结构力学-位移法

合集下载

结构力学I-第7章 位移法

结构力学I-第7章 位移法
4
Page
LOGO
§7-1位移法基本概念
位移法基本方程:

i 1 5
EAi sin 2 i FP li
FP EAi sin 2 i i 1 li
5

关键的一步!
将杆数由5减少为2,这时的结 构是静定的;如果杆数大于 (或等于)3时,结构是超静 定的。
以上两种情况都可以用上述 方法计算!
(2) 杆件转角以顺时针为正 , 反之为负。杆件两端在垂直 于杆轴方向上的相对线位移 ΔAB (侧移)以使杆件顺时针转 动为正,反之为负。 B A B A θB
θ
A
AB
2015-12-21
Page
14
浙江大学海洋学院 Tel : Email:
LOGO
§7-2 单跨超静定梁的形常数与载常数
ΔAB F M AB l
Page
23
LOGO
§7-2单跨超静定梁的形常数与载常数
3. 一端固定、一端定向的等截面直杆
MAB A A
A
β AB
F EI
B
B
AB
FQBA=0,ΔAB是θA 和θB的函 数,转角位移方程为
F M AB i AB A i AB B M AB F M BA i AB A i AB B M BA
2015-12-21
LOGO
§7-2单跨超静定梁的形常数与载常数
2. 一端固定、一端铰支的等截面直杆
MAB A A FS BA l FS BA
A
F EI
B
AB
MBA=0,θB 是θA 和ΔAB的函数,转角位移方程为
M AB 3i AB A 3i AB M BA 0

位移法结构力学知识点概念讲解

位移法结构力学知识点概念讲解

位移法结构力学知识点概念讲解位移法是结构力学中常用的一种分析方法,通过计算结构的位移来求解结构的内力、应力和变形等问题。

它的基本思想是建立结构的位移与应力之间的关系,并利用位移方程和边界条件,求解结构的位移分布,进而获得结构内力、应力和变形等信息。

1.位移概念:结构的位移是指结构中各点相对于参考点的位置变化量。

通常用向量形式表示,位移向量包含所有结构节点的位移分量。

位移分量包括两个方向的位移:横向位移和纵向位移。

横向位移是结构在水平方向上的位置变化,纵向位移是结构在垂直方向上的位置变化。

2.位移分布方程:位移分布方程是描述结构位移与应力之间关系的基本方程。

根据结构的力学特性和边界条件,可以建立位移方程。

一般情况下,位移方程包含多个线性方程,通过求解这些方程组,可以得到结构的位移分布。

常用的位移分布方程包括静平衡方程、变形方程和边界条件等。

3.静平衡方程:静平衡方程是结构力学中最基本的方程之一,它描述结构受力平衡的条件。

根据牛顿第二定律,结构的受力和位移之间存在其中一种关系。

通过建立结构受力平衡的方程,可以获得结构的位移分布。

4.变形方程:变形方程是位移法分析中的重要概念,它用来描述结构的变形与应力之间的关系。

根据结构力学理论,结构受到外力作用时,会发生形变,形成内力和应力。

通过建立变形方程,可以求解结构内力和应力分布。

5.边界条件:边界条件是位移法中必须考虑的条件,它是解决位移方程的关键因素。

边界条件主要包括结构的支座约束条件和结构受力边界条件。

支座约束条件指明结构的一些节点固定或受到特定的位移限制,受力边界条件指明结构的一些部分受到特定的外力或力矩作用。

6.内力和应力计算:通过求解结构的位移分布,可以计算得到结构的内力和应力。

内力是指结构中各点所受的力的大小和方向,包括轴力、剪力和弯矩等。

应力是指结构内部各点处的应力大小和方向,包括正应力和剪应力等。

7.变形计算:位移法可以用来计算结构的变形情况,包括横向变形和纵向变形。

结构力学第七章-位移法(一)

结构力学第七章-位移法(一)

由 M B = 0 同理可得,
FQAB 6i 6i 12i F A B 2 FQAB l l l
结构力学 第七章 位移法
2015年9月12日星期六
§7-2 等截面直杆的转角位移方程
等截面直杆的转角位移方程:

一端固端一端铰支的等截面直杆:
B端角位移不独立。
C
B A
AB:一端固定一端定向滑动 BC:一端固定一端定向滑动 BD:一端固定一端铰支
C
EI=c D B A
AB:两端固定 BC:一端固定一端定向滑动 BD:一端固定一端铰支
C
EI=c D B A
AB:两端固定 BC:两端固定 BD:一端固定一端铰支
C
EI=c D EI=c B A
AB:两端固定 BC:一端固定一端定向滑动 BD:两端固定
R1 = 0 R2 = 0 R3 = 0
R11 Z1
R21
R31
R12
R22 Z2
R32
R13
R23
R1P R33
R2P
P2
R3P
D EI=c A
E
F
D EI=c
E
F
D EI=c
E
F
P1
D EI=c A
E
F
B
C
A
B
C
A
B
C
B
C
(a)基本结构只发生 Z1
(b)基本结构只发生 Z 2
EI 1
B’ O
B
A’
EI
EI
EI
A EI
EI 1
不考虑杆件伸缩变形,AB 不能转动,无结点角位移
结构力学 第七章 位移法

结构力学第8章位移法

结构力学第8章位移法

结构力学第8章位移法位移法是结构力学中一种常用的分析方法。

它基于结构物由刚性构件组成的假设,通过计算结构在外力作用下产生的位移和变形,进而推导出结构的反力和应力分布。

位移法的基本思想是将结构的局部位移组合成整体位移,通过建立位移和反力之间的关系,解决结构的力学问题。

位移法的分析步骤通常包括以下几个方面:1.建立结构的整体位移函数。

位移函数是位移法分析的基础,通过解结构的运动方程建立结构的位移与自由度之间的关系。

2.应用边界条件。

根据边界条件,确定结构的支座的位移和转角值。

支座的位移和转角值可以由结构的约束条件和外力产生的位移计算得出。

3.构建位移方程组。

将结构的整体位移函数带入到结构的平衡方程中,得到位移方程组。

位移方程组是未知反力系数的线性方程组。

4.解位移方程组。

通过解位移方程组,求解未知反力系数。

可以使用高斯消元法、克拉默法则或矩阵方法等解方程的方法求解。

5.求解反力和应力分布。

通过已知的位移和未知的反力系数,可以计算出结构的反力和应力分布。

这些反力和应力分布可以进一步用于结构的设计和评估。

位移法的优点是适用范围广泛,适合复杂结构的分析。

它可以处理线性和非线性的结构,包括静力学和动力学的分析。

同时,位移法具有较高的精度和准确度,在结构的分析和设计中得到广泛应用。

然而,位移法也存在一些限制。

首先,位移法假设结构是刚性的,忽略了结构的变形和位移过程中的非线性效应。

其次,位移法需要建立适当的位移函数,对于复杂结构来说,这是一个复杂和困难的任务。

此外,位移法在处理大变形和非线性结构时可能会遭遇困难。

综上所述,位移法是结构力学中一种重要的分析方法。

它通过计算结构的位移和变形,推导出结构的反力和应力分布,为结构的设计和评估提供基础。

然而,位移法也存在一些限制,需要在具体的分析问题中谨慎应用。

结构力学——位移法

结构力学——位移法

结构力学——位移法结构力学,位移法结构力学是研究物体受到外力作用时的变形和应力分布规律的学科。

在结构力学中,位移法是一种常用的分析方法,用于解决结构受力变形问题。

位移法是建立在位移场的基础上,通过求解物体的位移场,再根据位移场得到应力场、应变场以及应力分布等信息,从而获得结构的受力变形情况。

位移法的基本原理是微分方程的解析方法。

在位移法中,首先需要确定结构的几何形状、边界条件和外力情况,然后通过应变能原理或变分原理等方法建立物体的弯曲方程或应变能方程。

接下来,在确定了适当的位移函数形式后,将其代入方程中,通过求解微分方程来得到物体的位移场。

在位移法中,常用的位移函数形式包括简单弯曲、直角坐标、梯形分段等。

根据结构问题的具体条件,选择合适的位移函数形式,是位移法分析的一个重要步骤。

在求解位移函数时,通常要满足边界条件和界面连续条件。

边界条件是指结构边界上位移和应力的已知条件,界面连续条件是指相邻物体的位移和应力在界面上连续的条件。

求解位移场后,可以根据位移场求出应变场。

应变场是位移场的导数,反映了物体各点的拉伸和压缩程度。

通过求解应变场,可以进一步求解应力场。

应力场是应变场的导数,反映了物体各点的强度和应力分布情况。

由于应力是物体受力的重要指标,因此通过求解应力场,可以分析出物体受力分布情况,评估结构的强度和稳定性。

位移法在结构力学中具有重要的应用价值。

通过求解位移场,可以全面了解结构受力变形情况,为结构的设计和施工提供依据。

位移法不仅能够分析简单的结构问题,还可以扩展应用到更复杂的结构问题中,如悬索桥、拱桥和空间柱等。

位移法不仅适用于线性问题,还可以应用于非线性问题,如大变形、大位移和材料非线性等。

总之,位移法是结构力学中一种常用的分析方法,通过求解物体的位移场,可以获得结构的应力和变形情况。

位移法不仅能够分析简单的结构问题,还可以应用于复杂的结构问题。

通过位移法的研究,可以更全面地了解结构的受力变形情况,为结构的设计和施工提供依据。

结构力学中的位移法

结构力学中的位移法

结构力学中的位移法
位移法是基于以下假设的:结构单元之间的约束全部通过边界条件来
体现,结构中的材料是线弹性材料,结构中的每个单元之间是相互独立和
互不干扰的。

位移法的基本思想是首先假设结构的位移场,然后利用位移场的表达
式和边界条件,推导出结构的应力、应变和位移等信息。

具体步骤如下:
1.确定结构的约束条件:根据结构的平衡条件,确定结构各部分之间
的约束关系。

一般包括边界条件和连接条件等。

2.建立位移场:通过将结构的变形分解为一系列位移函数的线性组合,建立位移场。

常用的位移函数包括常数、线性函数、二次函数等。

3.推导位移场的表达式:利用结构的几何关系和材料的力学性质,根
据平衡条件和应力-应变关系,推导出位移场的表达式。

4.边界条件和连接条件:利用结构的边界条件和连接条件,确定位移
场中的待定系数。

5.应力和应变的计算:利用位移场的表达式和应力-应变关系,计算
结构中各点的应力和应变。

6.变形和位移的计算:利用位移场的表达式,计算结构中各点的变形
和位移。

7.校核:通过校核位移场的可行性和合理性,验证所得结果的准确性。

位移法的优点是可以处理各种复杂的边界条件和载荷情况,适用于各
种不规则结构。

但是位移法也存在一些局限性,如要求解一些复杂结构时,可能需要大量的计算和繁琐的推导过程。

总之,位移法是结构力学中一种重要的解决结构问题的方法,通过确定结构的位移场来分析结构的力学性能,具有广泛的应用前景。

在实际工程中,位移法被广泛运用于结构设计和分析中,是一种非常有效的结构分析方法。

结构力学位移法

结构力学位移法

P A
MAB0
B MBA0
2、剪力:QAB表示AB杆A端的剪力。正负号规定同 “材力”。 P A
QAB0
B QBA0
静超静定结构计算——位移法
3、固端弯矩、固端剪力:单跨超静定梁仅由于荷载作 用所产生的杆端弯矩称为固端弯矩,相应的剪力称为固端 剪力。用MAB、MBA、QAB、QBA表示。
EI EI EI f 三、两端固定梁的转角位移方程 M AB 4 A 2 B 6 M AB
A D
B
C
1、写出杆端力的表达式( Z1 B , Z2 c ) :
M AB 2 M BA M BC EI 30 6 Z1 l 8 EI 30 6 4 Z1 l 8 EI EI 4 Z1 2 Z2 l l
M CB 2 M CD M DC EI EI Z1 4 Z2 l l EI 10 6 2 3 Z2 l 8 0
2 EI 4 EI Z Z 2 22.பைடு நூலகம் 0 1 3 3 2 EI Z 7 EI Z 45 0 1 2 6 3
28.56 Z 1 EI Z 46.73 2 EI
解方程,求得
静超静定结构计算——位移法 2、根据平衡条件列位移法方程 :
MCB C MCD 30kN B QBA
C QCD
M CB M CD 0 QBA QCD 30 0
即:
3i ( 3 iZ ) ( 4 iZ Z2 ) 0 1 1 2 ( 3i Z 30) ( 3i Z 3i Z ) 0 1 2 16 2 2 4
4、确定线位移的方法
(1)由两个已知不动点所引出的不共线的两杆交点也 是不动点。

结构力学位移法

结构力学位移法

结构力学位移法结构力学是研究结构物的力学性能和变形规律的科学,位移法是结构力学中常用的一种分析方法。

它通过计算结构物各个节点的位移,进而求解出结构物的应力、应变等力学参数。

下面将详细介绍位移法的原理和应用。

一、位移法的原理位移法是一种基于力的平衡方程和位移的相关性质来计算结构物响应的方法。

它的基本原理是通过建立结构物的整体刚度方程,解这个方程得到各节点的位移,再根据位移计算出相应节点上的应力和应变。

在应用位移法时,首先需要确定结构物的受力状态,即施加在结构物上的外力和边界条件。

然后,根据结构物的几何约束条件和材料特性,建立结构物的整体刚度方程。

这个方程是一个描述结构物节点位移与受力关系的方程,通常表示为[K]{D}={F},其中[K]是结构物的刚度矩阵,{D}是节点位移矩阵,{F}是节点受力矩阵。

解刚度方程可以得到节点位移矩阵{D},再通过位移与应力或应变的关系,计算出各个节点上的应力和应变。

常用的位移与应力或应变的关系包括伯努利梁理论、平面假设等。

最后,根据应力或应变条件,判断结构物的安全性和稳定性。

二、位移法的应用位移法广泛应用于各种结构物的力学分析和设计中,特别是对于复杂结构和非线性问题的分析更具优势。

1.梁和框架的分析对于梁和框架结构,可以根据位移法计算出节点上的位移、弯矩、剪力和轴力等力学参数。

通过对结构物的力学性能的准确分析,可以进行合理的结构设计和优化。

2.刚架和刚构的计算在刚架和刚构的计算中,位移法可以用来求解节点刚度,从而得到结构物的受力分布和变形情况。

这对于评估结构物的稳定性和刚度有重要意义。

3.非线性问题的分析位移法还可以应用于非线性结构的分析,如软土地基的承载力计算、非线性材料的应力分析等。

在这些情况下,结构物的刚度和应力等参数会随着受力状态的变化而发生变化,需要通过迭代的方法来求解。

4.动力分析位移法也可以用于结构物的动力分析。

动力分析主要研究结构物在动态载荷下的响应和振动特性。

结构力学位移法01

结构力学位移法01
第6章 位移法
位移法的概念 位移法基本体系的确定 位移法计算荷载引起的超静定结构内力 位移法计算温度改变引起的超静定结构内力 位移法计算支座位移引起的超静定结构内力 混合法
位移法是计算超静定结构的基本方法之一. 主要用于超静定梁和刚架的内力计算。
FP
力法计算,9个基本未知量
位移法计算, 1个基本未知量
§6-2 位移法基本概念
1
1
B EA D
FP
EI
EI
A
C
1
D
C
1
B
FP
FP
=
A
1
+
3i/l
3i/l 2
3FPl /16
3i/l 2 FP
内力计算的关键是
求结点位移Δ1
11FP /16 5FP /16
l/2 l/2
1
1
B EA D
FP
EI
EI
A
C
F1 0 F1 F11 F1P 0
k111 F1P 0
§6-1 单跨超静定梁的形常数与载常数
一.等截面梁的形常数 杆端位移引起的杆端内力称为形常数.
6i/l
6i/l
1
1
1
12i/l 2
12i/l 2
i=EI/l----线刚度
1
2i
4i
6i/l
6i/l
3i 3i/l
3i/l
3i/l 2
3i/l
3i/l 2
1
1
i
0
0
0
二.等截面梁的载常数
荷载引起的杆端内力称为载常数.
FPl
5 32 FPl
M图
Δ1
F1

结构力学-位移法

结构力学-位移法

DA柱:
MA 0
FQDA
1 4
(M DA
M
AD )
D C
FQDA
MDA
1 4
(3i D
1.5i EH
)
MAD
0.75iD 0.375iEH
A
E
FQEB
MBE
B 28
2kN/m
EB柱 MB 0
FQEB
1 4
M BE
242 4
1 4
(1.5i EH
4)
4
0.375iEH 3
14kN
D C
M BA
3i1 h1
M DC
3i2 h2
M FE
3i3 h3
32
3)建立位移法方程并求解
求各柱剪力。
FQAB
M BA h1
3i1 h12
k1
FQCD
M DC h2
3i2 h22
k2
FQEF
M FE h3
3i3 h32
k3
FP A
h1
E
C
FQAB
FQCD
FQEF
h2 h3
MBA
ql 2 8
M
F AB
ql 2 8
q
BA
B
l
M
F BA
ql 2 8
BB
q
M
F AB
ql 2 8
AA
杆端弯矩顺时针方向为正!
21
§7-3 无侧移刚架的计算
刚架内部结点无线位移,只有角位移。 基本未知量:内部结点的角位移。
8kN/m
Bi
i
A
4m
Di
i
C
4m

结构力学 位移法

结构力学  位移法
16kN A EI B EI D 3m EI C 2kN/m
A EI B EI C 16kN 2kN/m
6m
EI
D
3m
6m
基本结构 基本方程:k11 △1+F1P=0 F1P
24 18
解:基本未知量:△1=θB, k11 4i 3i i
12
2i
△1= 1; M 图 MP图
k11
4i
3i i 2i
F1P
A B
F2P 16kN.m
C 8kN.m
F1P
6kN.m B 4kN.m 4kN.m
F2P
C 16kN.m
F1P = 2kN.m
F1P = -12kN.m
四、解题步骤(以一个基本未知量为例)
⑴确定基本未知量△1、基本结构、基本方程; ⑵令△1=1,画基本结构的弯矩 M 1 图,由结点或截面平衡方 程得系数k11; ⑶画基本结构荷载下的弯矩MP图,由结点或截面平衡方程得 常数项F1P; ⑷将系数k11 和常数项F1P 代入基本方程k11 △1 + F1P =0,求 解基本未知量△1 ;
⑴ 基本方程中系数kij的确定 系数kij为第j号位移△j=1,第i号附加约束的约束反力,也就 是结构的刚度系数。由结点或截面的平衡方程确定之。 附加约束的约束反力kij的正负规定与结点位移△j的正负规定 相同,刚臂的约束反力(约束力偶)kij以顺时针转为正,链杆的约 束反力kij以使杆顺时针转为正。 位移法中规定:杆端弯矩也以顺时针转为正。
△ Dx
D
△ Ex
E
△1=θ
F
F
P
△Fx
F A
θ
△2= △Dx= △Ex
△ Gx
G
F

《结构力学》第八章-位移法

《结构力学》第八章-位移法

(5) 按叠加法绘制最后弯矩图。
18
例 8—1 图示刚架的支座A产生了水平位移a、竖向位移b=4a
及转角=a/L,试绘其弯矩图。
L
解:基本未知量 Z 1(结点C转角); C EI
B C Z1
B
基本结构如图示;
2EI
建立位移法典型方程: r11Z1+R1△=0
A Z1
基本结构 A
为计算系数和自由项,作
链为了杆能数简,捷即地为确定原出结结构构的的独独立立线线位
(b)
移位移数数目目(见,可图以b)。
11
2.位移法的基本结构
用位移法计算超静定结构时,每一根杆件都视为一根单跨超静
定梁。因此,位移法的基本结构就是把每一根杆件都暂时变为一根
单跨超静定梁(或可定杆件)。通常 的做法是,在每个刚结点上假想 1
构在荷载等外因和各结点位移共同作用下,各附加联系上的反力矩
或反力均应等于零的条件,建立位移法的基本方程。
(3) 绘出基本结构在各单位结点位移作用下的弯矩图和荷载作
用下(或支座位移、温度变化等其它外因作用下)的弯矩图,由平衡
条件求出各系数和自由项。
(4) 结算典型方程,求出作为基本未知量的各结点位移。
正。
B
B
B′
X2
X3
M1图
1
M

2
7
将以上系数和自由项代入典型方程,可解得 X1=
X2=

称为杆件的线刚度。此外,用MAB代替X1,用
MBA代替X2,上式可写成
MAB= 4iA+2i B- MBA= 4i B +2i A-
(8—1)
是此两端固定的梁在荷载、温度变化等外因作用下的杆

结构力学 位移法

结构力学   位移法

B
3 2l
3i M AB l 3i FQAB FQBA 2 l
B 不独立,可不作为基本未知量
故,其杆端弯矩和杆端剪力为
3、远端滑动( B FQAB FQBA 0 ) 如图(e)所示,由弯曲杆件的刚度方程,并令
B FQAB FQBA 0
基本线位移未知量2个 (a) (b)
三、基本方程举例
(a) (b)
3
2 1
基本未知量:3个刚结点D、E、F 增加3根支座链杆 对应于θ 三个刚结点,分别建立其力矩平衡条件
3个角位移
D , E , F
(c)
3个线位移 1 , 2 , 3
D、θ E、θ F3个角位移,应截取D、E、F
QAB= QBA
θ =1
B
4i
1
2i
6i
1 2i
l
6i
3i
l
6i
0
l
l2
A A
θ =1
B B
3i
3i
l
1 θ =1
B
3i
i
l
0
l2
A
-i
0
四、常用荷载情况下的固端弯矩和固端剪力
1、两端固定梁 ①
P A l/ 2 l/ 2
B
M
F AB
Pl / 8
F FQAB P / 2 F FQBA P / 2
平衡方程
M AG M AB M AD 0 M BA M BC 0
基本方程
所以,该刚架利用位移法计算时的基本未知量为 A和 B 。
根据铰结点C的力矩为零的条件,可以把 C 表示成 A B 的函数关系式, 与

结构力学——位移法

结构力学——位移法

15
75 105 180
45 180
135 45
165
135
M(kN m)
第四节 用位移法求解某些特殊问题
4支座变位问题
Z1
Z2
i3
i1
i2
如左图刚架体系所示,发生支座变位
1 ,2 , ,求该体系在支座变位
情况下所产生的弯矩图
Z3
在 Z1 1 作用下所产生的弯矩图
1
2i3
3i1 4i3
2
M1
1 L
1、两端固支
M AB
4iA
2iB
6i
AB L
M
f A
6i
AB L
M
f BA
q B
EI
B AB
M BA
Q BA
QAB
MAB
MBA L
QfAB
6iA L
6iB L
12
i L2
AB
QfAB
QBA
MAB
MBA L
QfBA
6iA L
6iB L
12
i L2
AB
QfBA
结构力学
第三章 位移法
一、等直杆的转角位移方程 二、按基本结构建立典型方程 三、按节点和截面平衡条件建立位移法方程 四、用位移法求解某些特殊问题
第一节 等直杆的转角位移方程
P
一.等直杆的转角位移方程
A MAB
已知AB杆,杆端位移为
A
A B AB
下面根据杆端约束情况来确定等
QAB
直杆的转角位移方程
qL
L 2
MEB 0
M BE
Q BE
qL
QBE qL

第6章 位移法

第6章   位移法
因此位移法分析中应解决的问题有以下几方面:
1、确定杆端内力与杆端位移及荷载之间的函数关系 2、确定结构中哪些结点位移作为基本未知量。 3、如何建立求解基本未知量的位移法方程式。
§6–3 无侧移刚架的计算
如果刚架的各结点(不包括支座)只有角位移而没有线位 移,这种刚架叫做无侧移刚架。
连续梁的计算也属于无侧移问题。 BC杆
1.由支座位移求固端弯矩
三种基本杆件 (1)两端固定的梁; (2)一端固定、另一端简支的梁; (3)一端固定、另一端滑动支承的梁。
等截面直杆的形常数和载常数 符号规定:
杆端弯矩:绕结点逆时针为正,绕杆端顺时针为正。
杆端剪力——绕隔离体顺时针转动为正。 结点转角——顺时针为正。 杆两端的相对位移——使杆件产生顺时针转动为正。
附加 刚臂

ql

q
附加 链杆
附加刚臂限制结点角位移,荷载作用下附加刚臂上产
生附加弯矩
附加链杆限制结点线位移,荷载作用下附加链杆上产生 附加集中力
ql


q

由于有附加约束的作用,结构被隔离成几个 单个杆件的集合,由此可对各杆进行杆件分析
如下例:
q B

C
EI . l

EI . l
A B
C
A
B
载常数:单跨超静杆件在荷载等外部因素作用下引 起的杆端内力,常称为固端内力(包括固端弯矩和固 端剪力)。
6.1.3位移法的基本未知量和基本结构
位移法基本概念可知,如结构的每根杆件的杆 端位移已知,即可求出杆件内力。 又由于汇交于刚 结点处各杆端位移相等,且等于结点位移,位移法 把结构的独立结点位移作为基本未知量。结点位移 由结点角位移和结点线位移两部分组成,则基本未 知量由结点角位移和结点线位移两部分组成。同时 位移法引入变形假设: 假设结构变形是微小的;忽 略受弯直杆(件)的轴向变形和剪切变形对结点位 移的影响。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

R1 R1P R11
R11 k11Z1
k11Z1 R1P 0
R1P
1 ql2 12
k11 11i
ql 2
Z1 132i
q
M MP M1Z1 计算出控制截面弯矩
利用简支梁法作弯矩图。
R1P
C 1 ql2 B 12
A 1 ql2 12
C EI B
q
2EI
l
A
l
Z1
C EI B
q
2EI A 基本体系
2
q
EI l
FP
EI l
EI
1
l
1
EI l
EI
1
l
i EI 线刚度 l
q
l
q q
1
1
FP
l
l
2
2
FP
1 1
FP
1
第1节 基本概念
▲位移:结点的移动和截面的转动,统称位移 ▲基本未知量:结点线位移和角位移。
仅限制转角位移的刚臂——支座
▲基本体系:结点线位移和转角位移都被约束住,刚 结点相当与固定端、铰结点相当固定铰支座。
R1P
11 12
ql
2
,
k
11
12i
Z1
11ql 2 144i
M MP M1Z1
B
11 ql2
72
14 ql2 36
C q
ql2
F 11 ql2 36
5 ql2 72
A 11 ql2 36
DE
ql2
B
11
ql
F
2
72
ql
G ql2
ql
q
C
Z1 ql
1 ql2 C ql2 12 q
ql
A
DE
l EI 常数
B
F
l
l
A
DE
A
B
X2 F
基本体系
DE BF
附加支座反力为零,解除约束处位移为零:
C
q
Z1 1
A
DE
B
F
C
R1 R1P R11 R12
k11Z1 k12 X 2 R1P 0
A
DE
2 2P 21 22
21Z1 22 X 2 2P 0
12
k11 R2P 4i
Z1 1 C 3i
k21
B
A 2i
k11Z1 k12Z2 R1P 0
求支反力隔离体图
k12
k22
k21Z1 k22Z2 R2P 0
R1P
1 12
ql2
1 R2P 2 ql
k11 7i
12i k22 l 2
k12
k21
6i l
ql 2 Z1 24i
ql 3 Z2 16i
[例题1] 作弯矩图。 EI
EI1
k l3
Z1
C
D
EI
EI
l
A
B
l
EI1
k
EI l3
C
D
EI
EI
l
基本体系
A
B
l
R1P
Z1 1
基本体系与原体系完全等价!附加支座反力等于零:
k11
6i
k11Z1 R1P 0
l
25EI k11 l3
6l
Z1 25
6EI
R1P l2 弹簧反力多少?
M MP M1Z1
A
D
l
EA
C q
B
Z1
EI 2EI
A
D
基本体系
k11Z1 R1P 0
k11
9i l2
Z1
ql 3 24i
R1P
3ql 8
(即求得C点、B点的水平位移)
M MP M1Z1
此式求控制截面弯矩,利用叠加法作弯矩图。
C q
A
C
B
D
Z1 1
B
k11
A
D
qC
B
A
D
第4节 位移法和力法的混合法
C
l
q
C
D
A
B
6i
EI1 l
C 6i D
EI
l
l3
6i
A
B
l
C
D
A
B
[例题2] 作弯矩图。
C
l
q
q C Z1
1 ql2 C ql2 12 q
A
DE
l EI 常数
ql A
DE
ql
A
B
F
l
l
lG
BF
G
基本体系
DE
ql2
ql
BF
G
ql2
令 : i EI l
C
q
Z1 1
k11Z1 R1P 0
A DE
R1P
11 12
ql
2
,
k
11
12i, k12
l
B
F
X2 1
21
M 1 M 2 dx EI
F R2c1 l
22
M 2 M 2 dx 4l3 4l2
EI
3EI 3i
2P
M 2 M P dx ql4 ql3
EI
2EI 2i
M MP M1Z1 M 2 X2
第5节 位移法习题课
k11
Z1 1
8i C
B
3i
A 4i
第2节 位移法典型方程
C EI B
q
EI
l
A
l
Z1
C EI B q
Z2
基本体系 A
基本体系与原体系完全等价!附加支座反力等于零。
R1 R1P R11 R12 R 2 R 2P R 21 R 22
R11 k11Z1 R12 k12Z2 R21 k21Z1 R22 k22Z2
[思考题] 作图示结构的弯矩图。
C
l
q
A
DE
l EI 常数
B
l
l
令 : i EI l
R11 k11Z1 R1P 0
k11Z1 R1P 0
R1P
1 12
ql 2
k11 15i
ql 2 Z1 180i
M MP M1Z1
C q
A
D Z1 E
B
基本体系
q C R11 0
A
D Z1 E
k11Z1 k12Z2 R1P 0 k21Z1 k22Z2 R2P 0
反力如何计算?
M MP M1Z1 M 2Z2
R1P
C EI B
R2 P
q
A
k11
Z1 1 C
k21
B
A
k12
C
k22
B Z2 1
A
Z1
C EI B q
Z2
EI 基本体系
A
1 ql2 12
R1P
C
B
q
1 ql2
A
R1P
C 1 ql2 12
k11
C 4i
3i
k12
M MP M1Z1 M 2Z2
C 6i l
R2 P
C 6i l
C
B
1 ql 2
0
6i lA
B Z2 1
k22
C12i
B
l2
0
C
1 ql2 8
B
q
1 ql2
8
C 6i
B
k21
3 ql2
A M图
8
l
0
第3节 超静定结构
EI 2EI l
B
基本体系
1 ql2 C
12 q
R1P
A
DE
B
q
A
C Z1 1
k11
DE
B
1 ql2 12
R1P
C
M 0
第六章 位移法
第1节 基本概念 第2节 位移法典型方程 第3节 超静定结构计算例题 第4节 位移法和力法的混合法 第5节 习题课
q
ElI
FP
l
l
2
2
1
EI l
1
EI l
q
EI l
FP
EI
l
l
2
相关文档
最新文档