高考数学(理科)- 函数与方程思想-专题练习 (含答案与解析)

合集下载

新高考二轮数学理科金版学案专题复习同步练习8.1函数与方程思想(含答案解析)

新高考二轮数学理科金版学案专题复习同步练习8.1函数与方程思想(含答案解析)

第一部分 知识复习专题专题八 思想方法专题 第一讲 函数与方程思想一、选择题1. (2014·安徽卷)设函数f(x)(x ∈R)满足f(x +π)=f(x)+sin x .当0≤x <π时,f(x)=0,则f ⎝⎛⎭⎫23π6=( )A.12B.32 C .0 D .-12解析:由题意,f ⎝⎛⎭⎫23π6=f ⎝⎛⎭⎫17π6+sin 17π6=f ⎝⎛⎭⎫11π6+sin 11π6+sin 17π6=f ⎝⎛⎭⎫5π6+sin5π6+sin 11π6+sin 17π6=0+12-12+12=12.故选A. 答案:A2.设a >1,若对于任意的x ∈[a ,2a],都有y ∈[a ,a 2]满足方程log a x +log a y =3,这时a 的取值的集合为( )A .{a|1<a≤2}B .{a|a ≥2}C .{a|2≤a ≤3}D .{2,3}解析:依题意得y =a 3x ,当x ∈[a ,2a]时,y =a 3x ∈⎣⎡⎦⎤12a 2,a 2 [a ,a 2],因此有12a 2≥a ,又a >1,由此解得a≥2.故选B.答案:B3.对任意a ∈[-1,1],函数f(x)=x 2+(a -4)x +4-2a 的值总大于零,则x 的取值范围是( )A.{}x |1<x <3B.{}x |x <1或x >3C.{}x |1<x <2D.{}x |x <1或x >2解析:由f(x)=x 2+(a -4)x +4-2a>0得 a(x -2)+x 2-4x +4>0.令g(a)=a(x -2)+x 2-4x +4,由不等式f (x)>0恒成立,即g(a)>0在[-1,1]上恒成立.∴有⎩⎪⎨⎪⎧g (-1)>0,g (1)>0,即⎩⎪⎨⎪⎧-(x -2)+x 2-4x +4>0,(x -2)+x 2-4x +4>0. 解得x<1或x>3. 答案:B4.椭圆x 24+y 2=1的两个焦点为F 1,F 2,过F 1作垂直于x 轴的直线与椭圆相交,其一交点为P ,则|PF 2|=( )A.32B. 3C.72D .4 解析:如图,令|F 1P|=r 1,|F 2P|=r 2,那么⎩⎪⎨⎪⎧r 1+r 2=2a =4,r 22-r 21=(2c )2=12⎩⎪⎨⎪⎧r 1+r 2=4,r 2-r 1=3 r 2=72.答案:C5.(2014·大纲卷)奇函数f(x)的定义域为R ,若f(x +2)为偶函数,且f(1)=1,则f(8)+f(9)=( )A .-2B .-1C .0D .1解析:因为函数f(x)是奇函数,所以f (-x)=-f(x), 又因为f(x +2)是偶函数,则f(-x +2)=f(x +2),所以f(8)=f(6+2)=f(-6+2)=f(-4)=-f(4),而f(4)=f(2+2)=f(-2+2)=f(0)=0,f(8)=0,同理f(9)=f(7+2)=f(-7+2)=f(-5)=-f(5);而f(5)=(3+2)=f(-3+2)=f(-1)=-f(1)=-1,f(9)=1,所以f(8)+f(9)=1.故选D.答案:D6.(2014·湖南卷)已知函数f(x)=x 2+e x -12(x <0)与g(x)=x 2+ln(x +a)图象上存在关于y 轴对称的点,则a 的取值范围是( )A.⎝⎛⎭⎫-∞,1e B.()-∞,e C.⎝⎛⎭⎫ -1e ,e D.⎝⎛⎭⎫-e ,1e解析:由题可得存在x 0∈(-∞,0)满足f(x 0)=g(-x 0) x 20+ex 0-12=(-x 0)2+ln(-x 0+a) ex 0-ln(-x 0+a)-12=0,令h(x)=e x -ln(-x +a)-12,因为函数y =e x 和y =-ln(-x +a)在定义域内都是单调递增的,所以函数h(x)=e x -ln(-x +a)-12在定义域内是单调递增的,又因为x 趋近于-∞时,函数h(x)<0且h(x)=0在(-∞,0)上有解(即函数h(x)有零点),所以h(0)=e 0-ln(0+a)-12>0 ln a <ln e a < e.故选B.答案:B二、填空题7.若关于x 的方程(2-2-|x -2|)2=2+a 有实根,则实数a 的取值范围是________.解析:令f(x)=(2-2-|x -2|)2,∵-|x -2|≤0,∴0<2-|x -2|≤1.∴f(x)∈[1,4).∵方程有实根, ∴1≤2+a<4,解得-1≤a<2. 答案:[-1,2)8. (2014·陕西卷)已知4a =2,lg x =a ,则x =________.解析:由4a =2得a =12,所以lg x =12,解得x =10.答案:10三、解答题9.已知函数f(x)(x∈R)满足f(x)=2bxax-1,a≠0,f(1)=1且使f(x)=2x成立的实数x只有一个,求函数f(x)的表达式.解析:∵f(x)=2bxax-1,f(1)=1,∴2ba-1=1.∴a=2b+1.又f(x)=2x,即2bxax-1=2x只有一个解,也就是2ax2-2(1+b)x=0(a≠0)只有一解.∴Δ=[-2(1+b)]2-4×2a×0=0,即(1+b)2=0.得b=-1.∴a=-1.故f(x)=2xx+1.10.某地区要在如图所示的一块不规则用地规划建成一个矩形商业楼区,余下的作为休闲区,已知AB⊥BC,OA∥BC,且AB=BC=2OA=4 km,曲线OC段是以O为顶点且开口向上的抛物线的一段,如果矩形的两边分别落在AB,BC上,且一个顶点在曲线OC段上,应当如何规划才能使矩形商业楼区的用地面积最大?并求出最大的用地面积.解析:以点O为原点,OA所在的直线为x轴,建立直角坐标系,设抛物线的方程为x2=2py,由C(2,4)代入得:p=1 2,所以曲线段OC的方程为:y=x2(x∈[0,2]).A(-2,0),B(-2,4),设P(x,x2)(x∈[0,2])在OC上,过P作PQ⊥AB于Q,PN ⊥BC于N,故PQ =2+x ,PN =4-x 2, 则矩形商业楼区的面积 S =(2+x)(4-x 2)(x ∈[0,2]).S =-x 3-2x 2+4x +8,令S′=-3x 2-4x +4=0得x =23或x =-2(舍去),当x ∈⎣⎡⎦⎤0,23时,S ′>0,S 是x 的增函数, 当x ∈⎣⎡⎦⎤23,2时,S ′<0,S 是x 的减函数, 所以当x =23时,S 取得最大值,此时PQ =2+x =83,PN =4-x 2=329,S max =83×329=25627(km 2).故该矩形商业楼区规划成长为329 km ,宽为83 km 时,用地面积最大为25627km 2.11.进入2007年以来,猪肉价格上涨,养猪所得利润比原来有所增加.某养殖户拟建一座平面图(如图所示)是矩形且面积为200平方米的猪舍养殖生猪,由于地形限制,猪舍的宽x 不少于5米,不多于a 米,如果该养殖户修建猪舍的地基平均每平方米需投入10元,房顶(房顶与地面形状相同)每平方米需投入15元,猪舍外面的四周墙壁每米需投入20元,中间四条隔墙每米需投入10元.问:当猪舍的宽x 定为多少时,该养殖户投入的资金最少?最少是多少元?解析:设该养殖户投入资金为y 元,易知猪舍的长为200x米, ∵y =200×10+200×15+⎝⎛⎭⎫2x +2×200x ×20+4x ×10=80⎝⎛⎭⎫x +100x +5 000(5≤x≤a), ∵函数f(x)=x +100x在[5,10]上单调递减,在[10,+∞)上单调递增, ∴当a≥10时,y min =6 600,此时x =10;当5≤a <10时,y min =80⎝⎛⎭⎫a +100a +5 000,此时x =a. ∴若a≥10米,猪舍的宽定为10米,该养殖户投入的资金最少是6 600元;若5≤a <10米,猪舍的宽就定为a 米,该养殖户投入的资金最少是[80⎝⎛⎭⎫a +100a +5 000]元.12.直线m :y =kx +1和双曲线x 2-y 2=1的左支交于A ,B 两点,直线l 过点P(-2,0)和线段AB 的中点M ,求l 在y 轴上的截距b 的取值范围.解析:由⎩⎪⎨⎪⎧y =kx +1,x 2-y 2=1(x≤-1)消去y , 得(k 2-1)x 2+2kx +2=0.①(联立方程是解决交点问题的一般方法)因为直线m 与双曲线的左支有两个交点,所以方程①有两个不相等的负实数根.所以⎩⎨⎧Δ=4k 2+8(1-k 2)>0,x 1+x 2=2k 1-k 2<0,x 1·x 2=-21-k2>0,解得1<k < 2.设M(x 0,y 0),则⎩⎪⎨⎪⎧x 0=x 1+x 22=k1-k2,y 0=kx 0+1=11-k 2.由P(-2,0),M ⎝⎛⎭⎫k 1-k 2,11-k 2,Q(0,b)三点共线,得出b =2-2k 2+k +2,……(构造出b 和k 的函数关系式)设f(k)=-2k 2+k +2=-2⎝⎛⎭⎫k -142+178,…(使函数更加清晰) 则f(k)在(1,2)上为减函数, ∴f(2)<f(k)<f(1),且f(k)≠0. ∴-(2-2)<f(k)<0或0<f(k)<1. ∴b <-2-2或b >2.∴b 的取值范围是(-∞,-2-2)∪(2,+∞).13.若关于x 的方程4x +a·2x +a +1=0有实数解,求实数a 的取值范围.解析:解法一 令2x =t(t >0),则原方程可化为 t 2+at +a +1=0,(*)问题转化为方程(*)在(0,+∞)上有实数解,求a 的取值范围. ①当方程(*)的根都在(0,+∞)上时,可得下式 ⎩⎪⎨⎪⎧Δ=a 2-4(a +1)≥0,t 1+t 2=-a >0,t 1·t 2=a +1>0⎩⎪⎨⎪⎧a≤2-22或a≥2+22,a <0,a >-1,即-1<a≤2-22,②当方程(*)的根一个在(0,+∞)上,另一根在(-∞,0]上时, 令f(t)=t 2+at +a +1得f(0)≤0,即a≤-1. 由①②知满足条件的a 的取值范围为 (-∞,2-22]. 解法二 令t =2x (t >0), 则原方程可化为t 2+at +a +1=0. 变形为a =-1+t 21+t =-(t 2-1)+21+t=-⎣⎡⎦⎤(t -1)+2t +1=-⎣⎡⎦⎤(t +1)+2t +1-2≤-(22-2)=2-2 2.当且仅当t =2-1时取等号. 所以a 的取值范围是(-∞,2-22).。

高三数学函数与方程试题答案及解析

高三数学函数与方程试题答案及解析

高三数学函数与方程试题答案及解析1.已知函数,若存在唯一的零点,且,则的取值范围是A.B.C.D.【答案】C【解析】试题分析:根据题中函数特征,当时,函数显然有两个零点且一正一负; 当时,求导可得:,利用导数的正负与函数单调性的关系可得:和时函数单调递增; 时函数单调递减,显然存在负零点; 当时,求导可得:,利用导数的正负与函数单调性的关系可得:和时函数单调递减; 时函数单调递增,欲要使得函数有唯一的零点且为正,则满足:,即得:,可解得:,则.【考点】1.函数的零点;2.导数在函数性质中的运用;3.分类讨论的运用2.已知实数、、满足,,则的最大值为为_______.【答案】【解析】因为,所以,所以,所以,由,解得,故实数的最大值为.【考点】一元二次方程的根的判别式,容易题.3.给出定义:若m-<x≤m+(其中m为整数),则m叫做离实数x最近的整数,记作{x}=m,在此基础上给出下列关于函数f(x)=|x-{x}|的四个命题:①函数y=f(x)的定义域为R,值域为[0,];②函数y=f(x)在[-,]上是增函数;③函数y=f(x)是周期函数,最小正周期为1;④函数y=f(x)的图象关于直线x= (k∈Z)对称.其中正确命题的序号是________.【答案】①③④【解析】m=1时,x∈(,],f(x)=|x-1|=f1(x),m=2时,x∈(,],f(x)=|x-2|=f2(x),显然,f2(x)的图象是由f1(x)的图象右移1个单位而得,一般地,m=k时,x∈(,],f(x)=|x-k|=fk (x),m=k+1时,x∈(,],f(x)=|x-k-1|=fk+1(x),f k+1(x)的图象是由fk(x)的图象右移1个单位而得,于是可画出f(x)的图象如下:4.若函数f(x)=x3-ax2(a>0)在区间上是单调增函数,则使方程f(x)=1 000有整数解的实数a的个数是________.【答案】4【解析】令f′(x)=3x2-2ax>0,则x>或x<0.由f(x)在区间上是单调增函数知⊆,从而a∈(0,10].由f(x)=1 000得a =x-,令g(x)=x-,则g(x)在(0,+∞)上单调递增,且与x轴交于点(10,0),在同一直角坐标系中作出函数g(x)与y=a(0<a≤10)的大致图像(如图所示).当a=10时,由f(x)=1 000得x3-10x2-1 000=0.令h(x)=x3-10x2-1 000,因为h(14)=-216<0,h(15)=125>0,所以方程x3-10x2-1 000=0在区间(14,15)上存在根x0,因此从图像可以看出在(10,x]之间f(x)=1000共有4个整数解.5.已知函数f(x)=2x,x∈R.当m取何值时方程|f(x)-2|=m有一个解?两个解?【答案】两个解【解析】解:令F(x)=|f(x)-2|=|2x-2|,G(x)=m,画出F(x)的图像如图所示.由图像看出,当m=0或m≥2时,函数F(x)与G(x)的图像只有一个交点,原方程有一个解;当0<m<2时,函数F(x)与G(x)的图像有两个交点,原方程有两个解.6.设,则函数的零点位于区间()A.(-1,0)B.(0,1)C.(1,2)D.(2,3)【答案】C【解析】,选C.【考点】零点的定义.7.已知函数,若函数恰有两个不同的零点,则实数的取值范围为.【答案】【解析】,的解为,时,,当时,,从而在区间和上是减函数,在区间和上是减函数,,当时,.如图是的图象,,,方程的解就是函数的图象与直线的交点的横坐标,当或或时,有两个交点,即方程有两个解,或称有两个零点,或或.【考点】函数的零点,函数的图象与性质,直线与曲线相交.8.已知函数f(x)=||x-1|-1|,若关于x的方程f(x)=m(m∈R)恰有四个互不相等的实根x1,x2,x 3,x4,则x1x2x3x4的取值范围是________.【答案】(-3,0)【解析】f(x)=||x-1|-1|=方程f(x)=m的解就是y=f(x)的图象与直线y=m交点的横坐标,由图可知,x2=-x1,x3=2+x1,x4=2-x1,且-1<x1<0.设t=x1x2x3x4=(-2)2-4,则t=(-2)2-4,易得-3<t<0.9.对于实数a和b,定义运算“”:a b=设f(x)=(2x-1)(x-1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则x1、x2、x3的取值范围是________.【答案】【解析】由新定义得f(x)=作出函数f(x)的图象,由图可知,当0<m<时,f(x)=m(m∈R)恰有三个互不相等的实数根x1、x2、x3,不妨设x1<x2<x3,易知x2>0,且x2+x3=2×=1,∴x2x3<.令解得x=或x= (舍去),∴<x1<0,∴<x1x2x3<0.10.已知f(x)=2x,g(x)=3-x2,试判断函数y=f(x)-g(x)的零点个数.【答案】两个【解析】在同一坐标系内作出函数f(x)=2x与g(x)=3-x2的图象,两图象有两个交点,∴函数y=f(x)-g(x)有两个零点.11.关于x的方程x3-3x2-a=0有三个不同的实数解,则实数a的取值范围是________.【答案】(-4,0)【解析】由题意知使函数f(x)=x3-3x2-a的极大值大于0且极小值小于0即可,又f′(x)=3x2-6x=3x(x-2),令f′(x)=0,得x1=0,x2=2.当x<0时,f′(x)>0;当0<x<2时,f′(x)<0;当x>2时,f′(x)>0,所以当x=0时,f(x)取得极大值,即f(x)极大值=f(0)=-a;当x=2时,f(x)取得极小值,即f(x)极小值=f(2)=-4-a,所以解得-4<a<0.,12.的零点个数为()A.4B.5C.6D.7【答案】B【解析】∵,∴,图像如图所示,由图像看出与有5个交点,∴的零点个数为5个.【考点】1.函数零点问题;2.函数图像.13.设函数,集合=,设,则A.9B.8C.D.6【答案】A【解析】,注意总共只有7个根,且这些根都为正整数,任一方程的两根之和都为8,所以这些根为1、7,2、6,3、5,4.所以,.【考点】1、函数的零点;2、二次方程根与系数的关系.14.已知关于X的方程的解集为P,则P中所有元素的和可能是()A.3,6,9B.6,9,12C.9,12,15D.6,12,15【答案】B【解析】函数的图像如图所示,直线,当时,;当时,;当时,;当时,;综上可得:P中所有元素的和可能是6,9,12.【考点】1.函数图像;2.中点坐标公式.15.若函数有极值点,且,则关于的方程的不同实根个数是 .【答案】3【解析】函数有极值点,说明方程的两根为,不妨设,即是极大值点,是极小值点,方程的解为或,由于,所以是极大值,有两解,,只有一解.因此共有3解.【考点】函数的极值与方程的解.16.设方程的两个根为,则()A.B.C.D.【答案】D【解析】依题意,,,分别作出函数和函数的图像.则图像中两函数交点的横坐标即方程的两个根.由图可知,两根中一个大于1,一个大于0小于1.不妨设,则,.所以,故.【考点】函数与方程、对数函数与指数函数的图像和性质17.若为偶函数,且当时,,则的零点个数为()A.B.C.D.无穷多个【答案】C【解析】当时,,所以【考点】函数的零点18.设,(1)若的图像关于对称,且,求的解析式;(2)对于(1)中的,讨论与的图像的交点个数.【答案】(1);(2)见解析.【解析】(1)因为函数图象关于对称,故为二次函数且对称轴为∴,又,代入可求得函数解析式;(2)将问题转化为有几个解的问题,令,利用导数讨论其增减区间,当时,与的图像无交点;当时,与的图像有一个交点;当时,与的图像有两个交点.试题解析:(1)∵的图像关于对称∴为二次函数且对称轴为∴又∵∴∴(2)即即令当时∵∴即在递增当时∵∴即在递减,∵当时当时∴①当时,与的图像无交点;②当时,与的图像有一个交点;③当时,与的图像有两个交点.【考点】利用导数研究函数的单调区间、函数与方程思想、函数解析式的求法.19.函数的零点一定位于区间( )A.(1, 2)B.(2, 3)C.(3, 4)D.(4, 5)【答案】B【解析】因为,,所以,根据根的存在性定理可知,函数的零点在区间内.【考点】零点存在性定理.20.设,则函数的零点位于区间()A.(0 ,1)B.(-1, 0) C.(1, 2) D.(2 ,3)【答案】A【解析】因为,由零点存在性定理知,在内有零点,有为单调函数,故存在唯一零点,选A.【考点】零点存在定理.21.设函数(1)设,,证明:在区间内存在唯一的零点;(2) 设,若对任意,有,求的取值范围;(3)在(1)的条件下,设是在内的零点,判断数列的增减性.【答案】(1) 见解析;(2);(3)见解析.【解析】(1) 先根据零点存在性定理判断在在内存在零点,在利用导数说明函数在上是单调递增的,从而说明在区间内存在唯一的零点;(2)此问可用两种解法:第一种,当时,,根据题意判断出在上最大值与最小值之差,据此分类讨论如下:(ⅰ)当;(ⅱ)当;(ⅲ)当,综上可知,;第二种,用表示中的较大者,直接代入计算即可;(3)先设出零点,然后根据在上是递增的得出结论.试题解析:(1),时,∵,∴在内存在零点. 又当时, ,∴在上是单调递增的,所以在内存在唯一零点.(2)当时,,对任意都有等价于在上最大值与最小值之差,据此分类讨论如下:(ⅰ)当,即时, ,与题设矛盾(ⅱ)当,即时, 恒成立(ⅲ)当,即时, 恒成立.综上可知,注:(ⅱ)(ⅲ)也可合并证明如下:用表示中的较大者.当,即时,恒成立 .(3)证法一设是在内的唯一零点,,于是有又由(1)知在上是递增的,故, 所以,数列是递增数列.证法二设是在内的唯一零点则的零点在内,故,所以,数列是递增数列.【考点】1.零点存在性定理;2.利用导数判断函数单调性;3.利用函数单调性判断大小.22.定义在上的函数满足下列两个条件:⑴对任意的恒有成立;⑵当时,;记函数,若函数恰有两个零点,则实数的取值范围是()A.B.C.D.【答案】D【解析】当时,,所以,同理可得,,直线恒过定点,所以函数恰有两个零点时需满足.【考点】1.函数的解析式;2.函数的零点.23.若定义在R上的偶函数满足且时,则方程的零点个数是()A.2个B.3个C.4个D.多于4个【答案】C【解析】试题分析:函数f(x)是以2为周期的周期函数,且是偶函数,根据上的解析式,图象关于y轴对称,可以绘制上的图象,根据周期性,可以绘制上的图象,而是个偶函数,绘制其在y轴右侧图象可知两图象右侧有两个交点,根据对称性可得共有四个交点,故选B.【考点】函数与方程.24.函数所有零点的和等于( )A.6B.7.5C.9D.12【答案】C【解析】函数所有零点转化为两个函数图像的交点的横坐标,画出函数的图像,根据图像可知有6个交点,且两两关于直线对称,故所以零点的和为【考点】函数的零点.25.若函数且有两个零点,则实数的取值范围是.【答案】【解析】构造函数且,要保证两个函数图象有不同的两个交点,则需.【考点】函数的图象.26.已知函数,则关于的方程的实根的个数是___ _【答案】5【解析】根据题意,由于函数,则关于的方程,的实根的个数即为的方程的根的个数,那么结合解析式,由于,而对于,,故可知满足题意的方程的解为5个,故答案为5.【考点】函数与方程点评:主要是考查了函数与方程的根的问题的综合运用,属于中档题。

【山东省】2017年高考数学(理科)- 函数与方程思想-专题练习 -答案

【山东省】2017年高考数学(理科)- 函数与方程思想-专题练习 -答案

=n2-n+60.
an n2-n+60
60
∴ n = n =n+ n -1.
60 令 f(x)=x+ x -1,易知 f(x)在(0,2 15)上单调递减,在(2 15,+∞)上单调递增.
a7
60
102
又 n∈N*,当 n=7 时, 7 =7+ 7 -1= 7 ,
a8
60
29
当 n=8 时, 8 =8+ 8 -1= 2 .
f 所以f
f
-, <0, >0,
-2k≥0, 即-1<0,
4k+3>0,
3 所以-4<k≤0,所以
k
的取值范围是-34,0.
4.由 an+1-an=2n,得 an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1 =2(n-1)+2(n-2)+…+2+60
15p 9p2
y2M
4 16
∴yM=2+ 8 - 32 =2+ 8 ⇒yM=4,p=3或 3 .
4/5
∴C 的方程为 y2=4x 或 y2=16x. 7.设 A1P=x(0≤x≤ 2). 在△AA1P 中,
AP= 12+x2-2×1×x×cos 45°= x2- 2x+1,
在 Rt△D1A1P 中,D1P= 1+x2.

y2
1, x2

4m
x2
4

0
y x m
5x2 8mx 4m2 4 0 . *
所以
x1

x2

8m 5

x1 x2

4m2 5
4

8分
y1 y2

m

x1 m

高三数学函数与方程试题答案及解析

高三数学函数与方程试题答案及解析

高三数学函数与方程试题答案及解析1.函数的零点所在的区间为()A.B.C.D.【答案】C【解析】对于函数在(0,+∞)上是连续函数,由于f(2)=ln2-<0,f(3)=ln3->0,故f(2)f(3)<0,故函数的零点所在的大致区间是(2,3),故选C.【考点】函数零点的定义以及函数零点判定定理.2.已知函数,.若方程有两个不相等的实根,则实数的取值范围是()A.B.C.D.【答案】B.【解析】如图,由已知,函数,的图象有两个公共点,画图可知当直线介于,之间时,符合题意,故选B.【考点】1.函数与方程;2.数形结合的数学思想.3.已知a>0,且a≠1,则函数f(x)=a x+(x-1)2-2a的零点个数为( )A.1B.2C.3D.与a有关【答案】B【解析】设g(x)=2a-a x,h(x)=(x-1)2,注意到g(x)的图象恒过定点(1,a),画出他们的图象无论a>1还是0<a<1,g(x)与h(x)的图象都必定有两个公共点考点:零点的个数4.已知二次函数f(x)=x2+2bx+c(b、c∈R).(1)若f(x)≤0的解集为{x|-1≤x≤1},求实数b、c的值;(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(-3,-2),(0,1)内,求实数b的取值范围.【答案】(1)b=0,c=-1(2)<b<【解析】解:(1)依题意,x1=-1,x2=1是方程x2+2bx+c=0的两个根.由韦达定理,得即所以b=0,c=-1.(2)由题知,f(1)=1+2b+c=0,所以c=-1-2b.记g(x)=f(x)+x+b=x2+(2b+1)x+b+c=x2+(2b+1)x-b-1,则,解得<b<,所以实数b的取值范围为<b<.5.已知函数f(x)=若关于x的方程f2(x)-af(x)=0恰有5个不同的实数解,则a的取值范围是()A.(0,1)B.(0,2)C.(1,2)D.(0,3)【答案】A【解析】设t=f(x),则方程为t2-at=0,解得t=0或t=a,即f(x)=0或f(x)=a.如图,作出函数f(x)的图象,由函数图象,可知f(x)=0的解有两个,故要使方程f2(x)-af(x)=0恰有5个不同的解,则方程f(x)=a的解必有三个,此时0<a<1.所以a的取值范围是(0,1).6.已知函数f(x)=若函数g(x)=f(x)-m有3个零点,则实数m的取值范围是________.【答案】[0,1)【解析】在坐标系内作出函数f(x)=的图象,如图:发现当0≤m<1时,函数f(x)的图象与直线y=m有三个交点.即函数g(x)=f(x)-m有三个零点.7.已知函数,集合,,记分别为集合中的元素个数,那么下列结论不正确的是()A.B.C.D.【答案】【解析】集合,均表示方程的解集,集合中元素的个数,就是方程解的个数.当时,有一解,无解,正确;当时,有一解,有一解,正确;当时,有两解,有两解,其不可能有三个解,正确,不正确.故选.【考点】1、新定义;2、集合的概念;3、函数与方程.8.已知0<a<1,k≠0,函数f(x)=,若函数g(x)=f(x)-k有两个零点,则实数k的取值范围是________.【答案】0<k<1【解析】函数g(x)=f(x)-k有两个零点,即f(x)-k=0有两个解,即y=f(x)与y=k的图像有两个交点.分k>0和k<0作出函数f(x)的图像.当0<k<1时,函数y=f(x)与y=k的图像有两个交点;当k=1时,有一个交点;当k>1或k<0时,没有交点,故当0<k<1时满足题意.9.关于x的方程e x ln x=1的实根个数是________.【答案】1【解析】由e x ln x=1(x>0)得ln x=(x>0),即ln x=x(x>0).令y1=ln x(x>0),y2=x(x>0),在同一直角坐标系内绘出函数y1,y2的图像,图像如图所示.根据图像可知两函数只有一个交点,所以原方程实根的个数为1.10.(13分)(2011•湖北)设函数f(x)=x3+2ax2+bx+a,g(x)=x2﹣3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.(Ⅰ)求a、b的值,并写出切线l的方程;(Ⅱ)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,求实数m的取值范围.【答案】(Ⅰ)x﹣y﹣2=0(Ⅱ)(﹣,0)【解析】(I)利用曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l,可得f(2)=g(2)=0,f'(2)=g'(2)=1.即为关于a、b的方程,解方程即可.(II)把方程f(x)+g(x)=mx有三个互不相同的实根转化为x1,x2是x2﹣3x+2﹣m=0的两相异实根.求出实数m的取值范围以及x1,x2与实数m的关系,再把f(x)+g(x)<m(x﹣1)恒成立问题转化为求函数f(x)+g(x)﹣mx在x∈[x1,x2]上的最大值,综合在一起即可求出实数m的取值范围.解:(I) f'(x)=3x2+4ax+b,g'(x)=2x﹣3.由于曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.故有f(2)=g(2)=0,f'(2)=g'(2)=1.由此得,解得,所以a=﹣2,b=5..切线的方程为x﹣y﹣2=0.(II)由(I)得f(x)=x3﹣4x2+5x﹣2,所以f(x)+g(x)=x3﹣3x2+2x.依题意,方程x(x2﹣3x+2﹣m)=0,有三个互不相等的实根0,x1,x2,故x1,x2是x2﹣3x+2﹣m=0的两相异实根.所以△=9﹣4(2﹣m)>0,解得m>﹣.又对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,特别地取x=x1时,f(x1)+g(x1)<m(x1﹣1)成立,得m<0.由韦达定理得x1+x2=3>0,x1x2=2﹣m>0.故0<x1<x2.对任意的x∈[x1,x2],x﹣x2≤0,x﹣x1≥0,x>0.则f(x)+g(x)﹣mx=x(x﹣x1)(x﹣x2)≤0,又f(x1)+g(x1)﹣mx1=0.所以f(x)+g(x)﹣mx在x∈[x1,x2]上的最大值为0.于是当m<0,对任意的x∈[x1,x2],f(x)+g(x)<m(x﹣1)恒成立,综上得:实数m的取值范围是(﹣,0).点评:本题主要考查函数,导数,不等式等基础知识,同时考查综合运用数学知识进行推理论证的能立,以及函数与方程和特殊与一般的思想.11.已知函数,,的零点分别为,则()A.B.C.D.【答案】D【解析】令,,分别得,,,则分别为函数的图象与函数,,的图象交点的横坐标,在同一平面直角坐标系下作出它们的图象,易得,,,故选.【考点】函数图象、零点的概念.12.若函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[-1,1]时,f(x)=|x|,函数g(x)=,则函数h(x)=f(x)-g(x)在区间[-5,5]上的零点的个数为()A.10B.9C.8D.7【答案】B【解析】由f(x+2)=f(x)可知,函数f(x)是周期为2的周期函数.在同一直角坐标系中画出函数f(x)与函数g(x)的图象,结合图象可知,函数h(x)在[-5,5]上有9个零点.13.若函数f(x)=x3-3x+a有3个不同的零点,则实数a的取值范围是()A.(-2,2)B.[-2,2]C.(-1,1)D.[-1,1]【答案】A【解析】函数f(x)=x3-3x+a有3个不同的零点方程x3-3x+a=0有三个不同的根a=-x3+3x函数g(x)=a与函数F(x)=-x3+3x的图象有三个不同的交点∵F′(x)=-3x2+3=-3(x2-1)=-3(x-1)(x+1)∴即F(x)在x=1处取得极大值2,在x=-1处取得极小值-2∵直线g(x)=a与函数F(x)=-x3+3x的图象有三个不同的交点∴a∈(-2,2)14.已知函数(a是常数,a∈R)(1)当a=1时求不等式的解集.(2)如果函数恰有两个不同的零点,求a的取值范围.【答案】(1);(2).【解析】(1)本题含有绝对值符号,解题时我们只要根据绝对值的定义去掉绝对值符号分类讨论即可,实际上,因此分成和情况分别求解,最后归总;(2)函数有两个零点,可以转化为函数的图象与直线有两个不同交点问题,只要作出其图象就能得到结论.(1)∴的解为 --5分(2)由得,.令,,作出它们的图象,可以知道,当时,这两个函数的图象有两个不同的交点,所以函数有两个不同的零点. -10分【考点】(1)解不等式;(2)函数零点与函数图象交点问题.15.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1<x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数为( )A.3B.4C.5D.6【答案】A【解析】f′(x)=3x2+2ax+b;由已知x1,x2是方程3x2+2ax+b=0的不同两根,当f(x1)=x1<x2时,作y=x1,y=x2与f(x)=x3+ax2+bx+c有三个不同交点.即方程3(f(x))2+2af(x)+b=0有三个不同实根.16.若方程在内有解,则的图象可能是( )【答案】D【解析】解:方程在内有解,即是的图象与函数的图象在内有交点;在A,B,C,三个选项中,当时,都有,不合题意,选项D中的图象显示,在轴左侧,的图象与函数的图象在内有交点;故选D.【考点】函数的零点.17.已知函数,若关于的函数有两个零点,则实数的取值范围是__________.【答案】【解析】有两个零点,等价于函数与函数的图像有两个交点,作出函数的图像如下:由图可知的取值范围:故答案:【考点】根的存在性和个数的判断;数形结合.18.已知函数,若函数恰有两个不同的零点,则实数的取值范围为.【答案】【解析】,的解为,时,,当时,,从而在区间和上是减函数,在区间和上是减函数,,当时,.如图是的图象,,,方程的解就是函数的图象与直线的交点的横坐标,当或或时,有两个交点,即方程有两个解,或称有两个零点,或或.【考点】函数的零点,函数的图象与性质,直线与曲线相交.19.设函数,则函数的零点个数为__________个.【答案】3【解析】函数的零点个数,即为与的交点个数,在平面直角坐标系中作出两函数图象,如图:如图可知,函数与有3个交点,所以函数的零点有3个.【考点】1、函数零点;2、函数图象;3、分段函数.20.已知函数,且函数恰有3个不同的零点,则实数的取值范围是()A.B.C.D.【答案】C【解析】,其顶点为,点在函数图象上,而点不在函数图象上.结合图形可知,当,函数恰有3个不同的零点.【考点】函数及其零点.21.已知函数f(x)=2x2+m的图象与函数g(x)=ln|x|的图象有四个交点,则实数m的取值范围是________.【答案】【解析】由于f(x)与g(x)都是偶函数,因此只需考虑当x>0时,函数f(x)与g(x)的图象有两个交点即可.当x>0时,g(x)=lnx,令h(x)=f(x)-g(x)=2x2-lnx+m,则h′(x)=4x-,由h′(x)=0,得x=.易知当x=时,h(x)有极小值为+ln2+m,要使函数f(x)与g(x)的图象在(0,+∞)内有两个交点,则h<0,即+ln2+m<0,所以m<--ln222.若一次函数f(x)=ax+b有一个零点2,那么函数g(x)=bx2-ax的零点是________.【答案】0、-【解析】由题意可得,b=-2a且a≠0,由g(x)=-2ax2-ax=0,得x=0或x=-23.方程lgx=2-x在区间(n,n+1)(n∈Z)有解,则n的值为________.【答案】1【解析】令f(x)=lgx+x-2,由f(1)=-1<0,f(2)=lg2>0,知f(x)=0的根介于1和2之间,即n=1.24.函数f(x)=-|x-5|+2x-1的零点所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3,4)【答案】C【解析】f(2)·f(3)=(-3+2)(-2+4)<0,所以该函数的零点所在的区间是(2,3).25.若函数y=f(x)(x∈R)满足f(x+1)=-f(x),且x∈[-1,1]时f(x)=1-x2.函数g(x)=则函数h(x)=f(x)-g(x)在区间[-5,4]内的零点的个数().A.7B.8,C.9D.10【答案】A【解析】由f(x+1)=-f(x),可得f(x+2)=-f(x+1)=f(x),所以函数f(x)的周期为2,求h(x)=f(x)-g(x)在区间[-5,4]内的零点,即求f(x)=g(x)在区间[-5,4]上图象交点的个数.画出函数f(x)与g(x)的图象,如图,由图可知两图象在[-5,4]之间有7个交点,所以所求函数有7个零点,选A.26.函数的零点所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3.4)【答案】B【解析】函数在区间存在零点,等价于.计算,故选B.【考点】函数零点存在定理27.的零点个数为()A.4B.5C.6D.7【答案】B【解析】∵,∴,图像如图所示,由图像看出与有5个交点,∴的零点个数为5个.【考点】1.函数零点问题;2.函数图像.28.已知函数,则方程恰有两个不同实数根时,实数的取值范围是()(注:为自然对数的底数)A.B.C.D.【答案】B【解析】∵方程恰有两个不同实数根,∴与有2个交点,∵表示直线的斜率,∴,设切点为,,所以切线方程为,而切线过原点,所以,,,所以直线的斜率为,直线与平行,所以直线的斜率为,所以实数的取值范围是.【考点】1.分段函数图象;2.利用导数求曲线的切线方程;3.图象的交点问题.29.函数的图像如图所示,关于的方程有三个不同的实数解,则的取值范围是_______________.【答案】【解析】方程的解显然利用换元法()是通过二次方程①来解决,首先考虑,即时,方程①的解为和,原方程没有三个解,当时,方程①的两根必须满足且,因此如果记,则,解得.【考点】函数的图象与方程的解.30.已知关于的方程有两个不同的解,则的取值范围是()A.B.C.D.【答案】C【解析】由得.因为,结合抛物线图象知,要使得,则必须,选C.【考点】方程与不等式.31.已知关于X的方程的解集为P,则P中所有元素的和可能是()A.3,6,9B.6,9,12C.9,12,15D.6,12,15【答案】B【解析】函数的图像如图所示,直线,当时,;当时,;当时,;当时,;综上可得:P中所有元素的和可能是6,9,12.【考点】1.函数图像;2.中点坐标公式.32.设与是定义在同一区间上的两个函数,若函数在上有两个不同的零点,则称和在上是“关联函数”,区间称为“关联区间”.若与在上是“关联函数”,则的取值范围为()A.B.C.D.【答案】A【解析】令,得,即,即,若函数与在上是“关联函数”,则问题转化为直线与曲线在区间上有两个交点,在同一坐标系中作出直线与曲线在区间图象,由图象知,当时,直线与曲线在区间上有两个交点,故选A.【考点】1.新定义;2.函数的零点33.已知函数且函数的零点均在区间内,圆的面积的最小值是()A.B.C.D.【答案】A【解析】∵,∴当或时,.而当时,∴对任意恒成立,得函数是上的增函数∵,∴函数在上有唯一零点∴的最小值为.∵圆的圆心为原点,半径∴圆的面积为,可得面积的最小值为.故选A.【考点】1.函数的零点问题;2.函数的单调性;3.圆的面积.34.函数的零点的个数是()A.0个B.1个C.2个D.3个【答案】C【解析】根据函数平移,将的图像向右平移1个单位得到的图像,再画出的图像,观察即可.【考点】1.函数零点;2.函数的零点关系转化.35.函数的零点所在区间为()A.B.C.D.【答案】C【解析】选C.【考点】函数的零点.36.若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x))2+2af(x)+b=0的不同实数根的个数是 ( )A.3B.4C.5D.6【答案】A【解析】求导得,显然是方程的二不等实根,不妨设,于是关于x的方程3(f(x))2+2af(x)+b=0的解就是或,根据题意画图:所以有两个不等实根,只有一个不等实根,故答案选A.【考点】导数、零点、函数的图象37.若定义在R上的偶函数满足且时,则方程的零点个数是()A.2个B.3个C.4个D.多于4个【答案】C【解析】试题分析:函数f(x)是以2为周期的周期函数,且是偶函数,根据上的解析式,图象关于y轴对称,可以绘制上的图象,根据周期性,可以绘制上的图象,而是个偶函数,绘制其在y轴右侧图象可知两图象右侧有两个交点,根据对称性可得共有四个交点,故选B.【考点】函数与方程.38.函数零点的个数是()A.B.C.D.【答案】B【解析】如图,作出函数与图像可的结论.【考点】考查函数的图像.39.函数的零点的个数为( )A.B.C.D.【答案】B【解析】,所以,令,得,故零点的个数为1,选B.【考点】零点的个数的判断.40.已知,其中为常数,且.若为常数,则的值__________【答案】【解析】根据题意分别得到和的解析式,算出化简后等于k,根据合分比性质得到k即可。

高考数学必考点专项第6练 函数与方程(练习及答案)(全国通用)(新高考专用)

高考数学必考点专项第6练 函数与方程(练习及答案)(全国通用)(新高考专用)

高考数学必考点专项第6练函数与方程习题精选一、单选题1. 函数2()=2+log ||x f x x 的零点个数为( ) A. 0 B. 1 C. 2 D. 32. 已知函数若()g x 存在2个零点,则a的取值范围是( )A. [1,)-+∞B. [0,)+∞C. [1,0)-D. [1,)+∞3. 若过点(,)a b 可以作曲线x y e =的两条切线,则( ) A. b e a <B. a e b <C. 0b a e <<D. 0a b e <<4. 已知()f x 是定义在R 上的奇函数,且满足,当时,,则函数在区间上所有零点个数为( )A. 0B. 2C. 4D. 65. 已知函数2()()x f x e ax x R =-∈有三个不同的零点,则实数a 的取值范围是( )A.B.C.D.6. 设a ,b R ∈,函数若函数()y f x ax b =--恰有3个零点,则( )[6,6]-A. 1a <-,0b <B. 1a <-,0b >C. 1a >-,0b <D. 1a >-,0b > 7. 已知函数的零点为,函数()f x 的最小值为0y ,且则函数的零点个数是( )A. 3B. 4C. 3或4D. 2或38. 已知函数,若函数()()g x x f x a =⋅-的零点个数恰为2个,则( )A.2837a <<或1a =- B. 7382a <<C.7382a <<或1a =- D. 7382a <<或54a =-9. 已知函数2,0()ln ,0kx x f x x x +⎧=⎨->⎩,则下列关于[()]2y f f x =-的零点个数判别正确的是( )A. 当0k =时,有无数个零点B. 当0k <时,有3个零点C. 当0k >时,有3个零点D. 无论k 取何值,都有4个零点二、多选题10. 若关于x 的方程23--=02x x k 在(1,1)-上有实根,则( )A. k 的最大值为52B. k 的最小值为916-C. 95[-,)162k ∈D. 95(,]162k ∈-11. 已知函数,().g x kx =若方程()()f x g x =有实根,则实数k的取值可以是( )012[,),y x x ∈A.12B. 1-C. 1D. (2,+)∞上的任意一个数12. 已知定义域为R 的奇函数()f x ,当0x >时,21,01()1,121x x x f x x x ⎧-+<⎪=⎨>⎪-⎩,下列说法中正确的是( )A. 当121122x x -<<<时,恒有12()()f x f x >B. 若当(0,]x m ∈时,()f x 的最小值为34,则m 的取值范围为17[,]26C. 不存在实数k ,使函数()()F x f x kx =-有5个不相等的零点D. 若关于x 的方程3[()][()]04f x f x a --=所有实数根之和为0,则34a =-13. 已知函数,若方程()0f x a -=有两个不相等的实根,则实数a 的取值范围可以是( )A.B.C.D.14. 已知函数,则方程22()2()10f x f x a -+-=的根的个数可能为( )A. 2B. 6C. 5D. 4三、填空题15. 用二分法求函数()=34x f x x --的一个零点,其参考数据如下:(2,)+∞根据此数据,可得方程34=0x --的一个近似解(精确度0.01)为__________.16. 方程103x e x =-的解(,1),x k k k Z ∈+∈,则k =__________. 17. 已知()|lg |2f x x kx =--,给出下列四个结论:(1)若0k =,则()f x 有两个零点; (2)0k ∃<,使得()f x 有一个零点;(3)0k ∃<,使得()f x 有三个零点;(4)0k ∃>,使得()f x 有三个零点;以上正确结论的序号是__________. 四、解答题18. 已知二次函数2()2(,).f x x bx c b c R =++∈(1)若函数()y f x =的零点为1-和1,求实数b ,c 的值;(2)若()f x 满足(1)0f =,且关于x 的方程()0f x x b ++=的两个实数根分别在区间(3,2)--,(0,1)内,求实数b 的取值范围.19. 已知函数2()22(0)f x ax ax b a=-++>在区间[2,0]-上有最小值1,最大值9.(1)求a b+的值;(2)设()()f xg xx=,若不等式在区间[2,4]上恒成立,求实数k的取值范围;(3)设,若函数()F x有三个零点,求实数λ的取值范围.答案和解析1.【答案】C .【解答】解:函数2()2log ||xf x x =+的零点个数,即为函数2xy =-的图象和函数2log ||y x =的图象的交点个数,作出函数的图象如下:数形结合可得,函数2xy =-的图象和函数2log ||y x =的图象的交点个数为2. 故选.C2.【答案】A解:函数()()g x f x x a =++存在2个零点, 即关于x 的方程()f x x a =--有2个不同的实根, 即函数()f x 的图象与直线y x a =--有2个交点. 作出直线y x a =--与函数()f x 的图象,如图所示,由图可知,1a -,解得1a -, 故选.A3.【答案】D解:函数xy e =是增函数,0xy e '=>恒成立, 函数的图象如图,0y >,即取得坐标在x 轴上方,如果(,)a b 在x 轴下方,连线的斜率小于0,不成立.点(,)a b 在x 轴或下方时,只有一条切线. 如果(,)a b 在曲线上,只有一条切线;(,)a b 在曲线上侧,没有切线;由图象可知(,)a b 在图象的下方,并且在x 轴上方时,有两条切线,可知0.a b e <<故选:.D4.【答案】D解:由,得,故,故函数是周期为4的周期函数.又因为()f x 是定义在R 上的奇函数,所以,所以,故1x =是函数()f x 的对称轴.当时,,由此画出()f x 的大致图象如下图所示,令()()10g x xf x =-=,注意到(0)0g ≠,故上述方程可化为,画出1y x=的图象, 由图可知与1y x=图象都关于点(0,0)对称,它们两个函数图象的6个交点A 与F ,B 与E ,C 与D , 所以函数在区间[6,6]-上所有零点个数为6.故选.D5.【答案】C解:0x =时,(0)10f =≠,令2()0xf x e ax =-=,得2xe a x=,令2()x e g x x =,则问题转化为y a =与2()xe g x x=有三个交点,3(2)()xx e g x x -'=,令()0g x '=,解得2x =,()f x∴当0x <或2x >时,()0g x '>,()g x 在(,0)-∞,(2,)+∞单调递增,当02x <<时,()0g x '<,()g x 在(0,2)单调递减,()g x 在2x =处取极小值,2(2)4e g =,作出()g x 的图象如下:要使直线y a =与曲线2()x e g x x =有三个交点,则24e a >,故实数a 的取值范围是2e (,).4+∞故选.C6.【答案】C解:当0x <时,()(1)0y f x ax b x ax b a x b =--=--=--=,()y f x ax b =--最多一个零点;当0x 时,3211()(1)32y f x ax b x a x ax ax b =--=-++-- 3211(1)32x a x b =-+-, 2(1)y x a x '=-+,当10a +,即1a -时,0y ',()y f x ax b =--在[0,)+∞上递增,()y f x ax b=--最多一个零点,不合题意; 当10a +>,即1a >-时,令0y '>得[1,),x a ∈++∞函数递增,令0y '<得[0,1),x a ∈+函数递减,函数最多有2个零点; 根据题意函数()y f x ax b =--恰有3个零点,所以函数()y f x ax b =--在(,0)-∞上有一个零点,在[0,)+∞上有2个零点, 如右图:01ba∴<-且,解得0b <,10a ->,31(1)6b a >-+,31(1)06a b ∴-+<<,11a -<<,故选:.C7.【答案】D解:如图所示,函数2()(0)f x ax bx c a =++>的零点为1x ,212()x x x <,令2()0f x ax bx c =++=, 240.b ac ∴∆=->由2(())()()0f f x af x bf x c =++=,0∆>,1()f x x ∴=或2().f x x =函数()f x 的最小值为0y ,且012[,),y x x ∈画出直线2y x =,1.y x =则直线2.y x =与()y f x =必有两个交点,此时2().f x x =有2个实数根,即函数(())y f f x =有两个零点.直线1y x =与()y f x =可能有一个交点或无交点,此时1()f x x =有一个实数根2b x a=-或无实数根. 综上可知:函数(())y f f x =的零点有2个或3个.故选.D8.【答案】D解:如图,可得()f x 的图象.令()0g x =,当0x =时,不符合题意;当0x ≠时,令()0g x =,得()a f x x =, ()g x 零点个数为2个,则函数()f x 与a y x =有两个交点. 易知0a =不符合题意.若0a >,则满足,可得73;82a << 若0a <,因左支已交于一点,则右支必然只能交于一点,故,此时无解;或,解得54a =- 综上,a 的取值范围内为7382a <<或5.4a =- 故选.D9.【答案】A解:设()f x t =,对于A ,当0k =时,函数()f x 对应的图象如下图:当0t 时,由()2f t =得22=此时方程恒成立了,即[()]2y f f x =-有无数个零点,故A 正确,D 错误.对于B ,当0k <时,对应的图象如下图:当0t >时,由()2f t =,此时ln 2t -=,得2(0,1)t e -=∈,当0t 时,由()2f t =得0t =,由2()(0,1)t f x e -==∈,此时x 有一个解,由()0t f x ==,此时x 有一个解,综上[()]2y f f x =-的零点个数为2个,故B 错误, C .当0k >时,对应的图象如下图:当0t >时,由()2f t =,此时ln 2t -=,得2(0,1)t e -=∈,当0t 时,由()2f t =得0t =,由2()(0,1)t f x e -==∈,此时x 有2个解,由()0t f x ==,此时x 有2个解,综上[()]2y f f x =-的零点个数为4个,故C 错误,故选.A10.【答案】BC 解:22339()2416k x x x =-=--,(1,1)x ∈-, 函数239()416y x =--的图象开口向上,对称轴为34x =, 当34x =时,min 916y =-,当1x =-时,max 52y =, (1,1)x ∈-,95[,).162k ∴∈- 故选.BC11.【答案】ACD解:由题意,可得函数()f x 的图象和函数()g x 的图象有交点,如图所示:(2,1)A ,12OA k =, ∴函数()f x 的图象和函数()g x 的图象有交点,数形结合可得12k或1k <-, 故选.ACD12.【答案】BC解:根据定义域为R 的奇函数()f x ,当0x >时,21,01()1,121x x x f x x x ⎧-+<⎪=⎨>⎪-⎩, 如图所示:对于A :当121122x x -<<<时,根据函数的图象12()()f x f x >不一定成立,故A 错误; 对于B :当(0,]x m ∈时,要使()f x 的最小值为34,令13214x =-,解得76x =,故m 的取值范围为17[,]26,故B 正确;对于C :令()f x kx =,故21x x kx -+=,整理得2(1)10x k x -++=,由于2(1)40k =+->,解得1k >,或3(k <-舍)若0k <,则当(0,1]x ∈时,0()()0y kx f x F x =<<⇒>,故3k <-舍去.又当1k >时,设1x 是方程()0F x =的较大根11x =>= 故1k >也不合题意.考虑y kx =与21y x x =-+有一个交点与121y x =-也有一个交点的情况, 因为y kx =与21y x x =-+有一个交点,故22(1)4230k k k ∆=+-=+-=,解得1k =或3(k =-舍)又当(0,)x ∈+∞时,y x =与121y x =-只有一个交点(1,1),与y x =和21y x x =-+的交点重合综上所述不存在实数k ,使得()F x 有5个不相等的零点, C 正确;对于D :3()04f x -=,解得112x =,276x =,所以1253x x +=, 令53x =-,则553()()337f f -=-=- 由于当23133[1,0),()()4247x f x x ∈-=---<-<-故37a =-也满足题意,D 不正确。

高三数学函数与方程试题答案及解析

高三数学函数与方程试题答案及解析

高三数学函数与方程试题答案及解析1.函数的图像与函数的图像所有交点的横坐标之和为 _.【答案】4.【解析】函数与的图象有公共的对称中心(1,0),作出两个函数的图象,如图所示:当1<x4时,,而函数y2在(1,4)上出现1.5个周期的图象,在上是单调增且为正数函数,y2在(1,4)上出现1.5个周期的图象,在上是单调减且为正数,∴函数y2在处取最大值为,而函数y2在(1,2)、(3,4)上为负数与y1的图象没有交点,所以两个函数图象在(1,4)上有两个交点(图中C、D),根据它们有公共的对称中心(1,0),可得在区间(-2,1)上也有两个交点(图中A、B),并且:xA +xD=xB+xC=2,故所求的横坐标之和为4,故答案为:4.【考点】1.函数的零点与方程的根的关系;2.数形结合思想.2.已知a>0,且a≠1,则函数f(x)=a x+(x-1)2-2a的零点个数为( )A.1B.2C.3D.与a有关【答案】B【解析】设g(x)=2a-a x,h(x)=(x-1)2,注意到g(x)的图象恒过定点(1,a),画出他们的图象无论a>1还是0<a<1,g(x)与h(x)的图象都必定有两个公共点考点:零点的个数3.已知函数,集合,,记分别为集合中的元素个数,那么下列结论不正确的是()A.B.C.D.【答案】【解析】集合,均表示方程的解集,集合中元素的个数,就是方程解的个数.当时,有一解,无解,正确;当时,有一解,有一解,正确;当时,有两解,有两解,其不可能有三个解,正确,不正确.故选.【考点】1、新定义;2、集合的概念;3、函数与方程.4.若关于x的方程x2-(a2+b2-6b)x+a2+b2+2a-4b+1=0的两个实数根x1,x2满足x 1<0<x2<1,则a2+b2+4a+4的取值范围是________.【答案】【解析】由题意得即利用线性规划的知识,问题转化为求区域上的点到点(-2,0)的距离的平方的取值范围.由图可知,所求的最大距离即为点(-2,0)与圆心(-1,2)的连线交圆与另一端点的值,即+2.所求的最小距离即为点(-2,0)到直线a+b+1=0的距离,即为=,所以a2+b2+4a+4∈,即a2+b2+4a+4∈.5.已知方程x=的解x∈,则正整数n=________.【答案】2【解析】在同一直角坐标系中画出函数y=x,y=的图像,如图所示.由图可得x∈(0,1),设f(x)=x-,因为f=-<0,f=->0,故n=2.6.若函数不存在零点,则实数的取值范围是.【答案】【解析】依题意在上没有实根.即等价于无解.等价于在上没有实根,即函数在与x轴没有交点.当时,.,又由.所以上有零点.所以不成立.当时,只需.【考点】1.方程的根与函数的零点.2.分类讨论的思想.7.函数的零点个数为( )A.1B.2C.3D.4【答案】B【解析】函数的零点个数方程的根的个数函数与的图象的交点个数.作出两函数的图象(如图).由图可知,两个函数的图象有两个交点,故选B8.设函数,.(1)解方程:;(2)令,,求证:(3)若是实数集上的奇函数,且对任意实数恒成立,求实数的取值范围.【答案】(1);(2)参考解析;(3)【解析】(1)由于函数,,所以解方程.通过换元即可转化为解二次方程.即可求得结论.(2)由于即得到.所以.所以两个一组的和为1,还剩中间一个.即可求得结论.(3)由是实数集上的奇函数,可求得.又由于对任意实数恒成立.该式的理解较困难,所以研究函数的单调性可得.函数在实数集上是递增.集合奇函数,由函数值大小即可得到变量的大小,再利用基本不等式,从而得到结论.试题解析:(1),,(2),.因为,所以,,.=.(3)因为是实数集上的奇函数,所以.,在实数集上单调递增.由得,又因为是实数集上的奇函数,所以,,又因为在实数集上单调递增,所以即对任意的都成立,即对任意的都成立,.【考点】1.解方程的思想.2.函数的单调性.3.归纳推理的思想.4.基本不等式.9.函数的零点所在的区间是()A.B.C.D.【答案】C【解析】∵函数,∴,=<<0,=>>0,∴,所以函数的零点所在区间是.【考点】函数的零点.10.设函数f(x)(x∈R)满足f(-x)=f(x),f(x)=f(2-x),且当x∈[0,1]时,f(x)=x3.又函数g(x)=|x cos(πx)|,则函数h(x)=g(x)-f(x)在上的零点个数为( )A.5B.6C.7D.8【答案】B【解析】因为当x∈[0,1]时,f(x)=x3,所以当x∈[1,2]时,2-x∈ [0,1],f(x)=f(2-x)=(2-x)3. 当x∈时,g(x)=x cos (πx);当x∈时,g(x)=-x cos(πx),注意到函数f(x),g(x)都是偶函数,且f(0)=g(0),f(1)=g(1),g=g=0,作出函数f(x),g(x)的大致图象,函数h(x)除了0,1这两个零点之外,分别在区间,,,上各有一个零点,共有6个零点,故选B.11.函数f(x)=1-x logx的零点所在的区间是()2A.,B.,1C.(1,2)D.(2,3)【答案】Cx的零点所在的区间是(1,2).【解析】f(1)=1,f(2)=-1,故函数f(x)=1-x log212.函数的零点所在的区间是()A.(0,1)B.(1,2)C.(2,3)D.(3.4)【答案】B【解析】函数在区间存在零点,等价于.计算,故选B.【考点】函数零点存在定理13.已知函数若a、b、c互不相等,且,则a+b+c的取值范围是()A.(1,2014)B.(1,2015)C.(2,2015)D.[2,2015]【答案】C【解析】由于函数的周期为,,故它的图象关于直线对称,不妨设,则.故有,再由正弦函数的定义域和值域可得,故有,解得,综上可得,,故选C.【考点】函数的根,图像变化.14.“函数在上存在零点”的充要条件是 .【答案】或【解析】函数在上存在零点等价于直线在上与轴有交点,则或,即或.【考点】函数的零点,充要条件.15.已知函数时,则下列结论正确的是 .(1),等式恒成立(2),使得方程有两个不等实数根(3),若,则一定有(4),使得函数在上有三个零点【答案】(1)(2)(3)【解析】由,所以(1)正确;对于B,不妨设m=则|f(x)|= ,即,得到:x=1或-1,故B正确;对于C,就是求f(x)单调性,由于f(x)为奇函数,只需讨论在(0,+∞)的单调性即可,当x>0时,f(x)= >0,所以在(0,+∞)单调递增且函数值都为正数,所以函数f(x)在(-∞,0)上单调递增且函数值都为负数,又f(0)=0,故f(x)在R上单调递增,所以任意x1,x2属于R,若x1≠x2,则一定有f(x1)≠f(x2)正确;D错误,令f(x)-kx=-kx=x()=0,则有一根为x=0,或=0,但是,而k,所以=0恒不成立,所以选择D【考点】1.函数的单调性、最值;2.函数的奇偶性、周期性;3.函数零点的判定定理.16.方程有解,则的取值范围()A.或B.C.D.【答案】D【解析】方程有解,即,因为,所以, ,即,解得.【考点】1、方程有解问题, 2、二次函数值域.17.已知直线:.若存在实数使得一条曲线与直线有两个不同的交点,且以这两个交点为端点的线段长度恰好等于,则称此曲线为直线的“绝对曲线”.下面给出四条曲线方程:①;②;③;④;则其中直线的“绝对曲线”有()A.①④B.②③C.②④D.②③④【答案】D【解析】由题意直线表示斜率为且过定点(1,1)的直线.(1)曲线①是由左右两支射线构成:时,是斜率为2且过点(1,0)的射线;时,是斜率为-2且过点(1,0)的射线.作图可知:当,直线仅与曲线①右支射线有一个交点;当时,直线与曲线①无交点;当时,直线仅与曲线①左支射线有一个交点.所以直线与曲线①最多只有一个交点,不符题意,故曲线①不是直线的“绝对曲线”.(2)因为定点(1,1)在曲线②上,所以直线与曲线②恒有交点,设曲线②与直线的两交点为、,易知,联立直线与曲线②方程,化简得:.,.,从而可知当且仅当时直线与曲线②仅一个交点.两边平方,化简得:.设,则,,且是连续函数,所以在(0,2)上有零点,即方程在(0,2)上有根,且在(0,2)上曲线②与直线有两个不同的交点.故存在实数使得曲线②与直线两个不同交点为端点的线段长度恰好等于,故曲线②是直线的“绝对曲线”.(3)曲线③表示圆心在(1,1)且半径为1的圆,它与直线两个交点为端点的线段长度恒为2,为2或-2时满足题意,故曲线③是直线的“绝对曲线”.(4)因为定点(1,1)在曲线④上,所以直线与曲线④恒有交点,设曲线④与直线的两交点为、,易知,联立直线与曲线④方程,化简得:,,,从而可知当且仅当时直线与曲线④仅一个交点.两边平方,化简得:.,,,且是连续函数,所以在上有零点,即方程在上有根,且在上曲线④与直线有两个不同的交点.故存在实数使得曲线④与直线两个交点为端点的线段长度恰好等于,故曲线④是直线的“绝对曲线”.【考点】曲线与直线的方程、函数的零点18.,则下列关于的零点个数判断正确的是()A.当k=0时,有无数个零点B.当k<0时,有3个零点C.当k>0时,有3个零点D.无论k取何值,都有4个零点【答案】A【解析】因为函数f(x)为分段函数,函数y=f(f(x))-2为复合函数,故需要分类讨论,确定函数y=f(f(x))+1的解析式,从而可得函数y=f(f(x))-2的零点个数;解:分四种情况讨论.(1)0<x<1时,lnx<0,∴y=f(f(x))+1=-ln(-lnx)+1,此时的零点为x=>1;(2)x>1时,lnx>0,∴y=f(f(x))+1=klnx+1,则k>0时,有一个零点,k<0时,klnx+1>0没有零点;(3)若x<0,kx+2≤0时,y=f(f(x))+1=k2x+k+1,则k>0时,kx≤-2,k2x≤-k,可得k2x+k≤0,y有一个零点,若k<0时,则k2x+k≥0,y没有零点,(4)若x<0,kx+2>0时,y=f(f(x))+1=ln(kx+1)+1,则k>0时,即y=0可得kx+2=,y有一个零点,k<0时kx>0,y没有零点,综上可知,当k>0时,有4个零点;当k<0时,有1个零点,故选A;k=0,y=f(f(x))-2,有无数个零点,故选A.【考点】复合函数的零点点评:本题考查分段函数,考查复合函数的零点,解题的关键是分类讨论确定函数y=f(f(x))+1的解析式,考查学生的分析能力,是一道中档题;19.若方程的根在区间上,则的值为()A.B.1C.或2D.或1【答案】D【解析】令f(x)=,且x>-1,则方程的实数根即为f(x)的零点.则当x>0时,f(x)在区间(k,k+1)(k∈Z)上单调递增,由于f(1)=ln2-2<0,f(2)=ln3-1>0,∴f(1)•f(2)<0,故f(x)在(1,2)上有唯一零点.当x<0时,f(x)在区(-1,0)上也是增函数,由f(-)=ln+=-ln100<3-lne3=0,f(-)=ln+200>200-ln1>200>0,可得 f(-)•f(-)<0,故函数f(x)在(-,-)上也有唯一零点,故f(x)在区(-1,0)上也唯一零点,此时,k=-1.综上可得,∴k=±1,故选D.【考点】函数的零点的定义,零点存在定理。

高考数学(理)二轮专题练习【专题8】(1)函数与方程思想(含答案)

高考数学(理)二轮专题练习【专题8】(1)函数与方程思想(含答案)

第1讲函数与方程思想1.函数与方程思想的含义(1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题.方程思想是动中求静,研究运动中的等量关系.2.和函数与方程思想密切关联的知识点(1)函数与不等式的相互转化,对函数y=f(x),当y>0时,就化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.(2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.(3)在三角函数求值中,把所求的量看作未知量,其余的量通过三角函数关系化为未知量的表达式,那么问题就能化为未知量的方程来解.(4)解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数的有关理论.(5)立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决,建立空间直角坐标系后,立体几何与函数的关系更加密切.热点一 函数与方程思想在不等式中的应用例1 (1)f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则a =________.(2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是__________. 答案 (1)4 (2)(-∞,-3)∪(0,3)解析 (1)若x =0,则不论a 取何值,f (x )≥0显然成立; 当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x3.设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4,所以g (x )在区间⎝⎛⎦⎤0,12上单调递增,在区间⎣⎡⎦⎤12,1上单调递减,因此g (x )max =g ⎝⎛⎭⎫12=4,从而a ≥4; 当x <0即x ∈[-1,0)时,f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x3,设g (x )=3x 2-1x 3,且g (x )在区间[-1,0)上单调递增,因此g (x )min =g (-1)=4,从而a ≤4,综上a =4.(2)设F (x )=f (x )g (x ),由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,得F (-x )=f (-x )g (-x )=-f (x )g (x )=-F (x ),即F (x )在R 上为奇函数.又当x <0时,F ′(x )=f ′(x )g (x )+f (x )g ′(x )>0, 所以x <0时,F (x )为增函数.因为奇函数在对称区间上的单调性相同, 所以x >0时,F (x )也是增函数. 因为F (-3)=f (-3)g (-3)=0=-F (3).所以,由图可知F (x )<0的解集是(-∞,-3)∪(0,3).思维升华 (1)在解决不等式问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题;(2)函数f (x )>0或f (x )<0恒成立,一般可转化为f (x )min >0或f (x )max <0;已知恒成立求参数范围可先分离参数,然后利用函数值域求解.(1)若2x +5y ≤2-y +5-x ,则有( )A .x +y ≥0B .x +y ≤0C .x -y ≤0D .x -y ≥0(2)已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( )A .m ≥32B .m >32C .m ≤32D .m <32答案 (1)B (2)A解析 (1)把不等式变形为2x -5-x ≤2-y -5y ,构造函数y =2x -5-x ,其为R 上的增函数,所以有x ≤-y .(2)因为函数f (x )=12x 4-2x 3+3m .所以f ′(x )=2x 3-6x 2,令f ′(x )=0得x =0或x =3,经检验知x =3是函数的一个最小值点,所以函数的最小值为f (3)=3m -272,不等式f (x )+9≥0恒成立,即f (x )≥-9恒成立,所以3m -272≥-9,解得m ≥32,故选A.热点二 函数与方程思想在数列中的应用 例2 已知数列{a n }是各项均为正数的等差数列.(1)若a 1=2,且a 2,a 3,a 4+1成等比数列,求数列{a n }的通项公式a n ;(2)在(1)的条件下,数列{a n }的前n 项和为S n ,设b n =1S n +1+1S n +2+…+1S 2n ,若对任意的n ∈N *,不等式b n ≤k 恒成立,求实数k 的最小值. 解 (1)因为a 1=2,a 23=a 2·(a 4+1), 又因为{a n }是正项等差数列,故d ≥0, 所以(2+2d )2=(2+d )(3+3d ), 得d =2或d =-1(舍去), 所以数列{a n }的通项公式a n =2n . (2)因为S n =n (n +1), b n =1S n +1+1S n +2+…+1S 2n=1(n +1)(n +2)+1(n +2)(n +3)+…+12n (2n +1)=1n +1-1n +2+1n +2-1n +3+…+12n -12n +1=1n +1-12n +1=n2n 2+3n +1=12n +1n+3, 令f (x )=2x +1x(x ≥1),则f ′(x )=2-1x 2,当x ≥1时,f ′(x )>0恒成立,所以f (x )在[1,+∞)上是增函数, 故当x =1时,[f (x )]min =f (1)=3, 即当n =1时,(b n )max =16,要使对任意的正整数n ,不等式b n ≤k 恒成立, 则须使k ≥(b n )max =16,所以实数k 的最小值为16.思维升华 (1)等差(比)数列中各有5个基本量,建立方程组可“知三求二”;(2)数列的本质是定义域为正整数集或其有限子集的函数,数列的通项公式即为相应的解析式,因此在解决数列问题时,应注意利用函数的思想求解.(1)(2014·江苏)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.(2)已知函数f (x )=(13)x ,等比数列{a n }的前n 项和为f (n )-c ,则a n 的最小值为( )A .-1B .1 C.23D .-23答案 (1)4 (2)D解析 (1)因为a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,所以由a 8=a 6+2a 4得a 2q 6=a 2q 4+2a 2q 2,消去a 2q 2,得到关于q 2的一元二次方程(q 2)2-q 2-2=0,解得q 2=2,a 6=a 2q 4=1×22=4. (2)由题设,得a 1=f (1)-c =13-c ;a 2=[f (2)-c ]-[f (1)-c ]=-29;a 3=[f (3)-c ]-[f (2)-c ]=-227. 又数列{a n }是等比数列,∴(-29)2=(13-c )×(-227),∴c =1.又∵公比q =a 3a 2=13,∴a n =-23(13)n -1=-2(13)n ,n ∈N *.且数列 {a n }是递增数列, ∴n =1时,a n 有最小值a 1=-23.热点三 函数与方程思想在几何中的应用例3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C 交于不同的两点M ,N . (1)求椭圆C 的方程; (2)当△AMN 的面积为103时,求k 的值. 解 (1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得b = 2.所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y 22=1得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2), 则x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2.所以|MN |=(x 2-x 1)2+(y 2-y 1)2 =(1+k 2)[(x 1+x 2)2-4x 1x 2] =2(1+k 2)(4+6k 2)1+2k 2.又因为点A (2,0)到直线y =k (x -1)的距离 d =|k |1+k 2, 所以△AMN 的面积为 S =12|MN |·d =|k |4+6k 21+2k 2. 由|k |4+6k 21+2k 2=103,解得k =±1.所以,k 的值为1或-1.思维升华 几何最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.(1)(2014·安徽)设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左,右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为__________. (2)若a >1,则双曲线x 2a 2-y 2(a +1)2=1的离心率e 的取值范围是( )A .(1,2)B .(2,5)C .[2,5]D .(3,5)答案 (1)x 2+32y 2=1 (2)B解析 (1)设点B 的坐标为(x 0,y 0), ∵x 2+y 2b2=1,且0<b <1,∴F 1(-1-b 2,0),F 2(1-b 2,0). ∵AF 2⊥x 轴,∴A (1-b 2,b 2). ∵|AF 1|=3|F 1B |,∴AF 1→=3F 1B →,∴(-21-b 2,-b 2)=3(x 0+1-b 2,y 0). ∴x 0=-531-b 2,y 0=-b 23.∴点B 的坐标为⎝⎛⎭⎫-531-b 2,-b23. 将点B ⎝⎛⎭⎫-531-b 2,-b 23代入x 2+y2b 2=1, 得b 2=23.∴椭圆E 的方程为x 2+32y 2=1.(2)e 2=(c a )2=a 2+(a +1)2a 2=1+(1+1a)2, 因为当a >1时,0<1a <1,所以2<e 2<5,即2<e < 5.1.在高中数学的各个部分,都有一些公式和定理,这些公式和定理本身就是一个方程,如等差数列的通项公式、余弦定理、解析几何的弦长公式等,当题目与这些问题有关时,就需要根据这些公式或者定理列方程或方程组求解需要的量.2.当问题中涉及一些变化的量时,就需要建立这些变化的量之间的关系,通过变量之间的关系探究问题的答案,这就需要使用函数思想.3.借助有关函数的性质,一是用来解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题,二是在问题的研究中,可以通过建立函数关系式或构造中间函数来求解.4.许多数学问题中,一般都含有常量、变量或参数,这些参变量中必有一个处于突出的主导地位,把这个参变量称为主元,构造出关于主元的方程,主元思想有利于回避多元的困扰,解方程的实质就是分离参变量.真题感悟1.(2014·辽宁)已知a =2-13,b =log 213,c =121log 3,则( )A .a >b >cB .a >c >bC .c >a >bD .c >b >a答案 C 解析 0<a =132<20=1,b =log 213<log 21=0,c =121log 3>121log 2=1, 即0<a <1,b <0,c >1,所以c >a >b .2.(2014·福建)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( ) A .5 2 B.46+ 2 C .7+ 2 D .6 2答案 D解析 如图所示,设以(0,6)为圆心,以r 为半径的圆的方程为x 2+(y -6)2=r 2(r >0),与椭圆方程x 210+y 2=1联立得方程组,消掉x 2得9y 2+12y +r 2-46=0. 令Δ=122-4×9(r 2-46)=0, 解得r 2=50, 即r =5 2.由题意易知P ,Q 两点间的最大距离为r +2=62, 故选D.3.(2014·江苏)在平面直角坐标系xOy 中,若曲线y =ax 2+bx (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是______.答案 -3解析 y =ax 2+b x 的导数为y ′=2ax -bx 2,直线7x +2y +3=0的斜率为-72.由题意得⎩⎨⎧4a +b2=-5,4a -b 4=-72,解得⎩⎪⎨⎪⎧a =-1,b =-2,则a +b =-3.4.(2014·福建)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________.(单位:元) 答案 160解析 设该长方体容器的长为x m ,则宽为4x m .又设该容器的造价为y 元,则y =20×4+2(x+4x )×10,即y =80+20(x +4x )(x >0).因为x +4x ≥2x ·4x =4(当且仅当x =4x,即x =2时取“=”),所以y min =80+20×4=160(元). 押题精练1.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A .(-1,1) B .(-1,+∞) C .(-∞,-1) D .(-∞,+∞)答案 B解析 f ′(x )>2转化为f ′(x )-2>0,构造函数F (x )=f (x )-2x , 得F (x )在R 上是增函数.又F (-1)=f (-1)-2×(-1)=4,f (x )>2x +4, 即F (x )>4=F (-1),所以x >-1.2.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M 、N ,则当|MN |达到最小时t 的值为( )A .1 B.12 C.52 D.22答案 D解析 可知|MN |=f (x )-g (x )=x 2-ln x .令F (x )=x 2-ln x ,F ′(x )=2x -1x =2x 2-1x,所以当0<x <22时,F ′(x )<0,F (x )单调递减; 当x >22时,F ′(x )>0,F (x )单调递增, 故当x =t =22时,F (x )有最小值,即|MN |达到最小. 3.(2014·辽宁)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( ) A .[-5,-3] B .[-6,-98]C .[-6,-2]D .[-4,-3]答案 C解析 当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a ∈R . 当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x 3,所以a ≥⎣⎡⎦⎤x 2-4x -3x 3max .设φ(x )=x 2-4x -3x 3,所以φ′(x )=(2x -4)x 3-(x 2-4x -3)3x 2x 6=-x 2-8x -9x 4=-(x -9)(x +1)x 4>0, 所以φ(x )在(0,1]上递增,φ(x )max =φ(1)=-6.所以a ≥-6. 当x ∈[-2,0)时,a ≤x 2-4x -3x 3,所以a ≤⎣⎡⎦⎤x 2-4x -3x 3min . 仍设φ(x )=x 2-4x -3x 3,φ′(x )=-(x -9)(x +1)x 4. 当x ∈[-2,-1)时,φ′(x )<0,φ(x )在[-2,-1)上单调递减, 当x ∈(-1,0)时,φ′(x )>0,φ(x )在(-1,0)上单调递增. 所以当x =-1时,φ(x )有极小值,即为最小值.而φ(x )min =φ(-1)=1+4-3-1=-2,所以a ≤-2.综上知-6≤a ≤-2.4.若关于x 的方程(2-2-|x -2|)2=2+a 有实根,则实数a 的取值范围是________.答案 [-1,2) 解析 令f (x )=(2-2-|x -2|)2.要使f (x )=2+a 有实根,只需2+a 是f (x )的值域内的值.∵f (x )的值域为[1,4),∴1≤a +2<4,∴-1≤a <2.5.已知函数f (x )=ax 2+ax 和g (x )=x -a ,其中a ∈R ,且a ≠0.若函数f (x )与g (x )的图象相交于不同的两点A 、B ,O 为坐标原点,试求△OAB 的面积S 的最大值. 解 依题意,f (x )=g (x ),即ax 2+ax =x -a , 整理得ax 2+(a -1)x +a =0,① ∵a ≠0,函数f (x )与g (x )的图象相交于不同的两点A 、B ,∴Δ>0,即Δ=(a -1)2-4a 2=-3a 2-2a +1=(3a -1)·(-a -1)>0, ∴-1<a <13且a ≠0.设A (x 1,y 1),B (x 2,y 2),且x 1<x 2,由①得x 1x 2=1>0,x 1+x 2=-a -1a.设点O 到直线g (x )=x -a 的距离为d ,则d =|-a |2,∴S =121+12|x 1-x 2|·|-a |2=12-3a 2-2a +1=12-3⎝⎛⎭⎫a +132+43.∵-1<a <13且a ≠0,∴当a =-13时,S 取得最大值33. 即△OAB 的面积S 的最大值为33.6.如图,已知椭圆G :x 2a 2+y 2a 2-1=1(a >1),⊙M :(x +1)2+y 2=1,P 为椭圆G 上一点,过P 作⊙M 的两条切线PE 、PF ,E 、F 分别为切点. (1)求t =|PM →|的取值范围;(2)把PE →·PF →表示成t 的函数f (t ),并求出f (t )的最大值、最小值.解 (1)设P (x 0,y 0),则x 20a 2+y 20a 2-1=1(a >1),∴y 20=(a 2-1)⎝⎛⎭⎫1-x 20a 2, ∴t 2=|PM →|2=(x 0+1)2+y 20=(x 0+1)2+(a 2-1)⎝⎛⎭⎫1-x 20a 2=⎝⎛⎭⎫1a x 0+a 2, ∴t =⎪⎪⎪⎪1a x 0+a . ∵-a ≤x 0≤a ,∴a -1≤t ≤a +1(a >1).(2)∵PE →·PF →=|PE →||PF →|cos ∠EPF =|PE →|2(2cos 2∠EPM -1) =(|PM →|2-1)⎣⎢⎡⎦⎥⎤2(|PM →|2-1)|PM |2-1=(t 2-1)⎣⎡⎦⎤2(t 2-1)t 2-1=t 2+2t 2-3,∴f (t )=t 2+2t2-3(a -1≤t ≤a +1).对于函数f (t )=t 2+2t2-3(t >0),显然在t ∈(0,42]时,f (t )单调递减,在t ∈[42,+∞)时,f (t )单调递增.∴对于函数f (t )=t 2+2t2-3(a -1≤t ≤a +1),当a>42+1,即a-1>42时,[f(t)]max=f(a+1)=a2+2a-2+2(a+1)2,[f(t)]min=f(a-1)=a2-2a-2+2(a-1)2;当1+2≤a≤42+1时,[f(t)]max=f(a+1)=a2+2a-2+2(a+1)2,[f(t)]min=f(42)=22-3;当1<a< 1+2时,[f(t)]max=f(a-1)=a2-2a-2+2(a-1)2,[f(t)]min=f(42)=22-3.。

高三数学专题复习-函数与方程专题练习带答案

高三数学专题复习-函数与方程专题练习带答案

11 函数与方程1、若函数y =f (x )(x ∈R )是奇函数,其零点分别为x 1,x 2,…,x 2 017,且x 1+x 2+…+x 2 017=m ,则关于x 的方程2x +x -2=m 的根所在区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)【答案】A因为函数y =f (x )(x ∈R )是奇函数,故其零点x 1,x 2,…,x 2 017关于原点对称,且其中一个为0,所以x 1+x 2+…+x 2 017=m =0.则关于x 的方程为2x +x -2=0,令h (x )=2x +x -2,则h (x )为(-∞,+∞)上的增函数.因为h (0)=20+0-2=-1<0,h (1)=21+1-2=1>0,所以关于x 的方程2x +x -2=m 的根所在区间是(0,1). 2、若f (x )是奇函数,且x 0是y=f (x )+e x 的一个零点,则-x 0一定是下列哪个函数的零点( ) A.y=f (-x )e x -1 B.y=f (x )e -x +1C.y=e x f (x )-1D.y=e x f (x )+1【答案】C由已知可得f (x 0)=-,则·f (x 0)=-1,f (-x 0)=1,故-x 0一定是y=e xf (x )-1的零点. 3、.函数f (x )=2x +log 2|x|的零点个数为( ) A.0B.1C.2D.3【答案】C函数f (x )=2x+log 2|x|的零点个数,即为函数y=-2x的图像和函数y=log 2|x|的图像的交点个数.如图所示,交点个数为2.故选C .4、设函数f (x )=13x -ln x (x >0),则y =f (x )( )A .在区间⎝⎛⎭⎫1e ,1,(1,e)内均有零点 B .在区间⎝⎛⎭⎫1e ,1,(1,e)内均无零点C .在区间⎝⎛⎭⎫1e ,1内有零点,在区间(1,e)内无零点D .在区间⎝⎛⎭⎫1e ,1内无零点,在区间(1,e)内有零点 【答案】D由f (x )=13x -ln x (x >0)得f ′(x )=x -33x ,令f ′(x )>0得x >3,令f ′(x )<0得0<x <3,令f ′(x )=0得x =3,所以函数f (x )在区间(0,3)上为减函数,在区间(3,+∞)上为增函数,在点x =3处有极小值1-ln 3<0,又f (1)=13>0,f (e)=e3-1<0,f⎝⎛⎭⎫1e=13e+1>0,所以f(x)在区间⎝⎛⎭⎫1e,1内无零点,在区间(1,e)内有零点.故选D.5、直线y=x与函数f(x)=的图像恰有三个公共点,则实数m的取值范围是.【答案】[-1,2)直线y=x与射线y=2(x>m)有一个交点A(2,2),且与抛物线y=x2+4x+2在(-∞,m]上的部分有两个交点B、C.由解得B(-1,-1),C(-2,-2).∵抛物线y=x2+4x+2在(-∞,m]上的部分必须包含B、C两点,且点A(2,2)一定在射线y=2(x>m)上,才能使y=f(x)图像与y=x有3个交点,∴实数m的取值范围是-1≤m<2.6、已知f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,f(x)=2 016x+log2 016x,则函数f(x)的零点个数是A.1B.2C.3D.4【答案】C作出函数y=2 016x和y=-log2 016x的图像如图所示,可知函数f(x)=2 016x+log2 016x在x∈(0,+∞)内存在一个零点.∵f(x)是定义在R上的奇函数,∴f(x)在x∈(-∞,0)内只有一个零点.又f(0)=0,∴函数f(x)的零点个数是3,故选C.7、已知函数f(x)=|2x-2|+b的两个零点分别为x1,x2(x1>x2),则下列结论正确的是()A.1<x1<2,x1+x2<2B.1<x1<2,x1+x2<1C.x1>1,x1+x2<2D.x1>1,x1+x2<1【答案】A函数f(x)=|2x-2|+b有两个零点,即y=|2x-2|与y=-b的图像有两个交点,交点的横坐标就是x1,x2(x2<x1),在同一坐标系中画出y=|2x-2|与y=-b的图像(如下),可知1<x1<2.当y=-b=2时,x1=2,两个函数图像只有一个交点,当y=-b<2时,由图可知x1+x2<2.8、已知函数f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为()A.6 B.7C.8D.9【答案】B当0≤x<2时,令f(x)=x3-x=0,得x=0或x=1.根据周期函数的性质,由f(x)的最小正周期为2,可知y=f(x)在[0,6)上有6个零点,又f(6)=f(3×2+0)=f(0)=0,∴f(x)在[0,6]上与x轴的交点个数为7.9、已知函数f(x)=ax3-3x2+1,若f(x)存在三个零点,则a的取值范围是()A.(-∞,-2)B.(-2,2)C.(2,+∞)D.(-2,0)∪(0,2)【答案】D∵函数f (x )=ax 3-3x 2+1在R 上存在三个零点, ∴f (x )的极大值与极小值异号,很明显a ≠0,由题意可得:f'(x )=3ax 2-6x=3x (ax-2),则由f'(x )=0可得x 1=0,x 2=, 由题意得不等式:f (x 1)f (x 2)=-+1<0,即:>1,a 2<4,-2<a<2.综上,可得a 的取值范围是(-2,0)∪(0,2).10、已知函数f (x )=若方程f (x )=a 有四个不同的解x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则x 3(x 1+x 2)+的取值范围是( ) A.(-1,+∞) B.(-1,1] C.(-∞,1) D.[-1,1)【答案】B作出函数f (x )=的图像如下,由图可知,x 1+x 2=-2,-log 2x 3=log 2x 4,即x 3·x 4=1,当x=0时,f (0)=1,当-log 2x 3=1时,x 3=. 故方程f (x )=a 有四个不同的解时,对应的x 3∈, 又x 3(x 1+x 2)+=-2x 3+,其在x 3∈上是减少的,∴-2+1<-2x 3+≤-1+2,即-1<-2x 3+≤1.∴x 3(x 1+x 2)+ ∈(-1,1].故选B .11、已知函数f (x )=3e |x -1|-a (2x -1+21-x )-a 2有唯一零点,则负实数a =( )A .-13B .-12C .-3D .-2【答案】C根据函数式可知,直线x =1是y =3e |x -1|和y =2x -1+21-x 图象的对称轴,故直线x =1是函数f (x )图象的对称轴.若函数f (x )有唯一零点,则零点必为1,即f (1)=3-2a -a 2=0,又a <0,所以a =-3.故选C. 12、设函数f (x )=若关于x 的方程[f (x )]2-af (x )=0恰有三个不同的实数解,则实数a 的取值范围为( ) A.(0,1]B.(0,1)C.[1,+∞)D.(-∞,1)【答案】A 关于x 的方程[f (x )]2-af (x )=0的解为f (x )=0或f (x )=a ,而函数f (x )的图像如图所示,由图像可知,方程f (x )=0只有一解x=1,而原方程有三解,所以方程f (x )=a 有两个不为1的相异的解,即0<a ≤1.13、已知函数f (x )是奇函数且是R 上的单调函数.若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( ) A.14 B .18C .-78D .-38【答案】C令y =f (2x 2+1)+f (λ-x )=0,则f (2x 2+1)=-f (λ-x )=f (x -λ).因为f (x )是R 上的单调函数,所以2x 2+1=x -λ只有一个实根,即2x 2-x +1+λ=0只有一个实根,则Δ=1-8(1+λ)=0,解得λ=-78.14、定义在R 上的奇函数f (x ),当x ≥0时,f (x )=⎩⎪⎨⎪⎧log 12(x +1),x ∈[0,1),1-|x -3|,x ∈[1,+∞),则关于x 的函数F (x )=f (x )-a (0<a <1)的所有零点之和为( ) A .2a -1 B .2-a -1C .1-2-aD .1-2a【答案】D.当-1≤x <0时⇒1≥-x >0; x ≤-1⇒-x ≥1.又f (x )为奇函数,∴x <0时,f (x )=-f (-x )=⎩⎪⎨⎪⎧-log 12(-x +1),x ∈(-1,0),-1+|x +3|,x ∈(-∞,-1],画出y =f (x )和y =a (0<a <1)的图象,如图,共有5个交点,设其横坐标从左到右分别为x 1,x 2,x 3,x 4,x 5,则x 1+x 22=-3,x 4+x 52=3,而-log 12(-x 3+1)=a ⇒log 2(1-x 3)=a ⇒x 3=1-2a ,可得x 1+x 2+x 3+x 4+x 5=1-2a ,故选D.15、已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是( ) A .(0,1]∪[23,+∞) B .(0,1]∪[3,+∞) C .( 0, 2 ]∪[23,+∞)D .(0,2]∪[3,+∞)【答案】B在同一直角坐标系中,分别作出函数f (x )=(mx -1)2=m 2⎝⎛⎭⎫x -1m 2与g (x )=x +m 的大致图象.分两种情形: (1)当0<m ≤1时,1m≥1,如图①,当x ∈[0,1]时,f (x )与g (x )的图象有一个交点,符合题意.(2)当m >1时,0<1m <1,如图②,要使f (x )与g (x )的图象在[0,1]上只有一个交点,只需g (1)≤f (1),即1+m ≤(m -1)2,解得m ≥3或m ≤0(舍去). 综上所述,m ∈(0,1]∪[3,+∞). 故选B.16、已知函数f (x )=⎩⎪⎨⎪⎧ln x ,x ≥1,1-x2,x <1,若F (x )=f [f (x )+1]+m 有两个零点x 1,x 2,则x 1·x 2的取值范围是( ) A .[4-2ln 2,+∞) B .(e ,+∞) C .(-∞,4-2ln 2] D .(-∞,e)【答案】D因为函数f (x )=⎩⎪⎨⎪⎧ln x ,x ≥1,1-x 2,x <1,所以F (x )=⎩⎪⎨⎪⎧ln (ln x +1)+m ,x ≥1,ln ⎝⎛⎭⎫2-x 2+m ,x <1,由F (x )=0得,x 1=e e -m -1,x 2=4-2e -m,其中m =-ln ⎝⎛⎭⎫2-x 2<-ln 32,∴m <ln 23.设t =e -m ,则t >32,所以x 1·x 2=2e t -1(2-t ),设g (t )=2e t -1(2-t ),则g ′(t )=2e t -1(1-t ),因为t >32,所以g ′(t )=2e t -1(1-t )<0,即函数g (t )=2e t -1(2-t )在区间⎝⎛⎭⎫32,+∞上是减函数,所以g (t )<g ⎝⎛⎭⎫32=e ,故选D.17、已知函数f (x )=若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是 . 【答案】(0,1)因为函数g (x )=f (x )-m 有3个零点,所以f (x )-m=0有3个根,所以y=f (x )的图像与直线y=m 有3个交点.画出函数y=f (x )的图像,由抛物线顶点为(-1,1),可知实数m 的取值范围是(0,1).18、已知a >0,函数f (x )=⎩⎪⎨⎪⎧x 2+2ax +a ,x ≤0,-x 2+2ax -2a ,x >0.若关于x 的方程f (x )=ax 恰有2个互异的实数解,则a 的取值范围是________.【答案】(4,8)当x ≤0时,由x 2+2ax +a =ax ,得a =-x 2-ax ;当x >0时,由-x 2+2ax -2a =ax ,得2a =-x 2+ax .令g (x )=⎩⎪⎨⎪⎧-x 2-ax ,x ≤0,-x 2+ax ,x >0.作出直线y =a ,y =2a ,函数g (x )的图象如图所示,g (x )的最大值为-a 24+a 22=a 24,由图象可知,若f (x )=ax 恰有2个互异的实数解,则a <a 24<2a ,得4<a <8.19、已知函数f (x )=log 2x +2x -m 有唯一零点,若它的零点在区间(1,2)内,则实数m 的取值范围是________. 【答案】(2,5)因为f (x )在(0,+∞)上单调递增,函数的零点在区间(1,2)内,所以f (1)·f (2)<0,即(log 21+21-m )·(log 22+22-m )<0⇒(2-m )(5-m )<0,解得2<m <5,所以实数m 的取值范围是(2,5). 20、已知二次函数f (x )=x 2+(2a -1)x +1-2a ,(1)判断命题:“对于任意的a ∈R ,方程f (x )=1必有实数根”的真假,并写出判断过程; (2)若y =f (x )在区间(-1,0)及⎝⎛⎭⎫0,12内各有一个零点,求实数a 的取值范围. 【答案】⎝⎛⎭⎫12,34(1)“对于任意的a ∈R ,方程f (x )=1必有实数根”是真命题.依题意,f (x )=1有实根,即x 2+(2a -1)x -2a =0有实根,因为Δ=(2a -1)2+8a =(2a +1)2≥0对于任意的a ∈R 恒成立,即x 2+(2a -1)x -2a =0必有实根,从而f (x )=1必有实根.(2)依题意,要使y =f (x )在区间(-1,0)及⎝⎛⎭⎫0,12内各有一个零点,只需⎩⎪⎨⎪⎧f (-1)>0,f (0)<0,f ⎝⎛⎭⎫12>0,即⎩⎪⎨⎪⎧3-4a >0,1-2a <0,34-a >0,解得12<a <34.故实数a 的取值范围为⎝⎛⎭⎫12,34.21、已知函数f (x )=3x -log 2x 的零点为x 0,若x 0∈(k ,k +1),其中k 为整数,则k =________.【答案】2由题意得f (x )在(0,+∞)上单调递减,f (1)=3>0,f (2)=32-log 22=12>0,f (3)=1-log 23<0,∴f (2)f (3)<0,∴函数f (x )=3x -log 2x 的零点x 0∈(2,3),∴k =2.22、设函数f (x )=⎪⎪⎪⎪1-1x (x >0). (1)做出函数f (x )的图象;(2)当0<a <b ,且f (a )=f (b )时,求1a +1b的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围.【答案】(1)函数f (x )的图象如图 (2) 2 (3) 0<m <1 (1)函数f (x )的图象如图所示. (2)∵f (x )=⎪⎪⎪⎪1-1x = ⎩⎨⎧1x-1,x ∈,1],1-1x ,x ∈,+,故f (x )在(0,1]上是减函数,在(1,+∞)上是增函数.由0<a <b 且f (a )=f (b ),得0<a <1<b ,且1a -1=1-1b ,所以1a +1b=2.(3)由函数f (x )的图象可知,当0<m <1时,函数f (x )的图象与直线y =m 有两个不同的交点,即方程f (x )=m 有两个。

2022届高考数学一轮专题复习_函数与方程思想(含解析)

2022届高考数学一轮专题复习_函数与方程思想(含解析)
3.已知点A是椭圆 + =1上的一个动点,点P在线段OA的延长线上,且 · =48,则点P的横坐标的最大值为( )
A.18 B.15 C.10D.
答案:C 当点P的横坐标最大时,射线OA的斜率k>0,设OA:y=kx,k>0,与椭圆 + =1联立解得xA= .又 · =xAxP+k2xAxP=48,解得xP= = = ,令9+25k2=t>9,即k2= ,则xP= = ×25 =80 ≤80× =10,当且仅当t=16,即k2= 时取等号,所以点P的横坐标的最大值为10,故选C.
10.已知函数f(x)= ,x∈[0,1].
(1)求f(x)的单调区间和值域;
(2)设a≥1,函数g(x)=x3-3a2x-2a,x∈[0,1],若对于任意x1∈[0,1],总存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范围.
解:(1)f′(x)= =- .
令f′(x)=0,解得x= 或x= (舍去).
从而当x∈[0,1]时,有g(x)∈[g(1),g(0)].又g(1)=1-2a-3a2,g(0)=-2a,
即当x∈[0,1]时,有g(x)∈[1-2a-3a2,-2a].对于任意x1∈[0,1],f(x1)∈[-4,-3],
存在x0∈[0,1]使得g(x0)=f(x1)成立,则[1-2a-3a2,-2a]⊇[-4,-3].即
当x变化时,f′(x),f(x)的变化情况如下表:
x
0
1
f′(x)
不存在

0

不存在
f(x)

-4
-3
∴函数f(x)的单调增区间是 ,单调减区间是 .
当x∈[0,1]时,f(x)的值域为[-4,-3].
(2)g′(x)=3(x2-a2).∵a≥1,当x∈(0,1)时,g′(x)<3(1-a2)≤0,因此当x∈(0,1)时,g(x)为减函数,

高考数学复习函数与方程专项练习题(含答案)

高考数学复习函数与方程专项练习题(含答案)

2019-2019高考数学复习函数与方程专项练习题(含答案)用含有数学关系的等式来表示两个变量之间的函数关系的方法叫做解析式法。

以下是函数与方程专项练习题,请考生及时练习。

一选择题:(本大题共6小题,每小题6分,共36分,将正确答案的代号填在题后的括号内.)1.方程x- =0的实数解所在的区间是()A.(-,-1)B.(-2,2)C.(0,1)D.(1,+)解析:令f(x)=x- ,则f(1)=0,f(-1)=0,只有B合适.答案:B2.下列函数图象与x轴均有公共点,其中能用二分法求零点的是()解析:首先排除D,因为f(x)图象不连续,再次排除AB,因为AB不符合f(a)f(b)0.答案:C3.若函数f(x)=ax+b有一个零点2,则方程bx2-ax=0的根是()A.0,2B.0,C.0, -D.2,-解析:由ax+b=0的根为2,得2a+b=0,b=-2a,则方程bx2-ax=0变为2ax2+ax=0.∵a0,2x2+x=0,x1=0,x2=-.答案:C4.(2019合肥模拟)方程x2+ax-2=0在区间[1,5]上有解,则实数a的取值范围是()解析:设f(x)=x2+ax-2,∵f(0)=-20,由x2+ax-2=0在区间[1,5]上有解,只需f(1)0且f(5)0即可,解得- 1.答案:C5.已知函数y=f(x)的图象是连续不断的,有如下的对应值表:x123456y-52812-5-10则函数y=f(x)在x[1,6]上的零点至少有()A.5个B.4个C.3个D.2个解析:满足条件的零点应在(1,2)和(4,5)之间,因此至少有两个零点.答案:D6.(2019浙江)已知x0是函数f(x)=2x+ 的一个零点.若x1(1,x0),x2(x0,+),则()A.f(x1)0,f(x2)0B.f(x1)0,f(x2)0C.f(x1)0,f(x2)0D.f(x1)0,f(x2)0解析:由于函数g(x)= 在(1,+)上单调递增,函数h(x)=2x在(1,+)上单调递增,故函数f(x)=h(x)+g(x)在(1,+)上单调递增,所以函数f(x)在(1,+)上只有惟一的零点x0,且在(1,x0)上f(x)0,在(x0,+)上f(x)0,故选B.答案:B二填空题:(本大题共4小题,每小题6分,共24分,把正确答案填在题后的横线上.)7.若函数f(x)=x2+ax+b的两个零点是-2和3,则不等式af(-2x)0的解集是________.解析:由于f(x)=x2+ax+b的两个零点是-2和3,即方程x2+ax+b=0的两个根是-2和3,因此 ,因此f(x)=x2-x-6,所以不等式af(-2x)0即-(4x2+2x-6)0,即2x2+x-30,解集为{x|-答案:{x|-8.(应用题,易)在26枚崭新的金币中,混入了一枚外表与它们完全相同的假币(重量不同),现在只有一台天平,请问:你最多称________次就可以发现这枚假币?答案:49.方程xlg(x+2)=1有________个不同的实数根.解析:由题意知x0,∵xlg(x+2)=1,lg(x+2)= ,画出y=lg(x+2),y= 的图象(图略),两个函数图象的交点个数即为方程根的个数,由图象知在第一象限和第三象限各有一个交点,故方程有2个不等实数根.答案:210.已知函数f(x)=|x|+|2-x|,若函数g(x)=f(x)-a的零点个数不为0,则a的最小值为________.解析:由于f(x)=|x|+|2-x|=所以f(x)的最小值等于2,要使f(x)-a=0有解,应使a2,即a 的最小值为2.答案:2三解答题:(本大题共3小题,1112题13分,13题14分,写出证明过程或推演步骤.)11.已知二次函数f(x)=ax2+bx+c.(1)若ac且f(1)=0,试证明f(x)必有两个零点;(2)若对x1、x2R且x1证明:(1)∵f(1)=0,a+b+c=0.又∵ac,a0,即ac0.又∵=b2-4ac0,方程ax2+bx+c=0有两个不等实根,所以函数f(x)有两个零点.(2)令g(x)=f(x)- [f(x1)+f(x2)],则g(x1)=f(x1)- [f(x1)+f(x2)]∵f(x1)f(x2),g(x1)g(x2)0.g(x)=0在(x1,x2)内必有一实根.评析:可将方程根的问题转化成函数零点的问题,借助函数的图象和性质进行解答.12.若函数f(x)=22x+2xa+a+1有零点,求实数a的取值范围. 解:依题意,方程22x+2xa+a+1=0有实数根.令2x=t(t0),则t2+at+a+1=0,13.(1)m为何值时,f(x)=x2+2mx+3m+4.①有且仅有一个零点;②有两个零点且均比-1大;(2)若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围.解:(1)①f(x)=x2+2mx+3m+4有且仅有一个零点方程f(x)=0有两个相等实根=0,即4m2-4(3m+4)=0,即m2-3m-4=0,m=4或m=-1.②解法一:设f(x)的两个零点分别为x1,x2.则x1+x2=-2m,x1x2=3m+4.由题意,知-5故m的取值范围为(-5,-1).解法二:由题意,知-5m的取值范围为(-5,-1).(2)令f(x)=0,得|4x-x2|+a=0,即|4x-x2|=-a.令g(x)=|4x-x2|,h(x)=-a.作出g(x)、h(x)的图象.由图象可知,当04,即-4故a的取值范围为(-4,0).函数与方程专项练习题及答案的全部内容就是这些,查字典数学网预祝考生可以取得更优异的成绩。

理科数学高考真题分类汇编 函数与方程答案

理科数学高考真题分类汇编 函数与方程答案

( −1, 0]
,和函数
y
=
m(x +1)
的图象,如图,
x, x (0,1]
当直线 y = m(x +1) 与 y = 1 − 3, x (−1, 0]和 y = x, x (0,1] 都相交时 x+1
0 m ≤ 1 ;当直线 y = m(x +1) 与 y = 1 − 3, x (−1, 0]有两个交点时,
的斜率,且小于直线
y
=
x
−1
1
的斜率时符合题意,故选
k
1.
2
y
5
4
3
g (x)=kx
2
f( x)=|x -2|+1
1
(2,1)
x
O 1 23 4 5
10.C【解析】∵ f (1) = 6 − log2 1 = 6 0 , f (2) = 3 − log2 2 = 2 0 ,
f
(4)
=
3 2

log2
2 − x + x2 ,
x 0
所以 y = f (x) + f (2 − x) = 4 − x − 2 − x , 0 x 2 ,
2

2−
x
+
(x −
2)2
,x
2
x2 + x + 2, x 0
即 y = f (x) + f (2 − x) = 2,
0 x2,
x2

5x+
8,
x
2
y = f (x) − g(x) = f (x) + f (2 − x) − b ,所以 y = f (x) − g (x) 恰有 4 个零点等价

高三数学函数与方程试题答案及解析

高三数学函数与方程试题答案及解析

高三数学函数与方程试题答案及解析1.函数的图像与函数的图像所有交点的横坐标之和为 _.【答案】4.【解析】函数与的图象有公共的对称中心(1,0),作出两个函数的图象,如图所示:当1<x4时,,而函数y2在(1,4)上出现1.5个周期的图象,在上是单调增且为正数函数,y2在(1,4)上出现1.5个周期的图象,在上是单调减且为正数,∴函数y2在处取最大值为,而函数y2在(1,2)、(3,4)上为负数与y1的图象没有交点,所以两个函数图象在(1,4)上有两个交点(图中C、D),根据它们有公共的对称中心(1,0),可得在区间(-2,1)上也有两个交点(图中A、B),并且:xA +xD=xB+xC=2,故所求的横坐标之和为4,故答案为:4.【考点】1.函数的零点与方程的根的关系;2.数形结合思想.2.已知函数,.若方程有两个不相等的实根,则实数的取值范围是()A.B.C.D.【答案】B.【解析】如图,由已知,函数,的图象有两个公共点,画图可知当直线介于,之间时,符合题意,故选B.【考点】1.函数与方程;2.数形结合的数学思想.3.已知函数,,若方程有两个不相等的实根,则实数的取值范围是()A.B.C.D.【答案】B【解析】方程有两个不相等的实根,等价于函数,的图象有两个不同的交点,如图:在同一坐标系中作出函数,的图象,观察图象可知:,所以;故选B.【考点】1.方程的根与函数图象间的关系;2.数形结合法.4.已知定义在R上的函数f(x)的周期为4,且当x∈(-1,3]时,f(x)=,则函数的零点个数是( )A.4B.5C.6D.7【答案】B【解析】由函数的周期为4x递增且经过(6,1)点画出f(x)的草图如图,其中函数y=log6x的交点函数g(x)的零点,即为y=f(x)与y=log6结合图象可知,它们共有5个交点,选B【考点】函数的周期性,分段函数,函数的零点.5.已知定义在R上的偶函数f(x)满足f(4-x)=f(x),且当x∈(-1,3]时,f(x)=,则函数g(x)=f(x)-|lgx|的零点个数是()A.7B.8C.9D.10【答案】D【解析】由f(x)是定义在R上的偶函数,知x=0是它的一条对称轴又由f(4-x)=f(x),知x=2是它的一条对称轴于是函数的周期为(2-0)×2=4画出f(x)的草图如图,其中y=|lgx|在(1,+∞)递增且经过(10,1)点函数g(x)的零点,即为y=f(x)与y=|lgx|的交点结合图象可知,它们共有10个交点,选D.【考点】函数的奇偶性、周期性,分段函数,函数的零点.6.已知函数,其中,为自然对数的底数.(Ⅰ)设是函数的导函数,求函数在区间上的最小值;(Ⅱ)若,函数在区间内有零点,求的取值范围【答案】(Ⅰ)当时,;当时,;当时,.(Ⅱ)的范围为.【解析】(Ⅰ)易得,再对分情况确定的单调区间,根据在上的单调性即可得在上的最小值.(Ⅱ)设为在区间内的一个零点,注意到.联系到函数的图象可知,导函数在区间内存在零点,在区间内存在零点,即在区间内至少有两个零点. 由(Ⅰ)可知,当及时,在内都不可能有两个零点.所以.此时,在上单调递减,在上单调递增,因此,且必有.由得:,代入这两个不等式即可得的取值范围.试题解答:(Ⅰ)①当时,,所以.②当时,由得.若,则;若,则.所以当时,在上单调递增,所以.当时,在上单调递减,在上单调递增,所以.当时,在上单调递减,所以.(Ⅱ)设为在区间内的一个零点,则由可知,在区间上不可能单调递增,也不可能单调递减.则不可能恒为正,也不可能恒为负.故在区间内存在零点.同理在区间内存在零点.所以在区间内至少有两个零点.由(Ⅰ)知,当时,在上单调递增,故在内至多有一个零点.当时,在上单调递减,故在内至多有一个零点.所以.此时,在上单调递减,在上单调递增,因此,必有.由得:,有.解得.当时,在区间内有最小值.若,则,从而在区间上单调递增,这与矛盾,所以.又,故此时在和内各只有一个零点和.由此可知在上单调递增,在上单调递减,在上单调递增.所以,,故在内有零点.综上可知,的取值范围是.【考点】导数的应用及函数的零点.7.方程lnx=6-2x的根必定属于区间()A.(-2,1)B.(,4)C.(1,)D.(,)【答案】B【解析】令f(x)=lnx+2x-6f()=ln-1<0,f(4)=ln4+8-6=ln4+2>0,f()=ln+-6<0∴lnx=6-2x的根必定属于区间(,4).故选B.8.已知函数,.若存在使得,则实数的取值范围是.【答案】【解析】方程变形为,记函数的值域为,函数的值域为,设的取值范围为,则,作出函数和的图象,可见在上是增函数,在上是减函数,且,而函数的值域是,因此,因此.【考点】函数的图象,方程的解与函数的值域问题.9.函数f(x)=的图象如图所示,则a+b+c=________.【答案】【解析】由图象可求得直线的方程为y=2x+2(x≤0),又函数y=logc(x+)的图象过点(0,2),将其坐标代入可得c=,所以a+b+c=2+2+=.10.关于x的二次方程(m+3)x2-4mx+2m-1=0的两根异号,且负根的绝对值比正根大,那么实数m的取值范围是______________.【答案】(-3,0)【解析】由题意知由①②③得-3<m<0.11.已知函数在上有两个零点,则的取值范围是()A.B.C.D.【答案】D【解析】与在,有两个不同交点,,如图可得的取值范围是,故选D.【考点】1.函数的图象;2.函数交点问题.12.已知函数f(x)=x3+ax2+bx+c有两个极值点x1,x2,若f(x1)=x1<x2,则关于x的方程3(f(x))2+2af(x)+b=0的不同实根个数为( )A.3B.4C.5D.6【答案】A【解析】f′(x)=3x2+2ax+b;由已知x1,x2是方程3x2+2ax+b=0的不同两根,当f(x1)=x1<x2时,作y=x1,y=x2与f(x)=x3+ax2+bx+c有三个不同交点.即方程3(f(x))2+2af(x)+b=0有三个不同实根.13.已知函数与的图像在上不间断,由下表知方程f(x)=g(x)有实数解的区间是()x-10123A.(-1,0) B.(0,1) C.(1,2) D.(2,3)【答案】B【解析】记,由表格知,,,,故方程有实数解的区间是.【考点】函数的零点.14.的定义域为实数集,对于任意的都有.若在区间上函数恰有四个不同的零点,则实数的取值范围是 .【答案】【解析】因为对任意的都有,所以函数的周期为2. 由在区间上函数恰有四个不同的零点,即函数在上有四个不同的零点.即函数与函数在有四个不同的交点.所以.解得.【考点】1.分段函数的性质.2.函数的周期性.3.函数的等价变换.15.设函数则函数的零点个数为个.【答案】3【解析】令,得,∴函数的零点个数,即为函数与函数的图象的交点个数,在同一坐标系中画出函数与函数的图象,如图所示,由图象知函数与函数的图象在上有一个交点,在上,==,∵,,∴在上函数与函数的图象有一个交点.∵1是的一个零点,∴函数有3个零点.【考点】1.分段函数;2.函数零点的个数;3.函数图象的应用;4.对数函数.16.函数与的图像交点的横坐标所在区间为()A.B.C.D.【答案】B【解析】函数与的图像交点的横坐标,即为函数的零点,,,故函数的零点所在区间为,即函数与的图像交点的横坐标所在区间为.【考点】函数的零点.17.若函数y=f(x)(x∈R)满足f(x+1)=f(x-1),且x∈[-1,1]时,f(x)=1-x2,函数g(x)=则函数h(x)=f(x)-g(x)在区间[-5,5]内的零点的个数为()A.6B.7C.8D.9,【答案】C【解析】因为函数y=f(x)(x∈R)满足f(x+1)=f(x-1),所以函数y=f(x)(x∈R)是周期为2的周期函数,又因为x∈[-1,1]时,f(x)=1-x2,所以作出函数f(x)(x∈R)和g(x)的图像,如图所示.由图知函数h(x)=f(x)-g(x)在区间[-5,5]内的零点的个数为8.18.f(x)=|2x-1|,f1(x)=f(x),f2(x)=f(f1(x)),…,fn(x)=f(fn-1(x)),则函数y=f4(x)的零点个数为________.【答案】8【解析】f4(x)=|2f3(x)-1|的零点,即f3(x)=的零点,即|2f2(x)-1|=的零点,即f2(x)=或的零点,即|2f(x)-1|=或的零点,即f(x)=,,,的零点,显然对上述每个数值各有两个零点,故共有8个零点.19.设函数f(x)=ln x,g(x)=x2-4x+4,则方程f(x)-g(x)=0的实根个数是 ().A.0B.1C.2D.3【答案】C【解析】由f(x)-g(x)=0,得f(x)=g(x).在同一坐标系内作出函数y=f(x)与y=g(x)的图象,由图知f(x),g(x)的图象有两个交点.因此方程f(x)-g(x)=0有两个不相等的实根.20.若函数y=f(x)(x∈R)满足f(x+1)=-f(x),且x∈[-1,1]时f(x)=1-x2.函数g(x)=则函数h(x)=f(x)-g(x)在区间[-5,4]内的零点的个数().A.7B.8,C.9D.10【答案】A【解析】由f(x+1)=-f(x),可得f(x+2)=-f(x+1)=f(x),所以函数f(x)的周期为2,求h(x)=f(x)-g(x)在区间[-5,4]内的零点,即求f(x)=g(x)在区间[-5,4]上图象交点的个数.画出函数f(x)与g(x)的图象,如图,由图可知两图象在[-5,4]之间有7个交点,所以所求函数有7个零点,选A.21.已知函数f(x)=,若函数g(x)=f(x)-k有两个不同的零点,则实数k的取值范围是________.【答案】【解析】画出函数f(x)图象如图.要使函数g(x)=f(x)-k有两个不同零点,只需y=f(x)与y=k的图象有两个不同交点,由图易知k∈.22.对于函数的定义域为D,如果存在区间同时满足下列条件:①在[m,n]是单调的;②当定义域为[m,n]时, 的值域也是[m,n],则称区间[m,n]是该函数的“H区间”.若函数存在“H区间”,则正数的取值范围是____________.【答案】【解析】当时,,,,得,得,此时函数为单调递增,当时,取得最大值,当时,取得最小值,即,即方程有两解,即方程有两解,作出的图像,由图像及函数的导数可知,当时,在时取得最小值,在时,,故方程有两解,,即,故的取值范围为;当时,函数为单调递减,则当时,取得最大值,当时,取得最小值,即,两式相减得,,即,不符合;当时,函数为单调递减,则当时,取得最大值,当时,取得最小值,即,两式相减可以得到,回带到方程组的第一个式子得到,整理得到,由图像可知,方程有两个解,则综上所述,正数的取值范围是.【考点】新定义,方程的解.23.方程的解的个数为()A.1B.3C.4D.5【答案】B【解析】本题中方程不可解,但方程解的个数可以借助于函数和的图象的交点的个数来解决,作出这两个函数的图象(如图),,,但当时,,而,故两个函数图象有三交点,即原方程有三个解.【考点】方程的解与函数图象的交点.24.函数的图像如图所示,关于的方程有三个不同的实数解,则的取值范围是_______________.【答案】【解析】方程的解显然利用换元法()是通过二次方程①来解决,首先考虑,即时,方程①的解为和,原方程没有三个解,当时,方程①的两根必须满足且,因此如果记,则,解得.【考点】函数的图象与方程的解.25.已知函数,在上的零点个数有()A.1个B.2个C.3个D.4个【答案】B【解析】(数形结合)函数在上的零点个数,由函数与的图象在上的交点个数为2,故选B.【考点】函数的零点26.函数的零点所在的一个区间是()A.B.C.D.【答案】C【解析】,,又因为是一个连续的递增函数,故零点在区间内,选C.【考点】函数零点的概念及判定定理.27.若方程在[1,4]上有实数解,则实数的取值范围是( )A.[4,5]B.[3,5]C.[3,4]D.[4,6]【答案】A【解析】,解得.【考点】根的分布.28.设函数,函数的零点个数为______.【答案】2【解析】当时,=,令则显然与矛盾,表明此时无零点.当时,分两种情况:当时,=,令.解得;当时,=,令,解得.因此函数的零点个数为2.【考点】函数的零点定理,指数函数和对数函数的计算.29.函数f(x)=2x-sinx的零点个数为()A.1B.2C.3D.4【答案】A【解析】,易知该函数导数恒大于0,所以是单增函数.f(0)=0.故只有一个零点.【考点】函数的单调性,函数的零点,导数(x-1),则30. [x]表示不超过x的最大整数,例如[2.9]=2,[-4.1]=-5,已知f(x)=x-[x](x∈R),g(x)=log4函数h(x)=f(x)-g(x)的零点个数是( )A.1B.2C.3D.4【答案】B【解析】依题意画出的图象如图所示,当时与有两个交点,即函数的零点个数为2.【考点】函数的零点.31.定义在上的偶函数,满足,,则函数在区间内零点的个数为()A.个B.个C.个D.至少个【答案】D【解析】∵是定义在上的偶函数,且周期是3,,∴,即.∴,,所以方程在内,至少有4个解,选D.【考点】函数的性质,函数的零点.32.函数的零点个数为()A.B.C.D.【答案】B【解析】函数的零点即为与两个函数图象的交点个数,所以在同一坐标系中分别画出两个函数的图象,可以得出交点个数为1个,即函数的的零点个数为1.【考点】本小题主要考查函数零点个数的判断.点评:函数的零点个数,往往转化为两个函数图象的交点个数问题来解决.33.函数的零点属于区间,则 .【答案】1【解析】在定义域内是增函数,所以的零点在区间内【考点】函数零点点评:函数在区间上有意义且连续,若有,则在区间上存在零点34.已知R上的函数y=f(x),其周期为2,且x∈(-1,1]时f(x)=1+x2,函数g(x)=,则函数h(x)=f(x)-g(x)在区间[-5,5]上的零点的个数为()A.11B.10C.9D.8【答案】C【解析】易知,当时零点分别是,0,1,2,4,5共5个,当函数在区间间分别有一个零点,故共9个零点.【考点】函数的零点点评:解决本题的关键是把函数有零点的问题,转化成两函数在某区间内有交点的问题,属中档题.35.方程的实数解的个数为_______.【答案】2【解析】方程2-x+x2=3的实数解的个数问题转化为图象的交点问题,作图分析即得答案.解:画出y=2-x与y=3-x2的图象有两个交点,故方程2-x+x2=3的实数解的个数为2个.【考点】数形结合思想点评:华罗庚曾说过:“数缺形时少直观,形缺数时难入微.数形结合百般好,隔离分家万事非.”数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷36.已知直线与曲线有公共交点,则的最大值为A.1B.C.D.【答案】B【解析】由题意,令,则,记,,所以在上为正,在上为负,所以的最大值为.【考点】函数的零点与方程根的关系.点评:本题将曲线的交点问题转化为方程根问题,进一步利用导数求解,属于基础题.37.方程在上有四个不同的根,则.【答案】【解析】在同一平面直角坐标系中画出函数,易知函数的图像都关于(1,0)点成中心对称,在且在内有四个交点,这四个交点关于直线x=1对称,所以 4.【考点】三角函数的图像;反比例函数的图像;函数图像的平移变换。

高考数学(理科)-函数与方程-专题练习(含答案与解析)

高考数学(理科)-函数与方程-专题练习(含答案与解析)

)()2,+∞)()2,+∞(名师押题)已知函数,x0<() g x)4,3⎛⎫+∞ ⎪⎝⎭)4,23⎛⎫ ⎪⎝⎭17-1(1)17-1(2)B.12D.8()=有两个不同的零点y f x0,1,).}(∞+ )()g x x =+等号成立的条件是因而只需2,m e g ≥()21,f x e =--+其最大值为m -即m e >-()故函数f(x)有两个零点.]=-2(正根舍去),B.y=b的图象,如图所示从而函数f(x)=|2x-2|-b的图象,如图所示,当直线g 有两个不相等的实根时,k 的范围为所以函数f (x )的图象关于直线⎭⎫12|x |在[-3,3]上的图象,由图可知上的奇函数,所以当-1≤x <0时,的图象的对称轴为x =2k 与函数f (x )的图象在(0,6)内的零点之和为2×1+2×5==1或a >2,即0<a <x =0不是y =f (x )-g (x )的零点.内的零点个数即方程f (x )=g (x )(-+2x ;即k =4cos πx .⎧2上有且仅有三个零点, ∞)上只有三个交点, ⎩⎪⎨⎪⎧-x 2+-x -1-x-1,1-x >0⎩⎪⎨⎪⎧x 2-4x +2,x ≥1,-x -x ≥1时,函数g (.D [当>0时x -x 2,x )的图象,结合函数图象可知⎪⎪x -2-由题意知方程a =f (x )在[-3,4]上有由图可知a ∈⎝⎛⎭⎫0,12.]7.10 [问题可转化为y =⎝⎛⎭⎫12|x -⎦⎤n n -2×9和(n ,+∞)内都恰有一个零点=1f x +-1⎩⎪⎨⎪⎧1x +1--1<,xx ,由图象可知0<m ≤k AB =13.] 是周期等于3的周期函数f (x )与函数y =1|x |的交点的个数⎩⎪⎨-x ,f x +x <的图象如图所示,l ,观察可得函数y =f (x )的图象与直线l :有且只有两个不相等的实数根时,a <1,故选C .] ))=0,个交点,从小到大依次设为x1,x2,x3,x4,x5,=f(-x),所以log4(4-1+e2,其最大值为m-1 ,。

高考冲刺-函数与方程的思想习题及答案

高考冲刺-函数与方程的思想习题及答案

高考 函数与方程的思想类型一、函数思想在方程中应用 1.已知155=-acb (a 、b 、c ∈R ),则有( ) (A) ac b 42> (B) ac b 42≥ (C) ac b 42< (D) ac b 42≤2.若关于x 的方程cos2x -2cos x +m =0有实数根,则实数m 的取值范围是________3.已知函数 32()f x ax bx cx d =+++的图象如下,则( ) (A )(),0b ∈-∞ (B)()0,1b ∈ (C) (1,2)b ∈ (D)(2,)b ∈+∞4.若关于x 的方程9x +(4+a )·3x +4=0有大于1的解,则实数a 的取值范围是( )A .a <253-B .a ≤-8C .a <133- D .a ≤-45.设函数3y x =与212x y -⎛⎫= ⎪⎝⎭的图象的交点为00()x y ,,则0x 所在的区间是( )A .(01),B .(12),C .(23),D .(34),类型二、函数思想在不等式中的应用6.当(12)x ∈,时,不等式240x mx ++<恒成立,则m 的取值范围是 ;7.已知f (t )=log 2t ,t ∈[2,8],对于f (t )值域内所有实数m ,不等式x 2+mx +4>2m +4x 恒成立,求x 的取值范围.8.对于满足0≤p ≤4的实数p ,使x 2+px >4x +p -3恒成立的x 的取值范围是________类型三、函数思想在数列中的应用9.设等差数列{a n }的前n 项和为S n ,已知123=a ,12S >0,13S <0,(1)求公差d 的取值范围;(2)指出1S 、2S 、3S …,12S 中哪一个最大,并说明理由。

10.已知等差数列的公差,对任意都有,函数.(1)求证:对任意,函数的图象过一定点.(2)若,函数f(x)与x 轴的一个交点为(),且,求数列的通项公式.(3)在(2)的条件下,求.类型四、函数思想在立体几何中的应用 11.如图,已知面,于D ,.(1)令,,试把表示为x 的函数,并求其最大值;(2)在直线PA 上是否存在一点Q ,使成立?类型五、利用方程思想处理解析几何问题 12.直线与圆相切,则a 的值为( )A .B .C .1D .13.(2016 全国I 卷高考)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (I )求OH ON;(II )除H 以外,直线MH 与C 是否有其它公共点?说明理由. 14.直线和双曲线的左支交于A 、B 两点,直线l 过点P(-2,0)和线段AB 的中点M ,求l 在y 轴上的截距b 的取值范围.类型六、函数思想在三角中的应用 15.求的取值范围。

高中数学高考总复习----函数与方程的思想巩固练习题(含答案解析)

高中数学高考总复习----函数与方程的思想巩固练习题(含答案解析)
高中数学高考总复习----函数与方程的思想巩固
练习题(含答案解析)
【巩固练习】
1.已知 f (x) 是定义在 R 上的偶函数,且以 2 为周期,则“ f (x) 为[0,1] 上的增函数”是“ f (x) 为[3,4] 上
的减函数”的( ) (A)既不充分也不必要的条件 (C)必要而不充分的条件
(B)充分而不必要的条件 (D)充要条件
2
3.【答案】B 【命题意图】本试题主要考查了函数与方程思想,函数的零点的概念,零点存在定理以及作图与用图的数 学能力.
【 解 析 】 解 法 1 : 因 为 函 数 f (x) 2x x3 2 的 导 数 为 f '(x) 2x ln 2 3x2 0 , 所 以 函 数
f (x) 2x x3 2 单调递增,又 f (0)=1+0 2= 1, f (1)=2+23 2=8,即 f (0) f (1)<0 且函数 f (x)
1 a0
x2 是原方程的解当且仅当 x2
,即 a 1.
于是满足题意的 a 1, 2 . 综上, a 的取值范围为 1, 2 3, 4 .
(3)当 0
x1
x2
时,
1 x1
a
1 x2
a
log2

1 x1
a
log2
1 x2
a

所以 f x 在 0, 上单调递减.
函数 f x 在区间t,t 1 上的最大值与最小值分别为 f t , f t 1 .
(A)x<y<z (B)z<x<y (C)z<y<x
(D)y<z<x
5. (2016
上海高考)已知无穷等比数列{an}的公比为
q,前
n

(完整版)高三数学-函数图象与性质、函数与方程-专题练习(含答案与解析),推荐文档

(完整版)高三数学-函数图象与性质、函数与方程-专题练习(含答案与解析),推荐文档


x
π
时,
f
π
π
1 π
cos
π
1 π
π
0
,故排除
C,
x
0
若关于
x 的方程
f
2
x 3
f
x
a
0a R有
8 个不等的实数根,则 a 的取值范围是( )
A.
0,
1 4
B.
1 3
,
3
C. 1,2
【教师备用】
方程
log4
x
3 x
0
的根所在区间为(
)
A.
2,
5 2
B.
5 2
,
3
C. 3, 4
D.
2,
9 4
D. 4,5
【教师备用】(2016·辽宁锦州一模)对于函数 f x,若在定义域内存在实数 x ,满足 f x f x,称 f x为“局部奇函数”,若 f x 4x m 2x1 m2 3 为定义域 R 上的“局部奇函数”,则实数 m 的取
故选 B.
3.解析:A. y x 12 的对称轴为 x 1 ,为非奇非偶函数,不满足条件.
6 / 13
B. y cos x 1是偶函数,但在 0, 内不是单调函数,不满足条件. C. y lg x 2 为偶函数,在 0, 内单调递增,满足条件, D. y 2x ,在 0, 内单调递增,为非奇非偶函数,不满足条件.
e
2
1 ,1
1,
e
1
答案
5 / 13
高三数学专题练习
函数图象与性质、函数与方程
解析
一、选择题
1.解析:根据函数 y f x的定义,当 x 2 为定义域内一个值,有唯一的一个函数值 f x与之对应, 函数 y f x的图象与直线 x 2 有唯一交点.

2021年高考数学大一轮复习 数学思想专项训练(一)函数与方程思想 理(含解析)

2021年高考数学大一轮复习 数学思想专项训练(一)函数与方程思想 理(含解析)

2021年高考数学大一轮复习 数学思想专项训练(一)函数与方程思想 理(含解析)一、选择题1.已知函数f (x )=ln x -x -a 有两个不同的零点,则实数a 的取值范围为( )A .(-∞,-1]B .(-∞,-1)C .[-1,+∞)D .(-1,+∞)2.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪⎝ ⎛⎭⎪⎫-12,+∞,则a 等于( ) A .2 B .-2C .-12 D.123.(xx·天津六校联考)若等差数列{a n }满足a 21+a 2100≤10,则S =a 100+a 101+…+a 199的最大值为( )A .600B .500C .400D .2004.已知f (x )=log 2x ,x ∈[2,16],对于函数f (x )值域内的任意实数m ,则使x 2+mx +4>2m +4x 恒成立的实数x 的取值范围为( )A .(-∞,-2]B .[2,+∞)C .(-∞,-2]∪[2,+∞)D .(-∞,-2)∪(2,+∞)5.(xx·黄冈质检)已知点A 是椭圆x 225+y 29=1上的一个动点,点P 在线段OA 的延长线上,且·=48,则点P 的横坐标的最大值为( )A .18B .15C .10 D.1526.(xx·杭州二模)设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( )A .S n 的最大值是S 8B .S n 的最小值是S 8C .S n 的最大值是S 7D .S n 的最小值是S 7二、填空题7.已知f (x )为定义在R 上的增函数,且对任意的x ∈R ,都有f [f (x )-2x]=3,则f (3)=________.8.已知奇函数f (x )的定义域为R ,当x >0时,f (x )=2x -x 2.若x ∈[a ,b ]时,函数f (x )的值域为⎣⎢⎡⎦⎥⎤1b ,1a ,则ab =________.9.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为________.10.(xx·东城期末)若函数f (x )=m -x +3的定义域为[a ,b ],值域为[a ,b ],则实数m 的取值范围是________.二、解答题11.如图,在平行四边形ABCD 中,BC =2,BD ⊥CD ,四边形ADEF 为正方形,平面ADEF ⊥平面ABCD .记CD =x ,V (x )表示四棱锥F ­ABCD 的体积.(1)求V (x )的表达式; (2)求V (x )的最大值.12.设P 是椭圆x 2a2+y 2=1(a >1)短轴的一个端点,Q 为椭圆上的一个动点,求|PQ |的最大值.答案1.选B 函数f (x )=ln x -x -a 的零点即关于x 的方程ln x -x -a =0的实根,将方程化为ln x =x +a ,令y 1=ln x ,y 2=x +a ,由导数知识可知当两曲线相切时有a =-1.若函数f (x )=ln x -x -a 有两个不同的零点,则实数a 的取值范围为(-∞,-1).2.选 B 根据不等式与对应方程的关系知-1,-12是一元二次方程ax 2+(a -1)x -1=0的两个根,所以-1×⎝ ⎛⎭⎪⎫-12=-1a ,所以a =-2,故选B. 3.选B S =a 100+a 101+…+a 199=100a 100+100×992d =100(a 1+99d )+100×992d ,即99d =S 150-23a 1,因为a 21+a 2100≤10,即a 21+(a 1+99d )2≤10,整理得a 21+⎝ ⎛⎭⎪⎫13a 1+S 1502≤10,即109a 21+S225a 1+⎝⎛⎭⎪⎫S 1502-10≤0有解,所以Δ=⎝ ⎛⎭⎪⎫S 2252-4×109⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫S 1502-10≥0,解得-500≤S ≤500,所以S max =500,故选B.4.选D ∵x ∈[2,16],∴f (x )=log 2x ∈[1,4],即m ∈[1,4].不等式x 2+mx +4>2m +4x 恒成立,即为m (x -2)+(x -2)2>0恒成立,设g (m )=(x -2)m +(x -2)2,则此函数在[1,4]上恒大于0,所以⎩⎪⎨⎪⎧g1>0,g4>0,即⎩⎪⎨⎪⎧x -2+x -22>0,4x -2+x -22>0,解得x <-2或x >2.5.选C 当点P 的横坐标最大时,射线OA 的斜率k >0,设OA :y =kx ,k >0,与椭圆x 225+y 29=1联立解得x A =159+25k2 .又·=x A x P +k 2x A x P =48,解得x P =481+k 2x A=169+25k 251+k 2=1659+25k 21+k 22,令9+25k 2=t >9,即k 2=t -925,则x P =165t⎝ ⎛⎭⎪⎫t +16252=165×25t t 2+162+32t=801t +162t+32≤80× 164=10,当且仅当t =16,即k 2=725时取等号,所以点P 的横坐标的最大值为10,故选C.6.选D 由(n +1)S n <nS n +1得(n +1)n a 1+a n2<nn +1a 1+a n +12,整理得a n<a n +1,所以等差数列{a n }是递增数列,又a 8a 7<-1,所以a 8>0,a 7<0,所以数列{a n }的前7项为负值,即S n 的最小值是S 7.故选D.7.解析:设f (x )-2x=t ,则f (t )=3,f (x )=2x+t , 所以2t+t =3,易得方程2t+t =3有唯一解t =1, 所以f (x )=2x+1,所以f (3)=9. 答案:98.解析:由题意知a <b ,且1a >1b,则a ,b 同号,当x >0时,f (x )=2x -x 2=-(x -1)2+1≤1,若0<a <b ,则1a≤1,即a ≥1.因为f (x )在[1,+∞)上单调递减,所以⎩⎪⎨⎪⎧ f a =2a -a 2=1a ,f b =2b -b 2=1b,解得⎩⎪⎨⎪⎧a =1,b =1+52,所以ab =1+52.由f (x )是奇函数知,当x <0时,f (x )=x 2+2x ,同理可知,当a <b <0时,⎩⎪⎨⎪⎧f a =2a +a 2=1a ,fb=2b +b 2=1b,解得⎩⎪⎨⎪⎧b =-1,a =-1-52,所以ab =1+52.综上,ab =1+52. 答案:1+529.解析:设5个班级的样本数据从小到大依次为0≤a <b <c <d <e .由平均数及方差的公式得a +b +c +d +e5=7,a -72+b -72+c -72+d -72+e -725=4.设a -7,b -7,c -7,d -7,e -7分别为p ,q ,r ,s ,t ,则p ,q ,r ,s ,t 均为整数,且⎩⎪⎨⎪⎧p +q +r +s +t =0,p 2+q 2+r 2+s 2+t 2=20.设f (x )=(x -p )2+(x -q )2+(x -r )2+(x -s )2=4x 2-2(p +q +r +s )x +(p 2+q 2+r 2+s 2)=4x 2+2tx +20-t 2,由(x -p )2,(x -q )2,(x -r )2,(x -s )2不能完全相同知f (x )>0,则判别式Δ<0,即4t 2-4×4×(20-t 2)<0,解得-4<t <4,所以-3≤t ≤3,故e 的最大值为10.答案:1010.解析:易知f (x )=m -x +3在[a ,b ]上单调递减,因为函数f (x )的值域为[a ,b ],所以⎩⎪⎨⎪⎧f a =b ,f b =a ,即⎩⎨⎧m -a +3=b ,m -b +3=a ,两式相减得,a +3-b +3=a -b =(a +3)-(b +3)=(a +3)2-(b +3)2,所以a +3+b +3=1,因为a <b ,所以0≤a +3<12,而m =b +3+a =a -a +3+1,所以m =(a +3)-a +3-2=⎝ ⎛⎭⎪⎫a +3-122-94,又0≤a +3<12,所以-94<m ≤-2.答案:⎝ ⎛⎦⎥⎤-94,-2 11.解:(1)∵平面ADEF ⊥平面ABCD ,交线为AD 且FA ⊥AD ,∴FA ⊥平面ABCD . ∵BD ⊥CD ,BC =2,CD =x . ∴FA =2,BD =4-x 2(0<x <2),S ▱ABCD =CD ·BD =x 4-x 2,∴V (x )=13S ▱ABCD ·FA =23x 4-x 2(0<x <2).(2)V (x )=23x 4-x 2=23-x 4+4x 2=23-x 2-22+4.∵0<x <2,∴0<x 2<4,∴当x 2=2,即x =2时,V (x )取得最大值,且V (x )max =43.12.解:依题意可设P (0,1),Q (x ,y ),则 |PQ |=x 2+y -12.又因为Q 在椭圆上,所以x 2=a 2(1-y 2).|PQ |2=a 2(1-y 2)+y 2-2y +1=(1-a 2)y 2-2y +1+a 2=(1-a 2)⎝⎛⎭⎪⎫y -11-a 22-11-a2+1+a 2,因为|y |≤1,a >1,若a ≥2,则⎪⎪⎪⎪⎪⎪11-a 2≤1,当y =11-a 2时,|PQ |取最大值a 2a 2-1a 2-1; 若1<a <2,则当y =-1时,|PQ |取最大值2,综上,当a ≥2时,|PQ |的最大值为a 2a 2-1a 2-1;当1<a <2时,|PQ |的最大值为 2.Bs]28301 6E8D 溍34275 85E3 藣b32319 7E3F 縿•31426 7AC2 竂K 23027 59F3 姳24367 5F2F 弯。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以两方程联立消元得 ,
即 ,3分
所以 ,得 .
因为 ,所以 .4分
(2)证明: 时, 恒成立,等价于 恒成立.
令 ,
则 且 .6分
令 ,则 且 ,8分
所以 时, , 单调递增,
所以 .
又因为 ,所以 , 单调递增,所以 ,
所以 时, 恒成立,11分
即 时, 恒成立.12分
6.C
7.C
8.解:(1)由 且 , ,
∵三棱柱 为直三棱柱,
∴ 平面 ,∴ ,4分
又 ,∴ 平面 .
∵ 平面 ,∴ .6分
(2)设 ,则 , , .由已知可得C到平面 的距离即为 的边 所对应的高 ,8分

,11分
∴当 ,即 时, 有最小值18.12分
高考数学(理科)专题练习
函数与方程思想
解 析
1.由题意可知a=a1a5,即(1+d)2=1×(1+4d),
8.
9.
9.如图2,直三棱柱 中, , , , 分别为 和 上的点,且 .
图2
(1)求证:当 时, ;
(2)当 为何值时,三棱锥 的体积最小,并求出最小体积.
高考数学(理科)专题练习
函数与方程思想
答 案
1.C
2.B
3.B
4.
5.解:(1)由 ,得 ,
,所以 .1分
所以曲线 在点 处的切线为 .因为直线 与曲线 也相切,
∴C的方程为y2=4x或y2=16x.
7.设A1P=x(0≤x≤).
在△AA1P中,
AP==,
在Rt△D1A1P中,D1P=.
于是令y=AP+D1P=+,
下面求对应函数y的最小值.
将函数y的解析式变形,得y=
Байду номын сангаас+,
其几何意义为点Q(x,0)到点M与点N(0,-1)的距离之和,当Q,M,N三点共线时,这个值最小,且最小值为=.
A. B.
C. D.
4.(2016·菏泽模拟)已知数列 满足 , ,则 的最小值为________.
5.(2016·郑州模拟)已知函数 , ,其中 .
(1)若曲线 在点 处的切线与曲线 也相切,求 的值;
(2)证明: 时, 恒成立.
题组2利用函数与方程思想解决几何问题
6.(2016·山西四校联考)设抛物线 的焦点为 ,点 在 上, ,若以 为直径的圆过点 ,则 的方程为()
A. 或 B. 或
C. 或 D. 或
7.如图1所示,在单位正方体 的面对角线 上存在一点 ,使得 最短,则 的最小值是()
图1
A. B.
C. D.
8.已知椭圆 的离心率 ,并且经过定点 .
(1)求椭圆 的方程;
(2)问:是否存在直线 ,使直线与椭圆交于 , 两点,且满足 ?若存在,求出 的值;若不存在,请说明理由.
又n∈N*,当n=7时,=7+-1=,
当n=8时,=8+-1=.
又<,故的最小值为.
5.
6.由抛物线的定义可知MF=xM+=5,∴xM=5-,y=15p-,故以MF为直径的圆的方程为(x-xM)(x-xF)+(y-yM)(y-yF)=0,
即+(2-yM)(2-0)=0.
∴yM=2+-=2+⇒yM=4,p=或.
所以即
所以-<k≤0,所以k的取值范围是.
4.由an+1-an=2n,得
an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2(n-1)+2(n-2)+…+2+60
=n2-n+60.
∴==n+-1.
令f(x)=x+-1,易知f(x)在(0,2)上单调递减,在(2,+∞)上单调递增.
高考数学(理科)专题练习
函数与方程思想
题组1运用函数与方程思想解决数列、不等式等问题
1.(2016·济南模拟)已知 是等差数列, ,公差 , 是其前 项和,若 , , 成等比数列,则 的值为()
A.16B.3
C.64D.62
2.若 ,则有()
A. B.
C. D.
3.若关于 的方程 的两根 , 满足 ,则 的取值范围是()
解得d=2,所以an=1+(n-1)×2=2n-1.
∴S8==4×(1+15)=64.
2.原不等式可化为2x-5-x≤2-y-5y,构造函数y=2x-5-x,其为R上的增函数,所以有x≤-y,即x+y≤0.
3.构造函数f(x)=x2+2kx-1,因为关于x的方程x2+2kx-1=0的两根x1,x2满足-1≤x1<0<x2<2,
解得 , ,即椭圆E的方程为 .4分
(2)设 , ,


所以 , ,8分

由 得 ,
即 , , .
又方程 要有两个不等实根,
所以 ,解得 ,所以 .12分
9.解:(1)证明:∵ ,∴ D,E分别为 和 的中点.1分
又 ,且三棱柱 为直三棱柱,
∴平行四边形 为正方形,∴ .2分
∵ ,D为 的中点,∴ .3分
相关文档
最新文档