基于阈值的图像分割方法

合集下载

基于阈值法的图像分割技术

基于阈值法的图像分割技术

基于阈值法的图像分割技术阴国富(1.西安电子科技大学陕西西安710071;2.渭南师范学院陕西渭南714000)在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分称为目标或前景(其他部分称为背景),他们一般对应图像中特定的、具有独特性质的区域。

为了辨识和分析目标,需要将他们分离提取出来,在此基础上才有可能对目标进一步利用。

图像分割就是指把图像分成格局特性的区域并提取出感兴趣目标的技术和过程。

这里特性可以是象素的灰度、颜色、纹理等,预先定义的目标可以对应单个区域,也可以对应多个区域。

现有的图像分割算法有:阈值分割、边缘检测和区域提取法。

本文着重研究基于阈值法的图像分割技术。

1 阈值法图像分割1.1 阈值法的基本原理阈值分割法是一种基于区域的图像分割技术,其基本原理是:通过设定不同的特征阈值,把图像象素点分为若干类。

常用的特征包括:直接来自原始图像的灰度或彩色特征;由原始灰度或彩色值变换得到的特征。

设原始图像为f(x,y),按照一定的准则f(x,y)中找到特征值T,将图像分割为两个部分,分割后的图像为:若取:b0=0(黑),b1=1(白),即为我们通常所说的图像二值化。

1.2 阈值法图像分割方法分类全局阈值法指利用全局信息对整幅图像求出最优分割阈值,可以是单阈值,也可以是多阈值;局部阈值法是把原始的整幅图像分为几个小的子图像,再对每个子图像应用全局阈值法分别求出最优分割阈值。

其中全局阈值法又可分为基于点的阈值法和基于区域的阈值法。

阈值分割法的结果很大程度上依赖于阈值的选择,因此该方法的关键是如何选择合适的阈值。

由于局部阈值法中仍要用到全局阈值法,因此本文主要对全局阈值法中基于点的阈值法和基于区域的阈值法分别进行了研究。

根据阈值法的原理可以将阈值选取技术分为3大类:(1)基于点的全局阈值方法基于点的全局阈值算法与其他几大类方法相比,算法时间复杂度较低,易于实现,适合应用于在线实时图像处理系统。

图像处理中的阈值分割算法

图像处理中的阈值分割算法

图像处理中的阈值分割算法图像处理是一种广泛应用的技术,涉及到计算机视觉、人工智能、医学影像处理等领域。

而阈值分割算法是图像处理中的基础算法之一,其应用广泛,包括图像二值化、图像增强、图像去噪等等。

阈值分割算法的原理阈值分割算法本质上是将图像分为两个部分,其中一部分是我们希望得到的目标图像,另一部分则是我们不需要的背景或者噪声。

阈值本身就是用于区分这两个部分的分类标准,当像素值高于阈值时,该像素点被分类为目标图像,而低于阈值时则被分类为背景或噪声。

通常情况下,我们需要调整阈值的大小来达到最佳的效果。

常见的阈值分割算法下面我们来介绍几种常用的阈值分割算法:1. 简单阈值法简单阈值法是最基本的阈值分割算法,其步骤非常简单:首先选择一个阈值,将图像分为两类,然后计算每类的像素平均值,再将两者的平均值求平均作为一个新的阈值,不断迭代,直到得到一个稳定的结果。

这种方法简单易行,但是对于噪声敏感,效果不稳定。

2. Otsu算法Otsu算法是一种自适应阈值分割算法,也是比较常见的一种算法。

它的基本思路是寻找一个最佳的阈值,使得目标图像和背景图像的类内方差最小,而类间方差最大。

3. 自适应阈值法自适应阈值法是一种基于局部图像特征的分割方法,其思路是将图像分成若干个子区域,然后在子区域内分别计算阈值,最后通过叠加的方式得到整张图像的最终阈值。

这种算法适用于逐渐变化的光照情况下的图像分割。

4. 谷底阈值法谷底阈值法是一种基于图像梯度的分割方法,其思路是通过找到图像梯度的最大值和最小值来确定阈值位置。

该算法适用于较大的、均匀亮度的图像分割。

总结阈值分割算法是一种广泛应用的图像处理方法,其优点是简单易行,但是缺点也很明显,对于噪声和不稳定的光照情况下准确性有限。

因此,在应用中需要根据具体情况选择对应的算法,以达到最佳的图像分割效果。

图像分割 实验报告

图像分割 实验报告

图像分割实验报告图像分割实验报告一、引言图像分割是计算机视觉领域中的一个重要研究方向,它旨在将一幅图像分割成具有语义意义的不同区域。

图像分割在许多应用中发挥着关键作用,如目标检测、场景理解和医学图像处理等。

本实验旨在探索不同的图像分割方法,并对其进行比较和评估。

二、实验方法本实验选择了两种常用的图像分割方法:基于阈值的分割和基于边缘的分割。

首先,我们使用Python编程语言和OpenCV库加载图像,并对图像进行预处理,如灰度化和平滑处理。

接下来,我们将详细介绍这两种分割方法的实现步骤。

1. 基于阈值的分割基于阈值的分割是一种简单而常用的分割方法。

它通过将图像像素的灰度值与预先设定的阈值进行比较,将像素分为前景和背景两类。

具体步骤如下:(1)将彩色图像转换为灰度图像。

(2)选择一个适当的阈值,将图像中的像素分为两类。

(3)根据阈值将图像分割,并得到分割结果。

2. 基于边缘的分割基于边缘的分割方法是通过检测图像中的边缘来实现分割的。

边缘是图像中灰度变化剧烈的区域,通常表示物体的边界。

具体步骤如下:(1)将彩色图像转换为灰度图像。

(2)使用边缘检测算法(如Canny算法)检测图像中的边缘。

(3)根据边缘信息将图像分割,并得到分割结果。

三、实验结果与讨论我们选择了一张包含多个物体的彩色图像进行实验。

首先,我们使用基于阈值的分割方法对图像进行分割,选择了适当的阈值进行实验。

实验结果显示,基于阈值的分割方法能够将图像中的物体与背景分离,并得到较好的分割效果。

接下来,我们使用基于边缘的分割方法对同一张图像进行分割。

实验结果显示,基于边缘的分割方法能够准确地检测出图像中的边缘,并将图像分割成多个具有边界的区域。

与基于阈值的分割方法相比,基于边缘的分割方法能够更好地捕捉到物体的形状和边界信息。

通过对比两种分割方法的实验结果,我们发现基于边缘的分割方法相对于基于阈值的分割方法具有更好的效果。

基于边缘的分割方法能够提供更准确的物体边界信息,但也更加复杂和耗时。

简述 otsu 算法的原理和步骤。

简述 otsu 算法的原理和步骤。

简述 otsu 算法的原理和步骤。

OStsu 算法是一种基于阈值分割的图像去噪算法,其基本原理是在原始图像上选取一个阈值,将像素值低于该阈值的像素设置为噪声,将像素值高于该阈值的像素设置为清晰的图像。

具体步骤如下:
1. 选取一个阈值 T = 255/n,其中 n 是像素值的范围。

2. 计算像素值差 U = (P - Q) / n,其中 P 和 Q 分别是清晰的图像和噪声的图像的像素值,n 是像素值的范围。

3. 将像素值 U 小于等于阈值 T 的像素设为噪声,即 N(T, U) = {(U, V)},其中 V 表示该像素值下的样本集合,V 的索引从 1 到 n。

4. 将像素值 U 大于阈值 T 的像素设置为清晰的图像,即 C(T, U) = {(X, Y)},其中 X 和 Y 表示该像素值下的样本集合,X 的索引从 1 到 n,Y 的索引从 1 到 n。

5. 将像素值 U 介于阈值 T 和 255/n 之间的像素设置为噪声,即 N(T, U) = {(U, V)},其中 V 表示该像素值下的样本集合,V 的索引从 1 到 n。

6. 重复步骤 3 到步骤 5,直到所有像素都被划分为清晰和噪声两部分。

7. 返回清晰和噪声的图像集合 C(T, U) 和 N(T, U)。

OStsu 算法的优点在于简单易用,能够快速地去掉大量的噪声,
同时保持图像的基本特征。

但是其缺点在于对于低光照环境下的图像可能会失效,并且在处理高分辨率图像时需要更多的计算资源。

医学图像基于阈值的分割技术

医学图像基于阈值的分割技术
第 35 卷 第 4 期 2019 年 4 月
福建电脑 Journal of Fujian Computer
Vol. 35 No.4 Apr. 2019
医学图像基于阈值的分割技术
范群贞 吴浩 林真
(福建农林大学金山学院 福州 350002)
摘 要 图像分割技术是图像识别的基础,分割效果的好坏直接影响到后续图像的进一步分析。医学图像分割一直是医学影 像分析领域的一个研究热点。本文首先阐述了图像分割技术的基础,其次介绍各种常见的阈值分割方法的原理,如灰度阈值 法,直方图阈值法,迭代阈值法,Otsu 阈值法,最后在 Matlab 平台实现对医学图像基于阈值的分割。 关键词 医学图像;图像分割;阈值;直方图;迭代;Otsu 中图法分类号 TP391 DOI:10.16707/ki.fjpc.2019.04.008
——————————————— 本文得到福建省教育厅科技项目(No.JA15640)资助。范群贞(通信作者),女,1985年生,硕士,讲师,主要研究领域为智能信息处理与多媒体通 信,图形图像处理。309428110@。吴浩,男,1986年生,硕士,讲师,主要研究领域为通信技术,无线通信,数字通信等。E-mai1:270324602@。 林真,女,1985年生,硕士,讲师,主要研究领域为信息处理技术,自动控制等。E-mai1: 252005501@。
Medical Image Segmentation Based on Threshold
FAN Qunzhen, WU Hao, LIN Zhen
(JinShan College, Fujian Agriculture and Forestry University, Fuzhou , China,350000)

halcon图像分割要点

halcon图像分割要点

Halcon 图像分割要点Halcon 是一种开放式的机器视觉软件库,具有强大的图像处理和机器视觉功能。

图像分割是 Halcon 中最基本的任务之一,这篇文章将重点介绍 Halcon 图像分割的要点。

图像分割的简介图像分割是计算机视觉中的基本步骤之一,目的是将图像划分为多个不同的区域,每个区域内的像素具有一定的相似性,这些区域被称为图像中的物体或背景。

常用的分割方法有基于阈值、基于边缘和基于区域的方法。

Halcon 图像分割的要点Halcon 中有多种图像分割算法可供选择,这里列举几个常用的图像分割要点。

1. 常见的基于阈值的图像分割方法基于阈值的分割方法是最基本的分割方法之一,其将给定的图像根据像素强度与阈值之间的关系,将图像分成两个或多个不同的区域。

在 Halcon 中,可以使用threshold()函数进行基于阈值的图像分割,具体使用方法如下:threshold(Image, Region, MinGray, MaxGray)其中,Image为输入图像,Region为输出分割后的区域,MinGray和MaxGray分别为最小和最大的阈值,通过调整阈值的大小可以实现不同阈值下的图像分割。

2. 基于边缘的图像分割方法基于边缘的图像分割方法是另一种常见的分割方法。

与基于阈值的方法不同,基于边缘的方法不是将图像分成几个区域,而是将图像中相邻的像素中的边缘信息提取出来,进而找到图像中的物体。

在 Halcon 中,可以使用edges_image()函数进行基于边缘的图像分割,具体使用方法如下:edges_image(Image, Edges)其中,Image为输入图像,Edges为输出的边缘信息。

3. 区域生长算法区域生长算法是基于区域的图像分割方法,其实现原理是从一组种子像素开始,然后向外扩展相似像素的区域,直到到达区域边界。

在 Halcon 中,可以使用regiongrowing()函数进行区域生长算法,具体使用方法如下:regiongrowing(Image, Seed, Region, Contrast, Delta, MaxSize)其中,Image为输入图像,Seed为种子像素,Region为输出的分割区域,Contrast为最小差异,Delta为生长率,MaxSize为区域最大大小。

基于阈值的图像分割

基于阈值的图像分割

2.4 双阈值方法 在许多应用中,属于物体的某些灰度值是已知的。然而,可能还有一些灰度 值或者属于物体,或者属于背景。在这种情况下,人们可能使用一个保守一点的 阈值T1 来分离物体图像,称之为图像物体核。然后,使用有关算法来增长物体图 像。 增长物体图像的方法取决于特定的应用,通常使用另一个阈值来吸收哪些图 像核像素的邻接像素,或用图像强度特性(如直方图)来决定属于物体区域上的 那些点, 一种简单的方法是吸收低于第二个阈值T2 并且与原先物体图像点相连接 的所有点。下面是区域增长的双阈值算法。 (1) 选择两个阈值T1 和T2 ; (2) 把图像分割成三个区域:R1 ,包含所有灰度值低于阈值T1 的像素;R 2 ,包含 所有灰度值位于阈值T1 和T2 之间的像素;R 3 ,包含所有灰度值高于阈值T2 的 像素; (3) 查看分配给区域R 2 中的每一个像素。如果某一像素邻接区域R1 ,则把这一像 素重新分配给R1 。 (4) 重复步骤(3)直到没有像素被重新分配。 (5) 把区域R 2 剩下的所有像素重新分配给R 3 。
1 图像分割的定义 图像分割是指将图像中具有特殊含义的不同区域分开来, 这些区域是互不相 交的,每一个区域都满足区域的一致性。已知一幅图像像素集 I 表示成 n 个区域 R i 集合的一种划分: (1)
n i=1 R i
= I,即所有子区域组成了整幅图像。
(2) 对所有的 i 和 j,i≠j,有R i ∩ R i =Φ ,即分割结果中的子区域是互不重叠的。 (3) P(R i )=True,即同一区域内的点具有一定的相似性。 (4) P(R i ∪ R i )=False,即任何两个相邻区域不能合并成单一区域。 (5) 对 i=1,2,…,N,R i 是连通的区域,即同一个子区域中的像素应当是连通的。 一致性谓词 P(̇•)定义了在区域R i 上的所有点与区域模型的相似程度。

医疗图像处理中常用的图像分割算法及其优化方法

医疗图像处理中常用的图像分割算法及其优化方法

医疗图像处理中常用的图像分割算法及其优化方法在医疗图像处理中,图像分割是一个重要的步骤,它的目标是将医疗图像中的不同结构和组织分离开来,以便进行更进一步的分析和诊断。

在过去的几十年里,研究人员提出了许多不同的图像分割算法,这些算法涵盖了不同的数学和计算方法。

本文将介绍一些在医疗图像处理中常用的图像分割算法,并讨论它们的优化方法。

一、基于阈值的图像分割算法基于阈值的图像分割算法是最简单和最常用的一种方法。

它们基于图像中像素的灰度值,将像素分为不同的区域。

阈值可以是固定的,也可以是根据图像的特性自适应选择的。

阈值算法简单直接,计算效率高,适用于许多医学应用中。

然而,基于阈值的方法也存在一些问题。

例如,在存在背景噪声的情况下,会导致分割结果不准确。

另外,对于具有不均匀光照和强度变化的图像,简单的阈值方法可能无法得到满意的分割结果。

为了解决这些问题,研究人员提出了许多优化方法。

一种常见的优化方法是Otsu分割算法,它基于最大类间方差原则来选择最佳的阈值。

另外,自适应阈值方法可以根据局部像素的灰度值计算其相应的阈值,从而适应不同图像区域的特性。

二、基于区域的图像分割算法基于区域的图像分割算法将像素分为具有相似特性的区域。

这些算法通常采用从种子点开始的区域生长或者分裂算法。

区域生长算法以某个种子点为起点,不断将具有相似特性的像素添加到该区域中,直到不再满足添加条件为止。

而区域分裂算法则是从整个图像开始,将具有不同特性的像素分裂成不同的区域。

基于区域的分割方法在医学图像分割中有广泛的应用,特别是在分割复杂的组织结构时非常有效。

然而,这些方法对噪声和弱边缘的鲁棒性较低。

为了解决这个问题,研究人员提出了一些改进的方法。

例如,可以将基于区域的算法与基于边缘的算法相结合,以利用边缘信息来提高分割结果的准确性。

三、基于边缘的图像分割算法基于边缘的图像分割算法着重于提取图像中物体的边缘信息,并将边缘连接成闭合轮廓。

这些算法通常基于边缘检测算法,如Canny算法、Sobel算法等。

基于阈值的分割算法

基于阈值的分割算法

基于阈值的分割算法
阈值分割算法是一种将图像分割成两个或多个区域的方法,其中区域的选择基于像素的灰度值与预先定义的阈值之间的关系。

基本的阈值分割算法包括简单阈值分割、自适应阈值分割和多阈值分割等。

- 简单阈值分割是指通过比较每个像素的灰度值与一个预先定
义的固定阈值来进行划分。

如果像素的灰度值大于阈值,则被分配到一个区域;如果小于阈值,则分配到另一个区域。

- 自适应阈值分割是指根据图像的局部特征来确定每个像素的
阈值。

这种方法通常用于处理具有不均匀光照条件下的图像。

常见的自适应阈值分割方法包括基于局部平均值、基于局部中值和基于统计分布的方法。

- 多阈值分割是指将图像划分为多个区域,每个区域都有一个
不同的阈值。

这种方法常用于处理具有多个目标或具有复杂纹理的图像。

阈值分割算法在图像处理中广泛应用,可以用于边缘检测、目标提取、图像分割等任务。

但是,阈值的选择对算法的性能至关重要,不同的图像和任务可能需要不同的阈值选择方法。

因此,在应用阈值分割算法时需要进行参数调整和优化才能得到最佳的分割结果。

基于阈值的分割原理

基于阈值的分割原理

基于阈值的分割原理基于阈值的分割原理是数字图像处理中常用的一种分割方法,其基本思想是将图像中的像素根据其灰度值与预设的阈值进行比较,将灰度值高于阈值的像素归为一类,低于阈值的像素归为另一类。

该方法简单易懂,计算量小,因此被广泛应用于图像处理领域。

一、阈值分割基本原理1.1 阈值阈值是指在进行二值化处理时所设定的一个灰度级别,用来区分图像中不同灰度级别的像素点。

通常情况下,我们将图像中所有灰度大于该阈值的点视为目标物体区域内部点,将灰度小于该阈值的点视为背景区域内部点。

1.2 阈值分割过程在进行阈值分割时,我们需要先确定一个合适的初始阈值。

通常情况下,我们可以选择图像中所有像素点灰度平均数作为初始阈值。

然后将所有灰度大于该初始阈值的点视为目标物体区域内部点,将小于该初始阈值的点视为背景区域内部点,并计算出两个区域内像素灰度值的平均数。

将两个平均数再求平均,得到新的阈值,重复上述过程直到新的阈值与上一次计算的阈值相等或者差异小于一个预设的容差范围。

1.3 阈值分割应用阈值分割可以应用于很多领域中,如图像增强、目标检测、字符识别等。

在图像增强中,我们可以通过调整阈值来实现图像亮度和对比度的调整;在目标检测中,我们可以通过设置不同的阈值来实现对不同大小、形状、颜色等特征的物体进行区分;在字符识别中,我们可以通过设置合适的阈值来实现对字符轮廓进行提取和识别。

二、基于全局阈值分割原理2.1 基本思想基于全局阈值分割原理是指在整幅图像中确定一个全局唯一的阈值进行分割。

该方法简单易行且计算量小,适用于灰度变化明显且背景比较简单的图像。

2.2 全局阈值分割方法(1)最大类间方差法:该方法是求使两类间方差最大化时所对应的灰度值作为阈值。

具体而言,我们可以先将图像中所有像素点按照灰度值从小到大排序,然后分别计算每个灰度值下的前景和背景像素点数量、均值和方差。

最后计算出每个灰度下两类之间的类间方差,并选取使类间方差最大的灰度值作为阈值。

图像分割算法的原理与效果评估方法

图像分割算法的原理与效果评估方法

图像分割算法的原理与效果评估方法图像分割是图像处理中非常重要的一个领域,它指的是将一幅图像分割成多个不同的区域或对象。

图像分割在计算机视觉、目标识别、医学图像处理等领域都有广泛的应用。

本文将介绍图像分割算法的原理以及评估方法。

一、图像分割算法原理图像分割算法可以分为基于阈值、基于边缘、基于区域和基于图论等方法。

以下为其中几种常用的图像分割算法原理:1. 基于阈值的图像分割算法基于阈值的图像分割算法是一种简单而高效的分割方法。

它将图像的像素值进行阈值化处理,将像素值低于阈值的部分归为一个区域,高于阈值的部分归为另一个区域。

该算法的优势在于计算速度快,但对于复杂的图像分割任务效果可能不理想。

2. 基于边缘的图像分割算法基于边缘的图像分割算法通过检测图像中的边缘来实现分割。

常用的边缘检测算法包括Sobel算子、Canny算子等。

该算法对边缘进行检测并连接,然后根据连接后的边缘进行分割。

优点是对于边缘信息敏感,适用于复杂场景的分割任务。

3. 基于区域的图像分割算法基于区域的图像分割算法将图像分割成多个区域,使得每个区域内的像素具有相似的属性。

常用的方法包括区域生长、分裂合并等。

该算法将相邻的像素进行聚类,根据像素之间的相似度和差异度进行分割。

优点是在复杂背景下有较好的分割效果。

4. 基于图论的图像分割算法基于图论的图像分割算法将图像看作是一个图结构,通过图的最小割分割图像。

常用的方法包括图割算法和分割树算法等。

该算法通过将图像的像素连接成边,将图像分割成多个不相交的区域。

该算法在保持区域内部一致性和区域间差异度的同时能够有效地分割图像。

二、图像分割算法的效果评估方法在进行图像分割算法比较和评估时,需要采用合适的评估指标。

以下为常用的图像分割算法的效果评估方法:1. 兰德指数(Rand Index)兰德指数是一种常用的用于评估图像分割算法效果的指标。

它通过比较分割结果和真实分割结果之间的一致性来评估算法的性能。

计算机视觉技术中的图像分割方法

计算机视觉技术中的图像分割方法

计算机视觉技术中的图像分割方法图像分割是计算机视觉领域中的重要任务,旨在将图像分成若干个具有相似特征的区域。

图像分割在许多应用领域中具有广泛的重要性,如医学影像分析、目标检测与跟踪、图像编辑和增强等。

为了实现精确、高效的图像分割,研究人员开发了多种图像分割方法。

本文将介绍计算机视觉技术中常用的图像分割方法。

一、基于阈值的图像分割方法基于阈值的图像分割是最简单和最常见的分割方法之一。

该方法根据像素值的差异将图像分为不同的区域。

首先,选择一个或多个阈值,然后根据像素值与阈值的大小关系,将像素分配到不同的区域。

这种方法适用于图像中具有明显不同像素值的区域,例如黑白图像中的目标物体和背景。

二、区域生长法区域生长法是一种基于像素相似性的图像分割方法。

该方法从一组种子像素开始,并逐渐将相似像素添加到同一区域中。

生长准则可以根据像素的灰度值、颜色、纹理等特征进行定义。

区域生长法对于邻近像素之间的连接性要求较高,因此适用于边界清晰的图像。

三、边缘检测法边缘检测法是一种常用的图像分割方法,其通过检测图像中的边缘来实现分割。

边缘可以通过计算像素值的梯度来识别。

常见的边缘检测算法有Sobel、Prewitt和Canny等。

这些算法可以检测图像中不同区域之间的边界,并将其作为分割的标志。

四、基于聚类分析的图像分割方法基于聚类分析的图像分割方法旨在将图像中的像素分成不同的聚类或群组。

聚类分析是一种将具有相似特征的对象归类到同一组的技术。

在图像分割中,聚类分析可以根据像素之间的相似度将其归类到不同的区域。

常用的聚类分析算法有K均值聚类和谱聚类等。

五、基于深度学习的图像分割方法随着深度学习的快速发展,基于深度学习的图像分割方法受到了广泛关注。

深度学习模型可以通过学习大量标注数据来自动学习图像特征和分割标签之间的映射关系。

常用的基于深度学习的图像分割模型有U-Net、Mask R-CNN和DeepLab等。

这些模型不仅具有较高的分割准确性,还可以适应各种复杂场景。

基于阈值的图像分割方法

基于阈值的图像分割方法

3计算 两组平 均灰 度值 l . 和 2 ;
4重新选 择 阈值 T, 的 T的定义 为 :=I+r/ ; . 新 T ( t) x y2
循 环做 第 二步 到第 四步 .一 直到两 组 的平 均 灰度 范 围为 [lz ]设 T为 阈值 。 z z, 。 2 是 1和 z 任 一 值 。 2在 可 值 。 和 不再 生 改变 ,那 么 我们 就 获得 了所 需要 以得 到一 幅二值 图像 。 数学 表达式 为 : 其 的阈值 。 32算 法描述 .

建 电

21 年第 8 01 期
基 于阈值 的图像分割方法
张 建 光 .李 永 霞 z
(1 水 学院数 学与计 算机 系 河北 衡 水 . 衡 0 3 0 2衡水 学院教 育 系 河北 衡 水 500 . 030 500
【 要】 摘 :通过分析 图像阈值分割方法的基本原理 。得 出直方 图闽值分割方法以及迭代阈值 图像分
31理 论 基 础 .
度 级直 方 图呈 明显 的双峰 值 。如图 :
f ,y ( 1 x
迭代 的方法 产生 阈值 .可 以通过 程 序 自动计 算 出 比较 合适 的分割 阈值 。其计 算方法 是这样 的 : 1 . 阈值 T 通 常可 以选 择 图像 的平 均灰度 值 来 选择 . 作为 初始值 :

以上是 比较理 想 的情 况 .实际 中很 难 找到 这 样 的
图像 。一幅通常有多个物体和背景所组成 , 假如 , 其灰 度级 直方 图能呈 现 出多个 明显 的 峰值 。则仍 可 以选 峰 ) b 直 图3 ) 原始图 ( 速代 值 效果 C a 像 b ) 闻 分割 图 值间峰谷处的灰度值作为阈值 ,此时有多个 阈值将 图 图2a 原始图像() 方岛门限选择效果图 【 像 进行 分割 . 这样 就 是 多峰值 阈值选择 。 比如 有 3 峰 个 1 . 原 图得数据 区指 针 以及 图像 的高 和宽 ; 取得 值 .可以去两个峰谷处的灰度值 T ,2 11 作为阈值 。同 ' 2进 行直方 图统计 : . 样 . 以将 阈值化后 的图像变成二值图像 , 可 其数学表达 3 . 设定初始 阈值 T 17 _2 : 4分别 计 算 图像 中小 于 T和 大 于 T下转 第 9 . ( 9页 ) 式为: g (

利用Matlab进行图像分割的常用方法与应用案例

利用Matlab进行图像分割的常用方法与应用案例

利用Matlab进行图像分割的常用方法与应用案例引言:图像分割是图像处理领域的一项重要技术,它将图像分割成具有相似特征的区域或像素。

图像分割在许多应用中起着关键作用,如医学图像分析、计算机视觉和机器人视觉等领域。

本文将介绍Matlab中常用的图像分割方法和应用案例。

一、基于阈值的图像分割方法基于阈值的图像分割方法是最简单和最常用的一种方法。

它根据像素的灰度值与预先设定的阈值进行比较,将图像分为前景和背景两个部分。

Matlab中提供了丰富的函数和工具箱来实现基于阈值的图像分割。

例如,可以使用im2bw函数将灰度图像转换为二值图像,代码如下:```matlabimage = imread('image.jpg');gray_image = rgb2gray(image);threshold = graythresh(gray_image);bw_image = im2bw(gray_image, threshold);imshow(bw_image);```二、基于边缘检测的图像分割方法边缘检测是图像分割中常用的一种方法,它基于图像中不同区域之间的边界。

常用的边缘检测算法有Sobel、Prewitt和Canny等。

在Matlab中,可以使用edge函数实现边缘检测,代码如下:```matlabimage = imread('image.jpg');gray_image = rgb2gray(image);edge_image = edge(gray_image, 'sobel');imshow(edge_image);```三、基于聚类分析的图像分割方法聚类分析是图像分割中一种常见的方法,它将图像中的像素分成不同的群集,每个群集代表一个区域或对象。

常用的聚类算法有K-means和Mean-shift等。

在Matlab中,可以使用kmeans函数实现K-means聚类,代码如下:```matlabimage = imread('image.jpg');feature_vector = reshape(image, [], 3);[cluster_index, cluster_center] = kmeans(double(feature_vector), 2);segmented_image = reshape(cluster_index, size(image, 1), size(image, 2));imshow(segmented_image);```四、图像分割的应用案例1. 医学图像分割医学图像分割在临床诊断和研究中具有重要意义。

图像处理与分析中的边缘检测与图像分割方法

图像处理与分析中的边缘检测与图像分割方法

图像处理与分析中的边缘检测与图像分割方法边缘检测和图像分割是图像处理与分析领域中的重要任务,广泛应用于计算机视觉、模式识别、人工智能等领域。

边缘是图像中物体边界的几何特征,边缘检测是指在图像中提取出物体的边缘信息。

而图像分割是将图像划分为不同的区域或物体,以便进一步进行后续处理和分析。

在图像处理与分析中,有各种各样的边缘检测和图像分割方法。

下面将分别介绍其中几种常见的方法。

一、边缘检测方法:1. Sobel算子:Sobel算子是一种基于梯度的边缘检测算法,通过计算图像处每个像素点的梯度大小和方向来检测边缘。

Sobel算子分为水平和垂直两部分,分别对应图像在水平和垂直方向上的灰度变化。

将两个方向上的梯度值叠加,即可得到边缘强度。

2. Canny边缘检测:Canny算法是一种广泛应用的边缘检测算法,它结合了高斯滤波、梯度计算、非极大值抑制和双阈值等步骤。

首先使用高斯滤波器平滑图像,然后计算图像梯度的幅值和方向,接着进行非极大值抑制来提取细边缘,最后通过双阈值检测来连接边缘。

3. Laplacian算子:Laplacian算子是一种基于二阶导数的边缘检测算法,它可以通过计算图像的拉普拉斯算子来检测边缘。

具体而言,Laplacian算子将每个像素的灰度值与其周围像素的平均值进行比较,从而确定边缘。

二、图像分割方法:1. 基于阈值的图像分割:基于阈值的图像分割方法是将图像中像素的灰度值与一定的阈值进行比较,将像素分为不同的区域。

这种方法的简单易懂,但对于光照、噪声等因素敏感。

2. 区域生长算法:区域生长算法是一种基于相似性的图像分割方法,它从种子像素开始,通过定义相似性准则来逐步扩展区域。

具体而言,根据相邻像素的灰度值与种子像素的差异来判断是否加入该区域。

3. 迭代聚类算法:迭代聚类算法是一种基于特征相似性的图像分割方法,它通过对图像中的像素进行聚类操作,将相似的像素归为同一类别。

常用的迭代聚类算法包括k-means算法和高斯混合模型等。

图像分割算法的原理及实现

图像分割算法的原理及实现

图像分割算法的原理及实现图像分割是一种将图像按照某种特定的准则进行拆分的技术,它被广泛应用于计算机视觉领域中的目标定位、图像识别以及医疗领域的病变检测等领域。

图像分割算法的实现要点包括图像特征提取、分割方法选择、分割效果评估等内容。

本文将从原理和实现两个层面对图像分割算法进行深入讲述。

一、图像分割算法原理的概述1.1 图像分割算法的基本原理图像分割是将图像按照其特征和相似性划分为若干个具有这些特征的部分的过程。

通常情况下,图像分割的基本原理是:首先通过预处理将图像中的噪声去除或减小,再进行特征提取来识别图像中感兴趣的目标或区域;接着根据预先设定的分割方法将图像划分为若干个子目标或子区域。

1.2 图像分割算法基本分类按照分割策略,图像分割算法可分为以下三类。

1.2.1 基于阈值的图像分割算法基于阈值的图像分割算法,是将图像根据像素值的分布情况进行分割。

分割时,选择一个阈值,通过枚举阈值的不同取值,找到最佳分割点,将图像分成两个子区域。

此类方法实现简单,但对于复杂场景和多目标识别效果会比较差。

1.2.2 基于区域的图像分割算法这类方法首先根据图像特征将图像中不同的区域分割出来,再通过分割区域外的连续边界将相邻区域进行合并。

1.2.3 基于边缘处理的图像分割算法这类方法首先对图像中的边缘进行检测,再根据边缘连接将图像区域划分为不同的部分。

此类方法对噪声敏感较小,但对于曲线和空间位置的变化比较大的图像难以处理。

二、图像分割算法实现的方法和技术2.1 图像特征提取在实现图像分割的过程中,需要对图像进行特征提取。

主要有以下两种方法。

2.1.1 基于像素点的特征提取方法这种方法主要是根据像素点的位置、颜色等特征进行分割。

其中,像素点的位置是指在图像中的坐标位置,而像素点的颜色是指在图像中的颜色属性。

2.1.2 基于图像区域的特征提取方法这种方法是根据不同区域的纹理、形状或颜色等进行分割。

该方法常用的特征提取技术包括SIFT、SURF、LBP等。

基于阈值的图像分割

基于阈值的图像分割

N
N
i 0
L 1
i
第i级出现的概率为:
Ni P i N
在OTSU算法中,以阈值k将所有的像素分为目标C0和背景C1两类。其 中,C0类的像素灰度级为0~k-1,C1类的像素灰度级为k~L-1。 图像的总平均灰度级为:
u iP i
i 0
L 1
C0类像素所占面积的比例为:
0 P i
(a)原图 图3-1 生成直方图
(b)直方图
3.2 最大类间方差法(OTSU)
最大类间方差法又称为OTSU算法,大津法(OTSU)是一种确定图像二 值化分割阈值的算法,由日本学者大津于1979年提出。从大津法的原理 上来讲,该方法又称作最大类间方差法,因为按照大津法求得的阈值进 行图像二值化分割后,前景与背景图像的类间方差最大。 原理: 对于图像 A(x,y),前景(即目标) 和背景的分割阈值记作 T ,属于前景 的像素点数占整幅图像的比例记为 ω 0,其平均灰度μ 0;背景像素点数 占整幅图像的比例为 ω 1,其平均灰度为μ 1。图像的总平均灰度记为 μ , 类间方差记为g。 设A是一幅具有L级灰度级的图像,其中第i级像素为 个,其中i的值 在0~L-1之间,图像的总像素点个数为:
2 2
2
2
令k从0~L-1变化,计算在不同k值下的类间方差 k 2 使得 k 最大时的那个k值就是所要求的最优阈值。
图3-2为采用OTSU方法取得最优阈值后进行阈值分割的结果。 MATLAB程序如下: I=imread('tsaml.jpg'); [width,height]=size(I); level=graythresh(I); BW=im2bw(I,level); figure imshow(BW) MATLAB 提供 graythresh 函数来自动获取分割阈值, im2bw 功能是 转换图像为二进制图像。这两个函数结合使用,graythresh函数是自适 应阈值,求出图像的自适应阈值,然后利用im2bw函数再转化为二值图像 并输出,得到如图所示的自适应阈值图。

基于阈值分割法

基于阈值分割法

基于阈值分割法的原理和应用1. 概述阈值分割法是数字图像处理中常用的一种分割技术。

它基于像素灰度值与预设的阈值之间进行比较,将像素分为两个或多个不同的区域,从而实现图像的分割。

阈值分割法广泛应用于图像处理、计算机视觉、模式识别等领域。

2. 阈值分割的原理阈值分割的基本思想是根据像素灰度值的特征,将图像分为背景和前景两个不同的区域。

其具体原理如下:1.预处理:首先将彩色图像转换为灰度图像,简化后续处理步骤。

2.确定阈值:选择一个合适的阈值用于将图像分割成两个区域。

常见的阈值选择方法有固定阈值法、自适应阈值法等。

3.分割图像:根据所选阈值将图像中的像素分为两个区域,通常是背景和前景。

4.后处理:可能需要进行降噪、边缘检测等后续处理步骤,以得到更好的分割效果。

3. 常见的阈值分割方法3.1 固定阈值法固定阈值法是最简单直观的阈值分割方法。

其原理是通过预设一个固定的阈值,将图像中的像素根据灰度值与阈值的大小关系分为两个区域。

具体步骤如下:1.将彩色图像转换为灰度图像。

2.选取一个合适的阈值,通常是根据经验或直方图分析确定。

3.遍历图像中的每个像素,将像素灰度值与阈值进行比较。

4.根据比较结果将像素分为背景和前景两个区域。

5.根据应用需求进行后续处理。

3.2 自适应阈值法固定阈值法存在一个问题,无法适应图像中灰度值不均匀的情况。

自适应阈值法通过根据局部像素灰度值的分布自动调整阈值,解决了这个问题。

具体步骤如下:1.将彩色图像转换为灰度图像。

2.根据图像特点选择合适的自适应阈值计算方法,常见的方法有局部平均法、局部中值法等。

3.定义一个合适的窗口大小,在图像上滑动窗口,计算每个窗口内的局部阈值。

4.遍历图像中的每个像素,将像素灰度值与对应的局部阈值进行比较。

5.根据比较结果将像素分为背景和前景两个区域。

6.根据应用需求进行后续处理。

4. 阈值分割的应用场景4.1 图像二值化图像二值化是阈值分割的一种常见应用,它将图像分割为两个阶段,即黑白两色,用于提取图像中的目标信息。

如何实现计算机视觉技术中的图像分割

如何实现计算机视觉技术中的图像分割

如何实现计算机视觉技术中的图像分割计算机视觉是一门研究如何使计算机“看”的技术领域,而图像分割则是计算机视觉中的一个重要技术任务。

图像分割是指将一幅图像分割成若干个具有独立语义的区域的过程。

它在许多应用领域都有广泛的应用,例如医学影像分析、自动驾驶、图像编辑等。

本文将介绍如何实现计算机视觉技术中的图像分割,并介绍一些常用的图像分割方法。

一、图像分割方法1. 基于阈值的图像分割方法基于阈值的图像分割方法是最简单的一种方法,它根据像素的灰度值与阈值的关系来对图像进行分割。

通过选择合适的阈值,可以将图像中的目标物体与背景分离开来。

这种方法适用于目标物体与背景的灰度特征明显不同的情况。

2. 基于边缘的图像分割方法基于边缘的图像分割方法是通过检测图像中的边缘来实现分割的。

边缘是图像中灰度变化显著的区域,通常可以通过一阶或二阶导数来检测。

这种方法适用于目标物体与背景的边缘特征明显不同的情况。

3. 基于区域的图像分割方法基于区域的图像分割方法是将图像分割成若干个具有独立语义和颜色特征的区域。

这种方法通常需要先计算图像中每个像素与其周围像素的相似度,然后将相似度高的像素聚集在一起形成一个区域。

这种方法适用于目标物体与背景的颜色、纹理等特征明显不同的情况。

二、图像分割的实现过程1. 图像预处理在进行图像分割之前,需要对图像进行预处理,以便提高图像分割的准确性。

预处理包括图像去噪、图像增强和图像归一化等步骤。

去噪可以通过滤波器来实现,增强可以通过直方图均衡化和对比度增强等方法来实现,归一化可以将图像的像素值映射到固定的范围内。

2. 特征提取在图像分割过程中,需要对图像进行特征提取,以便区分目标物体与背景。

特征可以是灰度值、颜色、纹理、形状等。

选择合适的特征对于图像分割的准确性非常重要。

3. 分割算法根据任务的需求和图像的特点,选择合适的图像分割算法。

可以使用基于阈值的方法、基于边缘的方法或基于区域的方法等。

不同的算法有不同的计算复杂度和准确性,需要根据实际情况进行选择。

Matlab中的图像分割与轮廓提取技巧

Matlab中的图像分割与轮廓提取技巧

Matlab中的图像分割与轮廓提取技巧在数字图像处理中,图像分割是一个基本且关键的任务。

通过将图像划分为不同的区域或对象,图像分割可以帮助我们更好地理解图像中的内容,并提取出我们所需的信息。

而图像分割的一个重要部分就是轮廓提取,它可以帮助我们准确地描述图像中感兴趣对象的形状和边缘。

在本文中,将介绍Matlab中常用的图像分割与轮廓提取技巧。

一、基于阈值的图像分割方法阈值分割是一种常用的简单而有效的图像分割方法。

它基于图像中像素的灰度值,将图像分割成具有不同灰度的区域。

在Matlab中,可以使用im2bw函数将图像转换为二值图像,并提供一个阈值参数。

通过调整阈值值,我们可以得到不同的分割结果。

此外,Matlab还提供了一些自动阈值选择方法,如Otsu方法和基于最大类间方差的方法。

二、基于区域的图像分割方法基于区域的图像分割方法是一种将图像分割为不同区域的方法。

它通常基于一些与像素相关的特征,如颜色、纹理和形状。

在Matlab中,可以使用regionprops函数计算图像的区域属性,如面积、中心位置等。

然后,可以根据这些区域属性将图像分割成不同的区域。

此外,还可以使用图像均值漂移算法和超像素分割算法等进行基于区域的图像分割。

三、基于边缘的图像分割方法基于边缘的图像分割方法是一种通过提取图像中的边缘信息来进行分割的方法。

它通常基于边缘检测算法,如Canny算子和Sobel算子。

在Matlab中,可以使用edge函数实现边缘检测,并提供一些参数来调整边缘检测的结果。

通过检测图像中的边缘,我们可以得到图像的轮廓信息,并将图像分割成不同的部分。

四、轮廓提取技巧在图像分割中,轮廓提取是一个重要且常用的步骤。

它可以帮助我们准确地描述和表示感兴趣对象的形状和边界。

在Matlab中,可以使用一些函数来提取图像的轮廓,如bwboundaries函数和imcontour函数。

这些函数可以将二值图像或灰度图像中的轮廓提取出来,并可视化或保存为具有不同宽度和颜色的图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程结业论文课题名称基于阈值的图像分割方法姓名湛宇峥学号1412202-24学院信息与电子工程学院专业电子信息工程指导教师崔治副教授2017年6月12日湖南城市学院课程结业论文诚信声明本人郑重声明:所呈交的课程结业论文,是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。

对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。

本人完全意识到本声明的法律结果由本人承担目录摘要 (1)关键词 (1)ABSTRACT (2)KEY WORDS (2)引言 (3)1基于点的全局阈值选取方法 (4)1.1最大类间交叉熵法 (5)1.2迭代法 (6)2基于区域的全局阈值选取方法 (7)2.1简单统计法 (8)2.3 直方图变化法 (9)3局部阈值法和多阈值法 (10)3.1水线阈值算法 (11)3.2变化阈值法 (12)4仿真实验结论 (12)参考文献 (13)附录基于阈值的图像分割方法摘要:图像分割多年来一直受到人们的高度重视,至今这项技术也是趋于成熟,图像分割方法类别也是不胜枚举,近年来每年都有上百篇有关研究报道发表。

图像分割是由图像处理进到图像分析的关键环节,是指把图像分成各具特性的区域并提取出有用的目标的技术和过程。

在日常生活中,人们对图片的要求也是有所提高,在对图像的应用中,人们经常仅对图像中的某些部分感兴趣,这些部分就对应图像中的特定的区域,为了辨识和分析目标部分,就需要将这些有关部分分离提取出来,因此就要应用到图像分割技术。

关键词:图像分割;阈值;matlabBased on thresholding for image segmentation methodsAbstract:Image segmentation is a indispensable part of image processing and analysis, have important practical significance.It is according to the needs of image processing and analysis of the image into each area and extract the characteristic of technology and process of interested target.Image segmentation methods and types have a lot of different categories, some segmentation operation can be directly applied to all images, while others can only apply to special image.The purpose of this paper is to through the collection of image segmentation method based on threshold related information, analysis the advantages and disadvantages of various segmentation algorithm, using the MATLAB tools to threshold segmentation algorithm is studied. Keywords:image segmentation; The threshold value; matlab引言在现代科学中,随着计算机科学技术的不断发展,人们在日常生活中对图像信息的需求急剧暴涨,人们对图像得要求也越来越高,p图软件,美颜相机等等也是越来越受大众喜爱,对此,数字图像处理技术在近年来也是得到了迅速的发展和改进,成为当下学科领域的热门焦点。

图像分割是图像识别和计算机视觉至关重要的预处理。

没有正确的分割就不可能有正确的识别。

但是,进行分割仅有的依据是图像中像素的亮度及颜色,由计算机自动处理分割时,将会遇到各种困难。

例如,光照不均匀、噪声的影响、图像中存在不清晰的部分,以及阴影等,常常发生分割错误。

因此图像分割是需要进一步研究的技术。

人们希望引入一些人为的知识导向和人工智能的方法,用于纠正某些分割中的错误,是很有前途的方法。

图像分割是从图像处理到图像分析的关键步骤,可以说,图像分割结果的好坏直接影响对图像的理解。

图像分割的方法也是不胜枚举。

其中阈值法就是一种传统而又简单实用的图像分割方法,也是最基础和最广泛的分割方法。

这些方法都广泛应用于各个领域,比如,红外技术应用,医药技术应用,农业工程技术应用,工业产业等行业。

1:基于点的全局阈值选取方法1.1最大类间交叉熵法在取阈值分割中,一般要求月至的选取要使分割的目标与背景尽可能的差异,假设图像有目标1和背景2两类像素,可以用交叉熵来度量目标和背景间的差异,将这种类间差异性用原始图像p 中的个像素点S 判决到目标和背景两类区域的两个后验概率p(1/s),p(2/s)之间的交叉熵的平均值表示,通过最大化将像素点判决到不同的区域的后验概率来求最优的阈值。

在这里,我们设X 是一幅具有L 级灰度级的图像,其中第i 级像素为i N 个,其中i 的值在0~L-1之间,图像的总像素点个数为:第i 级出现的概率为:图像的总平均灰度级为:0C 类像素所占面积的比例为:1C 类像素所占面积的比例为:01-=ωω10C 类像素的平均灰度为:000=ωμμ/)()(k k 1C 类像素的平均灰度为: 111=ωμμ/)()(k k其中,∑-==10L i i iP μN N P i i =∑-==10L i i N N ∑-=0=10k i i P ω∑-=0=10)(k i i iP k μ则类间方差公式为:22)()()(01002-+-=μμωμμωδk1.2迭代法迭代法求阈值的原理: 基于逼近的思想,步骤如下: 1. 求出图象的最大灰度值和最小灰度值,分别记为ZMAX 和ZMIN ,令初始阈值T0=(ZMAX+ZMIN)/2;2. 根据阈值TK 将图象分割为前景和背景,分别求出两者的平均灰度值ZO 和ZB 3. 求出新阈值TK+1=(ZO+ZB)/2; 4. 若TK=TK+1,则所得即为阈值;否则转2,迭代计算。

2:基于区域的全局阈值选取方法2.1简单统计法简单统计法是一种基于简单的图像统计的基础阈值选取方法。

阈值通过简单统计法可以直接计算得到,从而避免了去分析灰度直方图。

该方法的计算公式为()()()∑∑∑∑=x y x yy x e y x f y x e T ,,, (8)其中, (){}y x e e y x e ,max ,=()()y x f y x f e x ,1,1+--=∑-=01-==1)(1)(L k i i k iP k μμ()()1,1,+--=y x f y x f e y2.2 直方图变化法实际的说,直方图的谷底是非常理想的分割阈值,现实很难操作,而且在实际应用中,图像也会受到噪声等其他环境等的影响从而使其直方图上原本分离的峰之间的谷底被填充,或者目标和背景的峰相距很近或者大小差不多。

直方图变化的基本思想是利用一些像素领域的局部性质对原来的直方图进行变换已得到一个新的直方图,对比原直方图,或者峰之间的谷更深了。

或者谷转变成峰从而更好检测了。

借助前面的梯度算子作用于领域可以得到该像素的梯度值。

3:局部阈值法和多阈值法3.1水线阈值算法分水岭图像分割算法是借助地形学的概念进行操作的,这种方法近年来得到了广泛的使用,该算法要操作需要掌握相关的数学形态学的理念和方法。

该算法是串行计算过程,得到的是目标的边界,这种方法是通过确定分水岭的位置而进行的图像分割,但由于各区域内部像素的灰度很相近,相邻区域的像素灰度差距比较大,可以先计算一幅图的梯度图,再找梯度图的分水岭。

3.2变化阈值法有时候图像中有如下一些情况:有阴影,照度不均匀,各处的对比度不同,突发噪声,背景灰度变化等,在这些情况下,如果只用一个固定的全局阈值对整幅图像进行分割,则由于不能兼顾图像各处的情况而使分割效果受到影响。

有一种解决办法就是用与象素位置相关的一组阈值来对图像各部分分别进行分割。

这种与坐标相关的阈值也叫动态阈值,此方法也叫变化阈值法。

例如,一幅照度不均(左边亮右边暗)的原始图像为:图4.原始图像图5.阈值低,对亮区效果好,则暗区差图6.阈值高,对暗区效果好,则亮区差图7.按两个区域取局部阈值的分割结果4:仿真实验结论阈值法是一种传统但有简单有效实用的基础图像分割方法。

图像的的变化是无穷无尽的,在实际应用中,通常将多种分割算法有效地结合在一起使用以获得更好的分割效果。

除了以上介绍的方法外,还存在着多种不同的其他有效方法,在此,就不多介绍,此外,本片论文也存在在一些描述不是很清楚的地方,希望有缘读者可以提供相关建议和意见,一定多加感谢。

参考文献:1 夏得深,傅德胜.现代图像处理技术与应用.东南大学出版,20012余成波.数字图像处理及MATLAB实现[M].重庆:重庆大学出版社,2003.3刘直芳,游胜志等.基于多尺度彩色形态矢量算子的边缘检测.中国图像图形学报 2002 (9) 888-8934周铭,周惠.基于遗传算法的自适应聚类图像阈值分割方法.计算机工程与应用[J],2005,5(6):231-245.5杨杰,黄朝兵. 数字图像处理及MATLAB实现.电子工业出版社,20106 吴一全,朱兆达.图像处理中阈值选取方法30年(1962-1992)的进展(一).数据采集与处理[J],1993,9(3):193-201.7 吴一全,朱兆达.图像处理中阈值选取方法30年(1962-1992)的进展(二).数据采集与处理8 王茜蓓,彭中,刘莉.一种基于自适应阈值的图像分割算法.北京理工大学学报[J],2003,23(4):531-524.9 Sahoo P K et al. A survey of thresholding techniques. Computer Vision, Graphics and Image Processing[J],1988,41(3):233-260.10 Doyle W.Operations useful for similarity-invariant pattern recognition JACM[J],1962, 9(2):259-26711 Perez A, Gonzalez R C.An iterative thresholding algorithm for image segmentation. IEEE Trans[J],1987,9(6):742-751.附录:I=imread('tsaml.jpg');I=double(I);T=(min(I(:))+max(I(:)))/2;done=false;i=0;while ~doner1=find(I<=T);r2=find(I>T);Tnew=(mean(I(r1))+mean(I(r2)))/2;done=abs(Tnew-T)<1;T=Tnew;i=i+1;endI(r1)=0;I(r2)=1;figure;imshow(I)2:a=imread('img.bmp'); imshow(a)figure;imhist(a)。

相关文档
最新文档