值微分公式代替,而对一阶导数,为了保证略去的逼近误差为,则用3点数值微分公式;另外为了保证内插,在2个端点所用的3点数值微分公式与内网格点所用的公式不同,即(8.2.13)略去误差,并用的近似值代替,,便得到差分方程组(8.2.14)其中,是的近似值. 整理得(8.2.15)解差分方程组(8.2.15),便得边值问题(8.2.12)的差分解.特别地, 若,则式(8.2.12)中的边界条件是第一类边值条件:此时方程组(7.7.16)为(8.2.16)方程组(8.2.16)是三对角方程组,用第2章介绍的解三对角方程组的追赶法求解差分方程组(8.2.16),便得边值问题(8.2.12)的差分解.( iii ) 讨论差分方程组(8.2.16)的解是否收敛到微分方程的解,估计误差. 这里就不再详细介绍.例8.2.2 取步长,用差分法求下列边值问题的近似解,并将结果与精确解进行比较.精确解是.解因为,, 由式(8.2.17)得差分格式,, 其结果列于表8.2.2.表8.2.2准确值0 0 -0.3 -0.31 /16 -0.3137967 -0.31374462-0.3154982 -0.3154322 2/163-0.3050494 -0.3049979 3/1644-0.2828621 -0.2828427/1655-0.2497999 -0.2498180/1666-0.2071465 -0.2071930/167-0.1565577 -0.15660567/168 /2 -0.1000000 -0.10000008.3 有限元法有限元法(finite element method)是求解微分方程定解问题的有效方法之一,它特别适用在几何、物理上比较复杂的问题. 有限元法首先成功地应用于结构力学和固体力学,以后又应用于流体力学、物理学和其他工程科学. 为简明起见,本节以线性两点边值问题为例介绍有限元法.考虑线性两点边值问题其中,.此微分方程描述了长度为的可变交叉截面(表示为)的横梁在应力和下的偏差.8.3.1 等价性定理记, 引进积分. (8.3.3)任取,就有一个积分值与之对应,因此是一个泛函(functional),即函数的函数. 因为这里是的二次函数,因此称为二次泛函.对泛函(8.3.3)有如下变分问题(variation problem):求函数,使得对任意, 均有, (8.3.4) 即在处达到极小, 并称为变分问题(8.3.4)的解.可以证明:定理8.3.1(等价性定理)是边值问题(8.3.1), (8.3.2)的解的充分必要条件是使泛函在上达到极小,即是变分问题(8.3.4)在上的解.证 (充分性) 设是变分问题的解;即使泛函在上达到极小,证明必是边值问题(8.3.1), (8.3.2)的解.设是任意一个满足的函数,则函数,其中为参数. 因为使得达到极小,所以,即积分作为的函数,在处取极小值,故. (8.3.5)计算上式,得利用分部积分法计算积分代入式(8.3.6),得因为是任意函数,所以必有. (8.3.8) 否则,若在上某点处有,不妨设,则由函数的连续性知,在包含的某一区间上有.作显然,且,但,这与式(8.3.7)矛盾. 于是式(8.3.8)成立,即变分问题(8.3.4)的解满足微分方程(8.3.1), 且故它是边值问题(8.3.1), (8.3.2)的解.。

第十一章 常微分方程边值问题的数值解法

第十一章 常微分方程边值问题的数值解法

第十一章 常微分方程边值问题的数值解法工程技术与科学实验中提出的大量问题是常微分方程边值问题.本章将研究常微分方程边值问题的数值求解方法.主要介绍三种边界条件下的定解问题和两大类求解边值问题的数值方法,打靶法算法和有限差分方法.11.1 引言在很多实际问题中都会遇到求解常微分方程边值问题. 考虑如下形式的二阶常微分方程),,(y y x f y '='', b x a <<, (11.1.1)在如下三种边界条件下的定解问题: 第一种边界条件:α=)(a y , β=)(b y (11.1.2)第二种边界条件:α=')(a y , β=')(b y (11.1.2)第三种边界条件:⎩⎨⎧=-'=-'1010)()()()(b b y b y a a y a y βα, (11.1.13) 其中0 0, ,00000>+≥≥b a b a .常微分方程边值问题有很多不同解法, 本书仅介绍打靶方法和有限差分方法.11.2 打靶法对于二阶非线性边值问题()()().,,βα==≤≤'=''b y a y b x a y y x f y ,,, (11.2.1)打靶法近似于使用初值求解的情况. 我们需要利用一个如下形式问题初值解的序列:()()v a w a w b x a w w x f w ='=≤≤'='')(,,,,,α, (11.2.2)引进参数v 以近似原边界值问题的解.选择参数k v v =,以使:()()β==∞→b y v b w k k ,lim , (11.2.3)其中),(k v x w 定义为初值问题(11.2.2)在k v v =时的解,同时()x y 定义为边值问题(11.2.1)的解.首先定义参数0v ,沿着如下初值问题解的曲线,可以求出点),(αa 对应的初始正视图()()v a w a w b x a w w x f w ='=≤≤'='')(,,,,,α. (11.2.4)如果),(0v b w 不严格收敛于β,那么我们选择1v 等值以修正近似值,直到),(0v b w 严格逼近β.为了取得合适的参数k v ,现在假定边值问题(11.2.1)有唯一解,如果),(v x w 定义为初始问题(11.2.2)的解,那么v 可由下式确定:0),(=-βv b w . (11.2.5)由于这是一个非线性方程,我们可以利用Newton 法求解.首先选择初始值0v ,然后由下式生成序列),)(()),((111-----=k k k k v b dvdw v b w v v β,此处),(),)((11--=k k v b dv dwv b dv dw , (11.2.6)同时要求求得),)((1-k v b dvdw,因为),(v b w 的表达式未知,所以求解这个有一点难度;我们只能得到这么一系列的值。

刚性问题与边值问题的数值解法

刚性问题与边值问题的数值解法

刚性方程组先考虑两个简单的初值问题。

问题1.⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛32)0()0(,)sin (cos 2sin 22112''v u x x x v u v u (8.1)问题2.⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛32)0()0(,)sin (cos 999sin 299999812''v u x x x v u v u (8.2)这两个问题有同样的解析解⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛x x x x v x u cos sin 11)exp(2)()( (8.3)采用4阶显式R-K 方法来计算上面两个问题,以相同的误差要求来自动选取步长,计算从0=x 到10=x 。

第一个问题可用相当大的步长,而第二个问题能使用的步长小到难于接受。

如果改用某种低阶隐式格式,那么这两个问题均可用较大步长,计算出大致符合要求的解来。

上述显示出来的现象称为刚性;问题2是刚性的,问题1是非刚性的。

由于这两个问题的解是相同的,因此这种现象不是问题解的作用而是方程组的一种特性所引起的。

基于这个事实,较为正确的应称刚性方程组而不是刚性问题。

这个想法也给我们一种启示,可不考虑满足初值条件的特解而着重讨论方程组的通解。

对于问题1,方程组的系数矩阵的特征值为-1和-3,其通解为⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛x x x x x v x u cos sin 11)3exp(11)exp()()(21αα (8.4)其中21,αα为任意常数。

对于问题2,方程组的系数矩阵的特征值为-1和-1000,其通解为⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛x x x x x v x u cos sin 9981)1000exp(11)exp()()(21ββ (8.5)其中21,ββ为任意常数。

什么是数值计算

什么是数值计算

什么是数值计算?(计算机科学技术百科全书清华大学出版社1998)数值计算(numerical computation)是有效使用数字计算机求数学问题近似解的方法与过程,以及由有关理论所构成的学科。

数值计算是一门实用性很强的学科,近年来随着计算机的发展和广泛应用,许多计算领域的问题,如计算力学、计算物理、计算化学、计算经济学等新分支都可归结为数值计算问题。

简史早在公元前14世纪的商代就基本形成十进制的记数法,春秋战国时代筹算已得到普遍应用,并形成和发展了算筹作为通用有效的计算工具,以后改进演化为算盘,相应发展了珠算方法。

数值计算在古代已取得了重要成果。

早在公元1世纪,汉代的“九章算术”记载了开平方、开立方、解一元二次方程和三元一次方程的方法。

公元5世纪南北朝时期,著名数学家祖冲之算得圆周率π为3.14159265,精确到小数点后7位,这项纪录保持了近千年。

南宋数学家秦九韶于1247年写成“数书九章”,提出的联立一次同余式和高次方程数值解的秦九韶法,比西方Euler和Horner于1819年提出的算法早五百多年。

随着近代数学的形成和发展,数值计算也取得了相应的进步。

20世纪40年代中后期,电子计算机的出现与迅速发展,有力推动了数值计算的研究与发展,解决了许多难度与规模都很大的计算问题,提出了许多新的数值方法,数值计算在整个科学技术和经济生活中的重要性得到前所未有的体现,并获得极大的发展,形成了一门新的学科分支。

数值计算与计算机的发展相辅相成,相互促进。

大量数值计算的需要,促使计算机体系结构及性能不断更新,而计算机的发展又推动着数值计算方法的发展,每当计算机发生一次变革,数值计算也产生一次飞跃。

为适应现代计算机的飞速发展,对数值计算提出了新的要求,对原有计算方法提出了重新评价、筛选、改造和创新。

与此同时,也涌现了许多新概念、新方法,从而构成了现代数值计算的新涵义,如计算机系统界面的多媒体化,给计算过程可视化提供了软件环境。

数值分析知识点大全总结

数值分析知识点大全总结

数值分析知识点大全总结一、数值计算方法数值计算方法是数值分析的基础,它涵盖了数值逼近、数值积分、插值与拟合、数值微分与数值积分、解线性方程组、求解非线性方程与方程组、解常微分方程等内容。

下面我们将逐一介绍这些方面的知识点。

1. 数值逼近数值逼近是研究如何用简单的函数来近似一个复杂的函数的方法。

常见的数值逼近方法包括多项式逼近、三角函数逼近、曲线拟合等。

其中,最为重要的是多项式逼近,它可以用来近似任意函数,并且具有较好的数学性质。

2. 数值积分数值积分是研究如何用离散的数据来估计连续函数的积分值的方法。

常见的数值积分方法包括梯形公式、辛普森公式、龙贝格公式等。

其中,辛普森公式是一种较为精确的数值积分方法,它可以用来估计任意函数的积分值,并且具有较好的数值稳定性。

3. 插值与拟合插值与拟合是研究如何用离散的数据来构造连续函数的方法。

常见的插值方法包括拉格朗日插值、牛顿插值等。

而拟合方法则是研究如何用简单的函数来拟合复杂的数据,常见的拟合方法包括最小二乘法、最小二乘多项式拟合等。

4. 数值微分与数值积分数值微分与数值积分是研究如何用差分方法来估计导数与积分的值的方法。

常见的数值微分方法包括向前差分、向后差分、中心差分等。

而数值积分方法则可以直接用差分方法来估计积分的值。

5. 解线性方程组解线性方程组是研究如何用迭代法或直接法来求解线性方程组的方法。

常见的迭代法包括雅各比迭代法、高斯-赛德尔迭代法等。

而直接法则是指用消元法来求解线性方程组的方法。

6. 求解非线性方程与方程组求解非线性方程与方程组是研究如何用迭代法来求解非线性方程与方程组的方法。

常见的迭代法包括牛顿法、割线法等。

其中,牛顿法是一种非常高效的求解非线性方程与方程组的方法,它具有收敛速度快的特点。

7. 解常微分方程值积分方法包括龙格-库塔法、变步长欧拉法、变步长龙格-库塔法等。

其中,龙格-库塔法是一种较为精确的数值积分方法,它可以用来求解各种类型的常微分方程。

《数值分析》第五章课件

《数值分析》第五章课件
h
取 h = 0.2 ,要求保留六位小数.
校正: cn+1 = y n + 2 ( y n' + mn' +1 )
解:Euler 迭代格式为
校正的改进:
1 y n +1 = c n +1 + ( p n +1 − c n+1 ) 5
yk +1 = yk + 0.2(− yk − xk yk2 ) = 0.8 yk − 0.2 xk yk2
差分方程:关于未知序列的方程.
例如: y n +3 = 5 y n + 2 − 3 y n +1 + 4 y n
例如: y ' ' ( x) − a ( x) y '+b( x) y + c( x) = 0
3
4
微分方程的应用情况
实际中,很多问题的数学模型都是微分方程. 常微分方程作为微分方程的基本类型之一,在 理论研究与工程实际上应用很广泛. 很多问题 的数学模型都可以归结为常微分方程. 很多偏 微分方程问题,也可以化为常微分方程问题来 近似求解.

可得,
y(xn+1) − yn+1 = hf y (xn+1,η)[ y(xn+1) − yn+1] − h2 '' y (xn ) + O(h3 ) 2
f (xn+1, y(xn+1)) = y' (xn+1) = y' (x n ) + hy'' (xn ) + O(h2 )
19
20
2 考虑到 1 − hf y ( xn+1 ,η ) = 1 + hf y ( xn+1 ,η ) + O(h ) ,则有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
估计式
M b a 2 y xk y k h ,k 1, 2, ,n 1。 96
2
y 4 x 。因此,当 h 0 时,差分方程的解收敛到微分方 其中 M max a x b
y f x,y,y, y x,y sk,
这里的 s k 为
(8.6.3)
y
在 处的斜率。令 z y ,上述二阶方程可降为一阶方程组
y z, z f x,y,z ,
(8.6.4)
y a ,z a sk。
计算结果表明打靶法的效果是很好的,计算精度取决于所选取的初值问题数
值方法的阶和所选取的步长 h 的大小。不过,打靶法过分依赖于经验,选取试射 值,有一定的局限性。
第八章常微分方程数值解法
8.6.2 差分方法
差分方法是解边值问题的一种基本方法,它利用差商代替导数,将微分方程 离散化为线性或非线性方程组(即差分方程)来求解。 先考虑线性边值问题(8.6.2)的差分法。将区间 a,b 分成 n 等分,子区间的
s2
,同理得到 yb,s2 ,再判断它是否满足精度要求
y b,s2 。如此重复,直到某个 s 满足 y b,sk ,此时得到 k
的 y xi 和 yi z xi 就是边值问题的解函数值和它的一阶导数值。上述方程 好比打靶, s k 作为斜率为子弹的发射,y b 为靶心,故称为打靶法。
y xy 4 y 12 x 2 3x, 0 x 1, y 0 0,y 1 2,
其解的解析表达式为 y
x x 4 x 。来自解 先将该线性边值问题转化为两个初值问题
xy1 4 y1 12 x 2 3 x, y1 1 0, y1 0 0,y1 xy2 4 y2 0, y2 1 1。 y2 0 0,y2
0.432255024
0.709927571 1.064070385 1.524428455
0.53 10 8 0.4256000080 0.4256000000 0.80 10 8 0.7296000083 0.7296000000 0.83 10 8 1.2096000058 1.2096000000 0.58 10 8
(8.6.8)
2 hpn1 yn2 2h 2 qn1 4yn1 2h 2 f n1 2 hpn1 。
k 2, 3, ,n 2,
第八章常微分方程数值解法 这是一个三对角方程组。 若 qx 0,x a,b ,且步长满足 hpk 2 ,则方程组(8.6.8)的系 数矩阵是严格对角占优的。此时,方程组(8.6.8)的解存在惟一,用追赶法求解 此方程组时一定是数值稳定的,用 Jacobi迭代法求解此方程组时一定是收敛的。
假设
yx,sk sk sk 对给定的 ,它是 的隐函数。 s yx,sk yx,s s k,设初值问题(8.6.3)的解为 k
。 随 是连续变化的,记为
sk
yb,s ,于是我们要找的 0
就是方程
第八章常微分方程数值解法 的根。可以用第6章的迭代法求上述方程的根。比如用割线法有
y xi
8
y xi yi
0
8.4763636364 9.0933333333 9.8369230769 10.6971428571 11.6666666667
0.13 10 8 0.18 10 8 0.16 10 8 0.10 10 8 0.30 10 9

,z2 y2 z1 y1
,将上述两个边值问题分别降为一阶方程组初值问题
z1, y1 xz1 4 y1 12 x 2 3 x, z1 y1 0 0,z1 0 0,
第八章常微分方程数值解法
y 2 z 2, z 2 xz2 4 y 2,
y 2 0 0, z 2 0 0。
取 h=0.02 ,用经典R-K法分别求这两个方程组解 y1 x 和y2 x 的计算值 y 1 i 和
y2i ,然后按( 8.6.6 )得精确解
y x y1 x
2 y1 1 y2 x y2 1
长度 h
b a n ,分点 xk
y xk
a k hk 0, 1 , ,n 。由
y xk 1 y xk 1 O h2 2h y xk 1 2 y xk 1 2 xk 1 2 y xk O h h2
0.2016000053 0.2016000000 2.0000000000 2.0000000000 0
例 8.8 用打靶法求解线性边值问题
4 y yy 2 x 3 16,
y 2 8,y 3 35 3。
2 要求误差不超过 0.5 10 6 ,其解析解是 yx x 8 x 。
的打靶法计算值 y i ,部分点上的计算值、精确值和误差列于表 8-12。
第八章常微分方程数值解法 表 8-12
xi
0 0.2
y1i
0 -0.002407991
y2i
0 0.204007989
yi
0
y xi
0
yxi yi
0
0.4
0.6 0.8 1.0
-0.006655031
0.019672413 0.145529585 0.475570149
sk
y 3,sk
1.5 11.488914
2.5 11.842141
2.003224 11.667805 表 8-14
1.999979 11.666659
2.000000 11.666667
xi
2.0
2.2 2.4 2.6 2.8 3.0
yi
8
8.4763636378 9.0933333352 9.8369230785 10.6971426562 11.6666666669
第八章常微分方程数值解法
8.6 边值问题的数值解法
在具体求解常微分方程时,必须附加某种定解条件。定解条件通常有两 种,一种是初始条件,另一种是边界条件。与边界条件相应的定解问题称为 边值问题。本节介绍求解两点边值问题
y f x,y,y,
的数值解法。当 f 关于 y 和
y ,y b ,
6 的初值问题,得到 y3,s4 11.666666669 ,有 y 3,s4 y 3 0.5 10 。于
s1 s0 y3,s1 y3 2.0032241。 y 3,s1 y 3,s0
第八章常微分方程数值解法 表 8-13
(8.6.7)
中,整理后得到关于
2 1
y1,y2, ,yn 1 的方程组
2 1 1 2 1 1 2 2
2h q 4y 2 hp y 2h f 2 hp , 2 hp y 2h q 4y 2 hp y 2h f ,
k k 1 k k k k 1 k
sk sk 1
sk 1 sk 2 yb,sk 1 ,k 2, 3, 。 yb,sk 1 yb,sk 2
(8.6.5)
这样,可以按下面简单的计算过程进行求解。先给定两个初始斜率 s0,s1 , 分别作为初值问题(8.6.4)的初始条件。用一阶方程组的数值方法求解它 们,分别得到区间右端点的函数的计算值 yb,s0 和 yb,s1 。如果 y b,s0 或 y b,s1 ,则以yx,s0 或 yx,s1 作为两点边值问题的解。否则 用割线法(8.6.5)求
对于每一个
6 =11.8421,则有 y 3,s1 y 3 0.0755 0.5 10 。以
s0,s1 作为割线法迭代初
值,由割线法计算
s2 s1
由此得 y3,s2 11.6678 ,仍然不满足精度要求。由 s1,s2,y3,s1 和 y3,s2 用割线法得到 s3 1.999979 。重复这个过程,直到 s4 2.000000 ,再求解相应 是得到边值问题的解 yi ,打靶过程和边值问题的计算 解分别列于表8-13和8-14
因此,边值问题变成求合适的 s k ,使上述方程组初值问题的解满足原边值问 题 yb
的右端边界条件
,从而得到边值问题的解。这样,把一个两点边值问
题的数值解问题转化为一阶方程组初值问题的数值解问题。方程组初值问题的 所有数值方法在这里都可以使用。问题的关键是如何去找合适的初始斜率的试 探值
(8.6.1)
y 是线性时,式(8.6.1)为线性两点边值问题
(8.6.2)
y px y qx y f x , y ,y b 。
8.6.1 打靶法
打靶法 的基本原理是将两点边值问题(8.6.1)转化为下列形式的初值问题
第八章常微分方程数值解法
,qx 0,x a,b ,则由常微分方程的理论得出,两 若 p,q,f Ca,b
点边值问题(8.6.2)的解存在惟一。设 y k 是差分问题(8.6.8),而y xk 是边
yx C 4 a,b ,则截断误差有下列 值问题(8.6.2)的解 y x 在节点 x k 的值,
第八章常微分方程数值解法 值得指出的是,对于线性边值问题(8.6.2),一个简单又实用的方法是用解 析的思想,将它转化为两个初值问题:
px y1 qx y1 f x , y1 a 0; y1 a ,y1
px y2 q x y2 0, y2 a 1。 y2 a ,y2
求得这两个初值问题的解 y1 x 和 y2 x ,若 y2 b 0 ,容易验证
相关文档
最新文档