平面向量数量积的坐标表示模夹角

合集下载

平面向量的坐标表示,模,夹角

平面向量的坐标表示,模,夹角

二、探究解疑
Office组件之word2007
1、平面向量数量积的坐标表示
问题1、如图,i 是x轴上的单位向量,j
是y轴上的单位向量,
i i 1 . j j 1 .
y A(x1,y1)
i j j i 0 .
B(x2,y2) a
bj
oi x
问题2
Office组件之word2007
AB AC 1313 0
是的判两断条B相线(2应段,3)
AB AC
∴ △ABC是直角三角形
或垂A(直直1,2的线) 是重否要 x 0方法之一
Office组件之word2007
uuuv
uuuv
uuuv
方法2:AB= 1,1,AC= -3,3,BC= -4,2
Office组件之word2007
2.4.2 平面向量数量积的 坐标表示、模、夹角
一、复习引入
Office组件之word2007
1、数量积的定义:a b | a || b | cos
2、投影:| b | cos 叫做 b在 a方 向 上 的 投 影
B
r
b
r

a
B1
A
| b | cos
2 2
=45o
Office组件之word2007
例3:已知a =(1, 0),b =(2, 1),当k为何实数 时,向量k a- b与 a+3b(1)平行;(2)垂直
解:k a- b =(k-2, -1) a +3 b=(7, 3)
(1)由向量平行条件得3(k-2)+7=0
所以k= 1 3
3.数量积的性质
Office组件之word2007

2.4.2平面向量的数量积的坐标表示 模 夹角

2.4.2平面向量的数量积的坐标表示 模 夹角

§2.4.2平面向量数量积的坐标表示、模、夹角【学习目标】1. 在坐标形式下,掌握平面向量数量积的运算公式及其变式(夹角公式);2. 理解模长公式与解析几何中两点之间距离公式的一致性. 【学习过程】 一、自主学习(一)知识链接:复习:1.向量a 与b 的数量积a b ⋅= .2.设a 、b 是非零向量,e 是与b 方向相同的单位向量,θ是a 与b的夹角,则①a b a b ⊥⇔⋅=;②a = ;③cos θ= . (二)自主探究:(预习教材P106—P108) 探究:平面向量数量积的坐标表示问题1:已知两个非零向量()()1122,,,a x y b x y ==,怎样用a 与b 的坐标表示a b ⋅ 呢?1. 平面向量数量积的坐标表示已知两个非零向量()()1122a=x y ,b=x y ,a b=⋅⋅⋅(坐标形式)。

这就是说:(文字语言)两个向量的数量积等于 。

问题2:如何求向量(),a x y =和两点()11,A x y ,()22,B x y 间的距离?2.平面内两点间的距离公式(1)设a=(x,y),则2a = ________________或a ________________。

(2)若()11,A x y ,()22,B x y ,=___________________(平面内两点间的距离公式)。

问题3:如何求()()1122,,,a x y b x y ==的夹角θ和判断两个向量垂直?3.两向量夹角的余弦:设θ是a 与b 的夹角,则cos θ=_________=_______________向量垂直的判定:设()()1122a=x ,y ,b=x ,y ,则⇔⊥b a _________________二、合作探究1、已知()()(),4,1,2,3,1,2-C B A(1)试判断ABC ∆的形状,并给出证明. (2)若ABDC 是矩形,求D 点的坐标。

2、已知()()1,3,3,1==,求a 与b的夹角θ.变式:已知a=(3,0),b=(k,5)a b 且与的夹角为3,k=4π则______________.三、交流展示1、若()4,3a =- ,()5,6b = ,则234a a b -⋅=2、已知()3,2a =-- ,()4,b k =- ,若()()5355a b b a -⋅-=-,试求k 的值.3、已知,(1,2),(3,2)a b ==-,当k 为何值时, (1)3ka b a b +-与垂直?(2)3ka b a b +- 与平行吗?它们是同向还是反向?四、达标检测(A 组必做,B 组选做)A 组:1. 已知()3,4a =- ,()5,2b =,则a b ⋅ 等于( ) A.23 B.7 C.23- D.7-2. 若()3,4a =- ,()5,12b =,则a 与b 夹角的余弦为( )A.6365 B.3365 C.3365- D.6365- 3. ()2,3a = ,()2,4b =-,则()()a b a b +⋅- = ,4.已知向量()1,2OA =- ,()3,OB m =,若OA AB ⊥ ,则m = 。

§2.4.2平面向量数量积的坐标表示、模、夹角

§2.4.2平面向量数量积的坐标表示、模、夹角

二、向量的模和两点间距离公式:
1向量的模(长度公式):
设a (x, y),则
2
a x2 y2,或a

x2 y2
2两点间的距离公式: 设Ax1, y1、Bx2, y2 ,则AB x2 x1, y2 y1
AB x2 x1 2 y2 y1 2
【拓展提升】数量积坐标运算的方法技巧 (1)进行数量积运算时,要正确使用公式 a·b=x1x2+y1y2,并能灵活运用以下几个关系: |a|2=a·a.(a+b)(a-b)=|a|2-|b|2. (a+b)2=|a|2+2a·b+|b|2. (2)利用数量积的条件求平面向量的坐标,一般来 说应当先设出向量的坐标,然后根据题目中已知 的条件找出向量坐标满足的等量关系,利用数量 积的坐标运算列出方程组来进行求解.
记忆口诀:注意坐标形式下两向量垂直的条件与两向量平 行的条件不要混淆, “a⊥b⇔x1x2+y1y2=0”可简记为“对应相乘和为0”; “a∥b⇔x1y2-x2y1=0”可简记为“交叉相乘差为0”.
四、向量夹角公式的坐标表示:
设a x1, y1 ,b x2 , y2 , a与b夹角为,0
(1)掌握向量数量积的坐标表达式, 会进行向量数量积的坐标运算;
(2)能运用数量积表示两个向量的夹角,计 算向量的长度,会用数量积判断两个平面 向量的垂直关系.
一、平面向量数量积的坐标表示:
a x1, y1 ,b x2 , y2 a,b非零向量 y A(x1,y1)
a x1i y1 j,b x2i y2 j
B(x2,y2)
a
bj
a b (x1i y1 j) (x2i y2 j)

平面向量数量积的坐标表示、模、夹角教学设计

平面向量数量积的坐标表示、模、夹角教学设计
选用:
“引导-探究式”教学法”。
课堂基调:
自主探索,民主开放。 合作交流,师生对话。
借助:
“多媒体”教学
课堂流程
提供材料 设计问题
复习思考 提出问题
类比化归 解决问题
反思建构 操作练习
教学过程
选择恰当的实例。


从复习向量加减法的坐标运算开始。

开门见山,直奔主题。
入 提供材料,让学生发现问题。
夹角等知识进行简单的计算和证明 。
能力目标:
领悟数形结合的思想方法,培养学生自主学习, 提出问题、分析问题、解决问题的能力。
情感目标:
体验探索的乐趣,认识世间万物之间的联系与转化。 让学生在民主、和谐的共同活动中感受学习的乐趣。
重、难点分析
重点:
数量积坐标表示的推导过程。
难点:
公式的建立与应用。
教法分析
可设计:
向量的两个要素:模、夹角随之确定。

a
?
b
?∠AOB=?等。
设计意图: 渗透数形结合意识,突出向量的两个要素。
结论
1.
数量积的定义:
a

b

a
b
cos
2. 数量积的性质:
(1)
a

b

ab

0
(2)当
a与b同向时,a

b

a
b.
可解。
ab
关键:是如何用坐标表示
a

b

?
设计意图:
突出重点,为后面建立模、夹角公式做铺垫,使 学生产生学习数量积坐标表示的积极心理倾向。

教案平面向量数量积的坐标表示模夹角

教案平面向量数量积的坐标表示模夹角

平面向量数量积的坐标表示与模夹角教案章节一:平面向量数量积的定义1.1 向量的概念回顾:向量是有大小和方向的量。

1.2 数量积的定义:两个向量a和b的数量积,记作a·b,是它们的模长的乘积与它们夹角的余弦值的乘积。

1.3 数量积的坐标表示:如果向量a和b在坐标系中表示为a=(x1,y1)和b=(x2,y2),则它们的数量积可以表示为a·b=x1x2+y1y2。

教案章节二:数量积的性质2.1 数量积的不变性:无论向量的起点如何,向量的数量积保持不变。

2.2 数量积的对称性:向量a和b的数量积等于向量b和a的数量积,即a·b=b·a。

2.3 数量积的交换律:向量a和b的数量积等于它们的相反向量的数量积,即a·b=-b·a。

教案章节三:模长的计算3.1 向量模长的定义:向量a的模长,记作|a|,是向量a的大小,计算公式为|a|=sqrt(x1^2+y1^2)。

3.2 利用数量积计算模长:向量a的模长可以表示为|a|=sqrt(a·a)。

教案章节四:夹角的余弦值4.1 向量夹角的定义:两个非零向量a和b的夹角,记作θ,是它们的数量积与它们的模长的乘积的比值的的反余弦值。

4.2 余弦值的计算公式:cosθ=(a·b)/(|a||b|)。

教案章节五:向量夹角的范围与性质5.1 向量夹角的范围:向量夹角θ的范围是0°≤θ≤180°。

5.2 向量夹角的性质:当向量a和b同向时,它们的夹角为0°,数量积为正值;当向量a和b反向时,它们的夹角为180°,数量积为负值;当向量a和b垂直时,它们的夹角为90°,数量积为0。

教案章节六:数量积的应用6.1 投影向量:向量a在向量b方向上的投影向量可以表示为proj_ba = (a·b/b·b) b。

6.2 向量间的距离:两个向量a和b之间的距离可以表示为|a b| = sqrt((a b)·(a b))。

5.3.2 平面向量数量积的坐标表示, 模, 夹角

5.3.2 平面向量数量积的坐标表示, 模, 夹角

宁晋中学“五为”教学高三数学教学提纲
编号:SXTG -
5.3.2 平面向量数量积的坐标表示, 模, 夹角编写:毕朋飞 审核:齐立芳 使用时间: 月 日 班级:______________ 姓名:
______________
[学习目标]
会用坐标形式表示向量的数量积, 模, 夹角
[重点难点]
重点: 理会用坐标形式表示向量的数量积, 模, 夹角; 难点: 利用坐标形式进行向量数量积, 模, 夹角的综合运算
[导学流程]
一、自学互学
1. 向量数量积的坐标表示: 已知两个向量 则_______.
2. 设两个非零向量 则_______.
3. (1) 向量模长公式: 若 则_______.(2) 两点间距离公式: 若 则_______.(3) 向量的夹角公式: 设两个非零向量 设与的夹角为 则_______.
二、深入学习
4. 已知 求 以及的夹角
5. 已知 求
三、迁移学习
6. 已知 试判断的形状, 并给出你的证明.a =(x 1,y 1),b =(x 2,y 2),a ⋅b =a =(x 1,y 1),b =(x 2,y 2),a ⊥b ⇔a =(x ,y ),|a |=A (x 1,y 1),B (x 2,y 2),∣∣∣−−→AB ∣∣∣
=a =(x 1,y 1),b =(x 2,y 2),a b θ,cos θ=a =(1,√3),b =(2,0),a ⋅b ,|a |,∣∣b ∣
∣,a ,b θ.a
=(2,3),b =(−2,4),c =(−1,−2),a ⋅b ,(a +b )⋅(a −b ),a ⋅(b +2c ).A (2,1),B (6,3),C (0,5),ΔABC。

2.4.2 平面向量数量积的坐标表示、模、夹角-新人教(A版)

2.4.2 平面向量数量积的坐标表示、模、夹角-新人教(A版)
2016/10/11
故两个向量的数量积等于它们对应 坐标的乘积的和。即 y A(x ,y )
1 1
a b x1 x2 y1 y2 .
B(x2,y2)
b
j
a
i
o
x
根据平面向量数量积的坐标表示,向 量的数量积的运算可转化为向量的坐标运 算。
2016/10/11
2、向量的模和两点间的距离公式ຫໍສະໝຸດ y A(x ,y ) 1 1
j
B(x2,y2)
b
a
o i
x
设两个非零向量 a =(x1,y1), b =(x2,y2),则
a x1 i y1 j b x2 i y2 j , a b ( x1 i y1 j ) ( x2 i y2 j ) 2 2 x1 x2 i x1 y2 i j x2 y1 i j y1 y2 j x1 x2 y1 y2
29 C ( 3, ) 3
2、已知A(1,2)、B(4、0)、C(8,6)、D(5,8), 则四边形ABCD的形状是 矩形 .
3、已知 a = (1,2), b = (-3,2),
若k a +2 b 与 2 a - 4
2016/10/11
b 平行,则k = - 1 .
小结
1、理解各公式的正向及逆向运用; 2、数量积的运算转化为向量的坐标运算;
x( x 5) y( y 2) 0 得 2 2 2 2 x y ( x 5 ) ( y 2 )
O
B
X
例5 在△ABC中,AB =(2, 3),AC =(1, k),
且△ABC的一个内角为直角,求k值.

2.4.2平面向量数量积的坐标表示、模、夹角

2.4.2平面向量数量积的坐标表示、模、夹角

探究点二
平面向量模的坐标形式及两点间的距离公式
问题 1 若 a=(x,y),试用 x,y 表示|a|.
|a|= x +y .
2
2
问题 2 设 A(x1,y1),B(x2,y2)为平面内任意两 点,试推导平面内两点间的距离公式.
答 → ∵AB= (x2,y2)-(x1,y1)
=(x2-x1,y2-y1), → ∴|AB|= x2-x12+y2-y12.

3 π 4 例如,(1)若 a=(3,0),b=(-5,5),则 a 与 b 的夹角为_____.
直角 (2)已知 A(1,2),B(2,3),C(-2,5),则△ABC 的形状是_____
三角形.
【典型例题】 例1 已知 a 与 b 同向,b=(1,2),a· b=10. (1)求 a 的坐标;(2)若 c=(2,-1),求 a· (b· c)及(a· b) · c.
3.平面向量的模
2 2 x + y 1 1 . (1)向量模公式:设 a=(x1,y1),则|a|=__________
(2)两点间距离公式:若 A(x1,y1),B(x2,y2), → x2-x12+y2-y12 则|AB|=_________________________. 4.向量的夹角公式 设两非零向量 a=(x1,y1),b=(x2,y2),a 与 b 的夹角为 θ,
探究点三
平面向量夹角的坐标表示
设 a,b 都是非零向量,a=(x1,y1),b=(x2,y2),θ 是 a 与
x1x2+y1y2 a· b 2 2 2 2 x + y · x + y cos θ= = 1 1 2 2. |a||b|
b 的夹角,根据向量数量积的定义及坐标表示可得:

平面向量数量积的坐标表示、模、夹角

平面向量数量积的坐标表示、模、夹角

2.4.2平面向量数量积的坐标表示、模、夹角学习目标1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能根据向量的坐标求向量的夹角及判定两个向量垂直.知识点一平面向量数量积的坐标表示设非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.知识点二平面向量模的坐标形式及两点间的距离公式知识点三平面向量夹角的坐标表示cos θ=a·b|a||b|=x1x2+y1y2x21+y21x22+y22.思考若两个非零向量的夹角满足cos θ<0,则两向量的夹角θ一定是钝角吗?答案不一定,当cos θ<0时,两向量的夹角θ可能是钝角,也可能是180°.1.若a=(x1,y1),b=(x2,y2),则a⊥b⇔x1y2-x2y1=0.(×)2.若两个非零向量的夹角θ满足cos θ>0,则两向量的夹角θ一定是锐角.(×)提示当两向量同向共线时,cos θ=1>0,但夹角θ=0,不是锐角.3.两个非零向量a=(x1,y1),b=(x2,y2),满足x1y2-x2y1=0,则向量a与b的夹角为0°.(×)题型一数量积的坐标运算例1(1)已知a=(2,-1),b=(1,-1),则(a+2b)·(a-3b)等于()A.10 B.-10C.3 D.-3考点平面向量数量积的坐标表示与应用题点坐标形式下的数量积运算答案 B解析 a +2b =(4,-3),a -3b =(-1,2),所以(a +2b )·(a -3b )=4×(-1)+(-3)×2=-10. (2)如图所示,在矩形ABCD 中,AB =2,BC =2,点E 在边CD 上,且DE →=2EC →,则AE →·BE →的值是________.考点 平面向量数量积的坐标表示与应用 题点 坐标形式下的数量积运算 答案329解析 以A 为原点,AB 所在直线为x 轴、AD 所在直线为y 轴建立如图所示平面直角坐标系.∵AB =2,BC =2,∴A (0,0),B (2,0),C (2,2),D (0,2), ∵点E 在边CD 上,且DE →=2EC →,∴E ⎝⎛⎭⎫223,2.∴AE →=⎝⎛⎭⎫223,2,BE →=⎝⎛⎭⎫-23,2, ∴AE →·BE →=-49+4=329.反思感悟 数量积坐标运算的技巧(1)进行数量积运算时,要正确使用公式a·b =x 1x 2+y 1y 2,并能灵活运用以下几个关系: ①|a |2=a ·a .②(a +b )·(a -b )=|a |2-|b |2. ③(a +b )2=|a |2+2a ·b +|b |2.(2)在平面几何图形中求数量积,若几何图形规则易建系,可先建立坐标系,写出相关向量的坐标,再求数量积.跟踪训练1 向量a =(1,-1),b =(-1,2),则(2a +b )·a 等于( ) A .-1 B .0 C .1 D .2考点 平面向量数量积的坐标表示与应用 题点 坐标形式下的数量积运算 答案 C解析 因为a =(1,-1),b =(-1,2),所以2a +b =2(1,-1)+(-1,2)=(1,0),则(2a +b )·a =(1,0)·(1,-1)=1,故选C. 题型二 平面向量的模例2 已知平面向量a =(3,5),b =(-2,1). (1)求a -2b 及其模的大小; (2)若c =a -(a ·b )b ,求|c |.考点 平面向量模的坐标表示与应用 题点 利用坐标求向量的模 解 (1)∵a =(3,5),b =(-2,1),∴a -2b =(3,5)-2(-2,1)=(3+4,5-2)=(7,3), ∴|a -2b |=72+32=58.(2)∵a ·b =-6+5=-1, ∴c =a +b =(1,6), ∴|c |=12+62=37.反思感悟 求向量a =(x ,y )的模的常见思路及方法(1)求模问题一般转化为求模的平方,与向量数量积联系要灵活应用公式a 2=|a|2=x 2+y 2,求模时,勿忘记开方. (2)a ·a =a 2=|a |2或|a |=a 2=x 2+y 2,此性质可用来求向量的模,可以实现实数运算与向量运算的相互转化.跟踪训练2 已知向量a =(2,1),a·b =10,|a +b |=52,则|b |等于( ) A. 5 B.10 C .5 D .25 考点 平面向量模的坐标表示与应用 题点 利用坐标求向量的模 答案 C解析 ∵a =(2,1),∴a 2=5, 又|a +b |=52,∴(a +b )2=50, 即a 2+2a ·b +b 2=50,∴5+2×10+b 2=50,∴b 2=25,∴|b |=5.题型三 平面向量的夹角与垂直问题命题角度1 向量的夹角例3 已知点A (3,0),B (0,3),C (cos α,sin α),O (0,0),若|OA →+OC →|=13,α∈(0,π),则OB →,OC →的夹角为( ) A.π2 B.π4 C.π3 D.π6考点 平面向量夹角的坐标表示与应用 题点 求坐标形式下的向量的夹角 答案 D解析 因为|OA →+OC →|2=(OA →+OC →)2=OA →2+2OA →·OC →+OC →2=9+6cos α+1=13, 所以cos α=12,因为α∈(0,π),所以α=π3,所以C ⎝⎛⎭⎫12,32,所以cos 〈OB →,OC →〉=OB →·OC →|OB →||OC →|=3×323×1=32,因为0≤〈OB →,OC →〉≤π,所以〈OB →,OC →〉=π6,所以OB →,OC →的夹角为π6,故选D.反思感悟 利用向量的数量积求两向量夹角的一般步骤 (1)利用向量的坐标求出这两个向量的数量积. (2)利用|a |=x 2+y 2求两向量的模.(3)代入夹角公式求cos θ,并根据θ的范围确定θ的值.跟踪训练3 已知a =(1,-1),b =(λ,1),若a 与b 的夹角α为钝角,求λ的取值范围. 考点 平面向量夹角的坐标表示与应用 题点 已知坐标形式下的向量夹角求参数 解 ∵a =(1,-1),b =(λ,1), ∴|a |=2,|b |=1+λ2,a ·b =λ-1.又∵a ,b 的夹角α为钝角,∴⎩⎪⎨⎪⎧λ-1<0,2·1+λ2≠1-λ,即⎩⎪⎨⎪⎧λ<1,λ2+2λ+1≠0.∴λ<1且λ≠-1.∴λ的取值范围是(-∞,-1)∪(-1,1). 命题角度2 向量的垂直例4 在△ABC 中,AB →=(2,3),AC →=(1,k ),若△ABC 是直角三角形,求k 的值. 考点 平面向量平行与垂直的坐标表示与应用 题点 已知向量垂直求参数 解 ∵AB →=(2,3),AC →=(1,k ), ∴BC →=AC →-AB →=(-1,k -3).若∠A =90°,则AB →·AC →=2×1+3×k =0,∴k =-23;若∠B =90°,则AB →·BC →=2×(-1)+3(k -3)=0,∴k =113;若∠C =90°,则AC →·BC →=1×(-1)+k (k -3)=0, ∴k =3±132.故所求k 的值为-23或113或3±132.反思感悟 利用向量数量积的坐标表示解决垂直问题的实质是把垂直条件代数化,若在关于三角形的问题中,未明确哪个角是直角时,要分类讨论.跟踪训练4 已知a =(-3,2),b =(-1,0),若向量λa +b 与a -2b 垂直,则实数λ的值为( ) A.17 B .-17 C.16 D .-16考点 向量平行与垂直的坐标表示与应用 题点 已知向量垂直求参数 答案 B解析 由向量λa +b 与a -2b 垂直,得 (λa +b )·(a -2b )=0.因为a =(-3,2),b =(-1,0), 所以(-3λ-1,2λ)·(-1,2)=0, 即3λ+1+4λ=0,解得λ=-17.向量的坐标在解三角形中的应用典例 如图,已知△ABC 的面积为32,AB =2,AB →·BC →=1,求边AC 的长.解 以点A 为坐标原点,AB →为x 轴正方向建立平面直角坐标系,设点C 的坐标为(x ,y )(y >0), ∵AB =2,∴点B 的坐标是(2,0), ∴AB →=(2,0),BC →=(x -2,y ). ∵AB →·BC →=1,∴2(x -2)=1,解得x =52.又S △ABC =32,∴12·|AB |·y =32,∴y =32,∴C 点坐标为⎝⎛⎭⎫52,32,则AC →=⎝⎛⎭⎫52,32, ∴|AC →|=⎝⎛⎭⎫522+⎝⎛⎭⎫322=342, 故边AC 的长为342. [素养评析] 本题通过建立直角坐标系,从而建立形与数的联系.利用平面向量的坐标解决线段的长度问题,提升了学生数形结合的能力,培养了学生数学运算及直观想象的数学核心素养.1.已知a =(3,4),b =(5,12),则a 与b 夹角的余弦值为( ) A.6365 B.65 C.135D.13 考点 平面向量夹角的坐标表示与应用 题点 求坐标形式下的向量的夹角 答案 A 解析 |a |=32+42=5,|b |=52+122=13.a·b =3×5+4×12=63.设a ,b 夹角为θ,所以cos θ=635×13=6365.2.若向量a =(x ,2),b =(-1,3),a·b =3,则x 等于( ) A .3 B .-3 C.53 D .-53考点 平面向量数量积的坐标表示与应用题点 已知数量积求参数答案 A解析 a·b =-x +6=3,故x =3.3.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ等于( )A .-4B .-3C .-2D .-1考点 平面向量平行与垂直的坐标表示与应用题点 已知向量垂直求参数答案 B解析 因为m +n =(2λ+3,3),m -n =(-1,-1),由(m +n )⊥(m -n ),可得(m +n )·(m -n )=(2λ+3,3)·(-1,-1)=-2λ-6=0,解得λ=-3.4.若平面向量a =(1,-2)与b 的夹角是180°,且|b |=35,则b 等于( )A .(-3,6)B .(3,-6)C .(6,-3)D .(-6,3)考点 平面向量数量积的坐标表示与应用题点 平面向量模与夹角的坐标表示的综合应用答案 A解析 由题意设b =λa =(λ,-2λ)(λ<0),则|b |=λ2+(-2λ)2=5|λ|=35,又λ<0,∴λ=-3,故b =(-3,6).5.已知三个点A (2,1),B (3,2),D (-1,4).求证:AB ⊥AD .证明 ∵A (2,1),B (3,2),D (-1,4),∴AB →=(1,1),AD →=(-3,3).又∵AB →·AD →=1×(-3)+1×3=0,∴AB →⊥AD →,即AB ⊥AD .6.已知a =(4,3),b =(-1,2).(1)求a 与b 的夹角的余弦值;(2)若(a -λb )⊥(2a +b ),求实数λ的值.考点 平面向量平行与垂直的坐标表示与应用题点 已知向量垂直求参数解 (1)∵a ·b =4×(-1)+3×2=2,|a |=42+32=5,|b |=(-1)2+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=255=2525. (2)∵a -λb =(4+λ,3-2λ),2a +b =(7,8),(a -λb )⊥(2a +b ),∴(a -λb )·(2a +b )=7(4+λ)+8(3-2λ)=0,∴λ=529.1.平面向量数量积的定义及其坐标表示,提供了数量积运算的两种不同的途径.准确地把握这两种途径,根据不同的条件选择不同的途径,可以优化解题过程.同时,平面向量数量积的两种形式沟通了“数”与“形”转化的桥梁,成为解决距离、角度、垂直等有关问题的有力工具.2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的能力.3.注意区分两向量平行与垂直的坐标形式,二者不能混淆,可以对比学习、记忆.若两非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0,a ⊥b ⇔x 1x 2+y 1y 2=0.4.事实上应用平面向量的数量积公式解答某些平面向量问题时,向量夹角问题却隐藏了许多陷阱与误区,常常会出现因模糊“两向量的夹角的概念”而忽视“两向量夹角”的范围,稍不注意就会带来失误与错误.一、选择题1.已知a =(3,-1),b =(1,-2),则a 与b 的夹角为( )A.π6B.π4C.π3D.π2考点 平面向量夹角的坐标表示与应用题点 求坐标形式下的向量的夹角答案 B解析 ∵|a |=10,|b |=5,a ·b =5.∴cos 〈a ,b 〉=a ·b|a ||b |=510×5=22.又∵a ,b 的夹角范围为[0,π].∴a 与b 的夹角为π4.2.设向量a =(2,0),b =(1,1),则下列结论中正确的是( )A .|a |=|b |B .a·b =0C .a ∥bD .(a -b )⊥b考点 平面向量平行与垂直的坐标表示与应用题点 向量垂直的坐标表示的综合应用答案 D解析 a -b =(1,-1),所以(a -b )·b =1-1=0,所以(a -b )⊥b .3.已知向量a =(0,-23),b =(1,3),则向量a 在b 方向上的投影为() A. 3 B .3 C .- 3 D .-3考点 平面向量投影的坐标表示与应用题点 平面向量投影的坐标表示与应用答案 D解析 向量a 在b 方向上的投影为a·b |b|=-62=-3.故选D. 4.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( )A .1 B. 2 C .2 D .4考点 平面向量模与夹角的坐标表示与应用题点 利用坐标求向量的模答案 C解析 ∵(2a -b )·b =2a ·b -|b |2=2(-1+n 2)-(1+n 2)=n 2-3=0,∴n 2=3,∴|a |=12+n 2=2.5.若a =(2,-3),则与向量a 垂直的单位向量的坐标为() A .(3,2)B.⎝⎛⎭⎫31313,21313C.⎝⎛⎭⎫31313,21313或⎝⎛⎭⎫-31313,-21313D .以上都不对考点 平面向量平行与垂直的坐标表示与应用题点 向量垂直的坐标表示的综合应用答案 C解析 设与a 垂直单位向量的坐标为(x ,y ),∵(x ,y )是单位向量的坐标形式,∴x 2+y 2=1,即x 2+y 2=1,①又∵(x ,y )表示的向量垂直于a ,∴2x -3y =0,②由①②得⎩⎨⎧ x =31313,y =21313或⎩⎨⎧ x =-31313,y =-21313.6.已知a =(1,1),b =(0,-2),且k a -b 与a +b 的夹角为120°,则k 等于( )A .-1+ 3B .-2C .-1±3D .1考点 平面向量夹角的坐标表示与应用题点 已知坐标形式下的向量夹角求参数答案 C解析 ∵|k a -b |=k 2+(k +2)2, |a +b |=12+(-1)2=2,∴(k a -b )·(a +b )=(k ,k +2)·(1,-1)=k -k -2=-2,又k a -b 与a +b 的夹角为120°,∴cos 120°=(k a -b )·(a +b )|k a -b ||a +b |, 即-12=-22×k 2+(k +2)2,化简并整理,得k 2+2k -2=0,解得k =-1±3.7.已知OA →=(-2,1),OB →=(0,2)且AC →∥OB →,BC →⊥AB →,则点C 的坐标是( )A .(2,6)B .(-2,-6)C .(2,-6)D .(-2,6)考点 向量平行与垂直的坐标表示与应用题点 向量平行与垂直的坐标表示的综合应用答案 D解析 设C (x ,y ),则AC →=(x +2,y -1),BC →=(x ,y -2),AB →=(2,1),∵AC →∥OB →,∴2(x +2)=0,①∵BC →⊥AB →,∴2x +y -2=0,②由①②可得⎩⎪⎨⎪⎧x =-2,y =6,∴C (-2,6). 8.已知向量a =(1,1),b =(1,m ),其中m 为实数,则当a 与b 的夹角在⎝⎛⎭⎫0,π12内变动时,实数m 的取值范围是( )A .(0,1)B.⎝⎛⎭⎫33,3C.⎝⎛⎭⎫33,1∪(1,3) D .(1,3)考点 平面向量夹角的坐标表示与应用题点 已知坐标形式下的向量夹角求参数答案 C解析 如图,作OA →=a ,则A (1,1).作OB 1→,OB 2→,使∠AOB 1=∠AOB 2=π12, 则∠B 1Ox =π4-π12=π6, ∠B 2Ox =π4+π12=π3, 故B 1⎝⎛⎭⎫1,33,B 2(1,3). 又a 与b 的夹角不为0,故m ≠1.由图可知实数m 的取值范围是⎝⎛⎭⎫33,1∪(1,3). 二、填空题9.已知a =(3,3),b =(1,0),则(a -2b )·b =________.考点 平面向量数量积的坐标表示与应用题点 坐标形式下的数量积运算答案 1解析 a -2b =(1,3),(a -2b )·b =1×1+3×0=1.10.已知平面向量a =(2,4),b =(1,-2),若c =a -(a ·b )b ,则|c |=________.考点 平面向量模的坐标表示与应用题点 利用坐标求向量的模答案 8 2解析 由题意可得a·b =2×1+4×(-2)=-6,∴c =a -(a ·b )b =a +6b =(2,4)+6(1,-2)=(8,-8),∴|c |=82+(-8)2=8 2.11.设m =(a ,b ),n =(c ,d ),规定两向量m ,n 之间的一个运算“⊗”为m ⊗n =(ac -bd ,ad +bc ),若已知p =(1,2),p ⊗q =(-4,-3),则q 的坐标为________.考点 平面向量数量积的坐标表示与应用题点 已知数量积求向量的坐标答案 (-2,1)解析 设q =(x ,y ),则p ⊗q =(x -2y ,y +2x )=(-4,-3).∴⎩⎪⎨⎪⎧ x -2y =-4,y +2x =-3,∴⎩⎪⎨⎪⎧x =-2,y =1.∴q =(-2,1). 12.已知向量OA →=(1,7),OB →=(5,1)(O 为坐标原点),设M 为直线y =12x 上的一点,那么MA →·MB →的最小值是________.考点 平面向量数量积的坐标表示与应用题点 坐标形式下的数量积运算答案 -8解析 设M ⎝⎛⎭⎫x ,12x , 则MA →=⎝⎛⎭⎫1-x ,7-12x ,MB →=⎝⎛⎭⎫5-x ,1-12x , MA →·MB →=(1-x )(5-x )+⎝⎛⎭⎫7-12x ⎝⎛⎭⎫1-12x =54(x -4)2-8. 所以当x =4时,MA →·MB →取得最小值-8.三、解答题13.(2018·安徽芜湖质检)已知向量a =(1,2),b =(2,-2).(1)设c =4a +b ,求(b ·c )a ;(2)若a +λb 与a 垂直,求λ的值.考点 平面向量平行与垂直的坐标表示与应用题点 向量平行与垂直的坐标表示的综合应用解 (1)∵c =4(1,2)+(2,-2)=(6,6),∴b ·c =(2,-2)·(6,6)=2×6-2×6=0,∴(b ·c )a =0·a =0.(2)∵a +λb =(1,2)+λ(2,-2)=(1+2λ,2-2λ),(a +λb )⊥a ,∴(1+2λ)+2(2-2λ)=0,解得λ=52.14.已知OA →=(4,0),OB →=(2,23),OC →=(1-λ)OA →+λOB →(λ2≠λ). (1)求OA →·OB →及OA →在OB →上的投影;(2)证明A ,B ,C 三点共线,且当AB →=BC →时,求λ的值;(3)求|OC →|的最小值.考点 平面向量夹角的坐标表示与应用题点 平面向量模的坐标表示的综合应用解 (1)OA →·OB →=8,设OA →与OB →的夹角为θ,则cos θ=OA →·OB →|OA →||OB →|=84×4=12, ∴OA →在OB →上的投影为|OA →|cos θ=4×12=2. (2)AB →=OB →-OA →=(-2,23),BC →=OC →-OB →=(1-λ)OA →-(1-λ)OB →=(λ-1)AB →,又因为BC →与AB →有公共点B ,所以A ,B ,C 三点共线. 当AB →=BC →时,λ-1=1,所以λ=2.(3)|OC →|2=(1-λ)2OA →2+2λ(1-λ)OA →·OB →+λ2OB →2=16λ2-16λ+16=16⎝⎛⎭⎫λ-122+12, ∴当λ=12时,|OC →|取最小值2 3.。

平面向量数量积的坐标表示、模和夹角

平面向量数量积的坐标表示、模和夹角

目标要求1.掌握向量数量积的坐标表达式,会进行向量数量积的坐标运算.2.能运用数量积表示两个向量的夹角、计算向量的长度,会用数量积判断两个平面向量的垂直关系.热点提示向量的数量积是高考命题的热点,主要考查数量积的运算、化简、证明,向量平行、垂直的充要条件的应用以及利用向量解决平面几何问题.本节单独命题时,一般以选择、填空题的形式出现,属容易题;本节还可以与平面几何、解析几何、三角等内容交叉出现,一般以解答题形式出现,综合性较强,难度也较大,学习本节时应熟练掌握运算律,记准公式.1.平面向量数量积的坐标表示若a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2.即两个向量的数量积等于它们对应坐标的乘积的和.2.两个向量垂直的坐标表示设两个非零向量a =(x 1,y 1),b =(x 2,y 2),则a ⊥b ⇔x 1x 2+y 1y 2=0.知识要点3.三个重要公式(1)向量模公式:设a =(x 1,y 1),则|a |=x 21+y 21.(2)两点间距离公式:若A (x 1,y 1),B (x 2,y 2),则 |AB →|=(x 2-x 1)2+(y 2-y 1)2.(3)向量的夹角公式:设两非零向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则cos θ=x 1x 2+y 1y 2x 21+y 21·x 22+y 22.重要公式观察思考若向量a=(x,y),你可知与a共线的单位向量的坐标是什么吗?与a垂直的单位向量的坐标吗?设与a 共线的单位向量为a 0,则a 0=±1|a |a =±(x |a |,y |a |)=±(x x 2+y 2,y x 2+y 2),其中正号,负号分别表示与a 同向和反向, 易知b =(-y ,x )和a =(x ,y )垂直, ∴与a 垂直的单位向量b 0的坐标为±(-y x 2+y 2,x x 2+y 2),其中正,负号表示不同的方向.温馨提示自我测评1.已知向量a=(-5,6),b=(6,5),则a与b()A.垂直B.不垂直也不平行C.平行且同向D.平行且反向解析:已知向量a=(-5,6),b=(6,5),a·b=-30+30=0,则a与b垂直,选A.答案:A2.设向量a=(1,-3),b=(4,-2),λa+b和a垂直,那么λ=()A.2 B.1 C.-2 D.-1答案:D3.已知a=(2,3),b=(-4,7),则a在b方向上的投影为()A.13B.135 C.655 D.65答案:C4.已知向量a =(3,3),2b -a =(-1,1),设向量a 与b 的夹角为θ,且,则cos θ=________.分析:设向量b =(x ,y ),则有2b -a =(2x,2y )-(3,3)解得x =1,y =2,∴b =(1,2),则cos θ=a ·b |a ||b |=(3,3)·(1,2)32×5=31010.所求为 答案:310105.已知向量a=(1,3),b=(2,5),求a·b,|3a-b|,(a+b)·(2a-b).解:a·b=1×2+3×5=17.∵3a=3(1,3)=(3,9),b=(2,5),∴3a-b=(1,4),∴|3a-b|=12+42=17.∵a+b=(3,8),2a=(2,6),∴2a-b=(2,6)-(2,5)=(0,1),∴(a+b)·(2a-b)=3×0+8×1=8.温馨提示过标实现问题数应与(1)通向量的坐表示向量代化,注意方程、函等知的系数识联.(2)向量的理有思路:一是向量式,另一问题处两种种纯种标两补.是坐式,者互相充总结规律我们在进行向量的数量积运算时,要牢记有关的运算法则和运算性质.解题时通常有两条途径:一是先将各向量用坐标表示,直接进行数量积运算;二是先利用数量积的运算律将原式展开,再由已知计算.三是如果涉及图形的数量积运算,只需把握图形特点,求出相关点的坐标,利用向量的三角形减法由终点坐标与起点坐标的差得到向量的坐标即可.1若向量a=(2,-1),向量b=(3,-2),求向量(3a -b)·(a-2b).=?解:由已知得a·b==8,a2==5,b2==13,所以(3a-b)·(a-2b)=-15.所求为b a b a b a a b ⋅=⋅==求求:已知例,43)2(;,//)1(1,21πθ,分两种情况:)由解:(b a //1;2,=⋅b a b a 同向,当。

平面向量数量积的坐标表示、模、夹角

平面向量数量积的坐标表示、模、夹角

平面向量数量积的坐标表示、模、夹角、教学分析平面向量的数量积,教材将其分为两部分.在第一部分向量的数量积中,首先研究平面向量所成的角,其次,介绍了向量数量积的定义,最后研究了向量数量积的基本运算法则和基本结论;在第二部分平面向量数量积的坐标表示中,在平面向量数量积的坐标表示的基础上,利用数量积的坐标表示研讨了平面向量所成角的计算方式,得到了两向量垂直的判定方法,本节是平面向量数量积的第二部分.前面我们学习了平面向量的数量积以及平面向量的坐标表示•那么在有了平面向量的坐标表示以及坐标运算的经验和引进平面向量的数量积后,就顺其自然地要考虑到平面向量的数量积是否也能用坐标表示的问题.另一方面,由于平面向量数量积涉及了向量的模、夹角,因此在实现向量数量积的坐标表示后,向量的模、夹角也都可以与向量的坐标联系起来.利用平面向量的坐标表示和坐标运算,结合平面向量与平面向量数量积的关系来推导出平面向量数量积以及向量的模、夹角的坐标表示教师应在坐标基底向量的数量积的基础上,推导向量数量积的坐标表示.通过例题分析、课堂训练,让学生总结归纳出对于向量的坐标、数量积、向量所成角及模等几个因素,知道其中一些因素,求出其他因素基本题型的求解方法.平面向量数量积的坐标表示是在学生学习了平面向量的坐标表示和平面向量数量积的基础上进一步学习的,这都为数量积的坐标表示奠定了知识和方法基二、教学目标1知识与技能:掌握数量积的坐标表达式,会进行平面向量数量积的运算;能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

2、过程与方法:通过用坐标表示平面向量数量积的有关运算,揭示几何图形与代数运算之间的内在联系,明确数学是研究数与形有机结合的学科。

3、情感态度与价值观:能用所学知识解决有关综合问题。

三、重点难点教学重点:平面向量数量积的坐标表示.教学难点:向量数量积的坐标表示的应用四、教学设想(一)导入新课思路1.平面向量的表示方法有几何法和坐标法,向量的表示形式不同,对其运算的表示方式也会改变.向量的坐标表示,为我们解决有关向量的加、减、数乘运算带来了极大的方便.上一节,我们最新高一数学优质学案(附经典解析)学习了平面向量的数量积,那么向量的坐标表示,对平面向量的数 量积的表示方式又会带来哪些变化呢?由此直接进入主题两个平面向量共线的条件也可以用坐标运算的形式刻画出来 么学习了平面向量的数量积之后,它能否用坐标来表示?若能,如 何通过坐标来实现呢?平面向量的数量积还会是一个有序实数 对吗?同时,平面向量的模、夹角又该如何用坐标来表示呢?通过回顾两个向量的数量积的定义和向量的坐标表示,在此基础上引导学生推导、探索平面向量数量积的坐标表示 (二) 推进新课、新知探究、提出问题① 平面向量的数量积能否用坐标表示② 已知两个非零向量 a=(X i ,y i ),b=(X 2,y 2),怎样用a 与b 的坐标 表示a b 呢?③ 怎样用向量的坐标表示两个平面向量垂直的条件?④ 你能否根据所学知识推导出向量的长度、距离和夹角公 式? 活动:教师引导学生利用前面所学知识对问题进行推导和探究 .前 面学习了向量的坐标可以用平面直角坐标系中的有序实数对来 表示,而且我们也知道了向量的加、减以及实数与向量积的线性 运算都可以用坐标来表示.两个向量共线时它们对应的坐标也具 备某种关系,那么我们就自然而然地想到既然向量具有数量积的思路2•在平面直角坐标系中 ,平面向量可以用有序实数对来表示,那最新高一数学优质学案(附经典解析)运算关系,这种运算关系能否用向量的坐标来表示呢?教师提示学生在向量坐标表示的基础上结合向量的坐标运算进行推导数量积的坐标表示.教师可以组织学生到黑板上板书推导过程,教师给予必要的提示和补充•推导过程如下:a=x i i +y i j,b=x2 i +y2j,••• a b=(x i i +y i j) (x2 i +y2j)=X i X2 i 2+X i y2 i j・+X2y i i j+y i yf.又Ti i =1,j j-=1, i j=j i =0,a b=X i X2+y i y2.教师给出结论性的总结,由此可归纳如下:1°平面向量数量积的坐标表示两个向量的数量积等于它们对应坐标的乘积的和即a=(X i,y i),b=(X2,y2),贝y a b=X i X2+y i y2.2°向量模的坐标表示若a=(X,y),则| a| 2=X2+y2,或| a|= J x2 y2如果表示向量a的有向线段的起点和终点的坐标分别为(x i,y i)、(X2,y2),那么I 2 2a=(X2-x i,y2-y i),| a|= U(X2 x」皿 y i)-3°两向量垂直的坐标表示设a=(X i,y i),b=(X2,y2),则a 丄b X i X2+y i y2=0.4 °两向量夹角的坐标表示设a 、b 都是非零向量,a=(X i ,y i ),b=(X 2,y 2),是a 与b 的夹角, 根据向量数量积的定义及坐标表示,可得cos 0=a ?b --------------------------- L|a||b| J x ; y ; ? J X i讨论结果:略.(三) 应用示例 例1已知A(1,2),B(2,3),C(-2,5)试判断△ABC 的形状,并给出证明.活动:教师引导学生利用向量数量积的坐标运算来解决平面图形 的形状问题•判断平面图形的形状,特别是三角形的形状时主要看 边长是否相等,角是否为直角.可先作出草图,进行直观判定,再去 证明•在证明中若平面图形中有两个边所在的向量共线或者模相 等,则此平面图形与平行四边形有关;若三角形的两条边所在的向量模相等或者由两边所在向量的数量积为零 ,则此三角形为等腰 三角形或者为直角三角形.教师可以让学生多总结几种判断平面 图形形状的方法.解:在平面直角坐标系中标出A(1,2),B(2,3),C(-2,5三点,我们发现AABC 是直角三角形.下面给出证明.V AB =(2-1,3-2)=(1,1),AC =(-2-1,5-2)=(-3,3), 二 AB -A C =1 X (-3)+1 X 3=0.x i X 2 y y 2y 2AB丄AC.•••△ ABC是直角三角形.点评:本题考查的是向量数量积的应用,利用向量垂直的条件和模长公式来判断三角形的形状.当给出要判定的三角形的顶点坐标时,首先要作出草图,得到直观判定,然后对你的结论给出充分的证明.变式训练在△ABC中,A B =(2,3),AC =(1,k),且△ABC的一个内角为直角,求k的解:由于题设中未指明哪一个角为直角,故需分别讨论.若/ A=90°,则AB 丄AC,所以AB AC=0. 于是2X 1+3k=0故k=;.3同理可求若/ B=90°时,k的值为口;3 若/ C=90°时,k的值为Md.I故所求k的值为I或号或弓13例2 (1)已知三点A(2,-2),B(5,1),C(1,4)求/ BAC的余弦值;⑵a=(3,0),b=(-5,5),求 a 与 b 的夹角.活动:教师让学生利用向量的坐标运算求出两向量a=(x i,y i)与b=(X2,y2)的数量积 a b=x i X2+y i y2 和模I a l= J x:y:,| b|= J x;y;的积,其比值就是这两个向量夹角的余弦值,即cos 9詁菽r y hJ x F y.当求出两向量夹角的余弦值后再求两向量的夹角大小时,需注意两向量夹角的范围是0W9諾n生在解这方面的题目时需要把向量的坐标表示清楚,以免出现不必要的错误.解:(1)AB =(5,1)-(2,-2)=(3,3), XC =(1,4)-(2,-2)=(-1,6), AB -A C =3X (-1)+3 X 6=15.又T | A B|=J32 32=3逅,| AC |= J( 1)2 62=后,.看BAC號缶7警(2)a b=3X (-5)+0 X 5=01|§3,| b|=52.设a与b的夹角为9则cos 9昴出T又;0"9"n9 =点评:本题考查的是利用向量的坐标表示来求两向量的夹角.利用基本公式进行运算与求解主要是对基础知识的巩固与提高变式训练设a=(5,-7),b=(-6,-4),求a b及a、b间的夹角9精确到1°解:a b=5X (-6)+(-7) X (-4)=-30+28=-2.| a|=』52 ( 7)2莎,| b|= 6)2( 4)2V52由计算器得cos 9=r^ F.03.利用计算器中得9-92°.例3已知| a|=3, b=(2,3),试分别解答下面两个问题:(1)若 a 丄 b,求 a;(2)若 a // b,求 a.活动:对平面中的两向量a=(x i ,y i )与b=(x 2,y 2),要让学生在应用中深 刻领悟其本质属性,向量垂直的坐标表示 X i X 2+y i y 2=0与向量共线 的坐标表示X i y 2-X 2y i =0很容易混淆, 应仔细比较并熟记,当难以区分时,要从意义上鉴别,两向量垂直 是ab=0,而共线是方向相同或相反.教师可多加强反例练习,多给 出这两种类型的同式变形训练解:(1)设 a=(x,y),由I a|=3 且 a 丄b,2 2 [ [2 c得 X y |a| 9,2X 3X 0,X —殒 解得 13y — v Ts 13 二a=( 2、唸2届)或a=2屁,色后.13 13 13 13 ⑵设 a=(x,y),由 | a|=3 且 a / b,得X 2 y 2 |a|2 9,3X 2y 0.X 5 解得13 或 y 2品13 --a=(—^13, ■— ^13 )或a=( ~6胡3, "9^/13).13 13 13 13点评:本题主要考查学生对公式的掌握情况,学生能熟练运用两向量的坐标运算来判断垂直或者共线 ,也能熟练地进行公式的逆用 513 13 5 1313最新高一数学优质学案(附经典解析)利用已知关系来求向量的坐标.变式训练求证一次函数y=2x-3的图象(直线l i)与一次函数y= ^x的图象(直线12)互相垂直.解:在l i:y=2x-3中,令x=1得y=-1;令x=2得y=1,即在1i上取两点A(1,-1),B(2,1).同理,在直线l2上取两点C(-2,1),D(-4,2)于是:AB=(2,1)-(1,-1)=(2-1,1+1)=(1, 2),CD=(-4,2)-(-2,1)=(-4+2,2-1)=(-2,1).由向量的数量积的坐标表示,可得A B CD =1X(-2)+1 X 2=0,A B丄CD ,即h 丄l2.(四)课堂小结1.在知识层面上,先引导学生归纳平面向量数量积的坐标表示,向量的模,两向量的夹角,向量垂直的条件.其次引导学生总结数量积的坐标运算规律,夹角和距离公式、两向量垂直的坐标表2.在思想方法上,教师与学生一起回顾探索过程中用到的思维方法和数学思想方法,定义法,待定系数法等.(五)作业最新高一数学优质学案(附经典解析)。

2.4.2 平面向量数量积的坐标表示、模、夹角

2.4.2 平面向量数量积的坐标表示、模、夹角
7a 2b 垂直,求 a 与 b 的夹角。
例4:已知 a 、b 是非零向量,且
a b a b ,求 a 与 a b 的夹
角。
例5:已知△ ABC 中,
2
AB AB AC BA BC CACB 判断△ ABC 的形状。
例6:求证:
ac bd 2 a2 b2 c2 d 2
设 a a1,a2 b b1,b2 则
① a b a1 b1 a2 b2 ② a b a b a1 b1 a2 b2 0
③ a a12 a22
cos a, b a b a1 b1 a2 b2
ab
a12 a22 b12 b22
② aa a2或 a aa

ab cos a, b
量数量积的运算律:
① ab ba ② (a b) c a c b c ③ (a b) (a) b a (b)
4、向量数量积的坐标运算及度量公式:
④ 设 Ax1, y1 B x2, y2 则 AB x2 x1, y2 y1
AB x2 x1 2 y2 y1 2
例1:已知 a 4 b 5
当 ① a∥b ② a b ③ a 与 b 的夹角为 300 时, 分别求 a 与 b 的数量积。
主讲:南平高级中学 胡敬衡
复习:
1、定义:已知两个向量 a 和 b ,
它们的夹角为 ,我们把 a b cos
叫作 a 与 b 的数量积(或内积)记
作 a b 即 a b a b cos
(其中 00 1800 )。
2、向量数量积的性质:

第二章 2.4 2.4.2 平面向量数量积的坐标表示、模、夹角

第二章 2.4 2.4.2 平面向量数量积的坐标表示、模、夹角

2.4.2平面向量数量积的坐标表示、模、夹角1.两向量的数量积与两向量垂直的坐标表示已知两个非零向量,向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.数量积两个向量的数量积等于它们对应坐标的乘积的和,即a·b=x1x2+y1y2向量垂直a⊥b⇔x1x2+y1y2=0[点睛]记忆口诀:数量积的坐标表示可简记为“对应相乘计算和”.2.与向量的模、夹角相关的三个重要公式(1)向量的模:设a=(x,y),则|a|=x2+y2.(2)两点间的距离公式:若A(x1,y1),B(x2,y2),则|AB|=(x1-x2)2+(y1-y2)2.(3)向量的夹角公式:设两非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ,则cos θ=a·b|a||b|=x1x2+y1y2x21+y21·x22+y22.平面向量数量积的坐标运算[典例](1)向量a=(1,-1),b=(-1,2),则(2a+b)·a=()A.-1B.0C.1 D.2(2)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,AB=(1,-2),AD =(2,1),则AD·AC=()A.5 B.4C.3 D.2[活学活用]已知向量a与b同向,b=(1,2),a·b=10.(1)求向量a的坐标;(2)若c=(2,-1),求(b·c)·a.向量的模的问题[典例] (1)设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,则|a +b |=( )A. 5B.10 C .2 5D .10(2)已知点A (1,-2),若向量AB 与a =(2,3)同向,|AB |=213,则点B 的坐标是________.[活学活用]1.已知向量a =(cos θ,sin θ),向量b =(3,0),则|2a -b |的最大值为________.2.已知平面向量a =(2,4),b =(-1,2),若c =a -(a ·b )b ,则|c |=________.向量的夹角和垂直问题[典例] (1)已知a =(3,2),b =(-1,2),(a +λb )⊥b ,则实数λ=________.(2)已知a =(2,1),b =(-1,-1),c =a +kb ,d =a +b ,c 与d 的夹角为π4,则实数k 的值为________.[活学活用]已知平面向量a =(3,4),b =(9,x ),c =(4,y ),且a ∥b ,a ⊥c . (1)求b 与c ;(2)若m =2a -b ,n =a +c ,求向量m ,n 的夹角的大小.求解平面向量的数量积[典例] 已知点A ,B ,C 满足|AB |=3,|BC |=4,|CA |=5,求AB ·BC +BC ·CA +CA ·AB 的值.[活学活用]如果正方形OABC 的边长为1,点D ,E 分别为AB ,BC 的中点,那么cos ∠DOE 的值为________.层级一 学业水平达标1.已知向量a =(0,-23),b =(1,3),则向量a 在b 方向上的投影为( ) A.3 B .3 C .- 3D .-32.设x ∈R ,向量a =(x,1),b =(1,-2),且a ⊥b ,则|a +b |=( ) A. 5 B.10 C .2 5D .103.已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k =( ) A .-12 B .-6 C .6 D .12 4.a ,b 为平面向量,已知a =(4,3),2a +b =(3,18),则a ,b 夹角的余弦值等于( )A .865B .-865C .1665D .-16655.已知A (-2,1),B (6,-3),C (0,5),则△ABC 的形状是( ) A .直角三角形 B .锐角三角形 C .钝角三角形D .等边三角形6.设向量a =(1,2m ),b =(m +1,1),c =(2,m ).若(a +c )⊥b ,则|a|=________. 7.已知向量a =(1,3),2a +b =(-1,3),a 与2a +b 的夹角为θ,则θ=________. 8.已知向量a =(3,1),b 是不平行于x 轴的单位向量,且a·b =3,则向量b 的坐标为________.9.已知平面向量a =(1,x ),b =(2x +3,-x ),x ∈R. (1)若a ⊥b ,求x 的值; (2)若a ∥b ,求|a -b |.10.在平面直角坐标系xOy 中,已知点A (1,4),B (-2,3),C (2,-1). (1)求AB ·AC 及|AB +AC |;(2)设实数t 满足(AB -t OC )⊥OC ,求t 的值.层级二 应试能力达标1.设向量a =(1,0),b =⎝⎛⎭⎫12,12,则下列结论中正确的是( ) A .|a |=|b | B .a ·b =22C .a -b 与b 垂直D .a ∥b2.已知向量OA =(2,2),OB =(4,1),在x 轴上有一点P ,使AP ·BP 有最小值,则点P 的坐标是( )A .(-3,0)B .(2,0)C .(3,0)D .(4,0) 3.若a =(x,2),b =(-3,5),且a 与b 的夹角是钝角,则实数x 的取值范围是( )A.⎝⎛⎭⎫-∞,103 B.⎝⎛⎦⎤-∞,103 C.⎝⎛⎭⎫103,+∞D.⎣⎡⎭⎫103,+∞4.已知OA =(-3,1),OB =(0,5),且AC ∥OB ,BC ⊥AB (O 为坐标原点),则点C 的坐标是( )A.⎝⎛⎭⎫-3,-294 B.⎝⎛⎭⎫-3,294 C.⎝⎛⎭⎫3,294 D.⎝⎛⎭⎫3,-294 5.平面向量a =(1,2),b =(4,2),c =ma +b (m ∈R),且c 与a 的夹角等于c 与b 的夹角,则m =________.6.已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE ·CB 的值为______;DE ·DC 的最大值为______.7.已知a ,b ,c 是同一平面内的三个向量,其中a =(1,2). (1)若|c |=25,且c ∥a ,求c 的坐标; (2)若|b |=52,且a +2b 与2a -b 垂直,求a 与b 的夹角θ.8.已知OA=(4,0),OB=(2,23),OC=(1-λ)OA+λOB(λ2≠λ).(1)求OA·OB及OA在OB上的投影;(2)证明A,B,C三点共线,且当AB=BC时,求λ的值;(3)求|OC|的最小值.。

高中数学《平面向量数量积的坐标表示、模、夹角》优秀说课稿模板

高中数学《平面向量数量积的坐标表示、模、夹角》优秀说课稿模板

新修订高中阶段原创精品配套教材高中数学《平面向量数量积的坐标表示、模、夹角》优秀说课稿模板教材定制 / 提高课堂效率 /内容可修改This teaching plan is customized for the original teaching materials and is suitable for classroom teaching. The content can be modifiedaccording to the actual needs教师:风老师风顺第二中学编订:FoonShion教育高中数学《平面向量数量积的坐标表示、模、夹角》优秀说课稿模板一、教材分析1.本课的地位及作用:平面向量数量积的坐标表示,就是运用坐标这一量化工具表达向量的数量积运算,为研究平面中的距离、垂直、角度等问题提供了全新的手段。

它把向量的数量积与坐标运算两个知识点紧密联系起来,是全章重点之一。

2学生情况分析:在此之前学生已学习了平面向量的坐标表示和平面向量数量积概念及运算,但数量积是用长度和夹角这两个概念来表示的,应用起来不太方便,如何用坐标这一最基本、最常用的工具来表示数量积,使之应用更方便,就是摆在学生面前的一个亟待解决的问题。

因此,本节内容的学习是学生认知发展和知识构建的一个合情、合理的“生长点”。

所以,本节课采取以学生自主完成为主,教师查漏补缺的教学方法。

因此结合中学生的认知结构特点和学生实际。

我将本节教学目标确定为:1、理解掌握平面向量数量积的坐标表达式,会进行数量积的运算。

理解掌握向量的模、夹角等公式。

能根据公式解决两个向量的夹角、垂直等问题2、经历根据平面向量数量积的意义探究其坐标表示的过程,体验在此基础上探究发现向量的模、夹角等重要的度量公式的成功乐趣,培养学生的探究能力、创新精神。

教学重点平面向量数量积的坐标表示及应用教学难点探究发现公式二、教学方法和手段1教学方法:结合本节教材浅显易懂,又有前面平面向量的数量积和向量的坐标表示等知识作铺垫的内容特点,兼顾高一学生已具备一定的数学思维能力和处理向量问题的方法的现状,我主要采用“诱思探究教学法”,其核心是“诱导思维,探索研究”,其教学思想是“教师为主导,学生为主体,训练为主线的原则,为此,我通过精心设置的一个个问题,激发学生的求知欲,积极的鼓励学生的参与,给学生独立思考的空间,鼓励学生自主探索,最终在教师的指导下去探索发现问题,解决问题。

数学(2.4.2平面向量数量积的坐标表示、模、夹角)

数学(2.4.2平面向量数量积的坐标表示、模、夹角)

方向性
向量的模只与向量的长度有关, 与其方向无关。
模的计算方法
定义法
根据定义直接计算向量的模 。
勾股定理法
如果向量在直角坐标系中的 坐标已知,可以使用勾股定 理计算模。
向量分解法
将向量分解为两个互相垂直 的分量,然后分别求出分量 的模,再求和。
模的性质
共线性质
如果两个向量共线,那么它们的模相等或互为相反数。
05
实例分析
数量积的坐标表示实例
要点一
总结词
通过具体例题,展示如何利用坐标表示计算平面向量的数 量积。
要点二
详细描述
假设有两个向量$overset{longrightarrow}{a} = (x_{1}, y_{1})$和$overset{longrightarrow}{b} = (x_{2}, y_{2})$, 它们的数量积为$overset{longrightarrow}{a} cdot overset{longrightarrow}{b} = x_{1}x_{2} + y_{1}y_{2}$。 通过具体例题,展示如何利用坐标表示计算平面向量的数量 积。
平面向量的模
定义与性质
定义
平面向量$vec{a}$的模定义为 $left|vec{a}right| = sqrt{a_1^2 + a_2^2}$,其中$a_1$和$a_2$ 分别是向量$vec{a}$模总是非负的,即 $left|vec{a}right| geq 0$。
数量积与夹角的关系
数量积与夹角余弦值的关系
向量的数量积等于两个向量模的乘积乘以它们夹角的余弦值,即$mathbf{A} cdot mathbf{B} = |mathbf{A}| times |mathbf{B}| times costheta$。

平面向量数量积的坐标表示、模、夹角

平面向量数量积的坐标表示、模、夹角

平面向量数量积的坐标表示、模、夹角
《平面向量数量积的坐标表示、模、夹角》反思
 1、在本堂教学中,知识的回顾,题目的设计都围绕数量积坐标表示展开。

数量积公式得出后,启发学生自己动手推导出模、夹角的坐标表示,回顾了公式的同时又培养了学生的推导能力、自主学习能力。

在例题的选择上即达到应用公式的目的,同时也渗透数形结合思想,把本堂课的教学目标贯彻到底。

 2、教学设计结构严谨,过渡自然,时间分配合理,密度适中。

知识回顾部分把上节课的数量积、夹角、模、垂直、平行的有关知识进行回顾,并在黑板上板书,每一条知识点的回顾都是本堂课的新课内容。

 3、新课引入部分问题设计合理,但提问的字句还需斟酌,要语简意赅,如问题1:对于上述向量i,j,则i2,j2,i.j分别等于什幺?这样的问法我觉的还太繁琐,我想是否可以改为计算i2,j2,i.j,这样是否更直接一点。

 4、公式的得出,在应用之前或者应用之后都应该对公式的结构特征进行归纳总结。

如公式推导后学生因为接受新知识,对公式肯定不是很了解,应该要引导学生分析公式特征及应用的注意点。

 5、在板演时,对于学生的错误解法在旁边要做个记号,以示警示,(4)例2的设计很好,但在数据上的设置还需改进,这样能起到更好的考察效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.4.2平面向量数量积的坐标表示、模、夹角
教材分析
本课的地位及作用:平面向量数量积的坐标表示,就是运用坐标这一量化工具表达向量的数量积运算,为研究平面中的距离、垂直、角度等问题提供了全新的手段.它把向量的数量积与坐标运算两个知识点紧密联系起来,是全章重点之一.
课时分配
本节内容用1课时的时间完成.
课题:§2.4.2平面向量数量积的坐标表示、模、夹角
教学目标
重点:平面向量数量积的坐标表示.
难点:向量数量积的坐标表示的应用.
知识点:平面向量数量积的坐标表示、模、夹角.
能力点:通过对向量平行与垂直的充要条件的坐标表示的类比,教给了学生类比联想的记忆方法. 教育点:经历根据平面向量数量积的意义探究其坐标表示的过程,体验在此基础上探究发现向量的模、夹角等重要的度量公式的成功乐趣,培养学生的探究能力、创新精神.
自主探究点:两个向量的数量积等于它们对应坐标的乘积的和.
考试点:平面向量数量积的坐标表示、模、夹角.
易错易混点:若非零向量与的夹角为锐角(钝角),则0(<0)>⋅a b ,反之不成立.
拓展点:1221//0x y x y ⇔-=a b 与12120x x y y ⊥⇔+=a b .
教具准备:多媒体和实物展台
课堂模式
一、引入新课
复习 1.两个非零向量夹角的概念
已知非零向量与,作OA =a ,OB =b ,则(0π)AOB θθ∠=≤≤叫与的夹角.
2.平面向量数量积(内积)的定义:已知两个非零向量与,它们的夹角是,则数量
cos θa b 叫与的数量积,记作⋅a b ,即有⋅a b =cos θa b ,(0π)θ≤≤.并规定0与任何向量的数量积为0.
平面向量的表示方法有几何法和坐标法,向量的表示形式不同,对其运算的表示方式也会改变.向量的坐标表示,对向量的加、减、数乘运算带来了很大的方便.若已知向量与的坐标,则其数量积是唯一确定的,因此,如何用坐标表示向量的数量积就成为我们需要研究的课题.
【设计意图】回顾两个非零向量夹角的概念及平面向量数量积的意义,为探究数量积的坐标表示做好准备.创设情境激发学生的学习兴趣.
二、探究新知
1.探究一:已知两个非零向量
()()1122,,,x y x y =a =b ,怎样用与的坐标表示数量积⋅a b 呢? 因为()()1122x y x y ⋅++a b =i j i j 22
12122112x x x y x y y y =+⋅+⋅+i i j i j j 又1⋅=i i ,1⋅=j j ,0⋅=⋅=i j j i ,所以⋅a b 2121y y x x +=.
这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即⋅a b 2121y y x x +=.
【设计意图】问题引领,培养学生的探索研究能力
2..探究二:探索发现向量的模的坐标表达式

(),x y a =,如何计算向量的模a 呢?

(
1,A x )2y ,如何计算向量AB 的模即、两点间的距离呢? AB AB ==
【设计意图】在向量数量积的坐标表示基础上,探索发现向量的模
3.探究三:向量夹角、垂直、平行的坐标表示
设与都是非零向量,
()()1122,,,x y x y =a =b ,如何判定⊥a b 或计算与的夹角a,b 呢?
(1)、向量夹角的坐标表示 cos θ=
(2)、1212=00x x y y ⊥⇔⇔+=a b a b
(3)、
1221//0x y x y ⇔-=a b 【设计意图】在向量数量积的坐标表示基础上两向量垂直,两向量夹角的坐标表达式,提醒学生⊥a b 与//a b 坐标表达式的不同.
三、理解新知
1、向量的坐标表示和向量的坐标运算实现了向量运算的完全代数化,并将数与形紧密结合起来.本节主要应用有:
(1)求两点间的距离(求向量的模);
(2)求两向量的夹角;
(3)证明两向量垂直.
2、已知非零向量
()()1122,,,x y x y =a =b , 若1221//0
x y x y ⇔-=a b ; 1212=00x x y y ⊥⇔⇔+=a b a b
两个命题不能混淆,可以对比学习,分别简记为:纵横交错积相等,横横纵纵积相反.
【设计意图】让学生学会怎样学习概念;培养学生透过现象看本质的能力,使学生养成细致、全面地考虑问题的思维品质.
四、运用新知
例1、已知向量与同向,
()1,2=b ,10⋅a b =,求: (1)向量的坐标;(2)若
()2,1-c =,求()a c b . 解:(1)∵与同向,且
()1,2=b , ∴(),2(0).
λλλλ>a =b = 又∵10⋅a b =,∴410λλ+=,∴2λ=,∴()2,4.a =
(2)∵22(1)40⋅⨯+-⨯=a c =,∴()0=a c b b =0.
【变式】已知()4,3=-a ,1=b ,且5⋅a b =,求向量的坐标.
=a
解: 设(),x y =b ,则221435x y x y ⎧+=⎨-=⎩ 解得4535x y ⎧=⎪⎪⎨⎪=-⎪⎩∴43,55-⎛⎫= ⎪⎝⎭b . 【设计意图】熟练应用向量数量积的坐标公式.
例2、已知向量()4,3=a ,()1,2=-b .
(1)求与的夹角的余弦值;
(2)若向量λ-a b 与+2a b 垂直,求的值.
解:
(1)5==a
,==b
14322⋅-⨯+⨯=a b =,

cos θ=
==a b a b (2).()()()
4,3,24,32λλλλλ---=+-a b = ()()()
8,61,27,8++-=2a b =. 若λ-a b ⊥+2a b ,
则7(4)8(32)0λλ++-=,解得529λ=.
【设计意图】熟练应用向量的夹角公式.
例3.已知()1,2=a ,()1,λ=b ,分别确定实数的取值范围,使得:
(1)与的夹角为直角;
(2)与的夹角为钝角;
(3)与的夹角为锐角.
解:
设与的夹角为,==a
,==b , ()1,2(1,)12λλ
⋅=+a b = (1)因为与的夹角为直角,
所以0⋅a b =,所以120λ+=,所以12λ=-.
(2)因为与的夹角为钝角,所以cos 0θ<且cos 1θ≠-,
即0⋅a b <且与不反向.
由0⋅a b <得120λ+<,故12λ<-,
由与共线得2λ=,故与不可能反向. 所以的取值范围为
1,2⎛⎫-∞- ⎪⎝⎭. (3)因为与的夹角为锐角,所以cos 0θ>且cos 1θ≠,
即0⋅a b >且与不同向.
由0⋅a b >,得12λ>-,由与同向得2λ=.
所以λ的取值范围为()1,22,2⎛⎫-+∞ ⎪⎝⎭
. 【设计意图】熟练应用向量的夹角公式,由于两个非零向量与的夹角满足(0π)θ≤≤,所以用cos θ=
a b
a b 来判断,可将分五种情况:cos 1,0θθ==︒;cos 0,90θθ==︒;cos 1,180θθ=-=︒;
cos 0θ<且cos 1θ≠-,为钝角;cos 0θ>且cos 1θ≠,为锐角.
五、课堂小结
1.向量夹角的坐标表示
cos θ=
2.1221//0x y x y ⇔-=a b 与12120x x y y ⊥⇔+=a b ;
3.若非零向量与的夹角为锐角(钝角),则0(<0)>⋅a b ,反之不成立;
4.已知两向量的坐标,根据平面向量的数量积的定义和性质,可以求其数量积、两向量的长度和它们的夹角,此外,求解数量积的有关综合问题,应该注意函数思想与方程思想的运用.
【设计意图】培养学生归纳整合知识能力,培养学生思维的灵活性与严谨性.
六、布置作业
1.阅读课本106107P
-
2.必做题课本A 组第9、10、11题
【设计意图】学生养成先复习后做作业的学习习惯. 七、教后反思
1.结合本节教材浅显易懂,又有前面平面向量的数量积和向量的坐标表示等知识作铺垫的内容特点,兼顾高一学生已具备一定的数学思维能力和处理向量问题的方法的现状,我主要采用“诱思探究教学法”,其核心是“诱导思维,探索研究”,其教学思想是“教师为主导,学生为主体,训练为主线的原则,为此,我通过精心设置的一个个问题,激发学生的求知欲,积极的鼓励学生的参与,给学生独立思考的空间,鼓励学生自主探索,最终在教师的指导下去探索发现问题,解决问题.在教学中,我适时的对学生学习过程给予评价,适当的评价,可以培养学生的自信心,合作交流的意识,更进一步地激发了学生的学习兴趣,让他们体验成功的喜悦.
2.利用多媒体辅助教学,可以加大一堂课的信息容量,极大提高学生的学习兴趣.。

相关文档
最新文档