运动生物力学的概念(终审稿)
运动生物力学
运动生物力学运动生物力学名解:●运动生物力学的定义:运动生物力学是研究人体运动力学规律的科学●静载荷:静载荷是逐渐加于物体上的,其特点是在这种载荷作用下,物体各部分不产生加速度或产生可以忽略的很小的加速度。
●动载荷:动载荷所引起的加速度显著。
动载荷又分冲击载荷和交变载荷。
●载荷的表现形式:拉伸、压缩、弯曲、剪切、扭转和复合载荷。
●应变:是量度物体形变程度的量,分为线应变和剪应变。
●应力:物体在受到外力作用而变形时,其内部各质点间的相互作用力发生变化。
这种由于外力作用而引起的固体内各质点之间相互作用力的改变量,简称为内力。
单位面积上的内力称为平均应力,当面积趋近于0时平均应力的极限称为应力。
单位面积上的内力称为平均应力,当面积趋近于0时平均应力的极限称为应力。
●强度:结构破坏前所能承受的变形;结构破坏前所能承受的载荷;结构在破坏前所能贮存的能量;●刚度:弹性范围内曲线的斜率表示结构的刚度。
考虑力量和速度的组合效应。
●生物运动偶两个相邻骨环节之间的可动连接叫做生物运动偶。
●生物运动链:生物运动偶的串联式连接叫做生物运动链。
●运动的自由度:一个物体在空间运动,描述物体运动状态的独立变量的个数,叫做这个物体运动的自由度。
●约束:运动受到限制,称为约束。
每增加一个约束就减少一个自由度。
●生物运动偶:两个相邻骨环节之间的可动连接叫做生物运动偶。
●生物运动链取决于生物运动偶,生物运动偶的运动能力又取决于关节的构造和肌肉的控制作用。
●动作结构概念:每个完整的特定动作,都有固有的特点,各个动作成分之间都有着固定的联系,这是一个动作区别于另一个动作的特征,动作的这种固有特点和固定内在联系叫做动作结构。
动作结构包括运动学特征和动力学特征。
●空间特征是指位置坐标,运动轨迹,关节角度等。
●运动轨迹:动点随着时间在空间连续占有的几何位置。
●时间特征:是指运动开始时刻,结束时刻,运动持续的时间,动作的频率和节律。
●节律:动作中各个动作成分所占的时间比例。
绪论、运动生物力学学科概述
运动人体科学系
阴其谱
绪论
教学目标:
1、明确运动生物力学的基本概念、课程要求和学习方法,
2、掌握运动生物力学的基本知识、基本原理和基本方法。
一、运动生物力学的基本概念
1、运动: 分为广义和狭义两种。 2、生物学: 3、力学: 4、生物力学:
Байду номын сангаас
它的基础:能量守恒、动量守恒、质量守恒
能量守恒:能量既不会凭空产生,也不会凭空消失,它只能
二、运动生物力学的课程内容:
(一)、绪论 (二)、运动生物力学学科概述:
(三)、运动生物力学参数:
(四)、骨、关节、肌肉的生物力学: (五)、运动生物力学原理: (六)、运动生物力学应用:
三、运动生物力学的学习要求:
第一章 运动生物力学学科概述
教学目标: 1、让学生了解该学科的发展的历史 2、让学生了解该学科的特性 3、让学生了解该学科的主要研究任务、研究领域和研究趋向
它不是体育学、生物学和力学的简单总和,而是融合。
定义:运动生物力学是研究体育运动中人体运动力学行为规律 的科学。 运动生物力学研究人体运动器系的生物力学特征和人体运动 动作规律,并根据人体运动的内部和外部条件寻求人体运动技术 的合理性和最佳化,进而为提出有效的训练手段和发展人体运动 能力提供理论根据。
四、研究内容的实践性:
第三节 运动生物力学学科任务
一、研究人体结构与运动功能的关系:
二、研究人体运动技术的规律:
三、研究人体运动技术的最佳化:
四、设计与改进运动器械:
五、研究运动损伤的力学原因:
第四节 运动生物力学学科展望
一、基础研究: 二、应用研究: 三:方法与技术研究:
第一节 运动生物力学学科演变
运动生物力学
运动生物力学运动生物力学是一个基于生物学原理的运动科学,关注力学性能,以及与人体动作相关的生理过程。
这一领域的研究强调对运动表现的定量分析,以及运动过程中生物学过程和机械过程之间的关系。
运动生物力学的研究从人性和动物的视角开始,采用多方法的实验测量技术,如结构图像分析,动力学建模,和生物位移分析来研究运动表现。
应用运动生物力学,可以更好地理解不同人群,如关节限制者,精神障碍者和老年人的运动表现,以改善他们的运动能力。
这种方法可以以视觉,力学,模拟和实验的方法来提高患者的运动表现。
结构图像分析是运动生物力学领域的一项核心技术,通过使用高分辨率的结构图像,可以更好地理解人体和动物身体结构,以及运动受控的构造和构造受控的运动之间的相互关系。
例如,研究人员可以通过分析关节活动,肌肉活动,肌腱活动,肌肉力矩和肌腱力矩,以及其他研究对象的运动方式,来揭示不同身体结构的运动表现。
动力学建模是该领域的另一个核心方法,可以用来仿真描述有关运动的过程,预测运动的结果,验证设计和改善技术。
动力学模型可以采用计算机模拟,三维建模,力学模拟和数学模型等方法,来模拟不同运动表现,从简单的步行步态到复杂的运动。
此外,生物位移分析也是运动生物力学研究的一个重要组成部分,它可以用来评估一个人在站立、步行和发力方面的动作特征,如脚步长度,脚步频率,肢体摆动,肢体发力,以及腰部发力等。
在运动医学领域,运动生物力学的研究可以使用它用于预防和治疗运动伤害。
研究人员可以利用运动生物力学测量技术来诊断等,以更好地给予治疗,如采用机械辅助设备,力学训练和矫正锻炼计划等。
例如,研究人员可以使用结构图像分析,力学建模,和生物位移分析来诊断和治疗关节炎,膝盖间隙缩小,以及肩关节不稳定性等疾病。
在运动训练中,运动生物力学的研究可以帮助教练们更好的训练运动员,减少损伤,提高运动员的训练效果。
研究人员可以采用多种测量技术,例如视觉,力学,模拟和实验,以改善运动员的运动表现。
运动生物力学
运动生物力学一.基本概念:1、人体惯性参数:是指人体整体及环节的质量、质心(重心)位置、转动惯量及转动半径。
2、鞭打动作:人们把克服阻力或自体位移过程中,肢体依次加速与制动,使末端环节产生极大速度的动作形式成为鞭打动作。
3、力偶:是指一对大小相等、方向相反的平行力,如汽车司机两手作用于方向盘的力就是一个力偶。
4、转动惯量:是衡量物体(人体)转动惯性大小的物理量。
5、稳定角:是重力作用线和重心至支撑面相应边界的连线之间的夹角。
6、运动生物力学:是研究人体运动力学规律的科学,它是体育科学学科体系的重要组成部分。
7、图像解析:对运动员的技术进行拍摄完成后,将得到的影像资料进行数字化的处理,获取原始的运动学数据,这就是图像分析。
8、转动定律:刚体绕定轴转动时,转动惯量与角加速度的乘积等于作用于刚体的合外力矩。
9、人体重心:是人体各环节所受地球引力的合力作用点。
10、相向动作:是人体在腾空状态下动作主要表现的形式,如挺身式跳远空中动作过程、排球空中大力扣(发)球动作。
二、简答:1、试举体育实例说明影响人体转动惯量大小的因素有哪些?答:①质量大小。
质量越大转动变量越大。
如:要停住相同速度且相同体积的铅球与皮球,铅球不容易停住,是因为铅球的质量大,他的转动变量大,所以要改变他的状态就不容易。
②质量分布。
转轴一定时质量分布越远离转轴,转动惯量越大,反之则越小。
如:直体空翻比团身空翻难度大,是因为直体时,身体的质量分布离转轴较远,转动惯量较大。
③转轴的位置。
转轴离质心越远转轴惯性量越大,反之则越小。
如:同一运动员做单杠大回环和腹回环相比较,单杠大回环的转动惯量较大,是因为转轴位置的不同。
2、爆发式用力的体育项目中,为什么肌肉力量训练和速度训练等重要?答:爆发式用力的体育项目指的是在短时间内输出强大肌肉功率的体育项目而爆发力是指肌肉在工作时快速地将生物学能转化为机械能对外输出强大机械功率的能力。
即:P=F*V,有肌肉收缩力-----速曲线可知,当载荷为零时,即:F=0时,则肌肉收缩速度V最大,但此时功率很小;同样,当阻力增大到肌肉不能缩短时,则V=0,肌肉不做功,所以功率为零,根据希尔方程推论,只有当处于1/3。
9运动生物力学
4. 剪切
标准的剪切载荷是一对大小相等,方向相 反,作用线相距很近的力的作用,有使骨发生 错动(剪切)的趋势,在骨骼内部的剪切面产 生剪应力。
5. 扭转
载荷加于骨上使其沿轴线产生扭曲时, 即形成扭转。
6. 复合载荷
由于骨的几何结构不规则,且始终受到 多种不定的载荷,因此,在体骨的载荷是复杂 的。
四、骨的受力形式与表现
力臂:从支点到动力作用线的垂直距离。 阻力臂:从支点到阻力作用线的垂直距离。 力矩:力和力臂的乘积。 阻力矩:阻力和阻力臂的乘积。
二、杠杆的分类
1. 第一类杠杆(平衡杠杆)
特征:支点在力点与阻力点中间,主要作用是传递动力和 保持平衡,支点靠近力点时有增大速度和幅度的作用,支 点靠近阻力点时有省力的作用。
F 2L L
L
2F
F
L
F
L
F L
F
三、肌肉结构力学模型的性质
(一)肌肉张力——长度特性 1. 收缩元张力——长度曲线
10 0 8 0 6 0 4 0 2 0 0 1 .0 1 .5 2 .0 2 3 3 .5 .0 .5 4 .0 A B c
等 收 过 中 张 — 度 线 长 缩 程 的 力 长 曲
F P S
这里称为S上的平均应力。
(三)应变
要研究内力在截面上的分布规律,首先必须研究 物体中各点处的变形程度。假设把物体分为无数很小 的正六面体,沿X轴方向的AB边原长X,变形后长度 改变了 X , X 称为线段AB的线变形。伸长时 X 为 正值,缩短时为负值。若AB上各点的变形程度相同, 则比值为: X X 表示单位长度的伸长或缩短,称为线应变。若沿 AB线段各点变形程度不同,则线应变定义为:
第一章`运动生物力学之简介及发展趋势生物力学(biomechanics)之定义
第一章、運動生物力學之簡介及發展趨勢一、生物力學(biomechanics)之定義廣義:生物力學是將數學及力學原理應用在對生物系統之研究的一門科學。
狹義:生物力學是研究作用於人體(或人所操作之物體)之內力或外力以及由這些力所產生之運動的一門科學。
它是探討人體運動因果關係的一門科學,力量作用之後會使人體產生加速度,而造成人體運動速度的改變。
亦即力量的作用是造成人體運動速度改變的原因,而人體運動速度的改變是力量作用之後所產生的結果。
二、生物力學研究的領域(一)復健(使用攝影機、測力板、Cybex等)(二)步態(走路、跑步,正常、異常,醫生診斷之用)(三)人體和工作環境的關係(搬運重物、工廠操作機器)(四)關節(運動學、動因學)(五)肌肉功能(肌肉收縮、電刺激)(六)骨科(骨骼受力、骨釘、人工關節)(七)切肢和裝入人工肢體(運動學、動因學)(八)脊椎(脊椎負荷變形、椎間受力)(九)組織(肌肉、骨骼、韌帶)(十)肌電圖(十一)電腦模擬和數學模式(十二)運動(一般運動、競技運動)(運動生物力學)三、運動生物力學(sport biomechanics)之定義運動生物力學是將數學及力學原理應用在對運動技術之研究的一門科學。
它是生物力學之中相當重要的一個研究領域。
四、運動生物力學之主要用途:技術指導。
五、運動生物力學對體育教師、教練、選手之重要性:(一)對體育教師而言:因為體育教師的對象都是初學者,若是體育教師不懂運動生物力學而灌輸了錯誤的觀念,這對學生將來影響很大,所以體育教師一定要瞭解運動生物力學的原理。
(二)對教練而言:教練的對象是選手,在技術上皆有所心得,毛病也不少。
故一位好的教練更要對運動生物力學有深一層的研究,並加以融會貫通,才能挑出選手的毛病所在,進一步指導,使選手在技術上有所精進。
(三)對選手而言:一般而言,選手不須懂得那麼多,但若選手能對運動生物力學有所瞭解,不但可提高興趣以改進技術,並可做為將來擔任教練時所用。
人体运动力学
(4)剪切 剪切载荷作用时,载荷施加方向与骨表面平行或垂直
,且在骨内部产生剪切应力和剪应变。骨剪切载荷时其内 部发生角变形。通过对骨进行剪切实验的结果表明,骨密 质的剪切强度要大于骨松质的剪切强度,垂直于骨纤维方 向的剪切强度要明显大于顺纤维方向的剪切强度。
22 2021/4/6
第一节 运动生物力学概述
一、运动生物力学概念 (一)生物力学:研究生物体机械运动规律。 一般生物力学、人类工程生物力学、医用生物力学、 康复生物力学、运动生物力学、生物力学研究方法
(二)运动生物力学:运动生物力学是用静力学、运动学 和动力学的基本原理结合解剖学、生理学等研究人体运动的 学科。用理论力学的原理和方法研究生物是个开展得比较早 、比较深入的领域。
运动生物力学是研究体育运动中人体运动规律的科学。 运动生物力学把体育运动中各项动作技术的研究课题,赋
予生物学和力学的观点及方法,使复杂的体育动作技术奠基 于最基本的生物学和力学的规律之上,并以数学、力学、生 物学及运动技术原理的形式加以定量描述。
3 2021/4/6
二、运动形式 简单的、低级的运动形式 复杂的、高级的运动形式 三、人体运动的复杂性 人体是个开放的系统 四、人体的机械运动 (一)人体机械运动的表现方式
—
—
15 2021/4/6
4. 耐冲击力和持续力差 不同载荷作用时,若在骨中所引起的张力分布一样,但
效果不一样,两者相等时,冲击力在骨中引起的变化较大, 也就是说,骨对冲击力的抵抗比较小。另一方面,骨的耐持 续性能比较差,同其他材料相比,抗疲劳性能亦差。
5.机械力对骨结构的影响 在骨承受载荷的限度内,成人骨对机械力的反应是由应
17 2021/4/6
对《运动生物力学》的认识
对《运动生物力学》的认识
运动生物力学是运用生物力学原理来研究和控制人体动作、技能及运动力学特性的一
门科学。
它融合了机械力学、医学、电气工程方面的知识,主要研究的是运动的物理及化
学机制、生理构造及活动的原理。
它的研究范畴包括肌肉活动控制机制、运动生物学动力
学机理、运动机器人及人机界面等领域。
运动生物力学为运动力学研究提供了生物机制支持。
它提供了一种能了解运动任务动
作机制的新方法,将传统的运动力学和生物学融合到一起,为理解运动的运动学和动力学
机制以及其分析提供了科学的理论依据。
运动生物力学还可以为运动指导员和教练提供参考,进行运动的有效指导和训练,使
运动员能够在有限的时间内获得最佳效果。
运动生物力学还可以为那些有负担的运动员提
供预防性指导,以减少他们锻炼过程中受伤的可能,并为他们提供合理有效适当的训练方案。
运动生物力学可以用来研究人体的运动规律和运动表现,提出人机界面技术,识别不
同运动行为,并利用生物力学原理以及机械及医学原理优化和改进行为。
针对不同的活动,运动生物力学可以根据不同的动作参数进行分析,从而为演练和优化形式提供有力的指导。
总的来说,运动生物力学是一门综合性学科,它融合了生物学、机械学、电气工程学
等学科的知识,并将其综合起来,以进一步帮助运动科学整体发展,并为人体运动中的研
究提供科学、合理的方法。
运动生物力学
运动生物力学运动生物力学一、名词解释1、运动生物力学:作为体育科学学科体系中的一门交叉学科,是以机能解剖学、运动生理学和力学的理论与方法,研究人体运动器系的生物力学特征、人体运动动作的力学规律以及运动器械机械力学规律的学科。
2、人体惯性参数:指人体整体及环节的质量、质心(重心)位置、转动惯量及转动半径。
3、转动惯量:是衡量物体(人体)转动惯性大小的物理量。
公式 r m i i n i J 21?=∑= 4、惯性参考系:指以地球或相对于地球静止不动的物体或做匀速直线运动的物体作为参考系,又称静参考系。
5、非惯性参考系:指以相对于地球做变速运动物体,或者说以相对于惯性参考系做变速运动的物体作为参考系,又称动参考系。
6、瞬时速度:人体在某一时刻或通过运动轨迹某一点时的速度。
7、人体内力:若将人体看做一个生物力学系统,则人体内部各部分相互作用的力。
(肌肉力、组织粘滞力、韧带张力、关节约束反作用力)8、人体外力:若将人体看作一个生物力学系统,来自于外界作用于人体的力。
(重力、弹性力、摩擦力、支撑反作用力、介质作用力)9、拉伸载荷:是沿骨的长轴方向,自骨的表面向外施加相等而反向的载荷,在骨内部产生拉应力和拉应变。
(单杠悬垂时上肢骨的受力)。
10、压缩载荷:是在骨的长轴方向上,加于骨表面的向内而反向的载荷,在骨内部产生压应力和压应变(举重举起后上肢和下肢骨的受力)11、应力松弛:当物体突然发生应变时,若应变保持一定,则相应的应力会随时间的增加而下降。
12、转动定律:刚体绕定轴转动时,转动惯量与角速度的乘积等于作用于刚体的合外力矩。
βJ M =13、鞭打动作:在克服阻力或自体位移过程中,肢体依次加速与制动,使末端环节产生极大速度的动作形式。
14、蹬伸动作:人体在有制成的状态下,下肢各环节积极伸展,配合以正确的摆臂技术,给支撑面施加压力,以获得较大支撑反作用力的动作过程。
15、稳定角:是重力作用线和重心至支撑面相应边界的连线之间的夹角。
体育学中的运动生物力学研究
体育学中的运动生物力学研究体育运动在人类社会中扮演着重要的角色,它不仅能够提升个体的身体素质,还能够培养团队合作精神和竞争意识。
然而,要想在体育运动中取得优秀的成绩,只有依靠强大的意志力和运动天赋是远远不够的。
在现代体育学的研究中,运动生物力学作为一门重要的学科,为我们深入了解人体在运动中的本质提供了重要的理论支持和实践指导。
本文将介绍体育学中的运动生物力学研究,并探讨其在训练和运动优化中的应用。
一、运动生物力学的概念与发展历程运动生物力学是体育学的一个重要分支学科,它主要研究人体在运动过程中的力学特征及其影响因素。
通过对人体力学、生理学、解剖学等方面的研究,运动生物力学揭示了人体运动的基本规律和特点。
运动生物力学的发展可以追溯到19世纪末,当时的科学家开始运用机械原理和工程学方法研究人体的运动机制。
随着科学技术的进步和研究方法的不断完善,运动生物力学逐渐成为了一门独立的学科,并广泛应用于体育训练、人体健康等领域。
二、运动生物力学在体育训练中的应用1. 运动姿势的优化运动姿势是体育训练中非常重要的一个环节,它直接影响到运动员的运动效果和受伤风险。
运动生物力学通过研究人体在不同运动状态下的力学特征,可以确定出最佳的运动姿势,帮助运动员提高运动效果、减少能量消耗,并降低运动受伤的风险。
例如,在游泳中,研究人员通过运动生物力学的分析,发现头部和身体的协调姿势对于减少水阻和提高游泳速度非常关键,因此在游泳训练中需要重点强调这一技术要点。
2. 运动技术的改进运动技术的优化是提高运动员竞技水平的关键。
运动生物力学的研究为改进运动技术提供了理论依据和实践指导。
通过对运动过程中的关键动作进行分析,运动生物力学可以找出关键因素和影响因素,并提出相应的技术改进策略。
例如,在田径跳远项目中,运动生物力学的研究表明,起跳时的膝关节角度和腿部肌肉的力量是影响跳远成绩的重要因素,因此运动员在训练中需注意强化相应的肌肉群、控制起跳时的膝关节角度,从而提高跳远成绩。
运动生物力学的概念
一.运动生物力学得概念:运动生物力学得概念就是研究体育运动中人体及器械机械运动规律得科学。
二.动能与势能得正确利用(高水平运动员动作得特征):1、高水平运动员在完成投掷动作时有效地利用了助跑速度。
2、高水平运动员超越器械动作时间短,身体背弓大器械被充分引向身体后方。
3、高水平运动员较好得利用了身体得动能及肌肉得弹性势能。
三.人体运动得形式:如果将人体简化为质点,人体运动可分为:直线运动与曲线运动。
如果将人体简化为刚体,人体运动可分为:平动,转动与复合运动。
2、斜抛物体得运动:1、定义:运动轨迹为抛物线2、斜抛运动得构成:水平方向:匀速直线运动竖直方向:竖直上抛运动四.牛顿第一定律(惯性定律):1、定义:任何物体,在不受力作用时,都保持静止或匀速直线运动状态。
2、应用(保持跑速,动作连贯)牛顿第二定律及其应用1、定义F=ma 2:几点注意1、a就是运动学量F就是动力学量,她们都就是矢量力就是产生运动得原因,并且加速度方向与力得方向一致。
2、牛顿第二定律中得物体就是被当做质点得3、加速度与力同时出现同时消失,反应得就是瞬时关系。
应用:加速跑,超重,失重,弯道跑五.牛顿第三定律及其应用:1、定义Fab=-Fba 2、应用:加速跑,起跳,投掷链球六.动量与冲量1、动量:K=mv 2、冲量:I=Ft 动量定理在体育中得应用1:落地缓冲动作:要减少对人体得冲力,就得延长力得作用时间。
七.人体平衡得力学条件人体平衡得力学条件就是人体所受得合外力为零与合外力矩为零。
表达式为:∑F=0,∑M=0 如:燕式平衡,单杠支臂悬垂八.人体重心得概念:1、概念:人体全部环节所重力得合力得作用点,就叫人体重心2、研究人体重心得意义:评定一个体育动作得质量,分析其技术特征与纠正错误动作等。
都需要从人体重心得变化规律去分析,无论就是动力性得动作还就是静力性得姿势,探索其运动规律时,都离不开人体重心。
3、特点:人体中心不想物体那样恒定在一个点上,不仅在一段时间内,要受肌肉与脂肪得增长或消退等因素得影响,即使在每一瞬间,也要受呼吸,消化,血液循环等因素得影响,特别就是在体育运动中,要受人体姿势变化得制约,随姿势得改变,有时甚至移出体外。
运动生物力学
运动生物力学作业一、名词解释:1.运动生物力学:运动生物力学是以人体解剖学、人体生理学和力学的理论与方法,研究人体运动器系的生物力学特性和人体运动动作的力学规律以及器械机械运动力学规律的科学。
2.肌肉的松弛:被拉长的肌肉,随着时间的延长,其弹性形变力逐渐下降的现象(特性)。
3.相向运动:人体在腾空状态时,若身体部分环节以11“绕某轴发生转动,则必有另一些环节以咕辽绕同一轴作反方向转动,且满足1「1 •丨2'2 = 0,这种现象称相向运动。
(与手抄的不同,以手抄为准)4.鞭打:手部游离(或持物),上肢作类似鞭子急剧抽打的摆臂动作过程。
5 •动态支撑反作用力:人体处于支撑状态时,由于人体局部环节的运动而给支点以作用力时,支点给人体的反作用力。
6.牵连速度:研究人体或器械运动时,动参照系相对于静参系的运动速度。
用Vt 表示。
7.人体重心:人体全部环节所受重力的合力作用点。
8.骨疲劳:反复作用的循环载荷超过某一生理限度时会使骨组织受到损伤,称为骨疲劳。
9.补偿运动:当人体的总重心在不适宜的方向上发生位移时,人能够在一定范围内把身体重心向相反方向移动以保持人体平衡。
10.稳定角:重力作用线同重心与支撑面边界相应点的连线的夹角。
11.腾起速度(起跳速度):指起跳脚蹬离地面瞬间身体重心的速度大小。
12.爆发力:人体在短时间内快速的将生物化学能转换为机械能,对外输出强大功率的能力。
(爆发式用力需要人体的瞬时功率较大或最大。
)13.流体压差阻力(形状阻力):由于流体流经物体时,流动状态的改变,形成涡旋,使物体前后产生压强差所引起的阻力。
14.:有限稳定平衡:人体偏离平衡位置后,在某一位置范围内能恢复平衡,超过限度则失去平衡。
15.静态支反力:人体处于静止状态,由于重力作用使人体对支点产生压力,而支点对人体产生的反作用力。
16.马格努斯效应:当球体在流体中既有平动又绕自身重心转动时,球体将作一种曲线运动。
、简答题:1.运动生物力学研究方法包括哪几种?研究方法的指导思想是什么?运动生物力学研究的发展趋势是什么?目前运动生物力学研究的四个层面是什么?答:研究方法:系统的方法、生物学方法、物理力学的方法相互渗透、融合而研究人体运动的因果关系。
运动生物力学_运动生物力学概述
• 中华人民共和国成立之后,1956-1958年间苏联专家 贝柯夫在北京体育学院外交部研究班曾讲授过有关人 体重心的计算及有关运动技术分析的机能解剖学内容。
• 3)力学量在人体内的传递是通过肌肉、骨 骼、关节链壮系统之间的相互作用来完成 的。
• 4)国内拥有自主知识产权的运动生物力学 测量与分析系统很少,且技术水平不高。
• 5)影像分析中人体关节点的智能判别技术 问题、人体质量几何分布的个体化模型问 题等,尚未解决。
运动生物力学的发展简史
• 古希腊的哲学家和自然科学家阿里亚里斯 多德(公元384-322年)就对生物体的运动 发生了兴趣,注意在日常生活中观察人和 运动的力学问题。
5、运动生物力学是研究人体运动力学 规律的科学,它是体育科学的重要组 成部分。
二、运动形式
两种运动形式: 一种是简单的、低级的运动形式。例如,物 理运动、化学运动、机械运动等。 另一种是复杂的、高级的运动形式。例如, 生物运动,人还有更高级的运动及其产物, 即思维。
三、人体运动的复杂性
人体运动是自然界最复杂的现象之一,活 的人体就其本质是一个开放的、复杂的巨 系统。
二、运动生物力学课程任务
深刻理解体育动作的生物力学原理,探索 运动技术的力学规律。
扩大知识视野 学习从事运动技术科学研究的生物理论和
方法。
三、运动生物力学的课程内容
运动生物力学绪论 人体运动器系的生物力学特性 人体惯性参数 人体平衡的生物力学 人体运动的运动学 人体运动的动力学 人体运动的流体力学 人体基本动作结构的生物力学 运动生物力学的研究方法和测量技术 运动生物力学教学实验
运动生物力学的概念
运动生物力学的概念运动生物力学是研究生物体在运动中所涉及的力学原理和机制的学科。
它通过分析生物体在运动过程中的力、速度、加速度等参数,来揭示生物体在不同运动形式和环境条件下的运动机制和优化策略。
运动生物力学具有广泛的应用领域,包括运动医学、运动训练、人体工程学等。
运动生物力学主要研究以下几个方面的内容:1. 动力学:动力学是研究运动的力学学科,它描述了生物体在运动过程中所受到的力、质量、速度和加速度之间的关系。
例如,通过分析运动过程中的惯性力、重力、摩擦力等力的作用,可以揭示生物体运动的原理和机制。
2. 步态分析:步态分析是研究人体行走、跑步等运动形式的力学学科。
通过分析生物体在步态循环中不同阶段的力学参数,如步长、步频、步态对称性等,可以评估和优化运动的效能和健康状况。
步态分析在康复医学、运动训练和人机交互等领域具有重要的应用价值。
3. 关节生物力学:关节生物力学是研究关节机械特性及其对运动影响的学科。
关节是连接骨骼的重要结构,通过分析关节运动的角度、力矩和力等参数,可以了解关节机械特性的变化和功能障碍的原因。
关节生物力学在骨科医学、康复治疗和人体工程学等领域有广泛的应用。
4. 肌肉力学:肌肉力学研究生物体肌肉的收缩、拉伸和力学性能。
通过分析肌肉的纤维类型、力-长度特性和能量代谢等特征,可以揭示肌肉在不同运动条件下的力学行为和能量转化效率。
肌肉力学在运动训练、康复医学和人工肢体设计等方面有重要的应用。
5. 人体姿势和平衡:运动生物力学还研究人体的姿势和平衡控制。
通过分析人体重心位置、姿势调整和平衡控制的力学机制,可以评估人体在不同条件下的平衡能力和运动稳定性。
这对于运动训练、康复治疗和老年人护理等领域具有重要的意义。
总之,运动生物力学通过研究生物体在运动中的力学原理和机制,为运动医学、运动训练和人体工程学等领域提供了理论基础和实践指导。
它的应用可以帮助优化运动表现、提高运动能力,促进康复治疗和改善人体健康。
运动生物力学的概念
运动生物力学的概念
运动生物力学是研究生物体运动过程的力学原理和规律的学科。
它结合了生物学、医学、物理学和数学等多学科的知识,探讨生物体运动的力学机制、运动过程中的力学参数以及运动对生物体结构和功能的影响。
运动生物力学主要研究以下几个方面:
1. 动力学:研究运动物体所受力的来源及其对物体运动的影响。
通过分析力的大小、方向和作用时间等参数,揭示人体运动的原理和机制。
2. 力学特性:研究生物组织和骨骼结构的力学性质,包括强度、刚度、柔韧性、弹性等。
通过测量和建模,了解生物体在运动时的力学行为,为运动训练和康复提供科学依据。
3. 动力学优化:研究生物体在不同运动任务中的优化策略,分析运动的效率和稳定性。
通过数学模型和计算方法,优化运动技能和训练方式,提高运动表现和竞技能力。
4. 运动损伤和康复:研究运动活动对生物组织和结构的影响,探索运动损伤的机制和康复的原理。
通过运动生物力学的分析和评估,指导损伤预防和康复治疗,促进运动健康和运动能力的提高。
总之,运动生物力学通过应用力学原理和方法,揭示生物体运
动的本质和规律,为运动训练、竞技表现和康复治疗等提供科学依据,并推动了运动科学的发展。
1.运动生物力学绪论
一、研究运动员身体结构和机能的生物 力学特征,为运动员选才提供理论依据。
短跨项目运动员的踝关节、跖趾关节的力学 特征对运动的影响。
红、白肌纤维在人体内的比例对不同 项目运动员的影响。
二、研究各项动作技术,确立动作技术原理, 建立动作技术模式来指导教学和训练。
是指完成某项动作技术的基本规律,它适用于任何 人,不考虑运动员的性别、体型、运动素质的发展 水平和心理素质等个体差异,是具有共性特点的一 般规律。
世界长跑冠军艾冬梅 、郭萍来自五、设计和改进运动器械
撑竿跳高竿的演变对提高成绩的影响。 木制 →竹制 →金属 →复合材料(碳素纤维)
学习方法和目的
结合体育实践,尤其是自己专项中的典型动作,将运动 生物力学的基本原理运用到体育运动的实践中。
学习运动生物力学的基本理论与研究方法,运用所学知 识分析动作技术,提高分析问题、解决问题的能力,使 我们的体育教学、训练更科学。
姓名 朱建华 索托马约尔
成绩 2.39 m 2.45 m
助跑速度 8.73 m/s 8.93 m/s
踏跳时间 0.19-0.21s 0.25-0.27s
北京奥运会男子四人皮艇1000米白俄罗斯队冠军,中国第七。
四、探索预防运动创伤和康复手段的力学依据
单杠单臂大回环初学者易造成胼胝体脱落。力学原因 是初学者重心不稳,旋转时的力量很大,作用在手上 的扭曲的力量大,从而造成胼胝体脱落。
运动生物力学的概念
研究体育运动中人体及器械机械运动规律的科学。
运动生物力学是一门边缘学科,它是生物力学的一个分支。 它以经典力学的理论和方法为主要工具,研究体育运动中 的各种力学现象。
运动生物力学的研究宗旨是通过动作分析,揭示运动技 术的规律。有一种观点认为:运动生物力学主要是解决 体育运动中合理技术和最佳技术的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运动生物力学的概念TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】一.运动生物力学的概念:运动生物力学的概念是研究体育运动中人体及器械机械运动规律的科学。
二.动能与势能的正确利用(高水平运动员动作的特征):1.高水平运动员在完成投掷动作时有效地利用了助跑速度。
2.高水平运动员超越器械动作时间短,身体背弓大器械被充分引向身体后方。
3.高水平运动员较好的利用了身体的动能及肌肉的弹性势能。
三.人体运动的形式:如果将人体简化为质点,人体运动可分为:直线运动和曲线运动。
如果将人体简化为刚体,人体运动可分为:平动,转动和复合运动。
2.斜抛物体的运动:1.定义:运动轨迹为抛物线 2.斜抛运动的构成:水平方向:匀速直线运动竖直方向:竖直上抛运动四.牛顿第一定律(惯性定律):1.定义:任何物体,在不受力作用时,都保持静止或匀速直线运动状态。
2.应用(保持跑速,动作连贯)牛顿第二定律及其应用1.定义F=ma 2:几点注意 1.a是运动学量F是动力学量,他们都是矢量力是产生运动的原因,并且加速度方向与力的方向一致。
2.牛顿第二定律中的物体是被当做质点的 3.加速度与力同时出现同时消失,反应的是瞬时关系。
应用:加速跑,超重,失重,弯道跑五.牛顿第三定律及其应用:1.定义Fab=-Fba 2.应用:加速跑,起跳,投掷链球六.动量与冲量 1.动量:K=mv 2.冲量:I=Ft 动量定理在体育中的应用 1:落地缓冲动作:要减少对人体的冲力,就得延长力的作用时间。
七.人体平衡的力学条件人体平衡的力学条件是人体所受的合外力为零和合外力矩为零。
表达式为:∑F=0,∑M=0 如:燕式平衡,单杠支臂悬垂八.人体重心的概念:1.概念:人体全部环节所重力的合力的作用点,就叫人体重心 2.研究人体重心的意义:评定一个体育动作的质量,分析其技术特征和纠正错误动作等。
都需要从人体重心的变化规律去分析,无论是动力性的动作还是静力性的姿势,探索其运动规律时,都离不开人体重心。
3.特点:人体中心不想物体那样恒定在一个点上,不仅在一段时间内,要受肌肉和脂肪的增长或消退等因素的影响,即使在每一瞬间,也要受呼吸,消化,血液循环等因素的影响,特别是在体育运动中,要受人体姿势变化的制约,随姿势的改变,有时甚至移出体外。
例如:体操中的“桥”,背越式跳高的过杆动作等。
九.人体平衡的分类:1:根据支点相对中心位置分类:1:上支撑平衡:当人体处于平衡,切支撑点在人体重心上方,如:体操中的各类悬垂动作。
2:下支撑平衡:当人体处于平衡,切支撑点在人体重心的下方,下支撑平衡在体育动作中最为常见如:站立,自由体操和平衡木的平衡动作以及田径,武术等。
3:混合支撑平衡:是一种多支撑点的平衡状态,这时有的支撑点在人体重心上方,有的支撑点在人体重心下方。
如:肋木侧身平衡根据平衡的稳定度分类:稳定平衡,不稳定平衡,随遇平衡,有限度的稳定平衡。
1:稳定平衡:人体在外力作用下,偏离平衡位置后,当外力撤除时,人体自然恢复平衡位置,而不需要通过肌肉收缩恢复平衡。
如果物体偏离平衡位置的结果是物体重心升高,则该平衡是稳定平衡,多数上支撑平衡属于稳定平衡。
如:单杠支臂悬垂2:人体在外力的作用下,偏离平衡位置后,当外力撤除时,人体不仅不能回到原来的平衡位置,而是更加偏离平衡位置。
如果物体偏离平衡位置的结果是物体的重心降低,则该平衡是稳定平衡,多数下支撑平衡属不稳定平衡。
如:单臂手倒立3:随遇平衡:人体在外力的作用下,偏离平衡位置后,当外力撤除时,人体既回不到原来的平衡位置,也不继续偏离原位置,而是在新位置上保持平衡。
在体育中很少见。
如:连续完成两个前滚翻。
4:有限度的稳定平衡:人体在外力作用下,一定限度内偏离平衡位置,当外力撤除时,人体回到平衡状态,但如果偏离平衡位置超过某一限度时,人体失去平衡。
如:太极拳中的推手。
十:影响平衡稳定的力学因素 1:支撑面 2:中心高度 3:稳定角:重力作用线同重心与支撑面相应边界的连线之间的夹角。
稳定角越大,稳定性越好,反之,越差。
稳定角为零,人体处于临界状态。
如蹲踞式起跑,“预备”中运动员尽可能将重心抬高并前移,以减小前进方向的稳定角,以便快速破坏稳定平衡。
4:平衡角 5:稳定系数:该系数表明了物体依靠重力抵抗翻到作用的能力。
K>1,平衡不破坏 K=1,临界状态 K<1平衡被破坏人体重量力矩越大,稳定系数越大,破坏平衡所需的外界翻到力矩也越大,即人体平衡的稳定性越好如:摔跤,拳击,柔道项目中按体重分级,原因就在于此。
十一:人体平衡的特点:1:人体不能绝对静止,由于呼吸活动和血液循环必然造成人体重心时刻变化。
2:人体内力在维持平衡的作用 3:人体的补偿动作 4:人体具有自我控制,调节和恢复平衡的能力 5:心理因素的影响十二:1:人体转动轴就人体转动而言,通常称体外的转动轴为实体轴实体轴:人体绕体外的运动器械转动时,器械就是人体转动的实体轴,例如体操中的单杠等。
非实体轴:人体局部肢体或人体转动时所绕的位于人体内部的轴,也就是指人体内的假想的轴十三:动量矩定理的应用:1.人体环节的运动:人体的各种运动状态都以骨杠杆的转动为基础,而骨杠杆的转动状态的变化,则是肌肉拉力矩的作用结果。
在体育动作中为增大环节的转动效果,通常可采用如下途径:减小转动惯量:当肌力矩一定时,减小环节或环节系对某轴的转动惯量,可以达到增加大转动角速度或角加速度的目的。
故此,在环节绕关节轴的转动时,通常采用参与转动的环节或环节系的质量尽可能靠近转轴的方法,以减小他们对转轴的转动惯量,从而提高转动角速度或角加速度。
十四:动量矩守恒定律:根据动量矩定理推论,当刚体所受的合外力矩为零时,其动量矩保持不变,这就是动量矩守恒定律,其数学表达式为:当M=0时 Iω=恒矢量十五:阿基米德原理:液体作用在沉没或漂浮物体上的总压力的方向垂直向上,大小等于物体所排开液体的重量,该力又称为浮力,作用线通过压力的几何中心,又称浮心。
根据重力G与浮力P的大小,物体在液体中将有三种不同的存在方式:1.重力G 大于浮力P,物体将下沉到底,称为沉体2.重力G等于浮力P,物体可以潜没于液体中,称为潜体3.重力G小于浮力P,物体会上浮,直到部分物体露出液体面,使留在液面以下部分物体所排开的液体重量恰好十六:片流和湍流,涡动和涡旋:1.片流(层流):液体的流动是分层的,层与层之间互不干扰2.湍流(紊流):液体流动不分层,做混杂紊乱流动3.涡旋:当液体通过非流线型物体时很容易在物体的尾部形成湍流,即尾部的流体在物体前后压强差的作用下产生逆向回流和明显的涡旋十七:马格努斯效应:当一个旋转物体的旋转角速度矢量与物体飞行速度矢量不重合时,在与旋转角速度矢量和平动速度矢量组成的平面相垂直的方向上将产生一个横向力。
在这个横向力的作用下物体飞行轨迹发生偏转的现象称作马格努斯效应。
十八:1.摩擦阻力:由于流体的粘性所引起的阻力称为摩擦阻力。
主要取决于运动物体的速度、浸入水面积和表面的粗糙程度等2.形状阻力:由于流动时流束变形以及涡旋的出现等原因。
在物体得前方和后方产生压强差所引起的阻力称为压差阻力3.兴波阻力和碎波阻力:当运动员游进时破坏了流体平衡而使流体振荡,使液面产生波浪所消耗的能量造成阻力,称为兴波阻力。
当运动速度较快或划臂和打腿的动作会使波浪破碎形成飞沫,造成水花这部分最不能损耗而形成阻力称为破碎阻力十九:骨的强度:1.定义:骨受力时抵抗破坏的能力,用极限应力表示(斜率、面积)2.影响骨的强度的因素:种族、性别、年龄、不同骨及骨的不同部位3.骨的强度大小的排列顺序:剪切<弯曲<拉伸<压缩二十:1.骨组织的构成:成骨细胞,破骨细胞2.沃尔夫定律:骨在需要的地方就生长,不需要的地方就吸收。
即骨的生长、吸收、重建都与骨的受力状态有关。
是十九世纪外科医生朱利叶斯·沃尔夫的重大发现。
二十一:1.肌肉的基本功能是将化学能转变为机械能2.肌肉的生物力学特性表现为:肌肉的收缩力,收缩速度3.对肌肉的研究分为:离体肌,在体肌二十二:1.收缩成分:由肌肉蛋白微丝与肌球蛋白微丝组成,兴奋时可产生张力,称主动张力2.串联弹性成分:由肌腱、肌节间Z盘及肌微丝的结缔组织组成,当收缩成分兴奋后,使肌肉具有弹性,起缓冲作用3.并联弹性成分:由肌内膜,肌束膜和肌纤维组成,当被牵拉时产生弹力,称被动张力二十三:1.肌肉被动张力为零时,肌肉所能达到的最大长度称为肌肉的平衡长度2.收缩元的张力随长度变化,表现最大张力时的长度称肌肉的静息长度,约为平衡长度的125%(下肢)二十四:1.肌肉总张力=被动张力+主动张力2.肌肉长度小于平衡长度时:总张力=主动张力3.肌肉长度大于平衡长度时:总张力=主动张力+被动张力二十五:Hill方程(肌肉收缩力—速度曲线):1.V=b(T0-T)/(T+a)2.T=a(V-V)/(V+b)T:张力 V:速度 T0:最大张力 V:最大速度肌力随肌肉收缩速度的增加而下降二十六:肌肉的激活状态:在神经脉冲的影响下,肌肉的收缩成分出现激活状态,因此把肌肉兴奋时其收缩成分力学状态的变化称为肌肉的激活状态二十七:肌肉的松弛:被拉长的肌肉,其张力有随着时间的延长而下降的性质,这一特性称肌肉的松弛二十八:载荷增大时肌肉收缩力学特性发生如下变化:1.动作潜伏期延长2.收缩幅度减小3.收缩速度下降二十九:肌肉与腱的生物力学性能对运动的影响:1.增加动作的力和速度2.提高动作的经济性3.对冲击载荷和振动载荷的缓冲三十:肌肉的收缩形式:1.肌力矩小于阻力矩时肌群作退让性收缩,也叫离心收缩(肌肉的收缩力作复功)2.肌力矩等于阻力矩时肌群作等长性收缩3.肌力矩大于阻力矩时肌群作克制性收缩,也叫向心收缩三十一:人体基本运动形式:1.上肢:推、拉、鞭打2.下肢:缓冲动作、蹬伸动作、鞭打动作3.全身:摆动、躯干扭转、相向运动三十二:关节活动顺序性原理:1.大小关节:肌肉生理横断面大的关节称大关节,反之称小关节2.关节活动顺序性原理是:当需要客服大阻力时,或需要表现出大的运动速度时,总之是作发力动作时总是:(1)大关节首先产生活动原理:大关节总是首先产生活动,原因是大关节的肌肉生理横断面大产生的肌力矩也大,因此在人体运动过程中它能首先克服阻力矩,使环节运动2.关节活动顺序性原理的实际意义:大关节产生活动后,依据关节的大小表现出一定的先后顺序3.小关节的活动也很重要:结束动作由小关节完成,结束动作完成的好坏直接影响到整个动作的质量(1)小关节是动作的支撑点,影响动作的稳定性(2)影响动作的完成时间,小关节主动参与动作可提高动作的速度,缩短完成动作的时间(3)可以精确的控制器械,如铁饼,标枪出手,篮球投篮等手指都有拨动动作前者加强器械飞行的稳定性,后者加大球飞行的弧度。