弧、弦、圆心角、圆周角—巩固练习(提高)

合集下载

弧弦圆心角练习题

弧弦圆心角练习题

弧弦圆心角练习题弧弦圆心角练习题在数学中,圆是一个非常重要的几何形状。

而与圆相关的概念也是我们学习数学过程中的基础。

其中,弧、弦和圆心角是我们经常遇到的几个概念。

在这篇文章中,我们将通过一些练习题来加深对弧弦圆心角的理解。

1. 练习题一在一个半径为5cm的圆中,AB是一个长度为8cm的弦。

求弧AB所对的圆心角的度数。

解答:首先,我们知道弧所对的圆心角的度数是弧长所对的圆周角的度数。

而弧长可以通过弦的长度和半径来计算。

根据圆的性质,弧长等于弧所对的圆心角的度数所占的比例乘以圆的周长。

所以,弧AB的弧长为:弧长 = (弦长 / 圆周长) * 360°= (8cm / (2π * 5cm)) * 360°≈ 72.57°因此,弧AB所对的圆心角的度数约为72.57°。

2. 练习题二在一个半径为10cm的圆中,弧CD的弧长为15cm。

求弧CD所对的圆心角的度数。

解答:同样地,我们可以利用弧长和半径的关系来计算圆心角的度数。

弧CD的弧长为15cm,半径为10cm。

所以,弧CD所对的圆心角的度数为:圆心角度数 = (弧长 / 圆周长) * 360°= (15cm / (2π * 10cm)) * 360°≈ 85.94°因此,弧CD所对的圆心角的度数约为85.94°。

3. 练习题三在一个半径为6cm的圆中,角AOC的度数为120°。

求弧AC的弧长。

解答:这道题中,我们已经知道了圆心角的度数,需要求解弧长。

根据圆的性质,圆心角的度数所占的比例等于弧长所占的比例。

所以,弧AC的弧长为:弧长 = (圆心角度数/ 360°) * 圆周长= (120° / 360°) * (2π * 6cm)≈ 4πcm因此,弧AC的弧长约为4πcm。

通过以上的练习题,我们可以看到弧、弦和圆心角之间的关系。

弧所对的圆心角的度数等于弧长所对的圆周角的度数。

第12讲 圆周角定理.提高班

第12讲  圆周角定理.提高班

1.如果关于x 的方程03)3(72=+---x xm m 是关于x 的一元二次方程,那么m 的值为()A 、3±B 、3C 、-3D 、都不对2.关于x 的一元二次方程052522=+-+-p p x x 的一根为1,则实数P 的值是()A 、4B 、0或2C 、1D 、-13.我国“嫦娥一号”探月卫星成功发射后,某航天科普网站的浏览量猛增.已知某年10月份该网站的浏览量为80万人次,第四季度总浏览量为350万人次.如果浏览量平均每月增长率为x ,则应列方程为()A 、80(1+x)2=350B 、80+80×2x =350C 、80+80×2(1+x)=350D 、80[1+(1+x)+(1+x)2]=3504.若二次函数32)1(22--++=m m x m y 的图象经过原点,则m 的值必为()A 、-1或3B 、-1C 、3D 、-3或15.如图,将⊿ABC 绕点C (0,-1)旋转180º得到⊿A'B'C',设点A 的坐标为(a ,b ),则A'的坐标为()A 、(-a-,b )B 、(-a ,-b-1)C 、(-a ,-b+1)D 、(-a ,-b-2)6.已知二次函数c bx ax y ++=2中,其函数值y 与自变量x之间的部分对应值如下表:点A (x 1,y 1)、B (x 2,y 2)在函数的图象上,则当1<x 1<2,3<x 2<4时,y 1与y 2的大小关系正确的是()A.y 1>y 2B 、y 1<y 2C 、y 1≥y 2D 、y 1≤y 27.下列二次函数中,图象以直线x=2为对称轴,且经过点(0,1)的是()A 、1)2x (y 2+-=B 、1)2x (y 2++=C 、3)2(2--=x y D 、3)2(2-+=x y 12圆——圆周角定理模块一课前检测圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.【注意】在应用定理时,一定要保证“同弧或等弧”的前提。

人教版九上数学之《圆》全章复习与巩固—巩固练习(提高)

人教版九上数学之《圆》全章复习与巩固—巩固练习(提高)

《圆》全章复习与巩固—巩固练习(提高)【巩固练习】一、选择题1.如图所示,AB、AC为⊙O的切线,B和C是切点,延长OB到D,使BD=OB,连接AD.如果∠DAC=78°,那么∠ADO等于( ).A.70° B.64° C.62° D.51°2.在半径为27m的圆形广场中心点O的上空安装了一个照明光源S,S射向地面的光束呈圆锥形,其轴截面SAB的顶角为120°(如图所示),则光源离地面的垂直高度SO为( ).A.54m B.63m C.93m D.183m第1题图第2题图第3题图第4题图3.设计一个商标图案,如图所示,在矩形ABCD中,AB=2BC,且AB=8cm,以A为圆心、AD的长为半径作半圆,则商标图案(阴影部分)的面积等于( ).A.(4π+8)cm2B.(4π+16)cm2C.(3π+8)cm2D.(3π+16)cm24.如图,的半径为5,弦的长为8,点在线段(包括端点)上移动,则的取值范围是( ).A. B. C. D.5.“圆材埋壁”是我国古代著名的数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表示为:如图所示,CD为⊙O的直径,弦AB⊥CD于E,CE=1寸,AB=10寸,则直径CD的长为( )A.12.5寸 B.13寸 C.25寸D.26寸6.(2015•贵港)如图,已知P是⊙O外一点,Q是⊙O上的动点,线段PQ的中点为M,连接OP,OM.若⊙O的半径为2,OP=4,则线段OM的最小值是()A.0 B.1 C.2 D.37.一条弦的两个端点把圆周分成4:5两部分,则该弦所对的圆周角为( ).A.80° B.100° C.80°或100° D.160°或200°8.如图所示,AB 、AC 与⊙O 分别相切于B 、C 两点,∠A =50°,点P 是圆上异于B 、C 的一动点,则∠BPC的度数是( ).A .65°B .115°C .65°或115°D .130°或50°二、填空题 9.如下左图,是的内接三角形,,点P 在上移动(点P 不与点A 、C 重合),则的变化范围是__ ________.第9题图 第10题图10.如图所示,EB 、EC 是⊙O 是两条切线,B 、C 是切点,A 、D 是⊙O 上两点,如果∠E=46°,∠DCF=32°,那么∠A 的度数是________________. 11.已知⊙O 1与⊙O 2的半径1r 、2r 分别是方程2680x x -+= 的两实根,若⊙O 1与⊙O 2的圆心距d =5.则⊙O 1与⊙O 2的位置关系是 __ __ .12.(2015•巴彦淖尔)如图,AB 为⊙O 的直径,AB=AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC=45°,给出以下五个结论:①∠EBC=22.5°;②BD=DC ;③AE=2EC ;④劣弧是劣弧的2倍;⑤AE=BC ,其中正确的序号是 .13.两个圆内切,其中一个圆的半径为5,两圆的圆心距为2,则另一个圆的半径是_______ ________. 14.已知正方形ABCD 外接圆的直径为2a ,截去四个角成一正八边形,则这个正八边形EFGHIJLK 的边长为____ ____,面积为_____ ___.15.如图(1)(2)…(m)是边长均大于2的三角形、四边形、……、凸n 边形,分别以它们的各顶点为圆心,以l 为半径画弧与两邻边相交,得到3条弧,4条弧,……(1)图(1)中3条弧的弧长的和为___ _____,图(2)中4条弧的弧长的和为_____ ___;(2)求图(m)中n条弧的弧长的和为____ ____(用n表示).16.如图所示,蒙古包可以近似地看做由圆锥和圆柱组成,如果想用毛毡搭建20个底面积为9πm2,高为3.5m,外围高4 m的蒙古包,至少要____ ____m2的毛毡.三、解答题17. 如图,⊙O是△ABC的外接圆,FH是⊙O 的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.(1)证明:AF平分∠BAC;(2)证明:BF=FD.18.(2015•南京)如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.(1)求证:∠A=∠AEB;(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.19.如图,相交两圆的公共弦长为120cm,它分别是一圆内接正六边形的边和另一圆内接正方形的边.求两圆相交弧间阴影部分的面积.20.问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.然后运用类似的思想提出了如下命题:③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:(1)请你从①②③三个命题中选择一个进行证明;(2)请你继续完成下面的探索;①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立(不要求证明);②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.【答案与解析】一、选择题1.【答案】B;【解析】由AB为⊙O的切线,则AB⊥OD.又BD=OB,则AB垂直平分OD,AO=AD,∠DAB=∠BAO.由AB、AC为⊙O的切线,则∠CAO=∠BAO=∠DAB.所以,∠DAB=∠DAC=26°.∠ADO=90°-26°=64°.本题涉及切线性质定理、切线长定理、垂直平分线的性质、等腰三角形的性质等.2.【答案】C;【解析】圆锥的高、底面半径与母线组成直角三角形.由题意,SO⊥AB于O,∴∠SOA=∠SOB=90°.又SA=SB,∠ASB=120°,∴∠SAB=∠SBA=180120302=°-?°,设SO=x m,则AS=2x m.∵ AO=27,由勾股定理,得(2x)2-x2=272,解得93x=(m).3.【答案】A.;【解析】对图中阴影部分进行分析,可看做扇形、矩形、三角形的面积和差关系.∵矩形ABCD中,AB=2BC,AB=8cm,∴ AD=BC=4cm,∠DAF=90°,,,又AF=AD=4cm,∴,∴. 4.【答案】A;【解析】OM最长是半径5;最短是OM⊥AB时,此时OM=3,故选A.5.【答案】D;【解析】因为直径CD垂直于弦AB,所以可通过连接OA(或OB),求出半径即可.根据“垂直于弦的直径平分弦,并且平分弦所对的两条弧”,知(寸),在Rt△AOE中,,即,解得OA=13,进而求得CD=26(寸).故选D.6.【答案】B.【解析】设OP与⊙O交于点N,连结MN,OQ,如图,∵OP=4,ON=2,∴N是OP的中点,∵M为PQ的中点,∴MN为△POQ的中位线,∴MN=OQ=×2=1,∴点M在以N为圆心,1为半径的圆上,当点M在ON上时,OM最小,最小值为1,∴线段OM的最小值为1.故选B.7.【答案】C;【解析】圆周角的顶点在劣弧上时,圆周角为5136010092⨯⨯=°°;圆周角的顶点在优弧上时,圆周角为413608092⨯⨯=°°.注意分情况讨论.8.【答案】C;【解析】连接OC 、OB ,则∠BOC =360°-90°-90°-50°=130°.点P 在优弧上时,∠BPC =12∠BOC =65°;点P 在劣弧上时,∠BPC =180°-65°=115°. 主要应用了切线的性质定理、圆周角定理和多边形内角和定理.二、填空题 9.【答案】; 10.【答案】99°;【解析】由EB=EC ,∠E=46°知,∠ECB= 67°,从而∠BCD=180°-67°-32°=81°, 在⊙O 中,∠BCD 与∠A 互补,所以∠A=180°-81°=99°. 11.【答案】相交;【解析】求出方程2680x x -+= 的两实根1r 、2r 分别是4、2,则1r -2r <d <1r +2r ,所以两圆相交.12.【答案】①②④;【解析】连接AD ,AB 是直径,则AD ⊥BC ,又∵△ABC 是等腰三角形,故点D 是BC 的中点,即BD=CD ,故②正确; ∵AD 是∠BAC 的平分线,由圆周角定理知,∠EBC=∠DAC=∠BAC=22.5°,故①正确;∵∠ABE=90°﹣∠EBC ﹣∠BAD=45°=2∠CAD ,故④正确; ∵∠EBC=22.5°,2EC ≠BE ,AE=BE ,∴AE ≠2CE ,③不正确; ∵AE=BE ,BE 是直角边,BC 是斜边,肯定不等,故⑤错误. 综上所述,正确的结论是:①②④.13.【答案】7或3;【解析】两圆有三种位置关系:相交、相切(外切、内切)和相离(外离、内含).两圆内切时,圆心距,题中一圆半径为5,而d=2,所以有,解得r=7或r=3,即另一圆半径为7或3.14.【答案】(21)a -; 2(222)a -;【解析】正方形ABCD 外接圆的直径就是它的对角线,由此求得正方形边长为a .如图所示,设正八边形的边长为x .在Rt △AEL 中,LE =x ,AE =AL =22x ,∴ 222x x a ⨯+=,(21)x a =-, 即正八边形的边长为(21)a -.222224[(21)](222)AEL S S S a x a a a =-=-=--=-△正方形正八边形.15.【答案】(1)π; 2π; (2)(n-2)π;【解析】∵ n 边形内角和为(n-2)180°,前n 条弧的弧长的和为(2)1801(2)3602n n -=-个以某定点为圆心,以1为半径的圆周长,∴ n 条弧的弧长的和为121(2)(2)2n n ππ⨯⨯-=-.本题还有其他解法,比如:设各个扇形的圆心角依次为1α,2α,…,n α, 则12(2)180n n ααα+++=-…°,∴ n 条弧长的和为1212111()180180180180n n απαπαππααα⨯+⨯++⨯=+++……(2)180(2)180n n ππ=-⨯=-.16.【答案】720π;【解析】∵ S =πr 2,∴ 9π=πr 2,∴ r =3.∴ h 1=4,∴ 2215l h r =+=,∴ 223523 3.5152136S S S rl rh πππππππ=+=+=⨯⨯+⨯⨯=+=锥柱,2036720S ππ=⨯=总.所求面积包括圆锥的侧面积和圆柱的侧面积,不包括底面积.三、解答题17.【答案与解析】(1)连结OF∵FH 是⊙O 的切线 ∴OF⊥FH ∵FH∥BC ,∴OF 垂直平分BC∴BF FC =∴AF 平分∠BAC .(2)由(1)及题设条件可知∠1=∠2,∠4=∠3,∠5=∠2 ∴∠1+∠4=∠2+∠3 ∴∠1+∠4=∠5+∠3 ∠FDB =∠FBDA B CDEFO 12345HA BCD EFO 12H∴BF =FD.18.【答案与解析】 证明:(1)∵四边形ABCD 是⊙O 的内接四边形, ∴∠A+∠BCD=180°, ∵∠DCE+∠BCD=180°, ∴∠A=∠DCE , ∵DC=DE ,∴∠DCE=∠AEB , ∴∠A=∠AEB ;(2)∵∠A=∠AEB , ∴△ABE 是等腰三角形, ∵EO ⊥CD , ∴CF=DF ,∴EO 是CD 的垂直平分线, ∴ED=EC , ∵DC=DE , ∴DC=DE=EC ,∴△DCE 是等边三角形, ∴∠AEB=60°,∴△ABE 是等边三角形.19.【答案与解析】解:∵公共弦AB =120r R a 6624222212060603=-⎛⎝ ⎫⎭⎪=-=.20. 【答案与解析】(1)如选命题①.证明:在图(1)中,∵∠BON=60°,∴∠1+∠2=60°.∵∠3+∠2=60°,∴∠1=∠3.又∵ BC=CA,∠BCM=∠CAN=60°,∴△BCM≌△CAN,∴ BM=CM.如选命题②.证明:在图(2)中,∵∠BON=90°,∴∠1+∠2=90°.∵∠3+∠2=90°,∴∠1=∠3.又∵ BC=CD,∠BCM=∠CDN=90°,∴△BCM≌△CDN,∴ BM=CN.如选命题③.证明:在图(3)中,∵∠BON=108°,∴∠1+∠2=108°.∵∠2+∠3=108°,∴∠1=∠3.又∵ BC=CD,∠BCM=∠CDN=108°,∴△BCM≌△CDN,∴ BM=CN.(2)①答:当∠BON=(2)180nn°时结论BM=CN成立.②答:当∠BON=108°时.BM=CN还成立.证明:如图(4),连接BD、CE在△BCD和△CDE中,∵ BC=CD,∠BCD=∠CDE=108°,CD=DE,∴△BCD≌△CDE.∴ BD=CE,∠BDC=∠CED,∠DBC=∠ECD.∵∠CDE=∠DEN=108°,∴∠BDM=∠CEM.∵∠OBC+∠OCB=108°,∠OCB+∠OCD=108°.∴∠MBC=∠NCD.又∵∠DBC=∠ECD=36°,∴∠DBM=∠ECM.∴△BDM≌△CEN,∴ BM=CN.。

新人教版九年级数学上册24.1.4圆周角(2)练习题

新人教版九年级数学上册24.1.4圆周角(2)练习题
(A)∠A∶∠B∶∠C∶∠D = 1∶2∶3∶4 (B)∠A∶∠B∶∠C∶∠D = 2∶1∶3∶4
(C)∠A∶∠B∶∠C∶∠D = 3∶2∶1∶4
(D)∠A∶∠B∶∠C∶∠D = 4∶3∶2∶1
(4)梯形ABCD内接于⊙O,AD∥BC,
75° ∠B=750,则∠C=_____
A D O B C
圆的内接梯形一定是_____梯形。
∴AD=BD. 又在Rt△ABD中,AD2+BD2=AB2,
D
AD BD
2 2 AB 10 5 2(cm) 2 2
课本
练 习
Hale Waihona Puke 3.求证:如果三角形一边上的中线等于这边的一半,那么这个 三角形是直角三角形.(提示:作出以这条边为直径的圆.) 1 已知:△ABC 中,CO为AB边上的中线, 且CO= AB 2 求证: △ABC 为直角三角形.
D
D
∴∠A+∠ C= 180° A A
同理∠B+∠D=180°
B
B
O O
C
C
圆的内接四边形的对角互补。
如果延长BC到E,那么 ∠DCE+∠BCD = 180° 又 ∠A +∠BCD= 180°
所以∠A=∠DCE
A
O
D
B
C
E
定理:圆的内接四边形的对角互补,并且 任何一个外角都等于它的内对角。
∠D+∠B=180°
例 如图⊙O1与⊙O2都经过A、B两点, 经过点A的直线CD与⊙O1 交于点C,与 ⊙O2 交于点D。经过点B的直线EF与⊙O1 交于点E,与⊙O2 交于点F。 求证:CE∥DF
D A 1
C
E
O1 B
O 2
F

人教版 九年级数学上册 第24章 圆的概念及弧、弦、圆心角和圆周角 专题练习(含答案)

人教版 九年级数学上册 第24章 圆的概念及弧、弦、圆心角和圆周角 专题练习(含答案)

圆的概念及弧、弦、圆心角和圆周角专题练习(含答案)例1. 如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°例2. 如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE CE=1.则弧BD 的长是()B C D例3.如图,已知A,B,C在⊙O上,ACB为优弧,下列选项中与∠AOB相等的是()A.2∠C B.4∠B C.4∠A D.∠B+∠C例4. 如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.3巩固练习1.如下图,(1)若点O为⊙O的圆心,则线段__________是圆O的半径;线段________是圆O的弦,其中最长的弦是______;______是劣弧;______是半圆.(2)若∠A=40°,则∠ABO=______,∠C=______,∠ABC=______.2.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为________.3.⊙O中,∠AOB=100°,若C是AB上一点,则∠ACB等于( ).A.80°B.100°C.120°D.130°4.已知:如图,在同心圆中,大圆的弦AB交小圆于C,D两点.(1)求证:∠AOC=∠BOD;(2)试确定AC与BD两线段之间的大小关系,并证明你的结论.5. 已知:如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为AD的中点,若∠BAD=20°,求∠ACO的度数6.如图,以ABCD的顶点A为圆心,AB为半径作⊙A,分别交BC、AD于E、F,交BA的延长线于G,试说明弧EF和弧FG相等.7. ⊙O中,M为AB的中点,则下列结论正确的是( ).A.AB>2AM B.AB=2AM C.AB<2AM D.AB与2AM的大小不能确定8. 如图,⊙O中,AB为直径,弦CD交AB于P,且OP=PC,试猜想AD与CB之间的关系,并证明你的猜想.9. 如图,⊙O中,直径AB=15cm,有一条长为9cm的动弦CD在ANB上滑动(点C与A,点D与B不重合),CF⊥CD交AB于F,DE⊥CD交AB于E.(1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDEF的面积是否为定值?若是定值,请给出证明并求这个定值;若不是,请说明理由.10.如图,若五边形ABCDE是⊙O的内接正五边形,则∠BOC=______,∠ABE=______,∠ADC=______,∠ABC=______.10题图11题图12题图11.如图,若六边形ABCDEF是⊙O的内接正六边形,则∠AED=______,∠FAE=______,∠DAB=______,∠EFA=______.12.如图,ΔABC是⊙O的内接正三角形,若P是AB上一点,则∠BPC=______;若M是BC上一点,则∠BMC=______.13.在⊙O中,若圆心角∠AOB=100°,C是AB上一点,则∠ACB等于( ).A.80°B.100°C.130°D.140°14.在圆中,弦AB,CD相交于E.若∠ADC=46°,∠BCD=33°,则∠DEB等于( ).A.13°B.79°C.38.5°D.101°15.如图,AC 是⊙O 的直径,弦AB ∥CD ,若∠BAC =32°,则∠AOD 等于( ).A .64°B .48°C .32°D .76°16.如图,弦AB ,CD 相交于E 点,若∠BAC =27°,∠BEC =64°,则∠AOD 等于( ).A .37°B .74°C .54°D .64°17.如图,四边形ABCD 内接于⊙O ,则x = 。

新人教版九年级上册数学[《圆》全章复习与巩固—知识点整理及重点题型梳理](提高)

新人教版九年级上册数学[《圆》全章复习与巩固—知识点整理及重点题型梳理](提高)

新人教版九年级上册初中数学重难点有效突破知识点梳理及重点题型巩固练习《圆》全章复习与巩固—知识讲解(提高)【学习目标】1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;5.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可; ②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴. (3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. ③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. ⑤平行弦夹的弧相等. 要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3.两圆的性质(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点. 4.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1.判定一个点P 是否在⊙O 上 设⊙O 的半径为,OP=,则有 点P 在⊙O 外; 点P 在⊙O 上;点P 在⊙O 内. 要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2.判定几个点12nA A A 、、在同一个圆上的方法当时,在⊙O 上.3.直线和圆的位置关系设⊙O 半径为R ,点O 到直线的距离为.(1)直线和⊙O没有公共点直线和圆相离.(2)直线和⊙O有唯一公共点直线和⊙O相切.(3)直线和⊙O有两个公共点直线和⊙O相交.4.切线的判定、性质(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1)和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2)和没有公共点,且的每一个点都在内部内含(3)和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4)和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).名称确定方法图形性质外心(三角形外接圆的圆心) 三角形三边中垂线的交点(1)OA=OB=OC;(2)外心不一定在三角形内部内心(三角形内切圆的圆心) 三角形三条角平分线的交点(1)到三角形三边距离相等;(2)OA 、OB、OC 分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为R的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】类型一、圆的基础知识【362179 课程名称:《圆》单元复习:经典例题3】1. 如图,已知⊙O是以数轴的原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OA平行(或重合)的直线与⊙O有公共点, 设OP=x,则x的取值范围是().≤x≤2C.0≤x≤2 D.x>2 A.-1≤x≤1 B.2【答案】B;【解析】如图,平移过P点的直线到P′,使其与⊙O相切,设切点为Q,连接OQ,由切线的性质,得∠OQP′=90°,∵OA∥P′Q,∴∠OP′Q=∠AOB=45°,∴△OQP′为等腰直角三角形,在Rt△OQP′中,OQ=1,OP′=2,∴当过点P且与OA平行的直线与⊙O有公共点时,0≤OP≤,当点P在x轴负半轴即点P向左侧移动时,结果为-2≤OP≤0.故答案为:-2≤OP≤2.【点评】本题考查了直线与圆的位置关系问题.关键是通过平移,确定直线与圆相切的情况,求出此时OP的值.举一反三:【变式】如图,已知⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,若过点P且与OB平行的直线于⊙O有公共点,设P(x,0),则x的取值范围是().A.-1≤x<0或0<x≤1 B.0<x≤1 C.-2≤x<0或0<x≤2 D.x>1【答案】∵⊙O是以数轴的原点为圆心,半径为1的圆,∠AOB=45°,∴过点P′且与OB平行的直线与⊙O相切时,假设切点为D,∴OD=DP′=1,OP′=2,∴0<OP≤2,同理可得,当OP与x轴负半轴相交时,-2≤OP<0,∴-2≤OP<0,或0<OP≤2.故选C.类型二、弧、弦、圆心角、圆周角的关系及垂径定理,2.如图所示,已知在⊙O中,AB是⊙O的直径,弦CG⊥AB于D,F是⊙O上的点,且CF CB BF交CG于点E,求证:CE=BE.【答案与解析】证法一:如图(1),连接BC ,∵ AB 是⊙O 的直径,弦CG ⊥AB ,∴ CB GB =.∵ CF BC =,∴ CF GB =.∴ ∠C =∠CBE .∴ CE =BE .证法二:如图(2),作ON ⊥BF ,垂足为N ,连接OE . ∵ AB 是⊙O 的直径,且AB ⊥CG ,∴ CB BG =.∵ CB CF =,∴ CF BC BG ==.∴ BF =CG ,ON =OD .∵ ∠ONE =∠ODE =90°,OE =OE ,ON =OD , ∴ △ONE ≌△ODE ,∴ NE =DE . ∵ 12BN BF =,12CD CG =, ∴ BN =CD ,∴ BN-EN =CD-ED ,∴ BE =CE .证法三:如图(3),连接OC 交BF 于点N .∵ CF BC =,∴ OC ⊥BF . ∵ AB 是⊙O 的直径,CG ⊥AB ,∵ BG BC =,CF BG BC ==.∴ BF CG =,ON OD =.∵ OC =OB ,∴ OC-ON =OB-OD ,即CN =BD .又∠CNE =∠BDE =90°,∠CEN =∠BED , ∴ △CNE ≌△BDE ,∴ CE =BE .【点评】上述各种证明方法,虽然思路各异,但都用到了垂径定理及其推论.在平时多进行一题多解、一题多证、一题多变的练习,这样不但能提高分析问题的能力,而且还是沟通知识体系、学习知识,使用知识的好方法.举一反三:【362179 课程名称:《圆》单元复习 :经典例题1-2】【变式】如图所示,在⊙O 内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC 的长为( )A .19B .16C .18D .20【答案】如图,延长AO交BC于点D,过O作OE⊥BC于E.则三角形ABD为等边三角形,DA=AB=BD=12,OD=AD-AO=4在Rt△ODE中,∠ODE=60°,∠DOE=30°,则DE=12OD=2,BE=BD-DE=10OE垂直平分BC,BC=2BE=20. 故选D类型三、与圆有关的位置关系3.一个长方体的香烟盒里,装满大小均匀的20支香烟.打开烟盒的顶盖后,二十支香烟排列成三行,如图(1)所示.经测量,一支香烟的直径约为0.75cm,长约为8.4cm.(1)试计算烟盒顶盖ABCD的面积(本小题计算结果不取近似值);(2)制作这样一个烟盒至少需要多少面积的纸张(不计重叠粘合的部分,计算结果精确到,取)0.1cm3173..【答案与解析】(1)如图(2),作O1E⊥O2O3()3333332844AB cm +∴=⨯+=∴四边形ABCD 的面积是:(2)制作一个烟盒至少需要纸张:.【点评】四边形ABCD 中,AD 长为7支香烟的直径之和,易求;求AB 长,只要计算出如图(2)中的O 1E长即可.类型四、圆中有关的计算4.(2015•丹东)如图,AB 是⊙O 的直径,=,连接ED 、BD ,延长AE 交BD 的延长线于点M ,过点D 作⊙O 的切线交AB 的延长线于点C . (1)若OA=CD=2,求阴影部分的面积; (2)求证:DE=DM .【答案与解析】解:如图,连接OD , ∵CD 是⊙O 切线, ∴OD ⊥CD ,∵OA=CD=2,OA=OD , ∴OD=CD=2,∴△OCD 为等腰直角三角形, ∴∠DOC=∠C=45°, ∴S 阴影=S △OCD ﹣S 扇OBD=﹣=4﹣π;(2)证明:如图,连接AD , ∵AB 是⊙O 直径,∴∠ADB=∠ADM=90°,又∵=,∴ED=BD,∠MAD=∠BAD,在△AMD和△ABD中,,∴△AMD≌△ABD,∴DM=BD,∴DE=DM.【点评】本题考查的是切线的性质、弦、弧之间的关系、扇形面积的计算,掌握切线的性质定理和扇形的面积公式是解题的关键,注意辅助线的作法.举一反三:【变式】(2015•贵阳)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=2.(1)求AC的长度;(2)求图中阴影部分的面积.(计算结果保留根号)【答案】解:(1)∵OF⊥AB,∴∠BOF=90°,∵∠B=30°,FO=2,∴OB=6,AB=2OB=12,又∵AB为⊙O的直径,∴∠ACB=90°,∴AC=AB=6;(2)∵由(1)可知,AB=12,∴AO=6,即AC=AO,在Rt△ACF和Rt△AOF中,∴Rt△ACF≌Rt△AOF,∴∠FAO=∠FAC=30°,∴∠DOB=60°,过点D作DG⊥AB于点G,∵OD=6,∴DG=3,∴S△ACF+S△OFD=S△AOD=×6×3=9,即阴影部分的面积是9.类型五、圆与其他知识的综合运用5..【答案与解析】延长DB至点E,使BE=DC,连结AE∵△ABC是等边三角形∴∠ACB=∠ABC=60°,AB=AC∴∠ADB=∠ACB=60°∵四边形ABDC是圆内接四边形∴∠ABE=∠ACD在△AEB和△ADC中,∴△AEB≌△ADC∴AE=AD∵∠ADB=60°∴△AED是等边三角形∴AD=DE=DB+BE∵BE=DC∴DB+DC=DA.【点评】由已知条件,等边△ABC可得60°角,根据圆的性质,可得∠ADB=60°,利用截长补短的方法可得一个新的等边三角形,再证两个三角形全等,从而转移线段DC.本例也可以用其他方法证明.如:(1)延长DC至F,使CF=BD,连结AF,再证△ACF≌△ABD,得出AD=DF,从而DB+CD=DA.(2)在DA上截取DG=DC,连结CG,再证△BDC≌△AGC,得出BD=AG,从而DB+CD=DA.6.如图,直径AB为6的半圆,绕A点逆时针旋转60°,此时点B到了点B′,则图中阴影部分的面积是().A. 3πB. 6πC. 5πD. 4π【答案】B;【解析】阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积.则阴影部分的面积是:=6π故选B.【点评】根据阴影部分的面积=以AB′为直径的半圆的面积+扇形ABB′的面积-以AB为直径的半圆的面积=扇形ABB′的面积.即可求解.举一反三:【变式】某中学举办校园文化艺术节,小颖设计了同学们喜欢的图案“我的宝贝”,图案的一部分是以斜边长为12cm的等腰直角三角形的各边为直径作的半圆,如图所示,则图中阴影部分的面积为( ).A. B.72 C.36 D.72【答案】本题解法很多,如两个小半圆面积和减去两个弓形面积等.但经过认真观察等腰直角三角形其对称性可知,阴影部分的面积由两个小半圆面积与三角形面积的和减去大半圆面积便可求得,所以由已知得直角边为,小半圆半径为(cm),因此阴影部分面积为. 故选C.。

圆:弧弦圆心角圆周角关系经典练习

圆:弧弦圆心角圆周角关系经典练习

1.半径为6cm 的圆中,垂直平分半径OA 的弦长为 cm.2. 过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm ,则OM 的长等于 cm3.将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为4.一个拱形石桥,跨度为8米,拱高8米,那么这拱形石桥所在圆的半径是___________米5. 某地有一座圆弧形拱桥,桥下水面宽度为7.2米,拱顶高出水面2.4米。

现有一艘宽3米、船舱顶部为方形并高出水面2米的货船要经过这里,此货船能顺利通过这座拱桥吗?1.下列说法中正确的是( ).A .相等的圆心角所对的弧相等B .等弧所对的圆心角相等C .相等的弦所对的弦心距相等D .弦心距相等,则弦相等 2. 在两个半径不同的圆中,分别有和,若和的度数相等,那么下面结论中正确的是( ). A .=B .和所对的两个圆心角相等C .所对的弦和所对的弦相等D .和所对的弦的弦心距相等3. 在⊙O 中,弦AB 所对的劣弧为圆的31,圆的半径为4cm ,则弦AB 的长是( ). A .3cmB .2cmC .32cmD .34cm4半径为4cm ,120°的圆心角所对的弦长为( ) A. 5cmB. 43cmC. 6cmD. 33cm5.如图1,AB 为⊙O 的直径,C 、D 是⊙O 上的两点,∠=︒BAC 20,AD CD ⋂=⋂,则∠DAC 的度数是( ) A. 70°B. 45°C. 35°D. 30°DA OB C6.在同圆或等圆中,如果圆心角∠BOA 等于另一个圆心角∠COD 的2倍,则下列式子中能成立的是( ) A.AB CD =2B. AB CD ⋂>⋂2C. AB CD ⋂<⋂2D. AB CD ⋂=⋂27..AB 为⊙O 的直径,C 、D 为半圆AB 上两点,且弧AC 、弧CD 、弧DB 的度数的比为3∶2∶5,则∠AOC= °,∠COD= °,∠DOB= °。

弧弦圆心角练习题

弧弦圆心角练习题

弧弦圆心角练习题弧、弦、圆心角的关系同步练习一、填空题:1.如图1,等边三角形ABC的三个顶点都在⊙O上,D是AC上任一点(不与A、C重合),则∠ADC的度数是________.DCBAO(1) (2) (3)2.如图2,四边形ABCD的四个顶点都在⊙O上,且AD∥BC,对角线AC与BC相交于点E,那么图中有_________对全等三角形;________对相似比不等于1的相似三角形.3.已知,如图3,∠BAC的对角∠BAD=100°,则∠BOC=_______度.4.如图4,A、B、C为⊙O上三点,若∠OAB=46°,则∠ACB=_______度.BAA(4) (5) (6)5.如图5,AB是⊙O的直径, BC BD,∠A=25°,则∠BOD的度数为________.6.如图6,AB是半圆O的直径,AC=AD,OC=2,∠CAB= 30°, 则点O 到CD 的距离OE=______.二、选择题:7.如图7,已知圆心角∠BOC=100°,则圆周角∠BAC的度数是( )A.50°B.100°C.130°D.200°D DCBA(7) (8) (9) (10)8.如图8,A、B、C、D四个点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,相等的角有( )A.2对B.3对C.4对D.5对9.如图9,D 是AC 的中点,则图中与∠ABD 相等的角的个数是( ) A.4个 B.3个 C.2个 D.1个 10.如图10,∠AOB=100°,则∠A+∠B 等于( ) A.100° B.80° C.50° D.40°11.在半径为R 的圆中有一条长度为R 的弦,则该弦所对的圆周角的度数是( ) A.30° B.30°或150° C.60° D.60°或120°12.如图,A 、B 、C 三点都在⊙O 上,点D 是AB 延长线上一点,∠AOC=140°, ∠CBD 的度数是( ) A.40° B.50° C.70° D.110°1.同圆中两弦长分别为x 1和x 2它们所对的圆心角相等,那么( )A .x 1 >x 2B .x 1 <x 2 C. x 1 =x 2 D .不能确定2.下列说法正确的有( )①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③在同圆中,相等的弦所对的圆心角相等;④经过圆心的每一条直线都是圆的对称轴A .1个B .2个C .3个D .4个3.在⊙O 中同弦所对的圆周角( )A .相等B .互补C .相等或互补D .以上都不对4.如图所示,如果的⊙O 半径为2弦AB= AB 的距离OE 为( )A. 1 B .12D 5.如图所示,⊙O 的半径为5,弧AB 所对的圆心角为120°,则弦AB 的长为( )A .3B .2C . 8 D. 6.如图所示,正方形ABCD 内接于⊙O 中,P 是弧AD 上任意一点,则∠ABP+∠DCP 等于( ) A .90° B 。

完整版)圆心角圆周角练习题

完整版)圆心角圆周角练习题

完整版)圆心角圆周角练习题知识点三:弧、弦、圆心角与圆周角1.定义圆心角为顶点在圆心的角。

2.在同圆或等圆中,弧、弦、圆心角之间的关系:两个圆心角相等,圆心角所对的弧相等(无论是优弧还是劣弧),圆心角所对的弦相等。

3.一个角是圆周角必须满足两个条件:(1)角的顶点在圆上;(2)角的两边都与圆有除顶点外的交点。

4.同一条弧所对的圆周角有两个。

5.圆周角定理:圆周角等于圆心角的一半。

6.圆周角定理的推论:(1)同弦或等弦所对的圆周角相等;(2)半圆或直径所对的圆周角相等;(3)90°的圆周角所对的弦是直径。

需要注意的是,“同弦或等弦”改为“同弧或等弧”结论就不一定成立了,因为一条弦所对的圆周角有两类,它们是相等或互补关系。

7.圆内接四边形定义为所有顶点都在圆上的多边形,圆心即为这个圆内接四边形的交点。

圆内接四边形的对角线相互垂直,且交点为对角线的中点。

夯实基础1.如果两个圆心角相等,则它们所对的弧相等,选项B正确。

2.不正确的语句为③,因为圆不一定是轴对称图形,只有圆上的任何一条直径所在直线才是它的对称轴。

3.错误的说法是D,相等圆心角所对的弦不一定相等。

4.根据圆心角的性质,∠A=2∠B,所以∠A=140°。

5.∠BAC与∠BCD互补,∠BCD与∠CBD相等,所以与∠BAC相等的角有2个,即∠CBD和∠ABD。

6.因为∠CAB为30°,所以∠ABC为60°,由正弦定理可得BC=5√3.7.根据圆周角定理,∠ACB=40°。

8.设∠A=3x,∠B=4x,∠C=6x,则∠D=360°-3x-4x-6x=120°。

9.∠DCE=∠A。

1、如图,AB是⊙O的直径,C,D是BE上的三等分点,∠AOE=60°,求证∠COE=80°。

证明:由三等分点的性质可知,BC=CD=DE,又∠AOE=60°,所以∠AOC=120°。

圆的概念 弧、圆心角、圆周角、弦 知识点+例题+练习(分类全面)

圆的概念 弧、圆心角、圆周角、弦 知识点+例题+练习(分类全面)

例题
1:圆的性质应用
例 1 如图,CD 是⊙O 的直径,BE 是⊙O 的弦,DC、EB 的延长线相交于点 A.若∠A=25°, AB=OC,求∠EOD 的度数.
2:利用圆的性质进行证明
例1如图,⊙O 的半径OA、OB 分别交弦C D 于点E、F,且CE=DF.试说明∠OEF 与∠OFE 的关系.
例 2 如图,O为AB所在圆的圆心,已知OA⊥OB,M为弦AB的中点,且MC∥OB交AB于点C.求AC的度数.60
延长CM交OA于E,OE=1/2 OA=1/2 OC
3:圆的性质和矩形性质综合
例 1 如图,点 A、D、G、M 在半圆 O 上,四边形 ABOC、DEOF、HMNO 为矩形,设 BC=a,EF=b,NH=c.则下列各式正确的是( )
A.a>b>c B.a=b=c C.c>a>b D.b>c>a
4:点与圆的位置关系中分类讨论思想
例1若⊙O 所在平面上的一点P到⊙O 上的点的最大距离是10,最小距离是2,则此圆的半径为
5:利用圆的定义与直角三角形的性质综合进行证明
例1、已知:如图,BD、CE 是△ABC 的高,M 为B C 的中点,试说明点B、C、D、E 在以点M为圆心的同一个圆上.
例2、如图,在□ABCD 中,∠BAD 为钝角,且A E⊥BC,AF⊥CD. (1)求证:A、E、C、F 四点共圆;
(2)设线段B D 与(1)中的圆交于点M、N.求证:BM=ND.。

圆心角与圆周角的专题练习

圆心角与圆周角的专题练习

圆心角与圆周角练习题1圆周角是24°,则它所对的弧的度数是()A . 12°; B. 24°; C. 36°; D. 482.在O 0中,/ AOB=84,则弦AB所对的圆周角是()A. 42°;B. 138° ;C. 84°;D. 42° 或138° .3•如图,圆内接四边形ABCD的对角线AC, BD把四边形的四个角分成八个角,这八个角中相等的角的对数至少有()A. 1 对;B. 2 对;C. 3 对;D. 4 对.4. 如图,AC是O 0的直径,AB, CD是O 0的两条弦,且AB// CD.如果/ BAC=32 ,则/ AOD()A. 16°;B. 32°;C. 48° ;D. 64°.5. 直角三角形的斜边长是17,斜边上的高线长是120/17,求三角形外接圆半径长及各锐角的正切值.6 .如图,AD>^ ABC外接圆的直径,AD=6cm / DAC2 ABC求AC的长.7. 已知:△ DBC和等边△ ABC都内接于O O, BC=a / BCD=75 (如图).求BD的长.8. 如图,半圆的直径A B=13cm C是半圆上一点,CDL AB于D,并且CD=6cm求AD的长.、11. 如图,在O O中,F, G是直径AB上的两点,C, D,E是半圆上的三点,如果弧AC的度数为60°,弧BE的度数为20°,/ CFA=/ DFB / DGA2 EGB 求/ FDG的大小.12. 如图,O O的内接正方形ABCD边长为1, P为圆周上与A, B, C, D不重合的任意点.求PA2+ PB2+ PC2+ PD2 的值.13. 如图,在梯形ABCD中, AD// BC, / BAD=135,以A为圆心,AB为半径作O A交AD, BC于E,F两点,并交BA延长线于G求弧BF的度数.9. 如图,圆内接厶10. 已知:如图,AD平分/ BAC DE// AC,且AB=a 求DE的长.14 .如图,O O的半径为R,弦AB=a,弦BC// OA求AC的长.15.如图,在△ ABC 中,/ BAG / ABC / BCA 的平分线交△ ABC 的外接圆于 D, E 和F ,如果DE , 值.17.如图,等腰三角形 ABC 的顶角为50°, AB=AC 以AB 为直径作圆交 BC 于点D,交AC 于点E , 求弧BD,弧DE 弧AE 的度数.19. 如图,△ ABC 中,Z B=60° , AC=3cm O 0为厶ABC 的外接圆.求O O 的半径.20. 以△ ABC 的 BC 边为直径的半圆,交 AB 于D,交AC 于E , EF 丄BC 于F , AB=8cm AE=2cm BF : FC=5: 1 (如图).求CE 的长. 21•已知等腰三角形的腰长为 13cm 底边长为10cm 求它的外接圆半径.22. 如图,△ ABC 中,AD 是Z BAC 的平分线,延长 AD 交厶ABC 的外接圆于 E,已知 AB=a, BD=b, BE=c .求 AE 的长.23. 如图,△ ABC 中,AD 是Z BAC 的平分线,延长 AD 交△ ABC 的外接圆于 E ,已知AB=6cm BD=2cm BE=2. 4cm.求 DE 的长.24. 如图,梯形 ABCD 内接于O O, AB// CD -左 的度数为60°, Z B=105°, O O 的半径为6cm.求 BC 的长.25. 已知:如图, AB 是O O 的直径,AB=4cm E 为OB 的中点,弦 CDL AB 于E .求CD 的长. 26. 如图,AB 为O O 的直径,E 为OB 的中点,CD 为过E 点并垂直AB 的弦.求Z ACE 的度数. 27. 已知:如图,在△ ABC 中,Z C=90°,Z A=38°,以C 为圆心,BC 为半径作圆,交 AB 于D, 求二L 的度数.:分别为m °, n,卩°,求厶ABC 的三个内角.16.如图,在O O 中, BC DF 为直径,A , E 为O O 上的点, AB=AC EF=2 DF.求/ ABD+Z CBE 的BD 的长. CDL BD 于 D.求28. 如图,△ ABC内接于圆0, AD为BC边上的高.若AB=4cm AC=3cm AD=2 5cm,求O O的半径.29. 设O 0的半径为1,直径AB丄直径CD E是OB的中点,弦CF过E点(如图),求EF的长.30. 如图,在O O中直径AB, CD互相垂直,弦CH交AB于K,且AB=10cm CH=8cm求BK: AK的值.31.如图,O O的半径为40cm, CD是弦,A为「的中点,弦AB交CD于 F.若AF=20cm BF=40cm 求O点到弦CD的弦心距.BC33. 如图,已知△ ABC内接于半径为R 的O O, A为锐角.求证:sin A =2R34. 已知:如图,在△ ABC中,AD, BD分别平分/ BAC和/ ABC延长人。

新人教版九年级上学期数学圆弦、弧、圆心角、圆周角习题课

新人教版九年级上学期数学圆弦、弧、圆心角、圆周角习题课

【解答】(1)∵∠ABC=70°,∴∠AOC=2∠ABC=2×70°=140°,故选 A.
(2)如图,作 OE⊥AB 于 E,则 OE 平分 AB,即 AE=BE.
∵∠AOB=120°,∴∠AOE=60°,∴AE=OA·sin60°= 3.
∴AB=2AE=2 3,故选 B.
(3)当两条平行弦在圆心同侧时,AB、CD 之间的距离为 7 cm,当两条平行弦在圆心异侧
2020/12/19
A P
. O
C
B
D
17
2.已知AB为⊙O的直径,半径OC⊥AB,E为OB上一点, 弦AD⊥CE交OC于点F,猜想OE与OF的数量关系,并 说明你的理由.
2020/12/19
18
3.已知AB是⊙O的直径,M、N分别是AO和BO的中点, CM⊥AB,DN⊥AB,则弧AC和弧BD有什么关系?为什么?
本题考查了垂径定理及圆周角定理,解答本题的关键 是熟练掌握垂径定理、圆周角定理的内容
根据垂径定理可判断A、B, 根据圆周角定理可判断D,继而可得出答案.
2、(2013•苏州)如图,AB是半圆的直径,点D是AC的中点,
∠ABC=50°,则∠DAB等于( )
C
A 55° B 60 ° C 65° D 70°
(1)你的结论用文字表述为(不准出现字母和数学符号) _______________________________________
__________________; (2)证明你的结论.
圆外角的度数等于它所夹的两段弧----大弧与小弧的度数差的一半.
2020/12/19
12
(1)(2010·重庆)如图,△ABC 是⊙O 的内接三角形,若∠ABC=70°,则∠AOC 的

2021-2022学年人教版九年级数学上册第24章《弧、弦、圆心角、圆周角》

2021-2022学年人教版九年级数学上册第24章《弧、弦、圆心角、圆周角》

学科教师辅导教案弧、弦、圆心角、圆周角--知识讲解(基础)【学习目标】1.了解圆心角、圆周角的概念;2.理解圆周角定理及其推论,能灵活运用圆周角的定理及其推理解决有关问题;3.掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、弧、弦、圆心角的关系1.圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.要点二、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。

*如果它们中间有一组量不相等,那么其它各组量也分别不等。

圆心角与弧弦的关系专项练习60题(有答案)ok

圆心角与弧弦的关系专项练习60题(有答案)ok

圆心角与弧弦的关系专项练习60题(有答案)1.如图,在⊙O中,弦AB、CD于点E,且.求证:AE=DE.2.如图,AB是⊙O的直径,点C、D在圆上,且=.(1)求证:AC∥OD.(2)若∠AOD=110°,求的度数.3.如图,在⊙O中,AB=CD,求证:AC∥DB.4.如图,在⊙O中,,试比较AB与CD的长度,并证明你的结论.5.已知:如图,AB、CD是⊙O的两条弦,AB=CD.求证:∠OBA=∠ODC.6.如图,在⊙O中,与相等,OD⊥BC,OE⊥AC,垂足分别为D、E,且OD=OE,那么△ABC是什么三角形,为什么?7.如图,在⊙O中,弦AB与弦CD相交于点E,且AB=CD.求证:BE=DE.8.如图,已知在⊙O中,∠ABD=∠CDB.(1)求证:AB=CD;(2)顺次连接ACBD四点,猜想得到的四边形是哪种特殊的四边形?并证明你的猜想.9.如图,在⊙O中,AD=BC.(1)比较与的长度,并证明你的结论;(2)求证:DE=BE.10.如图,点A、B、C、D在⊙O上,AB与OC、OD分别相交于E、F,AE=BF,说明AC=BD的理由.11.已知:⊙O中,OB、OC是半径,DF⊥OC于F,AE⊥OB于E,若AB=CD,求证:AE=DF.12.如图,⊙O中,弦AB=CD.求证:∠AOC=∠BOD.13.如图四边形ABCD是⊙O的内接四边形,AB是⊙O的直径,若再增加一个条件,就可使四边形ABCD成为等腰梯形,你所增加的条件是(只写出一个条件,图中不再增加其他的字母和线段.(给出证明)14.如图,D、E分别为⊙O半径OA、OB的中点,C是的中点,CD与CE相等吗?为什么?15.如图,平行四边形ABCD中,以A为圆心,AB为半径的圆分别交AD、BC于F、G,延长BA交圆于E.求证:=.16.如图,C是的中点,D、E分别是半径OA、OB上的点,且AD=BE.求证:∠CDO=∠CEO.17.如图,半径为2的⊙O内有互相垂直的两条弦AB、CD相交于P点.(1)求证:PA•PB=PC•PD;(2)若AB=8,CD=6,求OP的长.18.如图,M为⊙O上一点,弧MA=弧MB,MD⊥OA于D,ME⊥OB于E,求证:MD=ME.19.如图,OA、OB、OC都是⊙O的半径,∠AOB=2∠BOC.探索∠ACB与∠BAC之间的数量关系,并说明理由.20.如图,C是劣弧AB的中点,过点C分别作CD⊥OA,CE⊥OB,D、E分别是垂足,试判断CD、CE的大小关系,并证明你的结论.21.如图,Rt△ABC中,∠BAC=90°,CD是∠ACB的平分线,过A,C,D三点的圆与斜边BC交于点E,连接DE.(1)求证:AC=EC;(2)若AC=,△ACD外接圆的半径为1,求△ABC的面积.22.如图,已知∠APC=30°,的度数为30°,求和∠AEC的度数.23.如图,AD,BC是⊙O的两条弦,且AD=BC,求证:AB=CD.24.如图所示,M、N分别是⊙O的弦AB、CD的中点,AB=CD.求证:∠AMN=∠CNM.25.如图,⊙O中,C为的中点,CD⊥OA,CE⊥OB,求证:AD=BE.26.AB、CD为⊙O内两条相交的弦,交点为E,且AB=CD.则以下结论中:①AE=EC、②AD=BC、③BE=EC、④AD∥BC,正确的有_________.试证明你的结论.27.如图,,C、D分别是半径OA、OB的中点,连接PC、PD交弦AB于E、F两点.求证:(1)PC=PD;(2)PE=PF.28.已知:如图,在⊙O中,弦AD=BC.求证:AB=CD.29.如图,D、E分别是⊙O的半径OA、OB的中点,点C是的中点.求证:CD=CE.30.如图,⊙O中两条不平行弦AB和CD的中点M,N.且AB=CD,求证:∠AMN=∠CNM.31.如图,AB,CD是⊙O的两条直径,过点A作AE∥CD交⊙O于点E,连接BD,DE,求证:BD=DE.32.已知:如图,A、B、C、D是⊙O上的点,∠1=∠2,AC=3cm.(1)求证:=;(2)求BD的长.33.如图,点A、B、C、D是直径为AB的⊙O上四个点,C是劣弧BD的中点,AC交BD于点E,AE=2,EC=1.(1)求证:△DEC∽△ADC;(2)试探究四边形ABCD是否是梯形?若是,请你给予证明并求出它的面积;若不是,请说明理由.34.已知:如图,AB是⊙O的直径,弦AD∥OC.求证:.35.如图,⊙O中,=,∠C=75°,求∠A的度数.36.如图,已知AB、CD为⊙O的两条弦,,求证:AB=CD.37.⊙O的一条弦AB分圆周长为3:7两部分,若圆的半径为4cm,试求:(1)优弧的长;(2)弦所对的圆周角的度数.38.如图⊙O中,AB、CD是两条直径,弦CE∥AB,弧EC的度数是40°,求∠BOD的度数.39.已知:如图,在⊙O中,弦AB和CD相交,连接AC、BD,且AC=BD.求证:AB=CD.40.已知如图所示,A,B,C是⊙O上三点,∠AOB=120°,C是的中点,试判断四边形OACB形状,并说明理由.41.如图,半径为2的半圆O中有两条相等的弦AC与BD相交于点P.(1)求证:PO⊥AB;(2)若BC=1,求PO的长.42.如图所示,在⊙O中,AB与CD是相交的两弦,且AB=CD,求证:.43.如图所示,以平行四边形ABCD的顶点A为圆心,AB为半径作圆,作AD,BC于E,F,延长BA交⊙A于G,求证:.44.如图在⊙O中,AC=BC,OD=OE,求证:∠ACD=∠BCE.45.如图,AB是⊙O的直径,E是⊙O上的一点,的度数为40°,过点O作OC∥BE交⊙O于点C,求∠BCO 的度数.46.如图,A、B、C都是⊙O上的点,,CD⊥OA于D,CE⊥OB于E.求证:OD=OE.47.如图,在⊙O是中A、B、C、D在圆上,AD=BC.求证:BD=AC.48.如图,⊙O中,AB是直径,半径CO⊥AB,D是CO的中点,DE∥AB,求证:=2.49.如图所示,已知F是以O为圆心,BC为直径的半圆上任一点,A是弧BF的中点,AD⊥BC于点D,求证:AD=BF.50.如图,AB、AC、BC都是⊙O的弦,∠CAB=∠CBA,∠COB与∠COA相等吗?为什么?51.如图所示,⊙O中弦AB=CD,求证:.52.已知:如图,⊙O中弦AB=CD.求证:.53.如图所示,已知在⊙O中,半径OC垂直弦AB于D,证明:AC=BC.54.已知图所示,AB是半圆O的直径,,AB=4cm,求四边形ABCD的面积.55.如图所示,以等边三角形ABC的边BC为直径作⊙O交AB于D,交AC于E,判断,,之间的大小关系,并说明理由.56.已知:如图,在△ABC中,∠ACB=90°,∠B=25°,以点C为圆心、AC为半径作⊙C,交AB于点D,求的度数.57.已知如图所示,P为直径AB上一点,EF,CD为过点P的两条弦,且∠DPB=∠EPB;(1)求证:;(2)求证:CE=DF.58.如图,在⊙O中弦AB⊥CD于点E,过E作AC的垂线交BD于点Q,P为垂足,求证Q为BD的中点.59.如图所示,⊙O在△ABC三边截得的弦长相等,∠A=70°,求∠BOC.60.如图,AB为⊙O的直径,弦CD与AB的延长线交于点P,且DP=OB,若∠P=29°,求弧AC的度数.参考答案:1.方法一:连接AD,∵=∴AC=BD,∴∠BAD=∠CDA,∴AE=BE.方法二:∵=,∴﹣=﹣,=,∴AC=BD在△ACE与△DBE中,∵,∴△ACE≌△DBE(ASA),∴AE=DE.2.(1)证明:如图,连接AD.∵=,∴=2∴∠CAB=2∠DAB.又∵∠DOB=2∠DAB,∴∠CAB=∠DOB,∴AC∥OD;(2)解:如图,连接OC.∵∠AOD=110°,∴∠DOB=70°.又∵=,∴∠COD=∠DOB=70°,∴∠AOC=∠AOD﹣∠COD=110°﹣70°=40°,∴=40°.3.∵在⊙O中,AB=CD,∴=,∴﹣=﹣,即=,∴∠ACD=∠BDC,∴AC∥DB(内错角相等,两直线平行).4.AB=CD.理由如下:∵,∴+=+,即=,∴AB=CD.5.过点O分别作OE⊥AB于点E,OF⊥CD于点F.∵AB=CD,∴OE=OF.又∵BO=DO,∴Rt△BOE≌Rt△DOF(HL),∴∠OBA=∠ODC.6.△ABC为等边三角形.理由如下:连OC,∵=,∴AB=BC,∵OD⊥BC,OE⊥AC,∴CE=AC,CD=BC,∠ODC=∠OEC=90°∵在Rt△ODC和Rt△OEC中,,∴Rt△ODC≌Rt△OEC(HL)∴CD=CE,∴BC=AC,∴AB=AC=CB,∴△ABC为等边三角形.7.先连接BC、AD,∵AB=CD,∴=,∵=,∴BC=AD,在△BEC与△DEA中,∵,∴△BEC≌△DEA(ASA),∴BE=DE.8.(1)证明:∵∠ABD=∠CDB,∴弧AD=弧BC,∴弧AD+弧AC=弧BC+弧AC,∴弧AB=弧CD,∴AB=CD;(2)四边形ACBD是等腰梯形.理由如下:如图,连AC,CB,AD,∵弧AD=弧BC,∴AD=CB,∠1=∠2,∴AC∥BD,且AC≠BD,∴四边形ACBD是等腰梯形.9.(1)∵AD=BC,∴=,∴=;(2)∵=,∴AB=CD,在△ADE与△CBE中,∵∠DAB=∠BCD,AD=BC,∠ADC=∠ABC,∴△ADE≌△CBE,∴DE=BE,∵AB=CD,∴DE=BE10.∵OA=OB(同圆的半径相等),∴∠A=∠B(等角对等边).在△AOE和△BOF 中,,∴△AOE≌△BOF(SAS)…(1分)∴∠AOC=∠BOD(全等三角形对应角相等).∴AC=BD(同圆中,相等的圆心角所对的弧相等).11.连接OA、OD,∵AB=CD,∴∠AOB=∠COD,∵AE⊥OB,DF⊥OC,∴∠OEA=∠OFD=90°,又∵OA=OD,∴△AOE≌△DOF,∴AE=DF.12.∵弦AB=CD(已知),∴=;∴∠AOB=∠COD,∴∠AOB﹣∠BOC=∠COD﹣∠BOC,即∠AOC=∠BOD.13.添加的条件为=;证明:∵四边形ABCD是圆的内接四边形,∴∠A+∠C=180°;∵=,∴=;∴∠A=∠B;∴∠B+∠C=180°;∴AB∥CD;∵,∴AD=BC;又∵AB>CD,∴四边形ABCD是等腰梯形.14.CD=CE,理由如下:(1分)连接OC,∵D、E分别为⊙O半径OA、OB的中点,∴OD=,,∵OA=OB,∴OD=OE,(2分)∵C 是的中点,∴,∴∠AOC=∠BOC,(4分)∴△DCO≌△ECO,(5分)∴CD=CE.(6分)故答案为:CD=CE.15.连接AG.∵A为圆心,∴AB=AG,∴∠ABG=∠AGB,(2分)∵四边形ABCD为平行四边形,∴AD∥BC,∠AGB=∠DAG,∠EAD=∠ABG,(4分)∴∠DAG=∠EAD,(5分)∴=.(6分)16.连接OC,∵OA=OB,又∵AD=BE,∴OD=OE,又∵∠AOC=∠BOC,∴OC=OC,∴△DOC≌△EOC(AAS).∴∠CDO=∠CEO.17.(1)连接AD,BC,∵∠A、∠C所对的圆弧相同,∴∠A=∠C,∴Rt△APD∽Rt△CPB,∴,∴PA•PB=PC•PD;(2)作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,由垂径定理得:OM2=(2)2﹣42=4,ON2=(2)2﹣32=11,∵弦AB、CD互相垂直,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∴OP=.18.连接MO(1分)∵∴∠MOD=∠MOE(4分)又∵MD⊥OA于D,ME⊥OB于E∴MD=ME(7分)19.∠ACB=2∠BAC.证明:∵∠ACB=∠AOB,∠BAC=∠BOC;又∵∠AOB=2∠BOC,∴∠ACB=2∠BAC.20.CD=CE…(1分)理由:连接CO.∵C是弧AB 的中点,∴=,∴∠COD=∠COE…(2分),∵CD⊥AO、CE⊥BO,∴∠CDO=∠CEO=90°…(3分),又∵CO=CO…(4分),∴△COD≌△COE…(5分),∴CD=CE…(6分).21.(1)证明:∵∠BAC=90°,∴∠DEC=∠BAC=90°,又∵CD是∠ACB的平分线,∴∠ACD=∠ECD.∴∠ADC=∠EDC.∴.∴AC=EC.(2)解:∵∠BAC=90°,CD=2,AC=,∴AD=1.∴∠ACD=∠ECD=30°,∴∠ACB=60°.在Rt△ABC中,AB=AC•tan60°=3,又∵AC=,∴S△ABC =×3×=22.连接AC,∵=30°,∴∠1=∠2==15°,∵∠APC=30°,∠ADC是△APD的外角,∴∠ADC=∠1+∠APC=15°+30°=45°,∴=2ADC=90°;∵∠AEC是△CDE的外角,∴∠AEC=∠ADC+∠2=45°+15°=60°.故答案为:90°,60°.23.:∵AD=BC,∴弧AD=弧BC,∴弧AD+弧BD=弧BC+弧BD,即弧AB=弧CD.∴AB=CD24.连接OM、ON,∵O为圆心,M、N分别为弦AB、CD的中点,∴OM⊥AB,ON⊥CD.∵AB=CD,∴OM=ON.∴∠OMN=∠ONM.∵∠AMN=90°﹣∠OMN,∵∠CNM=90°﹣∠ONM,∴∠AMN=∠CNM.25.∵点C是的中点,∴∠AOC=∠BOC;∵CD⊥OA,CE⊥OB,∴∠ODC=∠OEC,又∵OC=OC,∴△COD≌△COE(AAS).∴OD=OE,∵OA=OB,∴AD=BE.26.③BE=EC、④AD∥BC;∵AB=CD,∴弧AB=弧CD.∴弧AB﹣弧AD=弧CD﹣弧AD.即弧AC=弧BD.∴∠B=∠C.∴BE=EC.故③正确.由弧AC=弧BD得∠A=∠B,∴AD∥BC.故④正确.27.(1)连接PO,∵,∴∠POC=∠POD.∵C、D分别是半径OA、OB的中点,∴OC=OD.∵PO=PO,∴△PCO≌△PDO.∴PC=PD.(2)∵△PCO≌△PDO,∴∠PCO=∠PDO.∵OA=OB,∴∠A=∠B.∴∠AEC=∠BFD.∴∠PEF=∠PFE.∴PE=PF.28.∵AD=BC,∴.∴.∴.∴AB=CD.29.∵点C 是的中点,∴∠AOC=∠BOC;∵D、E分别是⊙O的半径OA、OB的中点,∴OD=OE=OA;又∵OC=OC,∴△COD≌△COE(SAS).∴CD=CE.30.连OM,ON,如图,∵M,N分别为AB,CD的中点,∴OM⊥AB,ON⊥CD,∴∠AMO=∠CNO=90°,∵AB=CD,∴OM=ON,∴∠OMN=∠ONM,∴∠AMN=∠CNM.31.连接OE,如图,∵OA=OE,∴∠A=∠OEA,∵AE∥CD,∴∠BOD=∠A,∠DOE=∠OEA,∴∠BOD=∠DOE,∴BD=DE.32.(1)证明:∵∠1=∠2,∴=,∴+=+,∴=;(2)解:∵=,∴AC=BD,而AC=3cm,∴BD=3cm.33.(1)∵C为劣弧BD的中点,∴=,∴∠DAC=∠BAC,又∠DAC和∠BDC 对的弧都为,∴∠DAC=∠BDC.∴∠BAC=∠BDC,又∠DCA=∠DCA,∴△DEC∽△ADC.(2)由(1)知,△DEC∽△ADC,∴EC:DC=DC:AC.∴DC2=3,DC==BC.∵AB是直径,∴∠ACB=90°.在Rt△BCE中,CE=1,BC=,∴BE=2,∴∠CBE=30°,∴∠BAC=∠DAC=30°.∴劣弧BD的度数为2×2×30°=120°,劣弧AD的度数为60°.即∠DCA=30°=∠CAB.∴CD∥AB,且CD≠AB.∴四边形ABCD是上底为DC,下底为AB,高为直角三角形斜边AB边上的高的梯形.∵AC=AE+EC=3,BC=,根据勾股定理得AB=2,则∠CAB=30°,∴直角三角形斜边AB 边上的高为,∴S梯形ABCD ==.34.连接AC、OD.∵AD∥OC(已知),∴∠DAB=∠COB(两直线平行,同位角相等);又∵∠CAB=∠COB(同弧所对的圆周角是所对的圆心角的一半),∴∠DAB=∠CAB(等量代换),∵∠DAC=∠CAB,∠DAC=∠DOC(同弧所对的圆周角是所对的圆心角的一半),∴∠DOC=∠COB(等量代换)∴.35.∵⊙O 中,=,∠C=75°,∴∠B=∠C=75°,∴∠A=180°﹣75°×2=30°36.∵,∴,即:,∴AB=CD.37.(1)弦AB分圆周长为3:7两部分,则分圆心角也为3:7两部分.故优弧的圆心角为360×∴优弧AB==cm;(3分)(2)弦AB所对圆周角也被分成了3:7两部分.弦AB所对圆周角的度数为180°.故分别为54°或126°.38.连接DE,∵DC是圆的直径,∴∠DEC=90°.∵弧EC的度数是40°,∴∠EDC=40°.∴∠ECD=50°.∵CE∥AB,∴∠AOD=∠ECD=50°.∴∠BOD=130°39.∵AC=BD,∴.∴.∴AB=CD.40.AOBC是菱形.证明:连OC∵C 是的中点∴∠AOC=∠BOC=×120°=60°∵CO=BO(⊙O的半径),∴△OBC是等边三角形∴OB=BC同理△OCA是等边三角形∴OA=AC又∵OA=OB∴OA=AC=BC=BO∴AOBC是菱形.41.(1)证明:连接AD.∵AB是直径,∴∠ACB=∠ADB=90°.∵AC=BD,AB=BA,∴△ABC≌△ABD.∴∠BAC=∠ABD,从而PA=PB.∵O是AB中点,∴PO⊥AB;(4分)(2)解:∵∠AOP=∠ACB=90°,∠OAP=∠CAB,∴△AOP∽△ACB.∴.∵AB=4,BC=1,∴AC==.∴OP==.42.在⊙O中,∵AB=CD,∴.∴.∴.43.连接AF,∵AB=AF,∴∠ABF=∠AFB.∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAF=∠AFB,∠GAE=∠ABF.∴∠GAE=∠EAF.∴.44.连接OC,∵AC=BC,∴∠AOC=∠BOC,∵在△AOC和△BOC中,,∴△AOC≌△BOC(SAS),∴∠A=∠B,∵OD=OE,∴AD=BE,∵在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴∠ACD=∠BCE.45.连接OE,∵的度数为40°,∴∠BOE=40°,∵OB=OE,∴∠OBE=∠OEB=(180°﹣40°)÷2=70°,∵OC∥BE,∴∠C=∠1,∵CO=BO,∴∠2=∠C,∴∠1=∠2,∴∠BCO=∠1=∠OBE=35°46.∵,∴∠AOC=∠BOC,又∵CD⊥OA,CE⊥OB,∴∠CDO=∠CEO=90°,在△ODC和△OEC中,,∴△ODC≌△OEC(AAS),∴OD=OE.47.∵AD=BC,∴=,∴+=+,∴=,∴BD=AC.48.连接OE,∵AB⊥OC,DE∥AB,∴DE⊥OC,∴∠EDO=90°,∵D为OC中点,∴OD=OC=OE,∴∠DEO=30°,∴∠EOC=90°﹣30°=60°,∵OC⊥AB,∴∠AOC=90°,∴∠AOE=90°﹣60°=30°,即∠AOE=30°,∠COE=60°,∴=2(圆心角的度数等于它所对的弧的度数).49.连接OA,交BF于点E,∵A是弧BF的中点,O为圆心,∴OA⊥BF,∴BE=BF,∵AD⊥BC于点D,∴∠ADO=∠BEO=90°,在△OAD与△OBE 中,,∴△OAD≌△OBE(AAS),∴AD=BE,∴AD=BF.50.∠COB=∠COA,理由是:∵∠CAB=∠CBA,∴AC=BC,∴弧AC=弧BC,∴∠COB=∠COA.51.连接AD,BD,CB,∵AB=CD,∴=,∴=,∴AD=BC.52.∵AB=CD,∴,∴﹣=﹣,∴.53.∵OC⊥AB,∴(垂径定理).∴AC=BC(同圆中相等的弧所对的弦相等)54.∵,∴都为60°.连接DO,CO,∴∠AOD=∠DOC=∠BOC=60°.∴△AOD≌△DOC≌△COB.∴S△AOD =AO•ODsin60°=×22=.∴四边形ABCD面积为3.55.相等.如右图所示,连接OD,OE,∵OB=OD=OE=OC,∠B=∠C=60°∴△BOD与△COE都是等边三角形∴∠BOD=∠COE=60°∠DOE=180°﹣∠BOD﹣∠COE=60°∴∠DOE=∠BOD=∠COE∴56.解法一:(用垂径定理求)如图,过点C作CE⊥AB于点E ,交于点F,∴,又∵∠ACB=90°,∠B=25°,∴∠FCA=25°,∴的度数为25°,∴的度数为50°;解法二:(用圆周角求)如图,延长AC交⊙C于点E,连接ED,∵AE是直径,∴∠ADE=90°,∵∠ACB=90°,∠B=25°,∴∠E=∠B=25°,∴的度数为50°;解法三:(用圆心角求)如图,连接CD,∵∠ACB=90°,∠B=25°,∴∠A=65°,∵CA=CD,∴∠ADC=∠A=65°,∴∠ACD=50°,∴的度数为50°.圆心角与弧弦的关系--21 57.(1)作ON ⊥EF ,OM ⊥CD ,∵∠DPB=∠EPB ;∴ON=OM ,∴CD=EF , ∴=,﹣=﹣, 即.;; (2)证明:∵∴CE=DF .58.∵AB ⊥CD 于点E ,过E 作AC 的垂线交BD 于点Q ,∴三角形ACE 、三角形PCE 、三角形APE 、三角形BED 都是直角三角形.∴∠DEQ=∠CEP (对顶角相等).∠CEP=∠A (同角的余角相等).又∵∠A=∠D (同弧所对的圆周角相等),∴∠DEQ=∠D ,∴EQ=QD (等角对等边). 又∵∠QEB=∠B (等角的余角相等),∴EQ=QB .∴EQ=QD=QB ,即Q 为BD 的中点.59.过O 作OM ⊥AB ,ON ⊥AC ,OP ⊥BC ,垂足分别为M ,N ,P ,∵DE=FG=HI∴OM=OP=ON∴O 是∠B ,∠C 平分线的交点∵∠A=70°,∴∠B+∠C=180°﹣∠A=110°,又∵O 是∠B ,∠C 平分线的交点,∴∠BOC=180°﹣(∠B+∠C )=180°﹣×110°=125°60.作直径DE .∵OB=OD ,OB=PD ,∴DO=DP ,∵∠P=29°,∴∠DOP=∠DOP=29°=∠AOE ,∴弧AE 的度数是29°,∠CDE=∠P+∠DOP=58°, ∴弧CAE 的度数是2×58°=116°,∴弧AC 的度数是116°﹣29°=87°.。

垂径定理、弦、弧、圆心角、圆周角练习

垂径定理、弦、弧、圆心角、圆周角练习

CEOA D B600B九年垂径定理、弦、弧、圆心角、弦心距练习 姓名:1. 已知:AB 交圆O 于C 、D ,且AC =BD. 求证:OA =OB2. 如图所示,是一个直径为650mm 的圆柱形输油管的横截面,若油面宽AB=600mm ,求油面的最大深度。

3.. 如图所示,在⊙O 中,AB 、AC 为互相垂直且相等的两条弦,OD ⊥AB ,OE ⊥AC ,垂足分别为D 、E ,求证:四边形OEAD 为正方形。

4.如图所示,已知AB 为圆O 的直径,AC 为弦,OD ∥BC 交AC 于D ,OD=cm 2,求BC 的长;5.本市新建的滴水湖是圆形人工湖.为测量该湖的半径,小杰和小丽沿湖边选取A ,B ,C 三根木柱,使得A ,B 之间的距离与A ,C 之间的距离相等,并测得BC 长为240米,A 到BC 的距离为5米,如图所示.请你帮他们求出滴水湖的半径.6.如图,用一块直径为a的圆桌布平铺在对角线长为a的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x为()A.)1aD.(2a7.如图,O的半径为5,弦AB的长为8,点M在线段AB(包括端点A B,)上移动,则OM的取值范围是()A.35OM≤≤B.35OM<≤C.4OM≤58.如图,已知O的半径为5mm,弦8mmAB=,则圆心O到AB的距离是()A.1mm B.2mm C.3mm D.4mm9.如图,底面半径为5dm的圆柱形油桶横放在水平地面上,向桶内加油后,量得长方形油面的宽度为8dm,则油的深度(指油的最深处即油面到水平地面的距离)为()A.2dmB.3dmC.2dm或3dmD.2dm或8dm10.如图,已知在O中,直径10MN=,正方形ABCD的四个顶点分别在半径OM,OP以及O上,并且45POM=∠,则AB的长为.11.如图,在半径为2的O中,弦AB的长为_______AOB=∠12.在O中,弦CD与直径AB相交于点P,夹角为30 ,且分直径为1:5两部分,6AB=厘米,则弦CD的长为()厘米.A.B.C.D.13.如图,在O中,AB是弦,OC AB⊥,垂足为C,若16AB=,6OC=,则O的半径OA等于()A.16B.12C.10D.814. 如图所示,破残的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D。

圆、垂直径定理、弦、弧、圆心角、圆周角练习题

圆、垂直径定理、弦、弧、圆心角、圆周角练习题

CE DOF圆、垂直径定理、弦、弧、圆心角、圆周角练习题1、如图,如果AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下列结论中,•错误的是( ) A 、CE=DE B 、BC BD = C 、∠BAC=∠BAD D 、AC >AD2、如图,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( ) A 、4 B 、6 C 、7 D 、83、某居民小区一处圆形下水管道破裂,维修人员准备更换一段新管道,如图所示,污水水面宽度为60cm ,水面到管道顶部距离为10cm ,则修理人员应准备_________cm 内径的管道(内径指内部直径).4、如图,将半径为4cm 的圆折叠后,圆弧恰好经过圆心,则折痕的长为( ) A 、43cm B 、23cm C 、3cm D 、2cm5、如图,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,•则下列结论中不正确的是( ) A 、AB ⊥CD B 、∠AOB=4∠ACD C 、AD BD = D 、PO=PD6、如图,在⊙O 中,弦AB 的长为8cm ,圆心O 到AB 的距离为3cm.求:⊙O 的半径.7、如图,圆柱形水管内原有积水的水平面宽CD=20cm ,水深GF=2cm.若水面上升2cm (EG=2cm ),则此时水面宽AB 为多少?8、如图,一条公路的转弯处是一段圆弦(即图中CD ,点O 是CD 的圆心,•其中CD=600m ,E 为CD 上一点,且OE ⊥CD ,垂足为F ,EF=90m ,求这段弯路的半径.9、如图,⊙O 直径AB 和弦CD 相交于点E ,AE=2,EB=6,∠DEB=30°,求弦CD 长.10、有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=•60m ,水面到拱顶距离CD=18m ,当洪水泛滥时,水面宽MN=32m 时是否需要采取紧急措施?请说明理由.(当水面距拱顶3米以内时需要采取紧急措施)B AC E DO B A OM A BO BA CDP O BA CE DOE DC FO BA G1.下列说法中,正确的是( )A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等2.如图,同心圆中,大圆的弦AB 交小圆于C 、D ,已知AB=4,CD=2,AB 的弦心距等于1,那么两个同心圆的半径之比为( )A.3∶2B.5∶2C.5∶2D.5∶43.半径为R 的⊙O 中,弦AB=2R ,弦CD=R ,若两弦的弦心距分别为OE 、OF ,则OE ∶OF 等于( )A.2∶1B.3∶2C.2∶3D.0 4.一条弦把圆分成1∶3两部分,则弦所对的圆心角为_____________.5.弦心距是弦的一半时,弦与直径的比是____________,弦所对的圆心角是____________.6. 如图,AB 为⊙O 直径,E 是BC 中点,OE 交BC 于点D ,BD=3,AB=10,则AC=_____.7. 如图,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=________. 8.如图,BD 是⊙O 的直径,圆周角∠A = 30︒,则∠CBD 的度数是( ) A .30︒ B .45︒ C .60︒ D .80︒9如图,AB 为⊙O 的直径,C 、D 是⊙O 上的两点,∠BAC =30º,AD =CD ,则∠DAC 的度数是( ) A .30º B .60º C .45º D .75º10.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该 半圆的半径为( ) A .(45)+ cm B .9 cm C .45cm D .62cm3.如图,已知以点O 为公共圆心的两个同心圆,大圆的弦AB 交小圆于C 、D.(1)求证:AC=DB ;(2)如果AB=6 cm ,CD=4 cm ,求圆环的面积.4.如图所示,AB 是⊙O 的弦(非直径),C 、D 是AB 上的两点,并且AC=BD. 求证:OC=OD.5.如图,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6 cm ,EB=2 cm ,∠CEA=30°,求CD 的长.O B ACE D B A C E DO O 30︒D B C AO D CBA6.如图所示,AB 是⊙O 的一条弦,OD AB ⊥,垂足为C ,交⊙O 于点D ,点E 在⊙O 上。

人教数学九年级上册-圆周角巩固篇人教版

人教数学九年级上册-圆周角巩固篇人教版

专题24.12 圆周角(巩固篇)(专项练习)一、单选题1.下列说法正确的是( )A .等弧所对的圆周角相等B .平分弦的直径垂直于弦C .相等的圆心角所对的弧相等D .过弦的中点的直线必过圆心2.如图,四边形ABCD 的顶点A ,B ,C 在圆上,且边CD 与该圆交于点E ,AC ,BE 交于点F.下列角中,弧AE 所对的圆周角是( )A .∠ADEB .∠AFEC .∠ABED .∠ABC3.如图,菱形OABC 的顶点A 、B 、C 在圆O 上,且,若点P 是圆周上60OAB ∠=︒任意一点且不与A 、B 、C 重合,则∠APC 的度数为( )A .60°B .120°C .60°或120°D .30°或150°4.如图,内接于,AD 是的直径,若,则的度数是ABC A O A O A 20B ∠=︒CAD ∠( )A .60°B .65°C .70°D .75°5.如图,是的外接圆,,于点D ,O A ABC A 60B ∠=︒OD AC ⊥OD =的直径为( )O AA .B .8C .D .126.是的外接圆,若长等于半径,则的度数为( )O A ABC A BC A ∠A .B .C .或D .或60︒120︒30°150︒60︒30°7.如图,四边形ABCD 的外接圆为⊙O ,BC =CD ,∠DAC =36°,∠ACD =44°,则∠ADB 的度数为( )A .55°B .64°C .65°D .70°8.如图,C ,D 是上直径AB 两侧的两点,若,则的度数是O A 20ABC ∠=︒BDC ∠( )A .50°B .60°C .80°D .70°9.已知锐角,如图,AOB ∠(1)在射线上取一点,以点为圆心,长为半径作弧,交射线于点OA C O OC PQ OB ,连接;D CD(2)分别以点,为圆心,长为半径作弧,交弧于点,;C D CD PQ M N (3)连接,.根据以上作图过程及所作图形,下列结论中错误的( )OM MNA .B .若.则COM COD∠=∠OM MN =80OCD ∠=︒C .D .MN CD ∥3MN CD=10.如图,AB 、CD 分别是⊙O 的直径,连接BC 、BD ,如果弦,且DE AB ∥∠CDE =62°,则下列结论错误的是( )A .CB ⊥BD B .∠CBA =31°C .D .BD =DEA A AC AE =11.如图,已知AB 是的直径,弦CD 与AB 交于点E ,设,O A ABC α∠=,,则( )ABD β∠=AEC γ∠=A .B .90αβγ+-=︒90βγα+-=︒C .D .90αγβ+-=︒180αβγ++=︒二、填空题12.如图,为的直径,点,,在上,且,,则AB O A C D E O A AD CD =A A80E ∠=︒的度数为______.ABC ∠13.如图,在菱形ABCD 中,,,点E 是射线CD 上一点,连接6BC =120C ∠=︒BE ,点P 在BE 上,连接AP ,若,则面积的最大值为__________.BAP CBE ∠=∠ABP △14.如图,是的外接圆,,的平分线交于点D ,O A Rt ABC △90BAC ∠=︒BAC ∠O A的平分线交AD 于点E ,连接BD ,若DE 的长为_______.ABC ∠O A15.如图,在平面直角坐标系中,点的坐标分别为.若点的,,A B P (12),(14),(21)-,,,C 横坐标和纵坐标均为整数,且,则点的坐标为________.(写出一个正12ACB APB ∠=∠C 确的坐标即可)16.如图,半圆的直径,弦,把沿直线对折,且恰好5cm AB =3cm AC =AC AD AC 落在上,则的长为__________.AB AD17.如图,内接于⊙O ,,外角的平分线交⊙O 于点ABC A 25BAC ∠=︒ABC A ABE ∠D ,若,则的度数为______.BC BD =C ∠18.如图,△ABC 中,∠ABC =90°,AB =4,BC =8,将△ABC 终点A 逆时针旋转(B 与D 为对应点)至△ADE ,旋转过程中直线BD ,CE 相交于F ,当AD 从第一次与BC 平行旋转到第二次与BC 平行时,点F 运动的路径长为 _____.19.如图,线段,以线段为斜边作,,的平分线4AB =AB Rt ABC A AC BC >C ∠与线段的垂直平分线交于点,则线段的取值范围为_________.CN AB M CM20.如图,动点M 在边长为4的正方形ABCD 内,且AM ⊥BM ,P 是CD 边上的一个动点,E 是AD 边的中点,则线段PE +PM 的最小值为_______.21.如图,在中,半径为4,将三角板的60°、90°角顶点A ,B 放在圆上,O A AC ,BC 两边分别与交于D ,E 两点,,则△ABC 的面积为______.O A BE DE22.如图,在平面直角坐标系中,⊙M 经过原点,且与x 轴交于点A (4,0),与y 轴交于点B ,点C 在第四象限的⊙M 上,且∠AOC =60°,OC =3,则点B 的坐标是___________.三、解答题23.如图,CD 是⊙O 的直径,∠EOD =84°,AE 交⊙O 于点B ,且AB =OC ,求的度数A BE24.如图,D 是的边上一点,连结,作的外接圆O ,将ABC A BC AD ABD △沿直线折叠,点C 的对应点E 落在上.ADC A AD O A (1)若,如图1.30ABC ∠=︒①求的度数.ACB ∠②若,求的度数.AD DE =EAB ∠(2)若,如图2.求的长.A A ,4,2AD BE AC CD ===BC25.如图,已知AB 是⊙O 的直径,点C ,D 在⊙O 上,∠D =60°且AB =6,过O 点作OE ⊥AC ,垂足为E .(1)填空:∠CAB =__________度;(2)求OE 的长;(3)若OE 的延长线交⊙O 于点F ,求弦AF ,AC 和FC 围成的图形(阴影部分)的面积S .26.如图,⊙O 是以△ABC 的边AC 为直径的外接圆,∠ACB =54°,如图所示,D 为⊙O 上与点B 关于AC 的对称点,F 为劣弧BC 上的一点,DF 交AC 于N 点,BD 交AC 于M 点.(1)求∠DBC 的度数;(2)若F 为弧BC 的中点,求.MNON27.如图,CD 与EF 是⊙O 的直径,连接CE 、CF ,延长CE 到A ,连接AD 并延长,交CF 的延长线于点B ,过点F 作⊙O 的切线交AB 于点G ,点D 是AB 的中点.(1)求证:;EF AB ∥(2)若,,求FG 的长.3AC = 2.5CD =28.已知P 是上一点,过点P 作不过圆心的弦PQ ,在劣弧PQ 和优弧PQ 上分别O A 有动点A 、B (不与P ,Q 重合),连接AP 、BP .若.APQ BPQ ∠=∠(1)如图1,当,,时,求的半径;45APQ ∠=︒1AP =BP =C A (2)在(1)的条件下,求四边形APBQ 的面积(3)如图2,连接AB ,交PQ 于点M ,点N 在线段PM 上(不与P 、M 重合),连接ON 、OP ,若,探究直线AB 与ON 的位置关系,并说明理由.290NOP OPN ∠+∠=︒参考答案1.A【分析】根据圆周角定理,垂径定理的推论,圆心角、弧、弦的关系,对称轴的定义逐项排查即可.解:A . 同弧或等弧所对的圆周角相等,所以A 选项正确;B .平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以B 选项错误;C 、在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦相等,所以C 选项错误;D .圆是轴对称图形,任何一条直径所在的直线都是它的对称轴,所以D 选项错误.故选A.【点拨】本题主要考查了圆心角、弧、弦的关系,轴对称图形,垂径定理,圆周角定理等知识点.灵活运用相关知识成为解答本题的关键.2.C【分析】直接运用圆周角的定义进行判断即可.解:弧AE 所对的圆周角是:∠ABE 或∠ACE故选:C【点拨】本题考查了圆周角的定义,掌握圆周角的定义是解题的关键.3.C【分析】分两种情况,由圆周角定理分别求解即可.解: 菱形OABC 的顶点A 、B 、C 在圆O 上,且,60OAB ∠=︒,120,AB OC AOC \Ð=°∥如图,分两种情况:①当点P 在优弧APC 上时, 由圆周角定理得:∠APC =∠AOC =×120°=60°; 1212②当点P 在劣弧AC 上时, 由圆周角定理得:∠APC ==120°;18060︒-︒综上所述,∠APC 为60°或120°,故选:C .【点拨】本题考查了菱形的性质,圆周角定理的应用,圆的内接四边形的性质,熟练掌握圆周角定理是解题的关键.4.C【分析】首先连接CD ,由AD 是的直径,根据直径所对的圆周角是直角,可求得O A ,又由圆周角定理,可得,再用三角形内角和定理求得答案.90ACD ∠=︒20D B ∠=∠=︒解:连接CD ,∵AD 是的直径,O A ∴.90ACD ∠=︒∵,20D B ∠=∠=︒∴.18090108902070CAD D ∠=︒-︒-∠=︒-︒-︒=︒故选:C .【点拨】本题考查了圆周角定理、三角形的内角和定理.熟练掌握圆周角定理是解此题的关键.5.C【分析】根据圆周角定理求出,再根据垂径定理和30°所对直角边是斜边的一半120AOC ∠=︒计算即可.解:连接AO 、CO∵是的外接圆,,O A ABC A 60B ∠=︒∴,120AOC ∠=︒又∵,,OA OC =OD AC ⊥∴,60AOD ∠=︒∴,30OAD ∠=︒∵OD =∴;OA =∴⊙O 的直径为故选:C .【点拨】本题主要考查了圆周角定理和垂径定理的应用,解题的关键是结合所对30°直角边是斜边的一半计算.6.C【分析】利用等边三角形的判定与性质得出,再利用圆周角定理得出答案.60BOC ∠=︒解:如图,连接BO ,CO ,∵的边BC 等于圆的半径,ABC A ∴是等边三角形,BOC A∴,60BOC ∠=︒∴,30A ∠=︒若点在劣弧BC 上,则,A '150A '∠=︒∴或;A ∠=30°150︒故选C .【点拨】本题主要考查了三角形的外接圆与外心以及等边三角形的判定与性质和圆周角定理,得出是等边三角形是解题的关键.BOC A 7.B【分析】利用圆心角、弧、弦的关系得到,再利用圆周角定理得到A A DC BC =∠BAC =∠DAC =36°,∠ABD =∠ACD =44°,然后根据三角形内角和计算∠ADB 的度数.解:∵BC =CD ,∴,A A DC BC =∵∠ABD 和∠ACD 所对的弧都是,A AD ∴∠BAC =∠DAC =36°,,72BAD BAC DAC ∴∠=∠+∠=︒∵∠ABD =∠ACD =44°,∴∠ADB =180°−∠BAD −∠ABD =180°−72°−44°=64°,故选:B .【点拨】本题考查了圆周角定理和圆心角、弧、弦的关系,熟练掌握圆周角定理是解决问题的关键.8.D【分析】由AB 是直径可得∠ACB =90°,由∠ABC =20°可知∠CAB =70°,再根据圆周角定理可得∠BDC 的度数,即可得出答案.解:∵AB 是⊙O 的直径,∴∠ACB =90°,∵∠ABC =20°,∴∠CAB =70°,∴∠BDC =∠CAB =70°,故选:D .【点拨】本题考查了圆周角定理,由AB 是直径求出∠ACB =90°是解题的关键.9.D【分析】连接、,根据作法可得,即可得到,MD ON A A A CM CD DN ==COM COD DON ∠=∠=∠则可判断A 选项;若,可得,推出即可求出的OM MN =60NOM ∠=︒20COD ∠=︒OCD ∠度数,则可判断B 选项;根据得到即可判断C 选项;根据A A CM DN =CDM DMN =∠∠即可判断D 选项.CM CD DN MN ++>解:连接、,如图所示MD ON∵以点为圆心,长为半径作弧,交射线于点,分别以点,为O OC PQ OB D C D 圆心,长为半径作弧,交弧于点,CD PQ M N∴A A A CM CD DN==∴COM COD DON∠=∠=∠∴A 选项说法正确,不符合题意若OM MN=∵OM ON=∴MN OM ON==∴60NOM ∠=︒∵COM COD DON∠=∠=∠∴20COD ∠=︒又∵OC OD=∴18020802OCD ODC ︒-︒===︒∠∠∴B 选项说法正确,不符合题意∵A A CM DN=∴CDM DMN=∠∠∴MN CD∥∴C 选项说法正确,不符合题意∵CM CD DN MN++>∴3MN CD<∴D 选项说法错误,符合题意故选D .【点拨】本题考查了作图、等边三角形的判定与性质、等腰三角形的判定与性质、圆周角定理、弧、弦和圆心角的关系等知识点,解决此题的关键是熟悉几何图形的性质,结合几何图形的性质将复杂作图拆解成基本作图,逐步操作.10.D【分析】根据直径所对的圆周角是直角,即可判断A ,根据圆周角定理可判断B 选项,根据圆周角与弧的关系可判断C ,根据判断D 选项.CDE CDB ∠≠∠解:∵AB 、CD 分别是⊙O 的直径,,90CBD ∴∠=︒∴CB ⊥BD ,故A 选项正确,如图,连接,BE,且∠CDE =62°,DE AB ∥,62BOD CDE ∴∠=∠=︒,1312BCD BOD ∴∠=∠=︒,OC OB =Q ,31CBO BCO ∴∠=∠=︒,62AOC ∴∠=︒,62CBE CDE ∠=∠=︒ ,31ABC ABE ∴∠=∠=︒,∴AA AC AE =故B ,C 选项正确,,31,90BCD CBD ∠=︒∠=︒ ,59BDC ∴∠=︒,62CDE ∠=︒ ,CDE CDB ∴∠≠∠BD DE ,故D 选项不正确,∴≠故选D .【点拨】本题考查了圆周角定理,直径所对的圆周角是直角,掌握圆周角定理是解题的关键.11.B【分析】连接AC ,根据同弧所对的圆周角相等,将转化为,再根据直径所对的βγα+-ACB ∠圆周角是直角即可得到.90βγα+-=︒解:连接AC ,令,如图所示:BCD θ∠=在△BCE 中,(三角形一个外角等于与它不相邻的两个内角的和),γαθ=+∵(同弧或等弧所对的圆周角相等),ACD ABD β∠=∠=,ACD ACD ACB βγααθαθ∴+-=∠++-=∠+=∠又∵AB 是直径,∴(直径所对的圆周角是直角),90ACB ∠=︒,90βγα∴+-=︒故选:B .【点拨】本题考查了三角形外角的性质,圆周角定理,正确作出辅助线,将转化为是解题的关键.βγα+-ACB ∠12.20︒【分析】连接、,由圆周角定理得出,进而结合题意得出,由AE BD 90AEB =︒∠10AED ∠=︒圆心角、弧、弦的关系定理,即可求出的度数.10CBD DBA AED ∠∠∠===︒ABC ∠解:如图,连接、,AE BD为的直径,AB Q O A ,90AEB ∠∴=︒,80DEB ∠=︒ ,10AED AEB DEB ∠∠∠∴=-=︒,AD CD =A A,10CBD DBA AED ∠∠∠∴===︒,101020ABC ABD CBD ∠∠∠∴=+=︒+︒=︒故答案为:.20︒【点拨】本题考查了圆周角定理,圆心角、弧、弦的关系,熟练掌握圆周角定理,圆心角、弧、弦的关系定理是解决问题的关键.13.【分析】若要使的面积最大,底AB 固定,故只要AB 边上的高最大时,即三角形面积ABP △最大;可证,故可知点P 在△APB 的外接圆的劣弧上,当点P 在劣弧120APB ∠=︒A AB 的中点处,△APB 的面积最大,求出AB 边上的高即可求解.A AB 解:∵四边形ABCD 是菱形,∴AB =BC =6,AB //CD ,∴180,ABC BCD ∠+∠=︒∵,120C ∠=︒∴ 即,60,ABC ∠=︒60ABP PBC ︒∠+∠=∵,BAP CBE ∠=∠∴,60ABP BAP ∠+∠=︒∵,180()18060120APB ABP BAP ∠=︒-∠+∠=︒-︒=︒∴点P 在在△APB 的外接圆上,若要使的面积最大,底AB 固定,,故只要AB 边上的高最大ABP △120APB ∠=︒时,即三角形面积最大;此时点P 在劣弧的中点处,如图,A AB设点O 为△APB 的外接圆的圆心,OP ⊥AB 于点F ,∴,,132AF AB ==1602APF APB ∠=∠=︒∴30,PAF ∠=︒∴2AP PF =由勾股定理得,222AF PF AP +=∴22234PF PF+=∴PF∴11622APB S AB PF ∆==⨯=A即面积的最大值为ABP △故答案为:【点拨】本题考查了菱形的性质,三角形的面积公式,解直角三角形,垂径定理等知识,正确作出辅助圆,熟练掌握知识点是解题的关键.14.1【分析】连接CD ,根据AD 、BE 分别平分∠BAC 和∠ABC ,结合圆周角定理和三角形外角性质,得出,根据直径所对的圆周角为90°,结合BD =CD ,DBE BED ∠=∠BC =定理,求出,即可求出.21BD =1DE BD ==解:连接CD ,如图所示:∵AD 平分∠BAC ,∴∠BAD =∠CAD ,∴,A A BD CD =∴,,BD CD =CBD CAD BAD ∠=∠=∠∵为直径,且BC BC =∴∠BDC =90°,∴,22222BD DC BC +===∴,21BD =∴,1BD =∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∵,,DBE CBD CBE ∠=∠+∠BED ABE BAD ∠=∠+∠∴,DBE BED ∠=∠∴.1DE BD ==故答案为:1.【点拨】本题主要考查了角平分线的定义,圆周角定理,三角形外角的性质,等腰三角形的判定,勾股定理,作出辅助线,根据题意证明,是解题的关键.DBE BED ∠=∠15.或或或或或 写出其中一个就可以(答案不唯(52),(3,4)(5,0)(1,2)-(3,2)-(1,0)-一)【分析】直接利用圆周角定理,以P 为圆心,PA 为半径画圆,圆上的格点即可作为C 点.解:由联想到同弧所对的圆周角等于圆心角的一半,12ACB APB ∠=∠所以点在以点为圆心,为半径的圆上,进而得到满足横、纵坐标为整数的六个C P PA 点:、、、、、C (3,4)(52),(5,0)(3,2)-(1,2)-(1,0)-【点拨】本题考查了圆周角定理,解题关键是理解题意,能利用圆找出符合条件的点.16.【分析】连接OD ,作DE ⊥AB 于E ,OF ⊥AC 于F ,运用圆周角定理,可证得∠DOB =∠OAC ,即证△AOF ≌△ODE ,所以OE =AF =cm ,根据勾股定理,得DE =4cm ,在直角三角形ADE 32中,根据勾股定理,可求AD 的长.解:连接OD ,AD ,作DE ⊥AB 于E ,OF ⊥AC 于F .根据题意知,∠CAD =∠BAD ,∴,A ACD BD =∴点D 是弧BC 的中点.∴∠DOB =∠OAC =2∠BAD ,∴△AOF ≌△ODE ,∴OE =AF =cm ,32∴DE =2cm ,又∵AE ==4cm ,5322+∴AD cm .==【点拨】在圆的有关计算中,作弦的弦心距是常见的辅助线之一.熟练运用垂径定理、圆周角定理和勾股定理.17.75°【分析】先求出∠DAC 的度数,再根据圆内接四边形的性质求出∠DBE 的度数,再通过角平分线求出∠ABE 的度数,最后通过三角形外角性质求出∠C 的度数.解:∵BC =BD ,,25BAC ∠=︒∴∠BAD =∠BAC =25°,∴∠DAC =50°,∵四边形ADBC 是圆内接四边形,∴∠DAC +∠DBC =180°,∵∠DBE +∠DBC =180°,∴∠DBE =∠DAC =50°,∵BD 平分,ABE ∠∴∠ABE =2∠DBE =100°,∴∠C =∠ABE -∠BAC =100°-25°=75°,故答案为:75°【点拨】本题考查了三角形外角的性质、圆周角定理及圆内接四边形的性质,解决本题的关键是熟练掌握圆内接四边形的性质.18.【分析】由题意和旋转的性质可知:,可知、、、四点共圆.随45ABD ACE ∠=∠=︒A B C F 着的旋转可知,点运动的路径是 以、、、四点共圆的圆上,当AD 从第ABC A F A B C F 一次与BC 平行旋转到第二次与BC 平行时,点运动的轨迹是以为直径的半圆,求出F AC 的长就可以求出点的路径长.AC F 解:如图所示:连接, 由旋转的性质可知:和是等腰直角三角形.AF ABD △ACE A∴,45ABD ACF ∠=∠=︒∴、、、四点共圆.A B C F ∵,90ABC ∠=︒∴该圆是以为直径圆.AC ∴随着的旋转可知:点运动的轨迹是以为直径的圆上.ABC A F AC ∴当AD 从第一次与BC 平行旋转到第二次与BC 平行时,点运动的轨迹是以F 为直径的圆的周长的一半.AC由勾股定理可知:AC ==∴当AD 从第一次与BC 平行旋转到第二次与BC 平行时,点F 运动的路径长为:,12AC π⨯∴点F 运动的路径长为:.12π⨯=故答案为:.【点拨】本题考查了圆周角定理的推论、勾股定理等知识.通过圆周角定理的推论找到四点共圆是解决本题的关键.19.4CM <【分析】因为AB 是直角三角形的斜边,可以看成是点C 在以AB 为直径的圆上,通过可以判断点C 在圆弧EB 之间,而在点E 、点B 位置是极限位置,求出在这两点AC BC >时CM 的值即可.解:∵AB 是直角三角形ABC 的斜边,∴点C 在以AB 为直径的圆上,∵,DM 是AB 的垂直平分线,AC BC >∴点C 在圆弧ECB 之间的圆弧上,∵CN 是∠ACB 的平分线,∴CN 与圆弧AB 相交于的中点,A AB ∵DM 是AB 的垂直平分线,∴DM 与圆弧AB 相交于的中点,A AB 所以CN 、DM 、交于一点,即M 点,A AB ∵AB =4,∴BD =DM =2,如图1,当B ,重合时,CM 最小,CCM ===因为此时三角形不存在(成为线段),所以应取CM >如图2,当点C 在E 点时,CM 最大,为圆D 的直径,∴,4CM =因为此时AC =BC ,不符题意,所以应取,4CM <所以CM 的范围为,4CM <故答案为:.4CM <<【点拨】本题考查了圆直角三角形,熟练运用直径所对的圆周角为直角、等弧对等角、垂径定理是解题关键.20.2【分析】作点E 关于DC 的对称点E ',设AB 的中点为点O ,连接OE ',交DC 于点P ,连接PE ,由轴对称的性质及90°的圆周角所对的弦是直径,可知线段PE +PM 的最小值为OE '的值减去以AB 为直径的圆的半径OM ,根据正方形的性质及勾股定理计算即可.解:作点E 关于DC 的对称点E ',设AB 的中点为点O ,连接OE ',交DC 于点P ,连接PE ,如图所示:∵动点M 在边长为4的正方形ABCD 内,且AM ⊥BM ,∴点M 在以AB 为直径的圆上,OM =AB =2,12∵正方形ABCD 的边长为4,∴AD =AB =4,∠DAB =90°,∵E 是AD 的中点,∴DE =AD =×4=2,1212∵点E 与点E '关于DC 对称,∴DE '=DE =2,PE =PE ',∴AE '=AD +DE '=4+2=6,在Rt △AOE '中,OE '===∴线段PE +PM 的最小值为:PE +PM =PE '+PM =ME '=OE '-OM =.2-故答案为:.2-【点拨】本题主要考查了轴对称-最短路线问题、圆周角定理的推论、正方形的性质及勾股定理等知识点,作出辅助线,熟练掌握相关性质及定理,是解题的关键.21.【分析】连结AE ,根据∠CBA =90°所对的弦得出AE 为的直径,得出AE =8,根据BE =DE ,O A 得出∠BAE =∠DAE ,可求∠BAE =∠DAE =30°,利用30°直角三角形性质求出BE =DE =,利用勾股定理求出AB 142AE ===质求出BC =BE +CE =12即可.解:连结AE ,∵∠CBA =90°,∴AE 为的直径,O A ∴AE =8,∵BE =DE ,∴,A A BE DE =∴∠BAE =∠DAE ,∵∠BAC =60°,∴∠BAE =∠DAE =30°,∴BE =DE =,AB 142AE ===∵AE 为直径,∴∠EDA =90°,∵∠A =180°-∠ABC -∠BAC =180°-90°-60°=30°,∴EC =2ED =8,∴BC =BE +CE =12,∴S △ABC =.111222AB BC ⋅=⨯=故答案为【点拨】本题考查直角所对弦和直径所对圆周角性质,30°直角三角形性质,勾股定理,三角形面积,掌握直角所对弦和直径所对圆周角性质,30°直角三角形性质,勾股定理,三角形面积是解题关键.22.(,)##(,)00【分析】连接AC ,AB ,BC ,过点C 作CH ⊥OA 于H ,利用含30度角的直角三角形的性质及勾股定理在Rt △OCH 中,先后求得OH ,CH ,AH ,再在Rt △ACH 中,求得AC ,在Rt △ABC 中,利用勾股定理构建方程求得BC ,AB ,再在Rt △AOB 中,利用勾股定理即可解决问题.解:连接AC ,AB ,BC ,过点C 作CH ⊥OA 于H ,∵∠AOC =60°,则∠OCH =30°,且OC =3,∴OH =OC =,CH =,1232==∵点A (4,0),∴AO =4,∴AH = AO - OH =,52在Rt △ACH 中,AC =,==∵∠BOA =90°,∴AB 为⊙M 的直径,∴∠BCA =90°,∵∠AOC =60°,∴∠ABC =60°,则∠BAC =30°,在Rt △ABC 中,BC =AB ,12AB 2=AC 2+BC 2,即AB 22+(AB )2,12∴AB 2=,523在Rt △AOB 中,OB 2=AB 2- AO 2=,43∴OB点B 的坐标是:(.0.【点拨】本题考查了圆周角定理,勾股定理,含30度角的直角三角形的性质等知识,解题的关键是学会利用参数构建方程解决问题.23.68°【分析】连接OB ,如图,利用等腰三角形的性质和三角形的外角性质得到∠EBO =2∠A ,则∠E =2∠A ,再利用∠EOD =84°得到2∠A +∠A =84°,解得∠A =28°,接着计算出∠BOE 的度数,从而得到的度数.A BE 解:连接OB ,如图,∵OB =OC ,OC =AB ,∴OB =AB ,∴∠A =∠BOA ,∴∠EBO =∠A +∠BOA =2∠A ,∵OB =OE ,∴∠E =∠EBO =2∠A ,∵∠EOD =∠E +∠A ,∴2∠A +∠A =84°,解得∠A =28°,∴∠E =∠EBO =56°,∴∠BOE =180°-∠E -∠EBO =180°-56°-56°=68°,∴的度数为68°.A BE 【点拨】本题考查了圆的基本性质,等腰三角形的性质以及三角形外角的性质,添加辅助线,构造等腰三角形,是解题的关键.24.(1)①30,②60;(2)︒︒6BC =【分析】(1)①根据折叠的性质可得,根据等弧所对的圆周角即可求解;ACD AED ∠=∠②根据等边对等角可得,根据(1)的结论可得,进而DAE DEA ∠=∠∠=∠ACB ABC 根据折叠的性质求得,进而根据即可求得,60CAE ∠=︒CAB CAE ∠-∠BAE ∠(2)根据,可得,,根据折叠的性质可得A A A A AD DE BE DE +=+A A AE DB =AE BE =,进而即可求解.4DB AE ==(1)①,,A A AD AD = 30ABC ∠=︒,30AED ABD ∴∠=∠=︒将沿直线折叠,点C 的对应点E 落在上,ADC A AD O A ;30ACB AED ∴∠=∠=︒②,AD DE =,DAE DEA ∴∠=∠,DEA DBA ∠=∠ ,30DAE ∴∠=︒将沿直线折叠,点C 的对应点E 落在上,ADC A AD O A ,30DAE DAC ∴∠=∠=︒中,,则,ABC A 30ABC ACB ∠=∠=︒180120CAB ABC ACB ∠=︒-∠-∠=︒,60CAE CAD EAD ∠=∠+∠=︒ ,1206060EAB CAB CAE ∴∠=∠-∠=︒-︒=︒,60EAB ∴∠=︒(2) A A AD BE=A A A A AD DEBE DE +=+∴A A AE DB∴=AE BE∴=折叠AC AE∴=4DB AE ∴==2CD = 426BC CD DB ∴=+=+=【点拨】本题考查了折叠的性质,同弧或等弧所对的圆周角相等,弧与弦的关系,三角形内角和定理的应用,综合运用以上知识是解题的关键.25.(1)30(2)(3)3232π【分析】(1)利用圆周角定理解得,由直径所对的圆周角是90°,得到60B D ∠=∠=︒,最后根据三角形内角和180°解答即可;90ACB ∠=︒(2)证明是等边三角形,得到BC =3,再证明是的中位线,由中位COB △OE ABC A线的性质解答;(3)连接OC ,证明,将阴影部分的面积转化为扇形FOC 的面()AFE COE ASA ≅V V 积,再结合扇形面积公式解答.(1)解:∠D =60°60B ∴∠=︒AB 是⊙O 的直径,90ACB ∴∠=︒906030CAB ∴∠=︒-︒=︒故答案为:30;(2)∠D =60°60B ∴∠=︒OC OB=Q 是等边三角形COB ∴A 1632BC OB ∴==⨯=AB 是⊙O 的直径,90ACB ∴∠=︒OE AC⊥ OE BC∴∥是AB 中点O 是的中位线OE ∴ABC A 1322OE BC ∴==(3)连接OC ,∠CAB =30°,AO OC =Q 30ECO ∴∠=︒1111120302224FAC FOC AOC ∠=∠=⨯∠=⨯︒=︒Q FAE ECO∴∠=∠AC OF⊥Q 90,FEA OEC AE CE ∴∠=∠=︒=()AFE COE ASA ∴≅V V AFE COES S ∴=V V .26033===3602FOC S S ππ⨯∴阴影扇形【点拨】本题考查扇形的面积计算、含30°角的直角三角形、圆周角定理、垂径定理等知识,是重要考点,掌握相关知识是解题关键.26.(1)36°;(2).12【分析】(1)利用对称的性质证明BD ⊥AC ,所以∠DBC 与∠ACB 互余,即可求出∠DBC ;(2)利用等弧所对的圆周角等于圆心角的一半和三角形内角和为180°,求出∠BDF 、∠OBM 的度数并证明其相等,再根据证明△BOM ≌△DNM (ASA ),从而得到OM =NM ,即可求出.12MN ON =解:(1)∵点B 、点D 关于AC 对称,∴BD ⊥AC ,∴∠DBC +∠ACB =90°,∵∠ACB =54°,∴∠DBC =90°-54°=36°,故∠DBC 的度数为36°.(2)连接OF ,∵点F 是的中点,A BC ∴∠BOF =∠COF =2∠BDF ,∵OC =OB ,∴∠OBC =∠OCB =54°,∴∠OBM =∠OBC -∠DBC =54°-36°=18°,∠BOC =180°-2×54°=72°,∴∠BOF =∠BOC ==36°,121722⨯︒∴∠BDF ===18°,12BOF ∠1362⨯︒∴∠BDF =∠OBM ,∵点B 、点D 关于AC 对称,∴DM =BM ,∴在△BOM 和△DNM 中,OBM NDM BM DMOMB NMD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOM ≌△DNM ,∴NM =OM ,∴.12MN MN ON OM NM ==+【点拨】本题考查了轴对称、圆和全等三角形,熟练利用对称点连线与对称轴垂直,圆心角与圆周角的关系以及全等三角形的判定能有效帮助解此题.27.(1)见分析;(2)65【分析】(1)连接DE ,根据CD 和EF 都是⊙O 的直径得到∠DEA =∠ECF =90°,根据直角三角形的性质得到CD =AD =BD ,利用等腰三角形三线合一的性质推出∠ADE =∠CDE ,进而得到∠ADE =∠OED ,即可得到;EF AB ∥(2)根据直角三角形斜边上的中线求得,勾股定理求得,由(1)25AB CD ==4BC =可得,根据切线的性质可得,根据,代入数值,即可12EF AB =FG AB ⊥sin FG AC B BF AB ==得到FC .解:(1)证明:连接DE ,∵CD 和EF 都是⊙O 的直径,∴∠DEA =∠ECF =90°,∵D 是AB 的中点,∴CD =AD =BD ,∴∠ADE =∠CDE ,∵OD =OE ,∴∠OED =∠CDE ,∴∠ADE =∠OED ,∴;EF AB ∥(2)连接DF ,∵CD 是⊙O 的直径,∴∠DFC =90°,∴∠DFC =∠FCE =∠CED =90°,∴四边形CEDF 是矩形,∴FC =DE ,DE ∥BC ,∴,1AE AD EC DB ==∴AE =CE ,∴DE 是△ABC 的中位线,∴,12DE BC =∵AB =2CD =5,AC =3,∴,4BC ===∴FC =2.422BF BC FC ∴=-=-=是的切线,FG O A GF EF∴⊥ EF AB∥FG AB∴⊥90BGF BCA ∴∠=∠=︒∴sin FG AC B BF AB==∴325FG =65FG ∴=【点拨】此题考查了圆周角定理,矩形的判定定理及性质定理,勾股定理,三角形中位线的性质,熟记圆周角定理是解题的关键.28.(1);(2;(3);见分析3294//AB ON 【分析】(1)连接AB ,由已知得到∠APB =∠APQ +∠BPQ =90°,根据圆周角定理证得AB 是⊙O 的直径,然后根据勾股定理求得直径,即可求得半径;(2)证明是等腰直角三角形,得出ABQ △AQ BQ ==可得结论;ABP ABQ APBQ S S S ∆∆=+四边形(3)连接OA 、OB 、OQ ,由∠APQ =∠BPQ 证得,即可证得OQ ⊥AB ,然后»»AQ BQ =根据三角形内角和定理证得∠NOQ =90°,即NO ⊥OQ ,即可证得AB ∥ON .解:(1)连接AB ,如图1,∵,45APQ BPQ ∠=∠=︒∴,90APB APQ BPQ ∠=∠+∠=︒∴AB 是的直径,O A∴,3AB ===∴的半径为;O A 32(2)连接AQ ,BQ ,如图2,∵90APB ∠=︒∴18090AQB APB ∠=︒-∠=︒∵45APQ BPQ ∠=∠=︒∴45ABQ BAQ ∠=∠=︒∴是等腰直角三角形ABQ △∵,3AB =∴3AQ BQ AB ====∴1191224ABP ABQ APBQ S S S ∆∆=+=⨯⨯=四边形(3),理由如下:连接OQ ,如图3,//AB ON∵,APQ BPQ ∠=∠∴,»»AQ BQ =∴OQ AB⊥∵,OP OQ =∴,OPN OQP ∠=∠∵,180OPN OQP PON NOQ ∠+∠+∠+∠=︒∴,2180OPN PON NOQ ∠+∠+∠=︒∵,290NOP OPN ∠+∠=︒∴,90NOQ ∠=︒∴NO OQ⊥∴//AB ON【点拨】本题考查了圆周角定理,垂径定理,熟练掌握性质定理是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弧、弦、圆心角、圆周角—巩固练习(提高)【巩固练习】 一、选择题1. 如图,在⊙O 中,若圆心角∠AOB=100°,C 是上一点,则∠ACB 等于( ). A .80° B .100° C .130° D .140°2.已知,如图, AB 为⊙O 的直径,AB =AC ,BC 交⊙O 于点D ,AC 交⊙O 于点E ,∠BAC =45°。

给出以下五个结论:①∠EBC =22.5°;②BD =DC ;③AE =2EC ;④劣弧»AE 是劣弧»DE的2倍;⑤AE =BC 。

其中正确的有( )个A. 5B. 4C. 3D. 2第1题图 第2题图 第3题图3.如图,设⊙O 的半径为r ,弦的长为a ,弦与圆心的距离为d ,弦的中点到所对劣弧中点的距离为h ,下面说法或等式:①r d h =+ ②22244r d a =+ ③已知r 、a 、d 、h 中任意两个,可求其它两个。

其中正确结论的序号是( )A .仅①B .②③C .①②③D .①③4.如图,在⊙O 中,弦AB 的长是半径OA 的3倍,C 为»AB 中点,AB 、OC 交于点P ,则四边形OACB 是( )A .平行四边形B .矩形C .菱形D .正方形5.如图所示,AB 是⊙O 的直径,AD=DE ,AE 与BD 交于点C ,则图中与∠BCE 相等的角有( ) A 、2个 B 、3个 C 、4个 D 、5个第4题图 第5题图 第6题图6.如图所示,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O 3cm ,则弦CD 的长为( ).A .32cm B .3cm C .23.9cm 二、填空题7..如图,AB 和DE 是⊙O 的直径,弦AC ∥DE ,若弦BE=3,则弦CE=________.第7题 第9题 8.半径为2a 的⊙O 中,弦AB 的长为,则弦AB 所对的圆周角的度数是________.9.如图,⊙O 的直径AB 与弦CD 相交于点E ,若AE=5,BE=1,42CD =,则∠AED= °. 10.如图所示,AB 、CD 是⊙O 的两条互相垂直的弦,圆心角∠AOC =130°,AD 、CB 的延长线相交于P ,则∠P =________°. 11.如图所示,在半径为3的⊙O 中,点B 是劣弧»AC 的中点,连接AB 并延长到D ,使BD =AB ,连接AC 、BC 、CD ,如果AB =2,那么CD =________.(第10题图) (第11题图)12.如图,MN 是⊙O 的直径,MN =2,点A 在⊙O 上,∠AMN =30°,点B 为中点,P 直径MN 上的一个动点,则PA +PB 的最小值是 . 13.已知⊙O 的半径OA=2,弦AB 、AC 分别为一元二次方程x 2-(22+23)x+46=0的两个根,则∠BAC 的度数为_______.三、解答题14.如图,在⊙O 中,»»»AB BCCD ==,OB ,OC 分别交AC ,BD 于E、F,求证OE OF =15.如图所示,以Y ABCD 的顶点A 为圆心,AB 为半径作圆,交AD ,BC 于E ,F ,•延长BA 交⊙O 于G ,求证:»»GEEF =. POAB(第12题图)»AE的中点,CD⊥AB于D,交AE于F,连接AC,16.如图所示,AB是⊙O的直径,C为求证:AF=CF.17.如图所示,⊙O的直径AB长为6,弦AC长为2,∠ACB的平分线交⊙O于点D,求四边形ADBC的面积.【答案与解析】一、选择题1.【答案】C.【解析】设点D 是优弧AB 上一点(不与A 、B 重合),连接AD 、BD ;则∠ADB=∠AOB=50°; ∵四边形ADBC 接于⊙O ,∴∠C=180°-∠ADB=130°;故选C .2.【答案】C .【解析】①②④正确. 3.【答案】C .【解析】根据垂径定理及勾股定理可得①②③都是正确的. 4.【答案】C .【解析】由弦AB 的长是半径OA 的3倍,C 为»AB中点,得∠AOC=60°,△AOC 为等边三角形, 所以AO=AC ,进而得到OA=OB=BC=AC ,故则四边形OACB 是菱形.5.【答案】D .【解析】与∠BCE 相等的角有5个,∠DAE=∠AED=∠ABD ,∠BAD=∠BAE+∠DAE=∠BAE+∠ABD=∠BCE ,同理∠ADO=∠ODE=∠OED=∠BCE ,且∠ACD=∠BCE.6.【答案】B .【解析】∵ ∠CDB =30°, ∴ ∠COB =2∠CDB =60°,又AB 为⊙O 的直径,CD ⊥AB ,∴ ∠OCD =30°,12CE CD =, 在Rt △OEC 中,∵ 3OC =cm ,∴ 32OE =cm . 2222239(3)24CE OC OE ⎛⎫=-=-= ⎪ ⎪(cm).∴ 32CE =cm ,∴ CD =3cm .二、填空题7.【答案】3;8.【答案】120°或60°; 9.【答案】30°; 10.【答案】40°;【解析】∵ ∠AOC =130°,∴ ∠ADC =∠ABC =65°, 又AB ⊥CD ,∴ ∠PCD =90°-65°=25°,∴ ∠P =∠ADC -∠PCD =65°-25°=40°. 11.【答案】43; 【解析】连结OA 、OB ,交AC 于E ,因为点B 是劣弧»AC 的中点,所以OB ⊥AC ,设BE=x,则OE=3-x ,由AB 2-BE 2=OA 2-OE 2得 22-x 2=32-(3-x )2,解得23x =,423CD BE ==. 或连接OA 、OB ,△OAB ∽△BCD ,AB CD OA BC =,232CD =,43CD =. 12.【答案】;【解析】作点B 关于MN 的对称点C ,连接AC 交MN 于点P ,则P 点就是所求作的点.(如图)此时PA+PB 最小,且等于AC 的长.连接OA ,OC ,根据题意得弧AN 的度数是60°, 则弧BN 的度数是30°,根据垂径定理得弧CN 的度数是30°, 则∠AOC=90°,又OA=OC=1, 则AC= .13.【答案】15°或75°.【解析】方程x 2-(22+23)x+46=0的解为x 1=22,x 2=23,不妨设:AB=22,AC=23. (1)如图,OM ⊥AB 于M ,ON ⊥AC 于N . ∵AB=22,AC=23, ∴AM=2,∵OA=2,在Rt △MAO 中,∠MAO=45°,AC=23, ∴AN=3,在Rt △NAO 中,∠NAO=30°,∴∠BAC=15°; (2)如图,∠BAC=75°.三、解答题14.【答案与解析】如图,∵»»»AB BC CD ==,∴»»AC BD=, ∴AC BD =,∵B,C 是»»,AC BD 的中点, ∴1,,2BF CE AC OB AC OC BD ==⊥⊥, ∴Rt OBF Rt OCE V V≌, ∴OE OF =15.【答案与解析】连接AF ,则AB=AF ,所以∠ABF=∠AFB .因为四边形ABCD 是平行四边形,所以AD ∥BC ,所以∠DAF=∠AFB ,∠GAE=∠ABF ,所以∠GAE=∠EAF ,所以»»GEEF =.16.【答案与解析】证法一:连接BC ,如图所示.∵ AB 是直径,∴ ∠ACB =90°, 即∠ACF+∠BCD =90°. 又∵ CD ⊥AB ,∴ ∠B+∠BCD =90°, ∴ ∠ACF =∠B .∵ 点C 是»AE 的中点, ∴ »»AC CE =, ∴ ∠B =∠CAE ,∴ ∠ACF =∠CAE ,∴ AF =CF .证法二:如图所示,连接BC ,并延长CD 交⊙O 于点H . ∵ AB 是直径,CD ⊥AB ,∴ »¼AC AH =. ∴ 点C 是»AE 的中点,∴ »»AC CE =, ∴ ¼»AH CE=. ∵ ∠ACF =∠CAF , ∴ AF =CF .17.【答案与解析】∵ AB 是直径,∴ ∠ACB =∠ADB =∠90°. 在Rt △ABC 中,AB =6,AC =2,∴ 22226242BC AB AC =-=-=.∵ ∠ACB 的平分线交⊙O 于点D ,∴ ∠DCA =∠BCD .∴ »»AD DB=,∴ AD =BD . ∴ 在Rt △ABD 中,AD 2+BD 2=AB 2=62,∴ AD =BD =32.∴ 11C 22ABC ABD ADBC S S S A BC AD BD ∆∆=+=+g g 四边形 211242(32)94222=⨯⨯+⨯=+.。

相关文档
最新文档