随机变量及其分布列经典例题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机变量及其分布列典型例题
【知识梳理】
一.离散型随机变量的定义
1定义:在随机试验中,确定一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果变化而变化的变量称为随机变量、 ①随机变量就是一种对应关系;②实验结果必须与数字对应; ③数字会随着实验结果的变化而变化、 2.表示:随机变量常用字母X ,Y,ξ,η,…表示.
3、所有取值可以一一列出的随机变量,称为离散型随机变量 ( dis cre te ran dom var ia ble ) .
二、离散型随机变量的分布列
1.一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,xi ,…,x n, X 取每一个值x i (i=1,2,…,
n)的概率P (X =xi)=pi ,则称表:
为离散型随机变量X P(X =x i )=p i ,
i =1,2,…,n, 也可以用图象来表示X 的分布列、 2.离散型随机变量的分布列的性质 ①pi ≥0,i=1,2,…,n ;②11
=∑=n
i i
p
.
三.两个特殊分布 1.两点分布),1(~P B X
若随机变量X 的分布列具有上表形式,则称服从两点分布,并称p =P (X =1)为成功概率. 2、超几何分布),,(~n M N H X
一般地,在含有M 件次品的N 件产品中,任取n件,其中恰有X 件次品,则P (X =k )=
n
N
k n M
N k M C C C --,k =0,1,2,…,m ,其中m =min {}n M ,,且n ≤N ,M ≤N ,n ,M,N ∈N *
.
三、二项分布
一般地,在n 次独立重复试验中,用
X 表示事件A 发生的次数,设每次试验中事件A发生的概率为p ,则P (X=k )=C 错误!p k (1-p)n -
k ,k=0,1,2,…,n 、此时称随机变量X服从二项分布,记作X ~B (n ,p),并称p 为成功概率.易得二项分布的分布列如下;
【典型例题】
题型一、随机变量分布列的性质
【例1】设随机变量X 的分布列为,3,2,1,)3
2
()(=⋅==i a i X P i ,则a 的值为____、
题型二、随机变量的分布列
【例3】 口袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,用X 表示取出的最大号码,求X的分布列、
【例4】安排5个大学生到A ,B ,C 三所学校支教,设每个大学生去任何一所学校就是等可能的.
(1)求5个大学生中恰有2个人去A 校支教的概率; (2)设有大学生去支教的学校的个数为ξ,求ξ的分布列、
【例5】一个口袋中装有大小相同的3个白球与1个红球,从中有放回地摸球,每次摸出一个,若有3次摸到红球即停止. (1)求恰好摸4次停止的概率;
(2)记4次之内(含4次)摸到红球的次数为X ,求随机变量X 的分布列、
【例6】从6名男生与4名女生中任选4人参加比赛,设被选中女生
的人数为随机变量ξ,ﻫ求:(1)ξ的分布列;(2)所选女生不少于2人的概率.
【例7】甲、乙两人参加某种选拔测试.在备选的10道题中,甲答对其中每道题的概率都就是,乙能答对其中的5道题.规定每次考试都从备选的10道题中随机抽出3道题进行测试,答对一题加10分,答错一题(不答视为答错)减5分,至少得15分才能入选、
(Ⅰ)求乙得分的分布列;
(Ⅱ)求甲、乙两人中至少有一人入选的概率.
【例8】某仪器经过检验合格才能出厂,初检合格率为:若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率为.每台仪器各项费用如表:
项目生产成本检验费/次调试费出厂价
金额(元) 1 00
(Ⅰ)求每台仪器能出厂的概率;
(Ⅱ)假设每台仪器就是否合格相互独立,记X为生产两台仪器所获得的利润,求X的分布列与数学期望.
【例9】某超市在节日期间进行有奖促销,凡在该超市购物满300元的
顾客,将获得一次摸奖机会,规则如下:奖盒中放有除颜色外完全相同的1个红球,1个黄球,1个白球与1个黑球.顾客不放回地每次摸出1个球,若摸到黑球则停止摸奖,否则就要将奖盒中的球全部摸出才停止、规定摸到红球奖励10元,摸到白球或黄球奖励5元,摸到黑球不奖励、
(1)求1名顾客摸球3次停止摸奖的概率;
(2)记X为1名顾客摸奖获得的奖金数额,随机变量X的分布列、