(完整word版)结构图等效变换规则

合集下载

自动控制理论—结构图和信号流图

自动控制理论—结构图和信号流图

功放环节:
ua ( s) K3 u2 ( s)
u1 ( s)
K 2 (s 1)
u2 ( s )
u2 ( s )
K3
ua (s)
6
反馈环节:
电动机环节:
u f ( s) ( s)
Kf
(TaTm s 2 Tm s 1)( s) K u ua ( s) K m (Ta s 1) M c ( s)
1
u (s )
C1s
1
-
R2
I 2 ( s)
1
uo (s)
C2 s
为了求出总的传递函数,需要进行适当的等效变换。一个 可能的变换过程如下: C2 s 1 ui (s) uo (s) u (s ) 1 I1 ( s ) 1 ① R1 C1s R2C2 s 1 I (s) -
R1C2 s
ui (s)
ui (s)
I1 ( s )
I (s )
u (s )
u (s ) I (s ) 1 C1s
-
1
R1
I1 ( s )
I 2 ( s)
u (s )
1 R2
uo (s)
1 C2 s
I 2 ( s)
I 2 ( s)
uo (s)
16
结构图等效变换例子||例2-11
总的结构图如下:
ui (s)
-
1
I1 ( s ) R1 I (s)
给定输入作用下的闭环系统的传递函数
1、给定输入作用下的闭环系统: 令 N ( s) 0 ,则有:
R(s) E (s ) G1 ( s) B(s)
G2 ( s)
C (s ) ( s) C ( s)

控制系统的结构图及其等效变换

控制系统的结构图及其等效变换

2.
通路
沿支路箭头方向穿过各相 连支路的路径。
前向通路
从源节点到阱节点的通路上通过任何节点
不多于一次的通路。前向通路上各支路增益之 乘积,称前向通路总增益,一般用pk表示。
回路
起点与终点重合且通过任何节点不多于一次的
闭合通路。回路中所有支路增益之乘积称为回 路增益,用Lk表示。
不接触回路
相互间没有任何公共节点的回路
反馈通路断开。 系统开环传递函数:前向通道传递函数与反馈通道传 递函数的乘积。
B( s ) Gk ( s) G1 ( s)G2 ( s) H ( s) E (s)
(反馈信号B(s)和偏差信号E (s)之间的传递函数)
系统的开环传递函数
GK (s) G1 (s)G2 (s) H (s)
注:开环传递函数并非指开环控制系统的传递函数, 而是指闭环系统断开反馈点后整个环路的传递函数。
例2.9 简化下图,求出系统的传递函数。
解: 上图是具有交叉连接的结构图。为消除交叉,可采 用比较点、引出点互换的方法处理。 (1)将相加点a移至G2之后
(2)再与b点交换
(3)因 G4与G1G2并联, G3与G2H是负反馈环节
(4)上图两环节串联,函数相乘后得系统的传递函数为
注: ①以上为原系统的闭环传递函数,不是开环系统的传递函数, 而是闭环系统简化的结果; ②分母中不能看成原闭环系统的开环传递函数,闭环系统开 环传递函数应根据定义和具体框图定。
闭环系统的传递函数
反馈控制系统的典型结构 :
R( s) E (s) G1(s) B(s)
N (s)
G2(s)
C (s)
H(s)
输入量R(s)、干扰量N(s)同时作用于系统

系统结构图及等效变换、梅森公式

系统结构图及等效变换、梅森公式
统结构图基础上应用等效变换和梅森 公式进行系统设计和实现,确保系统稳定性和可靠性。
05
结论与展望
BIG DATA EMPOWERS TO CREATE A NEW
ERA
研究结论
• 通过分析和比较不同系统结构图的特点和性能,本文得出了一些重要的结论。首先,等效变换在系统分析和设 计中具有重要的作用,它可以帮助我们简化复杂的系统结构,降低分析和设计的难度。其次,梅森公式是一种 有效的系统性能评估方法,它可以用于计算系统的传递函数和频率响应等关键性能指标。最后,通过实例分析 和仿真验证,本文证明了等效变换和梅森公式在系统分析和设计中的有效性和实用性。
案例一
分析一个简单的RC电路,利用梅 森公式计算其传递函数,并与实 验结果进行对比分析。
案例二
针对一个控制系统,利用梅森公 式分析其稳定性,并给出相应的 控制器设计建议。
案例三
考虑一个复杂的信号流图,利用 梅森公式进行化简,得到简化的 数学模型,便于后续分析和设计。
BIG DATA EMPOWERS TO CREATE A NEW ERA
案例分析
案例一
串联等效变换的应用。在某控制系统中,存在两个串联的控制器,通过串联等效变换,可以将这两个控制器 合并为一个等效控制器,从而简化系统分析。
案例二
并联等效变换的应用。在某电力系统中,存在两个并联的电源,通过并联等效变换,可以将这两个电源合并 为一个等效电源,方便进行系统性能评估。
案例三
反馈等效变换的应用。在某通信系统中,存在一个反馈环节,通过反馈等效变换,可以将该反馈环节进行简 化,使得简化后的系统与原系统在性能上保持一致。
系统结构图及等效变换、
BIG DATA EMPOWERS TO CREATE A NEW

动态结构图及其等效变换

动态结构图及其等效变换
再进行内回路反馈和并联变换,得下图。
22
N1 +
解:
(2)求C/N1,设R=0,N2=0, 得右图。
C(s) G3(1 G2 ) N1(s) 1 G2 G1G2G3
23
解(3)求C(s)/N2(s),设R=0,N1=0,得下图。
则:
0 N2(s) C(s)
C(s) 1 N2 (s)
24
X(s)
X(s)
R(s)
C(s)
R(s)
C(s)
Y(s)
C(s) R(s) X (s) Y (s)
Y(s)
C(s) R(s) Y (s) X (s)
7. 相邻的比较点和引出点之间可以调换位置,如下图 所示。
17
相邻引出点之间的移动
R(s)
R(s)
R(s)
R(s) C(s)
R(s)
R(s) R(s)
动态结构图及其等效变换
1
§ 2.3 动态结构图及其等效变换
一、动态结构图(方块图) 1.定义
动态结构图是图形化的数学模型,它是一种系 统输入和输出之间因果关系的简略图示方法,表示 了系统输出、输入信号之间的动态传递关系。
2
2. 组成要素 传递方块: 表示输入、输出信号之间的传递关系 C(s)=G(s)E(s),B(s)=H(s)C(s)
(s) )
RI CsU
(s) I(s) c (s) Uc (
s)
1 R
U r
1 Cs
( I
s) (s)
U
c
(
s)
绘制上式各子方程的方框图:
r ( s ) r ( s ) - c ( s ) r ( s ) - c ( s ) I ( s ) I ( s ) c ( s )

动态结构图.

动态结构图.
U1 ( s )
I1 ( s )

1 U1 ( s ) C1 s
I 2 ( s)

1 I 2 ( s) R2
UC ( s)
I 2 ( s)
1 UC ( s) sC 2
动态结构图的建立
按图中关系联接各个方框
U r ( s)
1 I1 ( s ) R


I 2 ( s)
1 U1 ( s ) C1 s
U1 ( s )
( m)
∆k ——第k条前向通路特征式的余因子,即对于结构图的特征式∆,将与第k
条前向通路相接触的回路传递函数代以零值,余下的∆即为∆k。

1 I 2 ( s) R2
UC ( s)
1 UC ( s) sC 2
传递函数可由方程组消去中间变量得到
UC ( s) 1 2 U r ( s ) R1C1 R2C 2 s ( R1C1 R2C 2 R1C 2 ) s 1
动态结构图的建立
注意:双T网络不可看成两个RC网络的串联,即:
1 R 1 sC
I ( s)
UC ( s)
动态结构图的建立
连接各方框,得到动态结构图
U r ( s)
U ( s)
C
U R ( s) U R ( s)
1 R
I ( s)
I ( s)
1 sC
UC ( s)
R I(s) Ur(s)
1 sC
U r ( s)
UC(s)
U ( s)
C
U R ( s)
1 接的传递函数
X1(s) G1(s) G2(s) X3(s) X2(s) ±
X 2 (s) G ( s) X 1 (s) X 3 (s) X 4 (s) X 1 ( s)

(自动控制原理)2.4控制系统的结构图及其等效变换

(自动控制原理)2.4控制系统的结构图及其等效变换

实例二:复杂控制系统的等效变换
总结词
通过等效变换简化复杂控制系统的结构图,便于分析。
详细描述
以一个包含多个回路和元件的液压控制系统为例,介绍如何 通过等效变换简化其结构图。通过合并、化简等步骤,将复 杂的结构图简化为易于分析的形式,以便更好地理解系统的 工作原理和控制性能。
实例三:实际应用中的控制系统等效变换
控制系统的性能指标
总结词
控制系统的性能指标是用来评估控制系统性能优劣的一系列参数。常见的性能指标包括稳定性、快速 性、准确性等。
详细描述
稳定性是指控制系统在受到扰动后能够恢复到原来的平衡状态的能力。快速性是指控制系统对于输入 信号的响应速度。准确性是指控制系统对于输入信号的跟踪精度。这些性能指标可以通过数学分析和 实验测试等方法进行评估。
不断调整和完善结 构图,确保其准确 反映系统的工作原 理。
结构图的基本元件及其作用
控制器
根据设定值与实际值的偏差, 计算出控制量并输出给执行器。
被控对象
需要被控制的设备或系统,如 温度、压力、流量等。
传感器
用于检测被控对象的参数变化, 并将检测到的信号转换为电信 号或数字信号输出。
执行器
根据控制器输出的控制量,驱 动被控对象进行相应的动作或 调节。
课程背景
自动控制原理是自动化专业的一门核心课程,主要介绍控制系统的基本原理、分 析和设计方法。
本节内容是该课程的重要章节之一,通过学习结构图及其等效变换,学生可以深 入理解控制系统的组成和动态行为,为后续章节的学习打下基础。
02 控制系统的基本概念
控制系统的定义
总结词
控制系统的定义是指通过一定的控制装置,对被控对象施加控制作用,从而使 被控对象的输出量按照预期的规律变化的过程。

自动控制原理02结构图及其等效变换

自动控制原理02结构图及其等效变换
e)
R( s )
G 1 G 2 G3G 4 C (s) 1 G 1 G 2 G3G 4 G 2 G3 H 1 G3G 4 H 2
f)
2.3 控制系统的结构图及等效变换
2.3.4 系统传递函数
典型闭环控制系统
N (s)
R( s )
E ( s)
G1 (s)
结构图。
2.3.2 结构图的建立
例2-7 RLC电路网络的结构图
解: U (s) U (s) U (s) U (s) i R L 0
U R ( s) RI ( s)
U L ( s) LsI ( s)
{
I ( s)
U i ( s) U 0 ( s ) U R ( s ) U L ( s )
C 传输到 ( s)
单位反馈: H ( s) 1 开环传递函数:
G( s) H ( s)
2.3.3 结构图的等效变换和简化
(4)比较点的移动
R1 (s)
G(s)
R2 ( s )
a)
C (s)
R2 ( s )
R1 (s)
G(s)
C (s)
1/ G(s)
b)
R1 (s)
R2 ( s )
a)
G(s)
C (s) G(s) ( s) R( s) 1 G ( s) H ( s )
2.3.3 结构图的等效变换和简化
反馈连接中的术语:
R( s)
E (s)

G (s)
H (s)
C (s)
B( s)
前向通道:信号从 R( 传输到 s) 反馈通道:信号从
的通道 C ( s) 的通道 R( s )
R(s)

动态结构图的等效变换和化简

动态结构图的等效变换和化简

等 R(s)

C(s) G(s)
1Gs
B(s)
Cs
Rs
GBssGs
RsGs Bs
二、综合点的移动和互移
(二)综合点后移
R(s)
B(s)
C(s) G(s)
Cs Rs BsGs
等 R(s) 效
B(s)
G(s) G(s)
C(s)
Cs RsGs BsGs
二、综合点的移动和互移
(三)综合点互移
R(s)
C(s)
G(s)

R(s)

Cs RsGs
R(s)
C(s)
G(s)
R(s)
11GGss
Cs RsGs
三、引出点的移动和互移
(三)引出点互移
R(s)
R(s)
等 R(s)
R(s)

例题
试化简下图所示两级RC电路的动态结构图,并求出传 递函数。
Ui s
1
R1
-
-
1 C1s
1 R2
-
Uo s
G2 (s) C2 (s)
C1s RsG1s C2s RsG2s Cs C1s C2s
Cs G1s G2sRs
结论:n个环节并联后总的传递函数是各环节传递函数的代数和。
一、环节的合并
(三)反馈连接
如下图所示,系统的输出信号C(s)在经过某个环节H(s)后,反 送到输入端,这种连接方式成为反馈连接。
R(s)
C(s)
B(s) D(s)
Cs Rs Bs Ds

R(s)
C(s)

D(s) B(s)
Cs Rs Ds Bs
三、引出点的移动和互移

# 23传递函数方块图(系统动态结构图)及其等效变换

# 23传递函数方块图(系统动态结构图)及其等效变换

r (s)

e
e ( s)
c ( s)
US(s)
U S (s) KSe (s)
Ua(s) –
(s)
KS
U a (s) Ra I a (s) La SIa (s) Eb (s)
Eb(s)
1 Ra La S
Ia(s)
M m (s) Cm I a (s)
2
Ia(s)
Cm
根据传递函数的定义,每一个方块单元,一 般有以下的运算关系: X0(s) = W(s) Xi(s)
# 2—3 传递函数方块图(系统动态结构图) 及其等效变换 图中:指向方块单元的箭头表示输入量 的象函数Xi(s),离开方块单元的箭头表示 输出量的象函数X0(s),写在方块单元中的 是传递函数G(s)。
Mm(s)
JS m (s) fSm (s) M m (s) M L (s)
Mm(s)

1 JS 2 fS
m ( s)
Eb(s)
Eb (s) Kb Sm (s) m ( s)
ML(s)
K bS
1 c ( s ) m ( s ) i
e (s)
m ( s) 1 c ( s)
# 2—5 传递函数方块图(系统动态结构图) 及其等效变换 作业:系统结构方图的绘制 R1 L Xi Uc R2 Ur C
L Ur C R2 Uc
X0
2、系统结构方块图的绘制步骤 (1)列写系统中各元件的运动方程 (2)在零初始条件下,对微分方程进行拉氏变 换 (3)用元件方块图等表示出信号间的关系 (4)根据系统中各信号的传递方向和顺序将各 方块图连接起来,就得到系统的动态结构 图

U1(s)

过程控制原理与工程第2章

过程控制原理与工程第2章

2.1 建立被控对象的数学模型
描述系统的输出量与输入量之间关系的微分方程是系 统最基本的数学模型。 建立微分方程的一般步骤是: 1) 确定输出量和输入量。 2) 从输入端开始,根据相应的物理规律,依次列写各 环节的方程式。 3) 将各方程式联立起来消去中间量,获得一个只含有 输出量和输入量的微分方程式。 图2-1 R、C串联电路过程控制原理与工程第2章 过 程控制系统的数学模型4) 将该方程式整理成标准形式。 即把与输出量有关的各项放在等式的左边,把与输入 量有关的各项放在等式的右边,各导数项按降幂排列。
图2-7 比例环节的功能框图和阶跃响应曲线
过程控制原理与工程
2.积分环节
(1)微分方程 (2)传递函数 (3)动态响应
过程控制原理与工程
2.积分环节
图2-8 积分环节的功能框图和阶跃响应曲线
过程控制原理与工程
3.理想微分环节
(1)微分方程 (2)传递函数 (3)动态响应
过程控制原理与工程
3.理想微分环节
2.结构图的等效变换规则
图2-17 分支点互换
(3)比较点的后移 需乘以所越过环节的传递函数,如图218所示。
过程控制原理与工程
2.结构图的等效变换规则
图2-18 比较点后移
(4)比较点的前移 需乘以所越过环节的传递函数的倒数, 如图2-19所示。
过程控制原理与工程
2.结构图的等效变换规则
图2-19 比较点前移
过程控制原理与工程
2.3.1 拉氏变换的概念
表2-1 常用函数拉氏变换对照表
过程控制原理与工程
2.3.1 拉氏变换的概念
表2-1 常用函数拉氏变换对照表
过程控制原理与工程
2.3.2 拉氏变换的运算定理

自动控制理论结构图

自动控制理论结构图

22
2.4 线性系统的结构图
结构图的等效变换和简化
复杂系统的化简:
串联、并联和反馈连接;层层嵌套
例2.8
R
G1
G2
G3
G4
Y
G1−1G4−1
G1−1G4−1
R
G1G2
G3G4 Y R
G1G2 1+ G1G2
G3G4 Y 1+ G3G4
23
2.4 线性系统的结构图
结构图的等效变换和简化
复杂系统的化简:
G3 Y (s) R(s)
H
G1 +1 G2
G2G3 Y (s) 1+ G2G3H
(a)
(b)
R(s) (G1 + G2 )G3 Y (s)
1+ G2G3H
20
2.4 线性系统的结构图
结构图的等效变换和简化
复杂系统的化简:
串联、并联和反馈连接;层层嵌套
例2.6
方法2: 2后移至3
G1(s)
R(s) 1
+2 -
G2(s)
+3
4 G3(s)
Y(s)
R
H(s)
G1
+
+G2
Y G3 G2H
图2-17 输入补偿型复合控制系统结构图
G(s) = Y (s) = (G1 + G2 )G3
R(s) 1+ G2G3H
21
2.4 线性系统的结构图
结构图的等效变换和简化
例2.7 两输入单输出系统结构图
扰动 D(s)
La J m
d
2ω m (t)
dt 2
+

自动控制原理控制系统的结构图

自动控制原理控制系统的结构图

5
2.3.2 绘制结构图的一般步骤
1.根据系统中信号的传递过程,将系统划分为若干 个元部件或环节。 2.分别列写每个元部件的微分方程,在零初始条件 下进行拉氏变换,得到每个元部件的传递函数,给 出每个元部件的单元结构图。 3.把系统的输入量置于最左端,输出量置于最右端, 按照系统中信号的流向,把各元部件结构图中相同 的信号连接起来,便得到系统的结构图。
u
o
idt c
对其进行拉氏变换得:
I (s)
U
o
(s)
U
i (s)
I (s) sC
U R
o
(s)
(1) (2)
10
I (s)
U
o
(s)
U
i (s)
I (s) sC
U R
o
(s)
(1) (2)
Ui (s)
I(s)
(b)
Uo (s)
I(s)
(c)
Uo (s)
Ui (s)
I(s)
Uo (s)
G1 ( s )
G2 (s)
B( s )
反馈信号
C(s) H( s )
(2)反馈回路传递函数---假设N(s)=0
主反馈信号B(s)与输出信号C(s)之比
B(s) H (s) C(s)
28
控制器
N( s )
被控 对象
+ E( s)
++
C(s)
R( s )
G1 ( s )
G2 (s)
B( s )
反馈信号
R(s)

C(s) G(s)
Q(s)
C(s) R(s)G(s) Q(s)

2.3动态结构图

2.3动态结构图

X1(s) C(s)
R(s) B(s)
E(s)
G1(s)
C(s)
G2 ( s )
±
X2(s)
H(s)
并联连接
反馈连接
《自动控制技术及应用》电子课件
西安航空职业技术学院 自动化工程学院
2.3.2 动态结构图的等效变换
一、等效变换
(三)反馈连接框图的等效变化
R(s) B(s) H(s) E(s) G1(s) C(s)
《自动控制技术及应用》电子课件
2.3.1 动态结构图的建立
【例2-16】 对RC串联电路建立动态结构图.
(3)依据信号的流向,将图中相同的信号连 起来,就组成了RC串联电路的动态结构图
U R ( s) U r ( s) U C ( s)
Ur(s) UC(s) UR(s)
1 I (s) U R (s) R
R(s) C(s)
G(s)
R(s)
G(s) 1 G(s)
C(s)
西安航空职业技术学院 自动化工程学院
《自动控制技术及应用》电子课件
2.3.2 动态结构图的等效变换
练一练1:对下图中的各结构图进行等效化简.
(1)
R(s)
R1
R2
C(s)
R(s)
(2)
R(s)
R1 R2
C(s)
-
( 3)
R(s)
-
一、动态结构图的组成
4 分支点
X(s)
X(s) X(s)
分支点又称引出点,表示在此位置处将 该信号分成多路输出.由于信号线上只传送 信号,不传送能量,因此分出的每路信号大 小均与原信号相等.
西安航空职业技术学院 自动化工程学院

3.6-1系统框图的等效变换原则.

3.6-1系统框图的等效变换原则.

������ ������
1 ∓ ������ ������ ∙ ������(������)
������ ������ = ������ ������ ∙ ������(������) = ������(������)[������(s) ± ������(s)] = ������ ������ [������(s) ± ������ ������ ∙ ������(������)] = ������(������) ∙ ������(s) ± ������ ������ ������ ������ ∙ ������(������)
数的代数和。
������(������)
G1
(s)
������1(������) +������
������
������2 (s)
+
������(������)
������ ������
G1(s)+������2(s)
������ ������ ������ ������ = ������(������) = G1(s) + G2(s)
引出点移动规则
������(������)
①引出点前移
������(s)
������ ������
典型机电控制系统
������ ������
������(������)
������(s)
������ ������
������(������)
������ ������
������(s)
②引出点后移
������(������) ������(s)
典型机电控制系统
反馈联接变换规则
将环节的输出量反送到输入端与输入信号进行比较后作为环节的输入量,就构

自动控制原理2.4 结构图的等效变换及简化计算

自动控制原理2.4   结构图的等效变换及简化计算
Pk—从R(s)到C(s)的第k条前向通道增益 △k —第k条前向通道的余子式
在△中,去掉与第k条前向通 道相接触的回路对应的项后
剩余的部分。
求法: 去掉第k条前向通路后所求的△ 用梅森公式求上例信号流图对应的传函。
南京工业职业技术学院机械工程学院——自动控制原理
梅森公式例1
GG44((ss))
R(s)
注:比较点和引出点之间不能换位。 3. 通过在被变换的支路上乘或除某个传函来保持等效。 4. 根据环节方框的连接方式(串联、并联和反馈)进行简化
计算。
南京工业职业技术学院机械工程学院——自动控制原理
结构图三种连接形式及其计算
串联
G1
G2
G1 G2
n
G(s) Gi (s) i 1
并联 G1 G2
反馈 G1
G5
R –
X1 G1
– G2 X2 –
G3 X3
G4
C
X3
G6
G7
南京工业职业技术学院机械工程学院——自动控制原理
G8 G5
R – G1 X1
X2 – G2

X3
G3
G4
C
X3 G6
G7
(2)求传函。用梅逊公式:
1 G1G2G3G4G7 G1G2G3G4G8 G2G3G6 G3G4G5
R(s)
-
G4
A
G1
-
B
G2
H1
G3 H2
C C(s)
P1 G1G2G3 1 1
P2 G1G4 2 1
C(S) P(S) P11 P22
P11 P22
R(S)
1 (L1 L2 L3 L4 L5 )

控制系统的结构图及其等效变换

控制系统的结构图及其等效变换

Y (s)
前移 R1(s) G(s) Y (s)
注:
R2 (s)
R1 ( s )
Y (s)
G(s)
1/G(s) R2 (s)
相加点进入和出去的信号量纲必须相同,否则不能加减。
b引出点(信号由某一点分开)
分支点分出信号,数值相同
R(s) 后移
G(s)
Y (s)
R(s)
R(s) G(s)
Y (s) R(s)
4.比较点(求和点、综合点) 1.用符号“ ”及相应的信号箭头表示 2.箭头前方的“+”或“-”表示加上此信号 或减去此信号
! 注意量纲:相同量纲的物理量
例:二阶RC电气网络
结构图的等效变换和简化
➢系统的结构图通过等效变换和简化后可以方便、快速 地求取闭环系统的传递函数或系统输出量的响应。
➢等效变换和简化的过程对应于消去中间变量求系统传
信号流图的绘制 1. 根据微分方程绘制信号流图 2. 根据方框图绘制信号流图
1. 根据微分方程绘制信号流图
i
A
取Ui(s)、I1(s)、UA(s)、I2(s)、 Uo (s)作为信号流图的节点 Ui(s)、Uo(s)分别为输入及输出节点
2. 根据方框图绘制信号流图
方块图转换为信号流 图
信号流图的等效变换法则
•支路增益——支路传输定量地表明变量从支路一端沿箭头方 向传送到另一端的函数关系。用标在支路旁边的传递函数 “G”表示支路传输。
2.
通路
沿支路箭头方向穿过各相 连支路的路径。
前向通路 从源节点到阱节点的通路上通过任何节点 不多于一次的通路。前向通路上各支路增益之 乘积,称前向通路总增益,一般用pk表示。
信号流图梅森公式

第三节 系统动态结构图

第三节 系统动态结构图

13
(5)两个分支点、相加点之间可以互换:
(6)相加点和分支点之间一般不能互换(互换时要注意).
2015-5-27 14
例:试求下图所示的多环系统的传递函数
2015-5-27
15
作业
2015-5-27
16
(1)串联连接
R(s) G1 (s) U1 (s) G2 (s) U 2 ( s) C(s) G3 (s)

R(s) G(s) (b)
C(s)
(a)
特点:前一环节的输出量就是后一环节的输入量。
U 1 ( s) G1 ( s) R( s) U 2 ( s) G2 ( s)U 1 ( s) G2 ( s)G1 ( s) R( s) C ( s) G3 ( s)U 2 ( s) G3 ( s)G2 ( s)G1 ( s) R( s)
2015-5-27 4
2015-5-27
5
三 系统结构图的建立步骤
建立系统方框图的:
(1)建立系统(或元件)的原始微分方程; (2)对微分方程进行Laplace变换,并根据各Laplace变换 式中的因果关系,绘出相应的方框图; (3)按照信号在系统中传递或变换的过程,依次将各传递 函数方框图连接起来(同一变量的信号通路连接在一起),系 统输入量置于左端,输出量置于右端。
R(s)

G(s) (b)
C(s)
特点:各环节的输入信号是相同的,输出C(s)为各环节的输出之和
C ( s) C1 ( s) C2 (s) C3 ( s) G1 ( s) R(s) G2 ( s) R( s) G3 (s) R( s) [G1 ( s) G2 ( s) G3 (s)]R( s)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档