第八章 生物氧化
医学生物化学(第八章)生物氧化
* 铁硫蛋白为单电子传递体 ( Fe2+-e Fe3+)
+e
20
3. 泛醌(ubiquinone , Q) 又称辅酶Q (Coenzyme Q , CoQ)
21
**泛醌的特点 1)是双电子传递体 2)不与蛋白结合的游离存在的电子载体 3)是复合物Ⅰ、Ⅱ、Ⅲ之间的连接者,
是多种底物的电子进入呼吸链的中心点
53
四、 ATP与能量的释放、储存和利用
H2O+CO2 ATP
有机物氧化 产能
生物大分子 主动
合成
运输
肌肉 收缩
遗传信 息传递
O2 ADP+Pi
54
一、 ATP分子中的高能磷酸基的来源 (一) 氧化磷酸化: 主要来源 (二) 底物水平磷酸化 概念: 在反应过程中,由于分子内部能 量重新分配,形成高能磷酸化合物,进一 步将高能磷酸基转移给ADP,形成ATP
67
AH2
2H+
2Cu2+
O2-
H2O
A 2Cu+
1/2O2
属氧化酶主要有:细胞色素氧化酶、 酚氧化酶、 抗坏血酸氧化酶等
68
(二)需氧脱氢酶 (aerobic dehydrogenase)
特点: 使作用物氢活化, 受氢体:除氧以外还有其他试剂 产物之一是H2O2
69
AH
FMN(FAD)
H2O2
氧化磷酸化
4
糖
脂肪
葡萄糖 脂肪酸 + 甘油
乙 酰CoA
蛋白质
氨基酸
TCA cycle
CO2
H++e (进 入 呼 吸 链 )
生成H2O 及释 放 出 能 量
5
第8章:生物氧化
HSCoA
H2C COOH H2C COOH
琥珀酸
GTP
O C SCoA
琥珀酰CoA
ATP ADP
琥珀酰CoA合成酶
2. 氧化磷酸化
在线粒体中,代谢物脱下的2H经呼吸链氧为 水时所释放的能量使ADP磷酸化生成ATP的 过程。它是体内生成ATP的主要的方式。
呼 吸 链
1 O2 H2O
实质:每消耗1mol氧原子所产生的ATP的mol数。
线粒体离体实验测得的一些底物的P/O比值
底 物 β-羟丁酸 琥珀酸 抗坏血酸 呼吸链的组成 NAD+→复合体Ⅰ→CoQ→复合体Ⅲ →Cyt c→复合体Ⅳ→O2 复合体Ⅱ→CoQ→复合体Ⅲ →Cyt c→复合体Ⅳ→O2 Cyt c→复合体Ⅳ→O2 复合体Ⅳ→O2 0.88 0.61-0.68 1 1 细胞色素c (Fe2+) 1.7 2 P/O比值 2.4~2.8 可能生成的 ATP数 3
1. 温度: 体温,~37度
高温
2. 反应温和:酶促,逐步氧化,逐步放能,可调节
反应剧烈:短时间内以光、热能形式放能
不能储存,0% 碳和氢直接与氧结合生成。
3. 效率:以高能键储存,40~55%
4. CO2来源:有机羧酸脱羧而来
二、生物氧化的酶类 氧化酶类 需氧脱氢酶 不需氧脱氢酶
R=H: NAD+;
R=H2PO3:NADP+
B: FAD和 FMN
FAD(或FMN)+ 2H FADH2(或 FMNH2)
C: 辅酶Q ( CoQ) 泛醌(辅酶Q, CoQ, Q)由多个异戊烯连接形 成较长的疏水侧链(人CoQ10),脂溶性, 在膜中 可流动。 不固定于复合体,呈游离状态。氧化还 原反应时可生成中间产物半醌型泛醌。
生物化学 第8章 生物氧化
天冬 氨酸
①苹果酸脱氢酶
②天冬氨酸氨基转移酶
存在部位:肝脏、心肌组织
两种穿梭系统的比较
α-磷酸甘油穿梭 穿梭 物质 进入线粒 体后转变 成的物质 进入 呼吸链 α-磷酸甘油 磷酸二羟丙酮 苹果酸-天冬氨酸穿梭 苹果酸、 谷氨酸 天冬aa、α-酮戊二酸
FADH2
琥珀酸 氧化呼吸链
NADH+ H+
NADH 氧化呼吸链
琥珀酸由琥珀酸脱氢酶催化脱下的2H经复合 体Ⅱ(FAD,Fe—S)使COQ形成COQH2, 再往下传递与NADH氧化呼吸链相同。(见 上图)
NADH氧化呼吸链和琥珀酸氧化呼 吸链总图
FADH2
NADH
FMN
CoQ
Cyt-b c1
c
aa3
O2 H2O
3、分别进入两条呼吸链的底物
苹果酸 异柠檬酸 β -羟丁酸 谷氨酸 NAD+ FMN 琥珀酸 FAD(Fe-S) CoQ b c1 c aa3 O2
10
血红素b、c1 Fe-S 血红素c 血红素a 血红素a3 Cu2+ O2
Q
Cytc
13
1
Cytc Cyta
Ⅳ
细胞色素C氧化酶
13
(一)尼克酰胺核苷酸类(NAD+)
NAD+ 和NADP+的结构
NAD+:R=H NADP+:R=PO32-
尼克酰胺核苷酸的作用原理
H
H H CONH 2
C CONH2 N R
AH2 2H(2H++2e)
吸 链
1 2 O2
H2O
氧化
A
ADP+Pi
能量 ATP 磷酸化
第八章生物氧化
27
2.黄素蛋白(flavin protein,FP)
黄素蛋白的辅基有两种:FMN和FAD, 其分 子中的异咯嗪环可以进行可逆的加氢和脱氢反应, 故黄素蛋白在呼吸链中属于递氢体,在加氢反应 时接收2个氢原子。
28
H3C H3C
N
CH 2 O H C OH H C OH H C OH
O PO O-
36
37
细胞色素c (Cytochrome C)
➢13kD球形蛋白 ➢唯一能溶于水的细胞色素 ➢流动电子载体,可在线粒 体内膜外侧移动
38
呼吸链中常见的几种蛋白质或酶
名称
特点
主要功能
黄素蛋白
以FAD或FMN为辅基 传递H和电子
铁硫蛋白
辅基为铁硫中心(Fe-S) 传递单个电子
泛醌(CoQ)
脂溶性,能在内膜中自 由扩散
ATP、热能
10ion and storage of ATP
ATP在能量代谢中的核心作用 ATP的生成
底物水平磷酸化 氧化磷酸化 ATP的储存和利用
11
一、 ATP在能量代谢中的核心作用
生物体能量代谢的特点:
1. 生物体不能承受能量大量增加、能量大量 释放的化学过程,所以代谢反应都是依序 进行,能量逐步得失的反应
⊿G′
(kcal/mol) (-14.8) (-12.3) (-11.8) (-10.3) (-7.3) (-7.5) (-6.6) (-6.6) (-5.0)
14
二、 ATP的生成 (一)底物水平磷酸化 定义:代谢物在氧化分解过程中,因脱氢或
脱水而引起分子内能量重新分布,产 生高能键,然后将高能键转移给ADP (或GDP)生成ATP(或GTP)的过 程,称为底物水平磷酸化(substrate phosphorylation)。
第八章 生物氧化
第八章生物氧化一、内容提要生物氧化是指糖、脂肪、蛋白质等供能物质在生物细胞中彻底氧化分解为CO2和H2O 并逐步释放能量的过程。
CO2的生成方式为有机酸脱羧。
脱羧反应根据其发生在α碳原子及β碳原子,分为α脱羧和β脱羧。
有的脱羧反应涉及氧化,因此脱羧反应又可分为不伴氧化的单纯脱羧和伴氧化的氧化脱羧。
线粒体内膜存在多种具有氧化还原功能的酶和辅酶,排列组成呼吸链。
细胞的线粒体中,代谢物脱下的2H以质子和电子形式通过呼吸链逐步传递给O2生成H2O。
从细胞内膜分离得到四种功能的呼吸链复合体:NADH-泛醌还原酶(复合体Ⅰ)、琥珀酸-泛醌还原酶(复合体Ⅱ)、泛醌-细胞色素C还原酶(复合体Ⅲ)和细胞色素C氧化酶(复合体Ⅳ)。
CoQ、Cytc不包含在这些复合体中。
体内存在两条呼吸链,即NADH氧化呼吸链及琥珀酸氧化呼吸链。
ATP的生成方式有两种:底物水平磷酸化和氧化磷酸化,以氧化磷酸化为主。
氧化磷酸化是呼吸链电子传递过程中产生的能量,使ADP磷酸化生产ATP的过程。
实验结果表明,每2H经NADH氧化呼吸链传递可产生约2.5个ATP,经琥珀酸氧化呼吸链传递可产生约1.5个ATP。
氧化磷酸化受到甲状腺素和ADP/ATP比值的调节,同时易受呼吸链抑制剂、解偶联剂和ATP合酶抑制剂等抑制。
底物水平磷酸化是代谢物分子中能量直接转移给ADP生成ATP的过程。
除ATP外还存在其它高能化合物,但生物体内能量的生成、转化、储存和利用都是以ATP为中心。
在肌肉和脑组织中,磷酸肌酸可作为ATP的能量储存形式。
胞质中物质代谢生成的NADH不能直接进入线粒体,必须通过α-磷酸甘油和苹果酸-天冬氨酸两种穿梭机制进入线粒体进行氧化。
生物氧化过程中有时会生成反应活性氧类,他们具有强氧化性,对细胞有损伤作用。
微粒体中的氧化酶类可以将某些底物分子羟基化,增强其极性,便于从体内排出;过氧化物酶体中的氧化酶类和超氧化物歧化酶对反应活性氧类具有一定的清除作用。
生物化学58 第八章 生物氧化
糖异生 葡萄糖
2. 糖代谢的中间产物可氨基化生成某些 非必需氨基酸
丙氨酸
天冬氨酸
糖
丙酮酸
草酰乙酸
乙酰CoA
α -酮戊二酸 谷氨酸
柠檬酸
(三)脂类与氨基酸代谢的相互联系
1. 蛋白质可以转变为脂肪
氨基酸
乙酰CoA
脂肪
2. 氨基酸可作为合成磷脂的原料
丝氨酸
磷脂酰丝氨酸
胆胺
脑磷脂
胆碱
卵磷脂
3. 脂肪的甘油部分可转变为非必需氨基 酸
1. 摄入的糖量超过能量消耗时
合成糖原储存(肝、肌肉)
葡
萄
合成脂肪
糖
乙酰CoA
(脂肪组织)
2. 脂肪的甘油部分能在体内转变为糖
甘油激酶
葡
甘油
磷酸-甘油
萄
肝、肾、肠
糖
脂
肪
脂酸
乙酰CoA
葡萄糖
(二)糖与氨基酸代谢的相互联系
1. 大部分氨基酸脱氨基后,生成相应的α酮酸,可转变为糖。
例如
脱氨基
丙氨酸
丙酮酸
第八章 生物氧化
第八章 生物氧化
与非生物氧化共同之处: 1、反应的本质都是脱氢、 失电子或加氧;2、被氧 化的物质相同,终产物 和释放的能量也相同。
定义:生物氧化过程中从代谢物脱下来的 氢和电子需要经过一系列中间传递体,最 后才与氧气形成水,在其间能量逐步释放。 这种由一系列传递体构成的链状复合体称 为电子传递体系(ETS)或简称为呼吸链。 NADH呼吸链和FADH2呼吸链。
呼吸链的组分
NAD+及与NAD+偶联的脱氢酶:NAD+是一种流 动的电子传递体。
黄素及与黄素偶联的脱氢酶 辅酶Q:属于一种流动的电子传递体。 铁硫蛋白 细胞色素:细胞色素c是一种流动的电子传递体 氧气
第八章生物氧化
2.细胞色素 Cyt 细胞色素(Cyt 细胞色素 Cyt) 细胞色素是属于色蛋白类的结合蛋白, 细胞色素是属于色蛋白类的结合蛋白,其辅基是 含铁卟啉的衍生物(血红素A,血红素B,血红素 血红素A,血红素B,血红素C) 含铁卟啉的衍生物 血红素A,血红素B,血红素C) 细胞色素共有五种,分别为Cyt 细胞色素共有五种,分别为Cyt a, Cyt b, c, Cyt c1, Cyt c, Cyt a3. 细胞色素在呼吸链中是通过铁卟啉中的铁原子氧 化还原作用而往复传递电子, 化还原作用而往复传递电子,细胞色素是单电子 传递体方程式如下 方程式如下: 传递体方程式如下: ( b, c1, c) 2Cyt·Fe 2Cyt Fe3+ + 2e2Cyt·Fe 2Cyt Fe2+
一. 生物氧化的涵义 由前述分解代谢的总方程式: 由前述分解代谢的总方程式:
有机物 + O2 能量( ATP) CO2 + H2O + 能量( ATP)
则有机物的分解是一种有氧参与的氧化反应, 则有机物的分解是一种有氧参与的氧化反应, 且反应发生在生物体内, 且反应发生在生物体内,故称为生物氧化 定义 有机物质在生物体细胞内的 氧化分解作用称为生物氧化 由于此过程消耗氧生成CO2 ,且在细 由于此过程消耗氧生成CO 胞中进行, 胞中进行,因此又称为细胞呼吸
(二)反应历程复杂 例 葡萄糖的氧化反应方程式: 葡萄糖的氧化反应方程式: C6H12O6 +6O2 6CO2 + 6H2O
在体内和体外都是一样的, 在体内和体外都是一样的,但各自的反 应历程不同,体外氧化是一次反应完全的 应历程不同 体外氧化是一次反应完全的 而生物氧化是在活细胞的水溶液中进 生物氧化是在活细胞的水溶液中进 行的,途径迂回曲折,有条不紊, 行的,途径迂回曲折,有条不紊,反 应历程复杂, 应历程复杂,都是酶促反应
生物化学 第八章 生物氧化
第二节 线粒体氧化体系
一、呼吸链(respiratory chain) 二、呼吸链的组成成分和作用 三、呼吸链的蛋白质复合体 四、呼吸链中各组分的排列顺序
Go on~
一、呼吸链(respiratory chain)
• 呼吸链是代谢物上的氢原子被脱氢酶激活 脱落后,经过一系列的传递体,最后传递 给被激活的氧原子,而生成水的全部体系。 • 在真核生物细胞内,它位于线粒体内膜上, 原核生物中,它位于细胞膜上。
功能:将底物上的氢激活
并脱下。
辅酶:NAD+或NADP+
NAD+ 和NADP+的结构
OR
NAD+:R=H NADP+:R=PO32-
尼克酰胺核苷酸的作用原理:
H
H H CONH 2
C CONH2 N R
+
+ H + e + H+
N R
+ H+
H
2H
H
e
H+
NAD(P)+
+2H
-2H
NAD(P)H+H+
Cys Cys
S S
Fe3+
S S
Fe3+S S来自Cys Cys+e-
Cys Cys
S S Fe3+
S S Fe2+
S S
Cys Cys
(4)泛醌(CoQ)
一种脂溶性的醌类化合物,其分子中的苯醌 结构能进行可逆的加氢反应,是氢传递体。
CoQ + 2H
CoQH2
(5)细胞色素(cytochrome,Cyt)
第八章生物氧化
Cytc12e
Cytc
2e
aa3
2e
O2-
1 2 O2
第20页/共47页
线粒体呼吸链复合体
FMN,Fe-S 复合体Ⅰ
FAD, Fe-S,Cytb 复合体Ⅱ
Cytb,
Fe-S,Cytc1 复合体Ⅲ
Cytaa3,Cu 复合体Ⅳ
第21页/共47页
四、胞液中的NADH的氧化
• 胞液中生成的NADH不能自由通透线粒体内膜,必须经过转运机制进入线 粒体
第32页/共47页
三、氧化磷酸化作用机理
(一)线粒体(mitochondrion)结构
线粒体内膜和脊上有许多球状小体突出: ATP合成酶系
第33页/共47页
第34页/共47页
第35页/共47页
Ⅰ
Ⅲ
Ⅳ
第36页/共47页
四、影响氧化磷酸化的因素
• 抑制剂(inhibitor) • ADP的调节 • 甲状腺素(thyroxine)的调节 • 线粒体(mitochondrial)DNA突变(mutation)
第4页/共47页
第二节 生物氧化方式
第5页/共47页
OO== O=
O= O=
一、生物氧化中CO2的生成方式: 有机酸脱羧
α-单纯脱羧 HO3HCORO丙-草C-COα酮CC-酰-氨酸CCC苹HO基乙HC果O-O酸酸N2酸HO-HHC2H-2-C※※OCH+HO氨单氧N-OC基HA纯化OH酸SD脱脱脱OCPN草A羧Ho+羧羧丙D酰A酶+丙苹酮乙酮果酸酸酸N羧R脱脱βN酶化Aα-羧A-C氢D酶-D单酶氧HH酶HP胺纯+2系化H3H-HCHN脱+3脱+3-CHCC羧H丙羧-2--C丙C酮C+乙-酮酸O-+SC酰酸OCCOCooHOAAH2+++CCOCO2O2 2
生物化学第八章 生物氧化
1 O2 2
H2O
实测得FADH2呼吸链: P/O~ 2
FADH2
线粒体是真核细胞的一种细胞器,是生物氧化和能 量转换的主要场所。是组织细胞的“发电厂”。 线粒体内,外膜的化学组成有显著的区别; 外膜:磷脂,胆固醇含量高,蛋白质含量低 内外膜间隙:腺苷酸激酶,核苷酸激酶等 内膜:有些脱氢酶,氧化呼吸链有关的酶, ATP 合成酶 基质: 催化糖有氧分解,脂肪酸氧化,氨基酸分 解和蛋白质生物合成的酶
3
二、生物氧化的一般过程
主要解决三个问题:
1.代谢物中C如何在酶催化下生成CO2;
2.细胞如何利用O2将代谢物中的H氧化成H2O;
3.氧化产生的自由能怎样被收集、转换和储存。
4
生物氧化的三个阶段
脂肪 多糖 蛋白质
大分子降解 成基本结构 单位
脂肪酸、甘油
葡萄糖、 其它单糖
氨基酸
乙酰CoA
小分子化合物 分解成共同的 中间产物(如 丙酮酸、乙酰 CoA等)
31
2. 高能化合物
生化反应中,在水解时或基团转移反应中可释
放出大量自由能( >20 千焦 / 摩尔)的化合物称为 高能化合物。
32
高 能 化 合 物 类 型
33
3. ATP的特点
在 pH=7 环 境 中 , ATP 分子中的三个磷 酸基团完全解离成带 4个负电荷的离子形 式 ( ATP4-), 具 有 较大势能,加之水解 产物稳定,因而水解 自由能很大( ΔG°′= -30.5千焦/摩尔)。
34
4.ATP的特殊作用
在机体的能量代谢中, ATP 就好像能量通币, 高能化合物虽有多种,只有 ATP 可为一切生 理机能与生物合成反应提供能量; ATP是细胞内磷酸基团转移的中间载体
第八章生物氧化
第八章生物氧化一、内容提要生物氧化是指糖、脂肪、蛋白质等供能物质在生物细胞中彻底氧化分解为CO2和H2O并逐步释放能量的过程。
CO2的生成方式为有机酸脱羧。
脱羧反应根据其发生在α碳原子及β碳原子,分为α脱羧和β脱羧。
有的脱羧反应涉及氧化,因此脱羧反应又可分为不伴氧化的单纯脱羧和伴氧化的氧化脱羧。
线粒体内膜存在多种具有氧化还原功能的酶和辅酶,排列组成呼吸链。
细胞的线粒体中,代谢物脱下的2H以质子和电子形式通过呼吸链逐步传递给O2生成H2O。
从细胞内膜分离得到四种功能的呼吸链复合体:NADH-泛醌还原酶(复合体Ⅰ)、琥珀酸-泛醌还原酶(复合体Ⅱ)、泛醌-细胞色素C还原酶(复合体Ⅲ)和细胞色素C氧化酶(复合体Ⅳ)。
CoQ、Cytc不包含在这些复合体中。
体内存在两条呼吸链,即NADH氧化呼吸链及琥珀酸氧化呼吸链。
ATP的生成方式有两种:底物水平磷酸化和氧化磷酸化,以氧化磷酸化为主。
氧化磷酸化是呼吸链电子传递过程中产生的能量,使ADP磷酸化生产ATP的过程。
实验结果表明,每2H经NADH氧化呼吸链传递可产生约2.5个ATP,经琥珀酸氧化呼吸链传递可产生约1.5个ATP。
氧化磷酸化受到甲状腺素和ADP/ATP比值的调节,同时易受呼吸链抑制剂、解偶联剂和ATP合酶抑制剂等抑制。
底物水平磷酸化是代谢物分子中能量直接转移给ADP生成ATP的过程。
除ATP外还存在其它高能化合物,但生物体内能量的生成、转化、储存和利用都是以ATP为中心。
在肌肉和脑组织中,磷酸肌酸可作为ATP的能量储存形式。
胞质中物质代谢生成的NADH不能直接进入线粒体,必须通过α-磷酸甘油和苹果酸-天冬氨酸两种穿梭机制进入线粒体进行氧化。
生物氧化过程中有时会生成反应活性氧类,他们具有强氧化性,对细胞有损伤作用。
微粒体中的氧化酶类可以将某些底物分子羟基化,增强其极性,便于从体内排出;过氧化物酶体中的氧化酶类和超氧化物歧化酶对反应活性氧类具有一定的清除作用。
《生物化学》第八章生物氧化
铁硫蛋白
铁硫蛋白是一类含铁硫络合物的蛋白质,其中,铁原子可与无机硫原 子或是蛋白质肽链上半胱氨酸残基的硫相结合。铁硫络合物中的铁和硫有 三种组合方式。通常情况下,铁硫蛋白以第二种和第三种形式存在。
铁硫蛋白中的铁可以呈两价(还原型),也可呈三价(氧化型),铁 的氧化、还原可起到传递电子的作用。
NAD++2H++2e- NADH+H+ 此外,亦有不少脱氢酶的辅酶为尼克酰胺腺嘌呤二核苷酸磷酸 (NADP+),又称辅酶 Ⅱ(CoⅡ)。
NADP++2H++2e- NADPH+H+
- 13 -
第二节
线粒体生物氧化体系 一、线粒体内的呼吸链
黄素蛋白(FP)
02
又称为辅酶 I(CoI),为体内很多脱氢酶的辅酶,是连接作用物与呼 吸链的重要环节,分子中除含尼克酰胺(维生素 PP)外,还含有核糖、磷 酸及一分子腺苷酸(AMP)。
-8-
第一节 生物氧化概述
四、参与生物氧化的酶
氧化酶直接作用于底物,以氧 作为受氢体或受电子体,生成的产 物是水。氧化酶均为结合蛋白质, 辅基常含有Cu2+,如细胞色素氧化 酶、酚氧化酶、抗坏血酸氧化酶等。
氧化酶
-9-
第一节 生物氧化概述
四、参与生物氧化的酶
脱氢酶
需氧脱氢酶 不需氧脱氢酶
通 常 以 黄 素 腺 嘌 呤 二 核 苷 酸 ( FAD ) 或 黄 素 腺 嘌 呤 单 核 苷 酸 (FMN)为辅基,可激活代谢物分子中的氢,与氧分子结合,
-5-
第一节 生物氧化概述
一、生物氧化的概念
代谢物在体内的氧化可以分为三个阶段:
首先是糖、脂肪和蛋 白质经过分解代谢生 成乙酰辅酶 A 中的乙 酰基;
第八章 生物氧化
2. 氧化磷酸化的机制——化学渗透学说
胞液侧 H+
H+ H+ Cyt c
+
+++++ +
++
+
Q
F
Ⅰ
Ⅱ
-
-
Ⅳ
0
- Ⅲ---
--
NADH+H+ NAD+
延胡索酸 琥珀酸
H2O 1/2O2+2H+
基质侧
ADP+Pi
-
F1
ATP
H+
化学渗透假说(chemiosmotic hypothesis):
电子经呼吸链传递时,可将质子(H+)从线 粒体内膜的基质侧泵到内膜胞浆侧,产生膜内 外质子电化学梯度储存能量。当质子顺浓度梯 度回流时驱动ADP与Pi生成ATP。
Cytb, Fe-S,Cytc1 复合体Ⅲ
Cytaa3,Cu 复合体Ⅳ
烟酰胺(nicotinamide)核苷酸类(NAD+、NADP+)
递氢体
黄素蛋白(flavoprotein)类(FMN、FAD)
递氢体
铁硫蛋白(iron-sulfur cluster)
递电子体
传递电子方式:
Fe2+
Fe3+ + e-
比较1、2,第一个偶联部位 NAD+ → CoQ 之间 比较2、3,第二个偶联部位 CoQ → Cytc 之间 比较3、4,第三个偶联部位 Cytaa3 → O2 之间
(2)计算自由能变化
△G0′<0 放能 △G0′>0 吸能 △G0′=0 无能变化
第八章 生物氧化
Cyt c
e-
内外膜间隙侧
e-
Q e-
Ⅰ
Ⅱ e-
Ⅲ
e- 线粒体内膜
Ⅳ
NADH+H+ NAD+
延胡索酸 琥珀酸
基质侧
H2O 1/2O2+2H+
四个蛋白复合体:复合体I ~ IV 两个可灵活移动的成分:泛醌(CoQ)和 Cyt c
三、主要的呼吸链
(一)NADH氧化呼吸链
NADH
FMN (Fe-S)
CoQ
解耦联蛋白作用机制(棕色脂肪组织线粒体)
H+
热能
内外膜间隙侧 + +++++
Cyt c
+
++
解耦联 蛋白
Ⅰ
-
基质侧
Q
F
Ⅱ
--
0
Ⅲ- - -
Ⅳ
-
F1
ADP+Pi ATP
H+
寡霉素(oligomycin)
可阻止质子从F0质子通道回流,抑制ATP生成。
内外膜间隙侧
寡霉素
(三)ATP的利用和储存
为糖原、磷脂、蛋白质合成时提供能量的UTP、 CTP、GTP一般不能从物质氧化过程中直接生成, 它们的生成和补充都有赖于ATP。 NMP + ATP <=核苷单磷酸激酶=> NDP + ADP NDP + ATP <=核苷二磷酸激酶=> NTP + ADP
构成呼吸链的递氢体或递电子体通常以复合体的 形式存在于线粒体内膜上。
一、呼吸链的主要组分
Cyt c
内外膜间隙侧
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5单元生物氧化
(一)名词解释
1.呼吸链;
2.氧化磷酸化作用;
3.磷氧比值(P/O);
4. 底物水平磷酸化;
5. 解偶联剂;
6. 化学渗透学说
(二)填空
1.生物分子的E0'值小,则电负性,供出电子的倾向。
2.P/O值是指,NADH的P/O值是__,还原性维生素C的P/O值是,在DNP(2,4-二硝基苯酚)存在的情况下,氧化分解琥珀酸的P/O值是__。
3.在呼吸链中,氢或电子从氧还电势的载体依次向氧还电势的载体传递。
4.化学渗透学说认为:呼吸链组分定位于内膜上,其递氢体有泵作用,因而造成内膜两侧的差,同时被膜上合成酶所利用,促使ADP + Pi → ATP。
(三)选择题(在备选答案中选出1个或多个正确答案)
1.生物氧化的反应类型不包括下列哪种反应?
A.脱氢反应
B.失电子反应
C.羟化反应
D.脱羧反应
E.加水脱氢反应
2.如果质子不经过F1/F0-ATP合成酶回到线粒体基质,则会发生
A.氧化
B.还原
C.解偶联
D.紧密偶联
E.主动运输
3.有关呼吸链的正确叙述是
A.两类呼吸链都由四种酶的复合体组成
B. 电子传递体同时兼有传氢体的功能
C.传氢体同时兼有传递电子的功能
D.抑制细胞色素aa3,则呼吸链各组分都呈氧化态
E.呼吸链组分通常按E0大到小的顺序排列
4.下述哪种物质专一性地抑制F0因子:
A.鱼藤酮
B.抗霉素A
C.2,4-二硝基酚
D.缬氨霉素
E.寡霉素
5.下列关于化学渗透学说的叙述哪一条是不对的
A.各递氢体和递电子体都有质子泵的作用
B.呼吸链各组分按特定的位置排列在线粒体内膜上
C.H+返回膜内时可以推动ATP酶合成ATP
D.线粒体内膜外侧H+不能自由返回膜内
E.ATP酶可以使膜外侧H+返回膜内侧
6.呼吸链的各细胞色素在电子传递中的排列顺序是(福建师范大学1999年考研题)
A.c1→b→c→aa3→O2
B.c→c1→b→aa3→O2;
C.c1→c→b→aa3→O2;
D.b→c1→c→aa3→O2;
E.b→c→c1→aa3→O2
(四)是非题
1.生物氧化只有在氧气存在的条件下才能进行。
2.NADH脱氢酶是以NAD+为辅酶的脱氢酶的总称。
3.代谢物脱下的2摩尔氢原子经呼吸链氧化成水时,所释放的能量都储存于高能化合物中。
4.寡霉素专一地抑制线粒体F1F0-ATPase的F0,从而抑制ATP的合成。
(五)分析与计算题
1.什么叫呼吸链?它由哪些组分组成?有哪些方法可用来确定电子传递顺序?
2.为什么在通气条件下生产等量的酵母菌体所消耗的葡萄糖量明显低于静置培养?
参考答案
(一)名词解释
1.代谢物分子中的氢原子在脱氢酶作用下激活脱落后,经过一系列传递体的传递,最终将电子交给被氧化酶激活的氧而生成水的全部体系,称为呼吸链或电子传递链。
2.伴随着呼吸链电子传递过程发生的ATP的合成称为氧化磷酸化。
氧化磷酸化是生物体内的糖、脂肪、蛋白质氧化分解,并合成ATP的主要方式。
3.在氧化磷酸化过程中,每消耗1摩尔氧原子与所消耗的无机磷酸的摩尔数称磷氧比值(P/O)。
4.在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷酸键(或高能硫酯键),由此高能键提供能量使ADP(或GDP)磷酸化生成ATP(或GTP)的过程称为底物水平磷酸化。
5.使电子传递和氧化磷酸化作用偶联过程脱离的一类化学物质称为解偶联剂。
它使呼吸链电子传递过程中泵出线粒体内膜的质子不经质子通道回流,但能通过其它途径使质子返回线粒体基质,从而破坏了内膜两侧的电化学梯度,结果使电子继续传递、组织耗氧增加,但没有ATP合成。
6.是由英国生物化学家Peter Mitchell于1961年提出的关于解释呼吸链电子传递与氧化磷酸化作用偶联机制的一种假说。
其基本观点是:电子经呼吸链传递释放的能量,将质子从线粒体内膜的内侧泵到内膜的外侧,在膜两侧形成电化学梯度而积蓄能量,当质子顺此梯度经ATP合成酶F0通道回流时,F1催化ADP与Pi结合,形成ATP。
(二)填空
1.大,强;
2. 氧化磷酸化过程中,每消耗1摩尔氧原子与所消耗的无机磷酸的摩尔数之比,2.5,1,0;
3. 低,高;
4. 线粒体,质子,质子浓度,ATP。
(三)选择题
1.(D)生物体内物质的脱氢反应、失去电子、羟化反应(加单氧)等都是氧化还原反应,但脱羧反应不涉及电子转移,不是氧化还原反应。
2.(C)当质子不通过F0进人线粒体基质的时候,ATP就不能被合成,但电子照样进行传递,这就意味着发生了解偶联作用。
3. (C)呼吸链并非仅仅由四种酶的复合体组成,呼吸链有些组分如CytC、CoQ就游离于四种酶的复合体之外。
呼吸链各种组分都能传递电子,是递电子体,但仅有部分组分同时能传递氢,是传氢体,如细胞色素、铁硫蛋白组分只能传递电子,不能传递氢。
故递氢体一定是传递电子体,而传递电子体不一定是递氢体。
如果抑制呼吸链中Cytaa3的活性,则上游组分无法氧化而全部呈还原态。
呼吸链各组分的标准氧化还原电位按由低到高顺序排列,正是这种电位差,电子得以向下游传递。
4. (E)寡霉素是氧化磷酸化抑制剂,它能与F0的一个亚基专一结合而抑制F1,从而抑制ATP的合成。
5.(A)化学渗透学说认为,呼吸链中递氢体和递电子体在线粒体内膜上是定向排列的,递氢体有氢泵作用,而递电子体没有氢泵作用。
其它几项叙述都是对化学渗透学说的正确叙述。
6. (D)各种细胞色素在电子传递中的排列顺序是根据氧化还原电位从低到高排列的。
(四)是非题
1.错。
生物氧化中的电子受体可以是O2,也可以是其它有机或无机化合物,只要有合适的电子受体,生物氧化就能进行。
2.错。
NADH脱氢酶是指催化NADH脱氢氧化的酶,此类酶的辅酶为FMN或FAD,且与Fe-S 形成复合体,所以NADH脱氢酶属于黄素酶类。
3. 错。
2摩尔氢原子经呼吸链氧化成水时,只有部分能量以ATP形式储存,还有部分
能量以热的形式散失到环境中。
4. 对。
寡霉素是氧化磷化的抑制剂,它与F1F0-ATPase的F0结合而抑制F1,使线粒体内膜外侧的质子不能返回膜内,A TP因此而不能合成。
(五)分析与计算题
1.(1)有机物在生物体内氧化过程中所脱下的氢原子,经过一系列有严格排列顺序的传递体组成的传递体系进行传递,最终与氧结合生成水,这样的电子或氢原子的传递体系称为呼吸链或电子传递链。
(2)线粒体生物氧化体系中,两类典型的呼吸链都由五类组分组成,并按一定的顺序定位于线粒体内膜。
NADH呼吸链由NADH脱氢酶(复合体Ⅰ)、泛醌、细胞色素还原酶(复合体Ⅲ)、细胞色素C、细胞色素氧化酶(复合体Ⅳ)组成。
FADH2呼吸链由琥珀酸-Q还原酶(复合体Ⅱ)、泛醌、细胞色素还原酶(复合体Ⅲ)、细胞色素C、细胞色素氧化酶(复合体Ⅳ)组成。
(3) 呼吸链中各组分的电子传递顺序可通过三种实验方法确定。
①测定各种电子传递体的标准氧化还原电位△E0′,电子传递体的△E0′数值越低,其失去电子的倾向越大,越容易作为还原剂而处于呼吸链的前面。
②电子传递体的体外重组实验,NADH可以使NADH脱氢酶还原,但它不能直接还原细胞色素还原酶(复合体Ⅲ)、细胞色素C、细胞色素氧化酶(复合体Ⅳ)。
同样还原型的NADH脱氢酶不能直接与细胞色素C作用,而必须通过泛醌和复合体Ⅲ。
③利用呼吸链的特殊阻断剂,阻断某些特定部位的电子传递,再通过分光光度技术分析电子传递链各组分吸收光谱的变化,根据氧化还原状态,确定各组分在电子传递链中的顺序。
2. 假设生产等量的酵母需要等量的ATP供细胞增殖。
酵母细胞有两条途径获取ATP,一是葡萄糖无氧分解,每摩尔葡萄糖净生成2摩尔ATP、2摩尔丙酮酸和2摩尔NADH·H+,该途径的持续进行需要将NADH·H+再生为NAD+,由丙酮酸脱羧形成的乙醛被还原成乙醇,NADH 自身重新氧化成NAD+。
获取ATP的另一条途径是葡萄糖分解产生的丙酮酸和NADH·H+都进入线粒体彻底氧化,通过呼吸链使NAD+再生,通过这条途径,每摩尔葡萄糖可以净产生32摩尔的ATP。
通气培养酵母菌获取能量的途径是后者,静置培养酵母菌获取能量的途径是生醇发酵。
显然前者葡萄糖的利用率、能量捕获率高于后者,所以获得供细胞增殖所需等量的ATP,静置培养所需的葡萄糖将远远高于通气培养。