《材料力学》第九章 课后习题答案
材料力学简明教程(景荣春)课后答案第九章
解 设各杆与铅垂线夹角为 θ ,则由平衡的各杆的受力
130
3FN cosθ = F , FN =
设钢管材料为 Q235,则
F F 2 .5 5 F = ⋅ = = 0.417 F 3 cos θ 3 2 12
= 269 > λp D2 + d 2 30 2 + 22 2 × 10 −3 π 2 EI π 3 E (D 4 − d 4 ) π 3 × 210 × 10 9 × (30 2 − 22 2 )× 10 −12 Fcr = = = = 9.37 kN 2 64 × 2.5 2 (μl )2 64(μl ) Fcr F 1 1 9.37 × 10 3 [F ] = = × = × = 7.49 kN 0.417 0.417 [n]st 0.417 3 i = =
2
127
比值差不多时较有利。 9-8 从稳定性的角度考虑,一般压杆截面的周边取圆形较为合理,但可以是空心或实 心的。如规定压杆横截面面积相同,则: (1) 从强度方面看,它们有无区别?为什么? (2) 从稳定性方面看,哪一种截面形式较为合理?为什么? (3) 如果空心圆形截面较合理的话,是否其内、外半径越大越好? 答 (1) 从强度方面看,它们无区别。因为 σ = F / A 。 (2) 从稳定性方面看,空心截面形式较为合理,因空心截面惯性矩较大。 (3) 如果空心圆形截面较合理的话,其内、外半径不是越大越好,因为在面积一定的情 况下,内、外半径太大了会造成薄壁失稳。 9-9 如何进行压杆的合理设计? 答 (1) 选择合理的截面形状; (2) 改变压杆的约束条件; (3)合理选择材料。 9-10 满足强度条件的等截面压杆是否满足稳定性条件?满足稳定性条件的压杆是否 满足强度条件?为什么? 答 (1) 因为强度条件是 σ < [σ ] =
华科材料力学教材课后习题答案第九章
即:
9-6 在图示结构中,横梁AD为刚性杆,杆(1)与杆(2)均为直径d=10cm的圆杆,材料均为Q235钢,规定的稳定安
全系数 n st 6.5 。试由杆(1)的稳定性确定许可F。
2m 2m
E
(2) F
A
B
C
D
(1)
F
2m
2m
2m
9-7 图示桁架由两根材料、截面均相同的细长杆组成,试由稳定性要求确定F为最大时的 角( π / 2)。
10KN/m
A
C
B
D
1m
1m
9-10 压杆的一端固定,另一端自由(图a),为提高其稳定性,在杆的中点增加铰支座(图b)。试求加强后 压杆的欧拉临界力公式,并与加强前作比较。
Fcr
Fcr
B
B
l l/2
A
A
(a)
(b)
9-11 图示立柱,由两根槽钢焊接而成,在其中点横截面C处,开有一直径 d 6ቤተ መጻሕፍቲ ባይዱmm
度时杆将失去稳定?已知材料的热膨胀系数 12.5106 / C,E=210GPa, p =200MPa。
5m
9-5 9-5 图示正方形桁架,各杆EI相同且均为细长杆。试求当F为何值时结构将失稳?如果F力改为方向向外, 结果又如何? 解:杆AB、BC、CD、AD为压杆,所受压力相等为F`。 失稳时有:
n st 2.5,试校核该顶杆的稳定性。
9-3 简易起重机如图所示,其压杆BD为20号槽钢,材料为Q235钢,最大起重量为F=40kN, n st 5 ,试校核BD杆的稳定性。
1.5m
0.5m
A
30
B
第二版《材料力学》第六章至第九章习题解答-(华中科大版-倪樵主编)
2 z
W
M
2 x
W2
[ ]
7-17 图示直角曲拐,C端受铅垂集中力F作用。已知a=160mm,AB杆直径D=40mm,
l=200mm ,E=200GPa, μ=0.3,实验测得D点沿45º方向的线应变 ε45º=0.265 × 10-3。试求:
(1)力F的大小;(2)若AB杆的[σ]=140MPa,试按最大切应力理论校核其强度。
T Wp
16 M 0
D3
16 125 .6
0.023
79.96MPa
单元体可画成平面单元体如图(从上往下观察)
A
6-5 试用求下列各单元体中ab面上的应力(单位MPa) 。
解:(a)
x 70
y 70
xy 0
30
x
y
2
x
y
2
cos(2 30 )
70 1 2
35
(MPa)
x y sin(2 30 ) 70
2
3 60.62 (MPa) 2
(b)
x 70
y 70
xy 0
30
x
y
2
x
y
2
cos(2 30 )
70
(MPa)
x
y
2
sin(2 30 )
0
6-6 各单元体的受力如图所示,试求:(1)主应力大小及方向并在原单元体图上绘出主 单元体;(2)最大切应力(单位MPa) 。
解: (3) My 、Mz、Mx 和F 同时作用,拉弯扭组合,任一截 面D1点是危险点
应力状态:
D1
FN M F
M
2 y
M
2 z
y
AW A
材料力学柴国鈡第9章答案汇总
9.1 图示起重架,在横梁的中点受到集中力F 的作用,材料的许用应力MPa 100][=σ。
试选择横梁工字钢的型号(不考虑工字钢的自重)。
解:由0=∑C M 可得05.130tan 3=⨯-︒⨯⨯F F Ax ,kN 13=Ax F由0=∑B M 可得05.13=⨯-⨯F F Ay ,kN 5.7=Ay F横梁的跨中截面上有最大弯矩 m kN 25.115.15.7max ⋅=⨯=M横梁上的最大压应力][max max σσ≤+=zAx W MA F上述强度条件中截面面积A 和抗弯截面系数z W 都是未知的,因此首先忽略轴力的影响来选取工字钢型号,然后再利用上式做强度校核。
3346max cm 5.112m m 1025.111001025.11][=⨯=⨯=≥σM W z查表,选取16号工字钢,其z W 为141cm 3,A 为26.131 cm 2,代入(1)式得到][MPa 8.841410001025.111.2613130006max σσ≤=⨯+=因此,最终选择16号工字钢。
9.2 如图所示的链环,其截面直径m m 50=d ,受拉力kN 10=F作用,试求链环的最大正应力。
解:最大拉应力:MPa 0.5432/5060100004/501000032max max,=⨯⨯+⨯=+=ππσz N t W M A F最大压应力:MPa 8.4332/5060100004/501000032max max,-=⨯⨯-⨯=-=ππσz N c W M A F9.3 如图所示夹具,夹紧力为=F 2kN ,材料的许用应力为=][σ170MPa ,试校核m-m 截面的强度。
解:m-m 截面上的最大正应力(拉应力)为][MPa 0.1606/2010502000201020002max max,σσ<=⨯⨯+⨯=+=z t W M A F故夹具满足强度条件。
9.4 图示简支梁,已知:=q 20kN/m ,=F 1500kN ,=e 80mm 。
材料力学答案第9章
通解为
w1 = A1sinkx1 + B1coskx1 +
w2 = A2 sinkx 2 + B2 coskx 2 +
当 x1 = 0,w1 = 0 → B1 = 0 当 x 2 = 0,w2 = 0 → B2 = 0 当 x1 = x2 = 或写成
l F ′ = − w2 ′ ,w1 = w2 = c ,w1 2 c
式中,
k12 =
以上二微分方程的通解为
F F 2 ,k 2 = EI 1 EI 2
w1 = A1sink1 x1 + B1cosk1 x1 + δ w2 = A2 sink 2 x 2 + B2 cosk 2 x 2 + δ
定未知常数的条件为
8
′=0 x1 = 0,w1 = 0,w1 x1 = l ′ = w2 ′ ,w1 = w2,w1 x2 = 0 x2 = l,w2 = δ
3
的扭力矩为
M B = Fϕa
而
ϕ=
注意到 T = M B ,于是得
Tl GI p
F=
即
GI p al
πGd 4 Fcr = = al 32al
由此得(题中给出 F= 42kN )
GI p
d=
4
32alFcr = πG
4
32 × 0.500 × 0.300 × 42 ×103 m = 0.030m = 30mm π × 79 ×10 9
题 9-10 图 解:该细长压杆的微弯状态如图 9-10 所示。
按图中所取坐标,有
M ( x1 ) =
Fc F x1 − Fw1,M ( x 2 ) = c x 2 − Fw2 2 2
周建方版材料力学习题解答[第九章]
9-1 题9-1图所示拉杆,受轴向均布载荷q 作用,已知杆的抗拉刚度EA 为常数,试计算杆的应变能。
解: ⎰⎰=⋅=⋅==l l N EAlq lEAqEAdx x q EAdx x F V 03232220263222)(ε题9-1图9-2 试计算题9-2图所示各杆的应变能。
题9-1a 解: EAl F AE dxF EAdx F EA dx x F EA dxx F V lll BCN ABN 432222)(2)(22222212=⋅+=+=⎰⎰⎰⎰ε题9-2a 图题9-2 b.解:求支座反力: 由∑=⋅-=0,0l F M MB A得lM F B =由∑-==l M F F A y 得,弯矩方程:AC 段,,)(x lM x M -= CB 段,x lx M =)(题9-2b 图EIl M EIl M EIdx x lM EIdxx l MEI dx x M V lll 1816292)(2)(2)(22320230202==+-==⎰⎰⎰ε题9-2c 解:c 截面上的弯矩 M(x)=FR(1-Cosθ) 则题9-2c 图)183()2cos 2121cos 21(22)]cos 1([2)(323202022-=++-=⋅-==⎰⎰⎰20πθθθθθπεπEIR F d EIR F Rd EIFR EI ds x M V l9-3 计算题9-3图所示受扭圆轴所储存的应变能,图中d 2=1.5d 1。
解:由于32411d I p π=、512813241422d d I p ππ==题9-3图Gd l M d d Gl M I I lGMGIdxx MGI dxx MGI dxx MV xxp p xl l p xp xlpx41241412212222281776)8151232(4)11(222)(2)(2)(121πππε=+=+⋅=+==⎰⎰⎰9-4 试用互等定理求题9-4图所示结构跨度中点C 的挠度,设EI =常数。
材料力学作业及练习题参考答案(8、9章)
八章2题: 解:查槽钢表,每根槽钢,A=25.669 cm2,W=141 cm3, 则两根槽钢制成的梁:A=2A=51.538 cm2, W=2W=282 cm3 在B截面左侧的上边缘处: =-FN/A+M/W=-50×103/(51.538×10-4)+37.5×103/(282×10-6) =123.24×106 Pa, 即在该处为拉应力123.24 MPa ; 在B截面左侧的下边缘处: =-FN/A-M/W=-50×103/(51.538×10-4)-37.5×103/(282×10-6) =-142.72×106 Pa, 即在该处为压应力142.72 MPa ; 在B截面右侧的上边缘处: =M/W=37.5×103/(282×10-6)=132.98×106 Pa, 即在该处为拉应力132.98 MPa ; 在B截面右侧的下边缘处: =-M/W=-37.5×103/(282×10-6)=-132.98×106 Pa, 即在该处为压应力132.98 MPa。
《材料力学》第五版_刘鸿文第9_10章习题答案
−P
0
P
− 2P P
0
0
2P
0
−P
P
− 2P 0
0
解: a、c 桁架 b 桁架
Pcr =
Pb ≥ Pc = Pa
π 2 EI ( 2l ) 2 π 2 EI Pcr = (l ) 2
HAII MAXUN
N ≤ Pcr = 2 P N ≤ Pcr = P
π 2 EI 2 2l 2 π 2 EI P= (l ) 2 P=
8.5 ×1.43 (14 − 8.5) × 9.63 4 4 Iy = + cm = 407cm 12 12
9.6 × 143 (9.6 − 1.4) × 8.53 4 4 Iz = + cm = 1780cm 12 12
iy =
λP =
Iy A
=
407 cm = 2.51cm iz = 64.7
湖北汽车工业学院
材料力学
主讲教师:马迅
10.14 材料相同、长度相等的变截面杆和等截面杆,若两 杆的最大横截面面积相同,问哪一根杆件承受冲击的能 力强?设变截面杆直径为d的部分长为2/5l。假设H较 大,近似把动载系数取为 2H 2H 解:
Kd = 1+ 1+ ∆ st ≈ ∆ st
3 2 lW lW Nl 4Wl ∆st = ∑ = 5 + 5 = π π EA 5Eπ E D2 E d 2 4 4
湖北汽车工业学院
材料力学
主讲教师:马迅
第9+10章习题
教材:9.13、9.16、10.14 附加习题: 9-1、9-2、9-3、9-4、10-2、10-4
附加习题9-2: 1、2杆均为圆截面,直径相同,d=8mm, 材料的E=120GPa,适用欧拉公式的临界柔度为90,规定 稳定性安全系数nst=1.8,求结构的许可载荷P。 解: 应用平衡条件有
材料力学习题册答案-第9章压杆稳定
材料力学习题册答案-第9章压杆稳定第九章压杆稳定一、选择题1、一理想均匀直杆受轴向压力P=P Q 时处于直线平衡状态。
在其受到一微小横向干扰力后发生微小弯曲变形,若此时解除干扰力,则压杆( A )。
A 、弯曲变形消失,恢复直线形状;B 、弯曲变形减少,不能恢复直线形状;C 、微弯状态不变;D 、弯曲变形继续增大。
2、一细长压杆当轴向力P=P Q 时发生失稳而处于微弯平衡状态,此时若解除压力P ,则压杆的微弯变形( C )A 、完全消失B 、有所缓和C 、保持不变D 、继续增大3、压杆属于细长杆,中长杆还是短粗杆,是根据压杆的( D )来判断的。
A 、长度B 、横截面尺寸C 、临界应力D 、柔度4、压杆的柔度集中地反映了压杆的( A )对临界应力的影响。
A 、长度,约束条件,截面尺寸和形状;B 、材料,长度和约束条件;C 、材料,约束条件,截面尺寸和形状;D 、材料,长度,截面尺寸和形状;5、图示四根压杆的材料与横截面均相同,试判断哪一根最容易失稳。
答案:( a )6、两端铰支的圆截面压杆,长1m ,直径50mm 。
其柔度为 ( C )A.60;B.66.7; C .80; D.50 7、在横截面积等其它条件均相同的条件下,压杆采用图( D )所示截面形状,其稳定性最好。
8、细长压杆的( A ),则其临界应力σ越大。
A 、弹性模量E 越大或柔度λ越小;B 、弹性模量E 越大或柔度λ越大;C 、弹性模量E 越小或柔度λ越大;D 、弹性模量E 越小或柔度λ越小;9、欧拉公式适用的条件是,压杆的柔度( C )A 、λ≤ PEπσ B 、λ≤sEπσC 、λ≥ P Eπσ D 、λ≥sEπσ10、在材料相同的条件下,随着柔度的增大( C )A 、细长杆的临界应力是减小的,中长杆不是;B 、中长杆的临界应力是减小的,细长杆不是;C 、细长杆和中长杆的临界应力均是减小的;D 、细长杆和中长杆的临界应力均不是减小的; 11、两根材料和柔度都相同的压杆( A )A. 临界应力一定相等,临界压力不一定相等;B. 临界应力不一定相等,临界压力一定相等;C. 临界应力和临界压力一定相等;D. 临界应力和临界压力不一定相等;12、在下列有关压杆临界应力σe 的结论中,( D )是正确的。
材料力学(单辉祖版)完整课后习题答案-9
第九章复杂应力状态强度问题题号页码9-4 (1)9-5 (3)9-8 (4)9-9 (5)9-10 (7)9-14 (8)9-16 (10)9-17 (11)9-18 (13)9-19 (14)9-22 (16)9-23 (16)9-24 (17)9-25 (18)9-26 (18)9-27 (20)9-28 (21)(也可通过左侧题号书签直接查找题目与解)9-4试比较图示正方形棱柱体在下列两种情况下的相当应力r3σ,弹性常数E和µ均为已知。
(a) 棱柱体轴向受压;(b) 棱柱体在刚性方模中轴向受压。
题9-4图(a)解:对于棱柱体轴向受压的情况(见题图a),三个主应力依次为0,===σσσ−σ132由此可得第三强度理论的相当应力为σσσσ=−=31r3 (a)(b)解:对于棱柱体在刚性方模中轴向受压的情况(见题图b ),可先取受力微体及坐标如图9-4所示,然后计算其应力。
图9-4由图9-4可得σσy −=根据刚性方模的约束条件,有 0)]([1=+−=z y x x σσµσE ε即)(z y x σσµσ+=注意到x z σσ=故有 σµµσσz x −−==1三个主应力依次为 σσσµµσσ−=−−==3211,由此可得其相当应力为 σµµσσσ−−=−=12131r3 (b)比较:按照第三强度理论,(a)与(b)两种情况相当应力的比值为µµσσr b a 211)r3()r3(−−==1>r ,这表明加刚性方模后对棱柱体的强度有利。
9-5 图示外伸梁,承受载荷F = 130 kN 作用,许用应力[σ]=170 MPa 。
试校核梁的强度。
如危险点处于复杂应力状态,采用第三强度理论校核强度。
题9-5图解:1.内力分析由题图可知,+B 截面为危险截面,剪力与弯矩均为最大,其值分别为 m N 1080.7m 600.0N 10130 kN 130432S ⋅×=××====Fl M F F ,2.几何量计算34324max ,)(343)(343545433m 1090.2]m )0137.0140.0(0085.0211023.2[2m 1023.2)m 20137.0140.0(0137.0122.0m 1005.5m 140.01007.7m 1007.712)0137.02280.0()0085.0122.0(12280.0122.0[−−−−−−×=−××+×==×=−××=×=×=×=×−×−−×=z a z b z z z S S S W I 式中的足标b ,系指翼缘与腹板的交界点,足标a 系指上翼缘顶边中点。
材料力学 陈天富 第9章作业解答
9.21 直径 d = 10 mm 的柱塞通过密闭的高压容器(题图 9.21) ,并承 受扭矩 T0 = 80 N.m,容器内压 p = 500 MPa,其材料的拉伸和压缩强 度极限为σbt = 2100 MPa,σbc = 5120 MPa。试按莫尔强度理论计算 危险点处的相当应力。
题图 9.21 解:由于柱塞处在压力容器中,径向受到压力 P,所以,柱塞上某一 点的应力状态如下图所示,
0
0
1 [ x ( y z )] E 5 4 解得: x E 00 2 10 3 10 60 MPa
(2)求剪应力 将单元体旋转 450, 如上图 (c) 所示, 由斜截面正应力计算公式:
x Cos 2 y Sin2 2 xy SinCos
有:
45
0
x x
2 2
xy xy
135
0
由广义胡克定理:
45
0
1 1 1 [ 450 1350 ] [ (1 ) x (1 ) xy ] E E 2
解得:
xy
1 1 [ E 450 (1 ) x ] (1 ) 2
如题图 9.11 解:
x 40 MPa, xy 40 MPa z 40 MPa
由图可知, z 是主应力(剪应力为 0)
max x y x y 2 ( ) xy 2 min 2 2
40 0 40 0 2 ( ) 40 2 2 2 24.72 MPa 64.72 MPa
解:
3 (kN / m 3 ) 400(m) 1.0 10 7 ( N / m 2 ) 10( MPa)
材料力学习题册_参考答案(1-9章)
(图 1)
(图 2)
3.有 A、B、C 三种材料,其拉伸应力—应变实验曲线如图 3 所示,曲线( B )材料
的弹性模量 E 大,曲线( A )材料的强度高,曲线( C )材料的塑性好。
4.材料经过冷作硬化后,其( D )。
A.弹性模量提高,塑性降低
B. 弹性模量降低,塑性提高
C.比例极限提AB 梁的中点
D 任意点
14. 轴向拉伸杆,正应力最大的截面和剪应力最大的截面 ( A )
A 分别是横截面、450 斜截面
B 都是横截面
C 分别是 450 斜截面、横截面
D 都是 450 斜截面
15. 设轴向拉伸杆横截面上的正应力为σ,则 450 斜截面上的正应力和剪应力( D )。
A σ=Eε=300MPa
B σ>300MPa
C 200MPa<σ<300Mpa
D σ<200MPa
21.图 9 分别为同一木榫接头从两个不同角度视图,则( B )。
A. 剪切面面积为 ab,挤压面面积为 ch; B. 剪切面面积为 bh,挤压面面积为 bc;
C. 剪切面面积为 ch,挤压面面积为 bc; D. 剪切面面积为 bh,挤压面面积为 ch。
F
p
.D
.
.
.
.
...
解:设每个螺栓受力为 F,由平衡方程得
根据强度条件,有 [σ]≥
故螺栓的内径取为 24mm。 4.图示一个三角架,在节点 B 受铅垂荷载 F 作用,其中钢拉杆 AB 长 l1=2m,截面面
积 A1=600mm2,许用应力 [ ]1 160MPa ,木压杆 BC 的截面面积 A2=1000mm2,许 用应力 [ ]2 7MPa 。试确定许用荷载[F]。
《材料力学》第五版_刘鸿文第9_10章习题答案
材料力学
主讲教师:马迅
第9+10章习题-1、9-2、9-3、9-4、10-2、10-4
附加习题9-2: 1、2杆均为圆截面,直径相同,d=8mm, 材料的E=120GPa,适用欧拉公式的临界柔度为90,规定 稳定性安全系数nst=1.8,求结构的许可载荷P。 解: 应用平衡条件有
PL P l 1
解: yc = ∆ st = 0.0125m
Kd = 1+ 1+
σ st max
M = max = 37.5MPa W
HAII MAXUN
2 × 50 =4 ∆ st
( yc ) d = K d ∆ st = 0.05m (σ max ) d = K d σ max = 150MPa
湖北汽车工业学院
材料力学
主讲教师:马迅
在xy平面内弯曲时连杆的柔度
λz = µl 1 × 3.1 = = 59.2 ≈ λ S i z 0.0524
在xz平面内弯曲时连杆的柔度
λy = µl 0.5 × 3.1 = = 61.8 < λ P iy 0.0251
中柔度杆,
Pcr = (a − bλ y ) A = (304 − 1.12 × 61.8) ×106 × 0.00647N = 1520kN
2 9
(
)
P 44500 n = cr = = 2.36 < nst = 2.5 P 18867
工作安全系数小于规定的稳定安全系数,不安全。
HAII MAXUN
附加习题10-2:已知P=300N,L=1m,h=40mm,b=30mm, E=200GPa,计算截面C的冲击挠度和刚架内的最大冲击正 应力(刚架的质量略而不计,不计轴力对变形的影响)。
材料力学答案第九章
第九章 强度理论第九章答案9.1 直径d =100mm 的圆截面钢杆受轴向拉力F = 2kN 和矩M e =10Nm 的力偶作用。
[σ] =1 60MPa ,试用第三强度理论校核该杆的强度。
(σ3r = 105 MPa)解:拉伸扭转组合变形,危险点是圆周上各点, 应力状态见图安全。
],[MPa MPa )(MPa(στσσπτπσ≤=+==⋅⋅⋅===⋅⋅⋅==1054150101010155251010242233323r p e .W M .)A F9.2 炮筒横截面如图所示。
在危险点处 ,t σ= 550 MPa 。
τσ= -350 MPa ,第三个主应力垂直于图面是拉应力,且其大小为420MPa 。
试按第三和第四强度理论,计算其相当应力。
解:危险点是三向越应力状态])()()[(MPa MPaMPaMPa 222219003505503504205553332214313321=-+-+-==+=-=-=====σσσσσσσσσσσσσσστr r tτ9.3图示圆截面铸铁杆, 承受轴向载荷F 1,横向载荷F 2和矩为M 1的扭力偶作用,试用第一强度理论校核杆的强度。
已知载荷F 1 = 30 kN , F 2 = 1.2 kN , M 1 = 700 Nm ,杆径d = 80 mm ,杆长l = 800 mm ,许用应力[σ] = 35 MPa 。
解:拉弯扭组合变形。
A 截面上边缘为危险点1. 应力分析:MPaMPa 69680107001616125808001021328010304324333133233221.d M W T..d l F d F W M A F p Z A N =⋅⋅⋅=⋅⋅===⋅⋅⋅⋅+⋅⋅⋅=+=+=ππτππππσ2. 强度校核安全。
,〈核杆的强度一采用第一强度理论校∴∴>==⋅+-==⋅++=][-.8MPa,-]6.69425.1[25.126.8MPa,]6.69425.1[25.12222σσσσσσσ131231012121 ,, 9.4图示皮带轮传动轴,传递功率P = 7kW ,转速n =200r/min 。
《工程力学(工程静力学与材料力学)(第3版)》习题解答:第9章 应力状态分析
解答:
正确答案是D。
四个应力状态的主应力, 、 、 ;其主力方向虽不全相同,但应变比能与主应力值有关,因此它们的应变比能相同。
9-30关于图示应力状态,有如下论述,试选择哪一种是正确的。
(A)最大主应力为500MPa,最小主应力为100MPa;
(B)最大主应力为500MPa,最大切应力为250MPa;
工程力学(工程静力学与材料力学)习题与解答
第9章 应力状态分析
9-1木制构件中的微元受力如图所示,其中所示的角度为木纹方向与铅垂方向的夹角。试求:
1.面内平行于木纹方向的切应力;
2.垂直于木纹方向的正应力。
知识点:平面应力状态、任意方向面上的应力分析
难度:易
解答:
(a)平行于木纹方向切应力
MPa
垂直于木纹方向正应力
知识点:广义胡克定律、压力容器应力分析
难度:一般
解答:
MPa
MPa
MPa
9-21液压缸及柱形活塞的纵剖面如图所示。缸体材料为钢,E = 205GPa, = 0.30。试求当内压p=10MPa时,液压缸内径的改变量。
知识点:广义胡克定律、压力容器应力分析
难度:难
解答:
缸体上
MPa
MPa
9-22试证明对于一般应力状态,若应力应变关系保持线性,则应变比能
知识点:应力状态的基本概念
难度:一般
解答:
正确答案是B。
MPa
MPa
,为单向应力状态。
9-28试分析图示的四个应力状态是否等价,有下列四种答案。
(A)四者均等价;
(B)仅(a)和(b)等价;
(C)仅(b)、(c)等价;
(D)仅(a)和(c)等价。
工程力学--材料力学(北京科大、东北大学版)第4版第九章习题答案
第九章习题9-1 图示的细长压杆均为圆杆,其直径d均相同.材料是Q 235钢.E=。
其中:图a为两端铰支;图b为—端固定,一端210 GPa铰支;图c为两端固定,试判别哪一种情形的t临界力最大,哪种其次,。
哪种最小?若四杆直径d=16cm,试求最大的临界力Pcr9-2 图示压杆的材料为Q 235钢,E=210GPa在正视图a的平面内,两端为铰支,在俯视图b的平面内,两端认为固定。
试求此杆的临界力。
SHAPE \* MERGEFORMAT9-3 图示立柱由两根10号槽钢组成,立柱上端为球铰,下端固定,柱长L=6m,试求两槽钢距离a值取多少立柱的临界力最大?其佰是多少?已知材料的弹性模量E=200 GPa.比例极限σp=200MPa。
9-4 图示结构AB为圆截面直杆,直径d=80mm,A端固定,B端与BC 直秆球铰连接。
BC杆为正方形截面,边长a=70 mm,C端也是球铰。
两杆材料相同,弹性模量E=200GPa,比例极限σp=200 MPa,长度l=3m,求该结构的临界力。
9-5 图示托架中杆AB的直径d=4 cm,长度l=80 cm.两端可视为铰支,材料是Q235钢。
(1)试按杆AB的稳定条件求托架的临界力Qcr;(2)若巳知实际载荷Q=70 kN,稳定安全]=2,问此托架是否安全?系数[nst9-6 悬臀回转吊车如图所示,斜杆AB由钢管制成,在B点铰支;铜管的外径D=100mm,内径d=86mm,杆长l=3m,材料为Q235钢,E=200 GPa、起重量Q=20 kN,稳定安全系数[n]=2.5。
试校核斜杆的稳定性。
st9—7 矿井采空区在充填前为防止顶板陷落,常用木柱支撑,若木柱为]=4,求木红松,弹性模量E=10GPa.直径d=l 4cm规定稳定安全系数[nst柱所允许承受的顶板最大压力。
9—8 螺旋千斤顶(图9-16)的最大起重量P=150 kN,丝杠长l=0.5m,]材料为45号钢,E=210 GPa.规定稳定安全系数[nst=4.2,求丝杠所允许的最小内直径d。
《工程力学(工程静力学与材料力学)(第3版)》习题解答:第9章 应力状态分析
MPa
MPa
2.
MPa
MPa
9-13图示外径为300mm的钢管由厚度为8mm的钢带沿20°角的螺旋线卷曲焊接而成。试求下列情形下,焊缝上沿焊缝方向的切应力和垂直于焊缝方向的正应力。
1.只承受轴向载荷FP = 250kN;
2.只承受内压p=5.0MPa(两端封闭)
3.同时承受轴向载荷FP = 250kN和内压p=5.0MPa(两端封闭)
难度:一般
解答:
(1)当 = 40℃
mm<
mm<
所以铝板内无温度应力,
(2)当 = 80℃
mm>
mm>
∴ (1)
(2)
所以解得qx = qy=70MPa(压)
, MPa
MPa
9-18对于一般平面应力状态,已知材料的弹性常数E、 ,且由实验测得 和 。试证明:
知识点:广义胡克定律、 三者之间的关系
难度:一般
难度:一般
解答:
正确答案是C。
(A)不满足切应力互等定律;
(B)不满足平衡;
(C)既可满足切应力互等,又能达到双向的平衡;
(D)不满足两个方向的平衡。
9-27微元受力如图所示,图中应力单位为MPa。试根据不为零主应力的数目,它是:
(A)二向应力状态;
(B)单向应力状态;
(C)三向应力状态;
(D)纯切应力状态。
MPa
9-7受力物体中某一点处的应力状态如图所示(图中p为单位面积上的力)。试求该点处的主应力。
知识点:应力圆的应用
难度:难
解答:
应力圆半径
9-8从构件中取出的微元,受力如图所示。试:
1.求主应力和最大切应力;
2.确定主平面和最大切应力作用面位置。
材料力学_高教第二版_范钦珊_第9章习题答案..
习题9-4图(a) 材料力学_高教第二版_范钦珊_第9章习题答案第9章 杆类构件的静力学设计9-1 关于低碳钢试样拉伸至屈服时,有如下结论: (A )应力和塑性变形很快增加,因而认为材料失效;(B )应力和塑性变形虽然很快增加,但不意味着材料失效; (C )应力不增加塑性变形很快增加,因而认为材料失效; (D )应力不增加塑性变形很快增加,但不意味着材料失效。
正确答案是 C 。
9-2 韧性材料应变硬化之后,材料的力学性能发生下列变化: (A )屈服应力提高,弹性模量降低; (B )屈服应力提高,韧性降低; (C )屈服应力不变,弹性模量不变; (D )屈服应力不变,韧性不变。
正确答案是 B 。
9-3 关于条件屈服应力有如下论述: (A )弹性应变为0.2%时的应力值; (B )总应变为0.2%时的应力值; (C )塑性应变为0.2%时的应力值; (D )弹性应变为0.2时的应力值。
正确答案是 C 。
9-4 螺旋压紧装置如图所示。
现已知工作所受的压紧力为F = 4kN ,旋紧螺栓螺纹的内径d 1 = 13.8mm ,固定螺栓内径d 2 = 17.3mm 。
两根螺栓材料相同,其许用应力][σ= 53.0MPa 。
试校核各螺栓之强度是否安全。
解:0=∑B M ,F A = 2kN 0=∑y F ,F B = 6kN8.13108.13π420004π20006221=⨯⨯⨯===-d A F A A A σMPa ][σ<,安全。
5.25103.174π4600062=⨯⨯⨯==-B B B A F σMPa ][σ<,安全。
9-5 现场施工中起重机吊环的每一侧臂AB 和BC ,均由两根矩形截面杆组成,连接处A 、B 、C 均为铰链,如图所示。
已知起重载荷F P = 1200kN ,每根矩形杆截面尺寸比例为b /h = 0.3,材料的许用应力][σ= 78.5MPa 。
试设计矩形杆的截面尺寸b 和h 。