知识讲解-函数的单调性-基础
1函数的单调性知识讲解
练习: 1.证 明 函 数 f(x)=-2x+1在 R上 是减函数;
2.求 函 数 f ( x ) x 3 在 x 0上 x
的单调性.
三.单调性的应用
例3:已知f(x)是定义在[-1,1]上的 增函数,且f(x-1)<f(x2-1).求实数x 的范围
高考真题:
1.(2009 福建卷理)下列函数 f (x) 中,满足“对任意 x1 ,x2 (0, ),当 x1 < x2 时,都有 f (x1) > f (x2 ) 的是
告诉我们,对于一定量的气体,当其体积V减少 时,压强p将增大.试用函数单调性证明之.
用定义证明函数为增(减)函数的基本步骤:
1、设元: 设 x1,x2 给定 ,且 区 x1x间 2.
2、作差: 计f算 (x1)f(x2)至最 . 简
3、变形:
4、定号: 判断上述差的符号 . 5、结论: 若差0则为增函.数
A. f (x) = 1 x
C . f (x) =2x+2
B. f (x) = (x 1)2
D.
(x)
1 =x-1
x2 4x,
2.(2009
天津卷理)已知函数
f
(x)
4 x
x2,
x0 x0
若 f (2 a2 ) f (a), 则实数 a 的取值范围是
A (, 1) (2, ) B (1, 2)
练习2、已知函数f(x)=x2+ax-1在(-∞,1] 上单调递减,求实数a的范围
4.说出下列函数的单调性:
(1) y k x b; (2) y ax 2 bx c; (3) y k ;
x (4 ) y x k (k 0 ).
函数的单调性教案()
函数的单调性教案(优秀)第一章:函数单调性的基本概念1.1 函数单调性的定义教学目标:让学生理解函数单调性的概念,掌握函数单调增和单调减的定义。
教学内容:(1) 引入函数单调性的概念。
(2) 讲解函数单调增和单调减的定义。
(3) 举例说明函数单调性的应用。
教学方法:(1) 采用讲解法,讲解函数单调性的定义和例子。
(2) 采用提问法,引导学生思考函数单调性的含义和应用。
教学步骤:(1) 引入函数单调性的概念,引导学生理解函数单调性的意义。
(2) 讲解函数单调增和单调减的定义,举例说明。
(3) 让学生通过例子判断函数的单调性,加深对函数单调性的理解。
(4) 总结函数单调性的应用,如解不等式、求最值等。
1.2 函数单调性的性质教学目标:让学生掌握函数单调性的性质,包括传递性、同增异减等。
教学内容:(1) 讲解函数单调性的传递性。
(2) 讲解函数单调性的同增异减性质。
(3) 举例说明函数单调性性质的应用。
教学方法:(1) 采用讲解法,讲解函数单调性的性质。
(2) 采用提问法,引导学生思考函数单调性性质的含义和应用。
教学步骤:(1) 讲解函数单调性的传递性,举例说明。
(2) 讲解函数单调性的同增异减性质,举例说明。
(3) 让学生通过例子判断函数的单调性,加深对函数单调性性质的理解。
(4) 总结函数单调性性质的应用,如解不等式、求最值等。
第二章:函数单调性的判断方法2.1 利用导数判断函数单调性教学目标:让学生掌握利用导数判断函数单调性的方法。
教学内容:(1) 讲解导数与函数单调性的关系。
(2) 讲解利用导数判断函数单调性的方法。
(3) 举例说明利用导数判断函数单调性的应用。
教学方法:(1) 采用讲解法,讲解导数与函数单调性的关系及判断方法。
(2) 采用提问法,引导学生思考导数判断函数单调性的含义和应用。
教学步骤:(1) 讲解导数与函数单调性的关系,让学生理解导数在判断函数单调性中的作用。
(2) 讲解利用导数判断函数单调性的方法,举例说明。
3.3函数的单调性
函数的单调性函数的单调性: 一、定义:①()f x 在区间I 上是增函数(递增):121212221112()(,,()())I D x x I x x x x f x f f x f x x <<⎧⎪⎨⎪⇒⎩>⊆∈⇒>、、任意或中文理解:函数值随着自变量的增大而增大(因变量大小与自变量大小一致)。
图像理解:从左到右,由下至上。
②()f x 在区间I 上是减函数(递减):121121212212()(),,()()I D x x I x x f x x f x f x x f x ><<⎧⎪⎨⎪⇒⎩∈>⊆⇒任、、意或中文理解:函数值随着自变量的增大而减小(因变量大小与自变量大小相反)。
图像理解:从左到右,由上至下。
二、知识要点:1、单调区间I 与定义域D 的关系:I D ⊆练1:根据下列函数的图像,分别写出其定义域D 与单调区间增区间I ,单调减区间I 直线型 指、对数型:x y a =与log a y x =(0)y k x b k =+> (0)y k x b k =+< (0)y kx b k =+=二次曲线 幂函数:1:()0:1,0aa y xy x a Q a y x ==⎧=∈⎨==≠⎩2()(0)y a x b c a =-+> 2()(0)y a x b c a =-+< =2y x 3y x = 52y x =D D IIIID D IIIIy=x(1,0)a>1y=log a xy=a x oyx(0,1)0<a<1y=x(1,0)y=log a xy=a x(0,1)oyxboxy y xobb oxyx=boxy c cyx o x=b(0)y a x b c a =-+>(0)y a x b c a =-+<x=bx=bc oxyy xo c=12y x 25y x = 13y x =-=1y x 2y x -= 12y x -=三角函数反三角函数双曲线型函数 函数的对称变换 分段函数 小结:1、单调性是局部性质,是对D 内的某一个子集区间而言。
函数的单调性的题型分类及解析
函数的单调性知识点1、增函数定义、减函数的定义:(1)设函数)(x f y =的定义域为A ,区间M ⊆A ,如果取区间M 中的任意两个值21,x x ,当改变量012>-=∆x x x 时,都有0)()(12>-=∆x f x f y ,那么就称函数)(x f y =在区间M 上是增函数,如图(1)当改变量012>-=∆x x x 时,都有0)()(12<-=∆x f x f y ,那么就称 函数)(x f y =在区间M 上是减函数,如图(2)注意:单调性定义中的x 1、x 2有什么特征:函数单调性定义中的x 1,x 2有三个特征,一是任意性,二是有大小,三是同属于一个单调区间.1、 根据函数的单调性的定义思考:由f (x )是增(减)函数且f (x 1)<f (x 2)能否推出x 1<x 2(x 1>x 2)2、我们来比较一下增函数与减函数定义中y x ∆∆,的符号规律,你有什么发现没有?3、如果将增函数中的“当012>-=∆x x x 时,都有0)()(12>-=∆x f x f y ”改为当012<-=∆x x x 时,都有0)()(12<-=∆x f x f y 结论是否一样呢?4、定义的另一种表示方法如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,若0)()(2121>--x x x f x f 即0>∆∆x y ,则函数y=f(x)是增函数,若0)()(2121<--x x x f x f 即0<∆∆x y,则函数y=f(x)为减函数。
判断题:①已知1()f x x=因为(1)(2)f f -<,所以函数()f x 是增函数. ②若函数()f x 满足(2)(3)f f <则函数()f x 在区间[]2,3上为增函数.③若函数()f x 在区间(1,2]和(2,3)上均为增函数,则函数()f x 在区间(1,3)上为增函数.④因为函数1()f x x =在区间(,0),(0,)-∞+∞上都是减函数,所以1()f x x=在(,0)(0,)-∞⋃+∞上是减函数.通过判断题,强调几点:①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).③单调性是对定义域的某个区间上的整体性质,不能用特殊值说明问题。
高考数学复习考点知识与结论专题讲解5 函数的单调性
高考数学复习考点知识与结论专题讲解第5讲函数的单调性通关一、函数单调性的定义及几何意义图像描述自左向右看,图像是下降的自左向右看,图像是上升的要点诠释(1)函数单调性的实质是函数值的变化与自变量的变化是否一致,一致则为增函数,不一致则为减函数.(2)函数单调性“数”的表现是函数值的增大与减小,“形”的表现是函数图像的上升与下降⊆.(3)“函数的单调区间是M”与“函数在区间N上单调”是两个不同的概念,显然N M(4)一个函数在不同的区间可以有不同的单调性,同一种单调区间用“和”或“,”连接,不能用“”连接.(5)增(减)函数定义中,x x的三个特征:12①任意性;②有大小,即12x x <或12x x >; ③同属于一个单调区间.通关二、函数的最值结论一、定义法证明函数单调性【例1】已知函数()f x 对任意实数,x y 均有()()()f x y f x f y +=+,且当0x >时()0f x >.试判断()f x 的单调性,并说明理由.【解析】设12,x x R ∈且12x x <,则210x x ->,故()210f x x ->.所以()()()()()()()212111211210f x f x f x x x f x f x x f x f x x -=-+-=-+=->⎡⎤⎣⎦.所以()()12f x f x <.故()f x 在(),-∞+∞上为增函数.【变式】已知给定函数()f x 对于任意正数,x y 都有()()()f xy f x f y =⋅,且()0f x ≠,当1x >时()1f x <.试判断()f x 在()0,+∞上的单调性,并说明理由.【解析】对于()0,x ∈+∞有()20f x ff⎡⎤==≥⎣⎦,又()0f x ≠,所以()0f x >.设()12,0,x x ∈+∞,且12x x <,则()()()()()2211211211111x x f x f f x f x x x x f f x f x f x x ⎛⎫⎛⎫⋅ ⎪ ⎪⎛⎫⎝⎭⎝⎭===< ⎪⎝⎭,所以 ()()12f x f x >. 故()f x 在(0,)+∞上为减函数.结论二、函数单调性的正向与逆向理解1. 正向结论:若 ()y f x = 在给定区间上是增函数,则当 12x x < 时, ()()12f x f x <; 当 12x x > 时, ()()12f x f x >;2. 逆向结论:若 ()y f x = 在给定区间上是增函数,则当 ()()12f x f x < 时, 12x x <; 当 ()()12f x f x > 时, 12x x >.【例2】已知()f x 在区间(,)-∞+∞上是增函数, ,a b ∈R 且0a b +…,则下列表达正确的是(). A. ()()[()()]f a f b f a f b +-+… B.()()()()f a f b f a f b +-+-…C. ()()[()()]f a f b f a f b +-+…D.()()()()f a f b f a f b +-+-…【答案】B【解析】0a b +…可转化为a b -…和b a -…,因为()f x 在区间(,)-∞+∞上是增函数, 所以()()f a f b -…且()()f b f a -…,根据同向不等式相加性质得()()f a f b +…()()f a f b -+-. 故选B.【变式】已知()y f x =是定义在(2,2)-上的增函数,若(1)(12)f m f m -<-,则m 的取值范围是_________. 【答案】12,23I ⎛⎫-⎪⎝⎭【解析】由已知可得122112223m m m -<-<-<⇒-<<,故m 的取值范围是12,23⎛⎫- ⎪⎝⎭.结论三、单调性结论设 1212,[,],x x a b x x ∈≠ 那么 ()()()()()1212121200f x f x x x f x f x x x -⎡⎤-->⇔>⇔⎣⎦-()f x 在[,]a b 上是增函数; ()()()()()1212121200()f x f x x x f x f x f x x x -⎡⎤--<⇔<⇔⎣⎦- 在[,]a b 上是减函数.【例3】定义在R 上的函数()f x 满足:对任意的()1212,[0,)x x x x ∈+∞≠, 有()()21210f x f x x x -<-,则(). A.(3)(2)(4)f f f << B.(1)(2)(3)f f f <<C. (2)(1)(3)f f f -<<D. (3)(1)(0)f f f <<【答案】D【解析】因为对任意的()1212,[0,)x x x x ∈+∞≠,有()()21210f x f x x x -<-, 所以函数()f x 在[0,)+∞上是减函数, 因为013<<, 所以(3)(1)(0)f f f <<. 故选 D.【变式】已知函数32()2f x x x mx =-++,若对任意12,x x ∈R , 均满足()()121x x f x⎡--⎣()20f x ⎤>⎦,则实数m 的取值范围是__________.【答案】1,3⎡⎫+∞⎪⎢⎣⎭【解析】由()()()12120x x f x f x ⎡⎤-->⎣⎦可知()f x 在R 上为增函数, 所以()0f x '…在R 上恒成立,而2()32f x x x m '=-+, 所以4120m ∆=-…, 即13m …. 故m 的取值范围是1,3⎡⎫+∞⎪⎢⎣⎭.结论四、单调性性质若函数()f x 在区间I 上具有单词性,则在区间I 上具有以下性质:1. ()f x 与()(f x c c +为常数 )具有相同的单调性.2. 当()f x 非负时, ()f x具有相同的单调性.3. ()f x 与()a f x ⋅在0a > 时具有相同的单调性,在0a <时具有相反的单调性.4. 当()f x 恒不为0时,函数()f x 与1()f x 单调性相反. 【例4】已知函数1()33xxf x ⎛⎫=- ⎪⎝⎭, 则()f x ().A. 是偶函数,且在R 上是增函数B. 是奇函数,且在R 上是增函数C. 是偶函数,且在R 上是减函数D. 是奇函数,且在R 上是减函数【答案】B【解析】1()3333xxx x f x -⎛⎫=-=- ⎪⎝⎭, 所以()33()x xf x f x --=-=-, 即函数()f x 为奇函数,以函数3xy =为增函数, 13x y ⎛⎫= ⎪⎝⎭为减函数,故函数1()33xx f x ⎛⎫=- ⎪⎝⎭为增函数. 故选 B.【变式】若函数1()2ax f x x +=+在(2,)-+∞上为增函数,则实数a 的取值范围为__________. 【答案】1,2⎛⎫+∞⎪⎝⎭【解析】解法一:112()22ax af x a x x +-==+++. 任取122x x -<<, 则()()12f x f x a -=+()()21121212121212121211(12)(12)22222222x x a a a a a a a x x x x x x x x ⎛⎫⎛⎫------+=-=--=- ⎪ ⎪++++++++⎝⎭⎝⎭因为122x x -<<, 所以122120,20,0x x x x +>+>->, 以()()2112022x x x x ->++. 已知函数在(2,)-+∞上单调递增, 故()()120f x f x -<, 所以120a -<, 解得12a >.所以a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭.解法二:112()22ax a f x a x x +-==+++, 因为12x +在(2,)-+∞上单调递减, 1()2ax f x x +=+在(2,)-+∞上单调递增, 所以120a -<, 解得12a >.所以a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭. 结论五、单调性求最值1. 若函数在闭区间[,]a b 上是增函数,则()f x 在[,]a b 上的最小值为()f a , 最大值为()f b ;2. 若函数在闭区间[,]a b 上是减函数,则()f x 在[,]a b 上的最小值为()f b ,最大值为()f a . 【例5】函数()2()log 31x f x =+的值域为().A.(0,)+∞B.[0,)+∞C.(1,)+∞D. [1,)+∞【答案】 A【解析】根据对数函数的定义可知, 310x +>恒成立,解得x ∈R . 因此, 该函数的定义域为R , 原函数()2()log 31x f x =+是由对数函数2log y t =和31x t =+组合成的复合函数. 由复合函数的单调性定义(同增异减) 知道,原函数在定义域R 上是单调递增的. 根据指数函数的性质可知,30x >, 所以,311x +>,所以()22()log 31log 10x f x =+>=. 故选A.【变式】已知函数3()2sin (0,0)x f x ax b x a b =++>>, 若[0,1]x ∈时,()f x 的最大值为3 ,则[1,0)x ∈-时,()f x 的最小值是__________.【答案】12-【解析】因为32,,sin xy y x y x ===在区间[1,1]-上均为单调递增函数, 又0,a b >> 0 , 所以3()2sin x f x ax b x =++在区间[1,1]-上为单调递增函数. 当[0,1]x ∈时, ()f x 的最大值为3(1)21sin13,sin11f a b a b =+⋅+=+=; 当[1,0)x ∈-时,()f x 的最小值为1311(1)2(1)sin(1)(sin1)22f a b a b --=+⋅-+-=-+=-.。
利用导数研究函数的单调性-高中数学知识点讲解
利用导数研究函数的单调性1.利用导数研究函数的单调性【知识点的知识】1、导数和函数的单调性的关系:(1)若f′(x)>0 在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)>0 的解集与定义域的交集的对应区间为增区间;(2)若f′(x)<0 在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)<0 的解集与定义域的交集的对应区间为减区间.2、利用导数求解多项式函数单调性的一般步骤:(1)确定f(x)的定义域;(2)计算导数f′(x);(3)求出f′(x)=0 的根;(4)用f′(x)=0 的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)>0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)<0,则f(x)在对应区间上是减函数,对应区间为减区间.【典型例题分析】题型一:导数和函数单调性的关系典例 1:已知函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4 的解集为()A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣1)D.(﹣∞,+∞)解:f(x)>2x+4,即f(x)﹣2x﹣4>0,设g(x)=f(x)﹣2x﹣4,则g′(x)=f′(x)﹣2,∵对任意x∈R,f′(x)>2,1/ 3∴对任意x∈R,g′(x)>0,即函数g(x)单调递增,∵f(﹣1)=2,∴g(﹣1)=f(﹣1)+2﹣4=4﹣4=0,则由g(x)>g(﹣1)=0 得x>﹣1,即f(x)>2x+4 的解集为(﹣1,+∞),故选:B题型二:导数和函数单调性的综合应用典例 2:已知函数f(x)=alnx﹣ax﹣3(a∈R).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为 45°,对于任意的t∈[1,2],函数푔(푥)=푥3+푥2[푓′(푥) +푚2]在区间(t,3)上总不是单调函数,求m 的取值范围;푙푛2(Ⅲ)求证:2×푙푛33×푙푛44×⋯×푙푛푛1푛(푛≥2,푛∈푁∗).<푛解:(Ⅰ)푓′(푥) =푎(1―푥)푥(푥>0)(2 分)当a>0 时,f(x)的单调增区间为(0,1],减区间为[1,+∞);当a<0 时,f(x)的单调增区间为[1,+∞),减区间为(0,1];当a=0 时,f(x)不是单调函数(4 分)(Ⅱ)푓′(2) =―푎2=1得a=﹣2,f(x)=﹣2lnx+2x﹣3 푚∴푔(푥)=푥3+(2―2푥,2+2)푥∴g'(x)=3x2+(m+4)x﹣2(6 分)∵g(x)在区间(t,3)上总不是单调函数,且g′(0)=﹣22/ 3∴{푔′(푡3))<0>0(8 分)由题意知:对于任意的 t ∈[1,2],g ′(t )<0 恒成立,푔′(1)<0所以有:{푔′(2)<0,∴― 푔′(3)>0 37 3 <푚< ― 9(10 分)(Ⅲ)令 a =﹣1 此时 f (x )=﹣lnx +x ﹣3,所以 f (1)=﹣2,由(Ⅰ)知 f (x )=﹣lnx +x ﹣3 在(1,+∞)上单调递增,∴当 x ∈(1,+∞)时 f (x )>f (1),即﹣lnx +x ﹣1>0,∴lnx <x ﹣1 对一切 x ∈(1,+∞)成立,(12 分)∵n ≥2,n ∈N *,则有 0<lnn <n ﹣1,푙푛푛 푛 ― 1∴0<<푛 푛푙푛2∴ 2 ⋅ 푙푛33 ⋅ 푙푛44 ⋅⋅ 푙푛푛 1 2 ⋅ < 푛2 3 ⋅ 3 4 ⋅⋅ 푛 ― 1 푛 = 1 푛(푛 ≥ 2,푛 ∈ 푁 ∗) 【解题方法点拨】若在某区间上有有限个点使 f ′(x )=0,在其余的点恒有 f ′(x )>0,则 f (x )仍为增函数(减函数的情形完 全类似).即在区间内 f ′(x )>0 是 f (x )在此区间上为增函数的充分条件,而不是必要条件.3/ 3。
函数的单调性与最值(含例题详细讲解)
函数的单调性与最值一、知识梳理1.增函数、减函数一般地.设函数f (x )的定义域为I .区间D ⊆I .如果对于任意x 1.x 2∈D .且x 1<x 2.则 有:(1)f (x )在区间D 上是增函数⇔f (x 1)<f (x 2); (2)f (x )在区间D 上是减函数⇔f (x 1)>f (x 2). 2.单调区间的定义若函数y =f (x )在区间D 上是增函数或减函数.则称函数y =f (x )在这一区间上具有(严格的)单调性.区间D 叫做y =f (x )的单调区间. 3.函数的最值 前提设函数y =f (x )的定义域为I .如果存在实数M 满足条件 ①对于任意x ∈I .都有f (x )≤M ;②存在x 0∈I .使得f (x 0)=M①对于任意x ∈I .都有f (x )≥M ;②存在x 0∈I .使得f (x 0)=M结论 M 为最大值 M 为最小值注意:1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间 只能用区间表示.不能用集合或不等式表示;如有多个单调区间应分别写.不能用并集 符号“∪”联结.也不能用“或”联结.2.两函数f (x ).g (x )在x ∈(a .b )上都是增(减)函数.则f (x )+g (x )也为增(减)函数.但f (x )·g (x ).()1f x 等的单调性与其正负有关.切不可盲目类比. [试一试]1.下列函数中.在区间(0.+∞)上为增函数的是( ) A .y =ln(x +2)B .y =-x +1C .12xy ⎛⎫= ⎪⎝⎭D .y =x +1x解析:选A 选项A 的函数y =ln(x +2)的增区间为(-2.+∞).所以在(0.+∞)上一定是增函数.2.函数f (x )=x 2-2x (x ∈[-2,4])的单调增区间为______;f (x )max =________. 解析:函数f (x )的对称轴x =1.单调增区间为[1,4].f (x )max =f (-2)=f (4)=8.答案:[1,4] 8二、方法归纳1.判断函数单调性的四种方法(1)定义法:取值、作差、变形、定号、下结论;(2)复合法:同增异减.即内外函数的单调性相同时.为增函数.不同时为减函数; (3)图像法:如果f (x )是以图像形式给出的.或者f (x )的图像易作出.可由图像的直观性 判断函数单调性.(4)导数法:利用导函数的正负判断函数单调性. 2.求函数最值的五个常用方法(1)单调性法:先确定函数的单调性.再由单调性求最值.(2)图像法:先作出函数的图像.再观察其最高点、最低点.求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数.再用相应的方法求最值. (4)基本不等式法:先对解析式变形.使之具备“一正二定三相等”的条件后用基本不 等式求出最值.(5)导数法:先求导.然后求出在给定区间上的极值.最后结合端点值.求出最值. 提醒:在求函数的值域或最值时.应先确定函数的定义域. [练一练]1.下列函数中.既是偶函数又在区间(0.+∞)上单调递减的是( ) A .y =1xB .y =e -xC .y =-x 2+1 D. y =lg|x |答案:C 2.函数f (x )=1x 2+1在区间[2,3]上的最大值是________.最小值是________. 答案:15 110三、考点精练考点一 求函数的单调区间1、函数()()5log 21f x x =+的单调增区间是________. 解析:要使()5log 21y x =+有意义.则210x +>.即12x >-.而5log y u =为()0,+∞ 上的增函数.当12x >-时.u =2x +1也为R 上的增函数.故原函数的单调增区间是1,2⎛⎫-+∞ ⎪⎝⎭. 答案:1,2⎛⎫-+∞ ⎪⎝⎭2.函数y =x -|1-x |的单调增区间为________. 解析:y =x -|1-x |=1,121,1x x x ≥⎧⎨-<⎩作出该函数的图像如图所示.由图像可知.该函数的单调增区间是(-∞.1]. 答案:(-∞.1]3.设函数y =f (x )在(),-∞+∞内有定义.对于给定的正数k .定义函数()()()(),,k f x f x k f x k f x k⎧≤⎪=⎨>⎪⎩取函数()2xf x -=.当k =12时.函数()k f x 的单调递增区间为( )A .(-∞.0)B .(0.+∞)C .(-∞.-1)D .(1.+∞)解析:选C 由f (x )>12.得-1<x <1.由f (x )≤12.得x ≤-1或x ≥1.所以()122,11,1122,1x x x f x x x -⎧≥⎪⎪=-<<⎨⎪⎪≤-⎩.故()12f x 的单调递增区间为(-∞.-1).[解题通法]求函数单调区间的方法与判断函数单调性的方法相同即: (1)定义法;(2)复合法;(3)图像法;(4)导数法.考点二 函数单调性的判断[典例] 试讨论函数()()0kf x x k x=+>的单调性. [解] 法一:由解析式可知.函数的定义域是()(),00,-∞⋃+∞.在(0.+∞)内任取1x .2x .令12x x <.那么()()()()122121212121211211x x k k k f x f x x x x x k x x x x x x x x ⎛⎫⎛⎫⎛⎫--=+-+=-+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为120x x <<.所以210x x ->.120x x >. 故当()12,,x x k ∈+∞时.()()12f x f x <.即函数在(),k +∞上单调递增.当()12,0,x x k ∈时.()()12f x f x >.即函数在()0,k 上单调递减. 考虑到函数()()0kf x x k x=+>是奇函数.在关于原点对称的区间上具有相同的单调 性.故在(),k -∞-单调递增.在(),0k -上单调递减. 综上.函数f (x )在(),k -∞-和(),k +∞上单调递增.在(),0k -和()0,k 上单调递减. [解题通法]1.利用定义判断或证明函数的单调性时.作差后要注意差式的分解变形彻底. 2.利用导数法证明函数的单调性时.求导运算及导函数符号判断要准确. [针对训练]判断函数g (x )=-2xx -1在 (1.+∞)上的单调性.解:任取x 1.x 2∈(1.+∞).且x 1<x 2.则()()()()()12121212122221111x x x x g x g x x x x x ----=-=----. 由于1<x 1<x 2.所以x 1-x 2<0.(x 1-1)(x 2-1)>0. 因此g (x 1)-g (x 2)<0.即g (x 1)<g (x 2). 故g (x )在(1.+∞)上是增函数. 考点三 函数单调性的应用 角度一 求函数的值域或最值1.已知函数f (x )对于任意x .y ∈R .总有f (x )+f (y )=f (x +y ).且当x >0时.f (x )<0.f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值. 解:(1)证明:∵函数f (x )对于任意x .y ∈R .总有f (x )+f (y )=f (x +y ).∴令x =y =0.得f (0)=0. 再令y =-x .得f (-x )=-f (x ). 在R 上任取x 1>x 2.则x 1-x 2>0.f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2).又∵当x >0时.f (x )<0.而x 1-x 2>0.∴f (x 1-x 2)<0.即f (x 1)<f (x 2). 因此f (x )在R 上是减函数.(2)∵f (x )在R 上是减函数.∴f (x )在[-3,3]上也是减函数. ∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3). 而f (3)=3f (1)=-2.f (-3)=-f (3)=2. ∴f (x )在[-3,3]上的最大值为2.最小值为-2. 角度二 比较两个函数值或两个自变量的大小 2.已知函数f (x )=log 2x +11-x.若x 1∈(1,2).x 2∈(2.+∞).则( ) A .f (x 1)<0.f (x 2)<0 B .f (x 1)<0.f (x 2)>0 C .f (x 1)>0.f (x 2)<0D .f (x 1)>0.f (x 2)>0解析:选 B ∵函数f (x )=log 2x +11-x在(1.+∞)上为增函数.且f (2)=0.∴当x 1∈(1,2)时.f (x 1)<f (2)=0.当x 2∈(2.+∞) 时.f (x 2)>f (2)=0.即f (x 1)<0.f (x 2)>0. 角度三 解函数不等式3.已知函数()2243,023,0x x x f x x x x ⎧-+≤⎪=⎨--+>⎪⎩则不等式f (a 2-4)>f (3a )的解集为( )A .(2,6)B .(-1,4)C .(1,4)D .(-3,5)解析:选B 作出函数f (x )的图像.如图所示.则函数f (x )在R 上是单调递减的.由f (a2-4)>f (3a ).可得a 2-4<3a .整理得a 2-3a -4<0.即(a +1)(a -4)<0.解得-1<a <4.所以不等式的解集为(-1,4).角度四 求参数的取值范围或值4.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩满足对任意的实数12x x ≠.都有()()12120f x f x x x -<-成立.则实数a 的取值范围为( )A .(-∞.2)B.13,8⎛⎤-∞ ⎥⎝⎦C .(-∞.2]D.13,28⎡⎫⎪⎢⎣⎭解析:选B 函数f (x )是R 上的减函数.于是有()22012212a a -<⎧⎪⎨⎛⎫-⨯≤- ⎪⎪⎝⎭⎩.由此解得a ≤138. 即实数a 的取值范围是13,8⎛⎤-∞ ⎥⎝⎦. [解题通法]1.含“f ”不等式的解法首先根据函数的性质把不等式转化为f (g (x ))>f (h (x ))的形式.然后根据函数的单调性去掉“f ”.转化为具体的不等式(组).此时要注意g (x )与h (x )的取值应在外层函数的定义域内.2.比较函数值大小的思路比较函数值的大小时.若自变量的值不在同一个单调区间内.要利用其函数性质.转化到同一个单调区间上进行比较.对于选择题、填空题能数形结合的尽量用图像法求解.巩固练习一、选择题1.“a =1”是“函数f (x )=x 2-2ax +3在区间[1.+∞)上为增函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件答案:A 解析:f (x )对称轴x =a .当a ≤1时f (x )在[1.+∞)上单调递增.∴“a =1”为f (x )在[1.+∞)上递增的充分不必要条件.2.已知函数()224,04,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩.若f (2-a 2)>f (a ).则实数a 的取值范围是( )A .(-∞.-1)∪(2.+∞)B .(-1,2)C .(-2,1)D .(-∞.-2)∪(1.+∞)答案:C 解析:由题知f (x )在R 上是增函数.由题得2-a 2>a .解得-2<a <1. 3.用min{a .b .c }表示a .b .c 三个数中的最小值.设f (x )=min{2x.x +2,10-x }(x ≥0).则f (x )的最大值为 ( ) A .4B .5C .6D .7答案:C解析:由题意知函数f (x )是三个函数y 1=2x.y 2=x +2.y 3=10-x 中的较小者.作出三个函数在同一坐标系之下的图象(如图中实线部分为f (x )的图象)可知A (4,6)为函数f (x )图象的最高点.4.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数.则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]答案:D 解析:f (x )在[a .+∞)上是减函数.对于g (x ).只有当a >0时.它有两个减区 间为(-∞.-1)和(-1.+∞).故只需区间[1,2]是f (x )和g (x )的减区间的子集即可.则a的取值范围是0<a ≤1.5.已知定义在R 上的增函数f (x ).满足f (-x )+f (x )=0.x 1.x 2.x 3∈R .且x 1+x 2>0.x 2+x 3>0.x 3+x 1>0.则f (x 1)+f (x 2)+f (x 3)的值 ( ) A .一定大于0 B .一定小于0 C .等于0D .正负都有可能答案:A 解析:∵f (-x )+f (x )=0.∴f (-x )=-f (x ). 又∵x 1+x 2>0.x 2+x 3>0.x 3+x 1>0.∴x 1>-x 2.x 2>-x 3.x 3>-x 1.又∵f (x 1)>f (-x 2)=-f (x 2).f (x 2)>f (-x 3)=-f (x 3).f (x 3)>f (-x 1)=-f (x 1). ∴f (x 1)+f (x 2)+f (x 3)>-f (x 2)-f (x 3)-f (x 1).∴f (x 1)+f (x 2)+f (x 3)>0.] 二、填空题6.函数y =-(x -3)|x |的递增区间是________.7.设f (x )是增函数.则下列结论一定正确的是________(填序号). ①y =[f (x )]2是增函数;②y =1f x是减函数;③y =-f (x )是减函数;④y =|f (x )|是增函数.答案:[0.32]解析:()()()()3030x x x y x x x ⎧--≥⎪=⎨-<⎪⎩画图象如图所示:可知递增区间为[0.32].8.设0<x <1.则函数y =1x +11-x 的最小值是________.答案:4解析 y =1x +11-x =1x 1-x .当0<x <1时.x (1-x )=-(x -12)2+14≤14.∴y ≥4. 三、解答题9.已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0.+∞)上是增函数;(2)若f (x )<2x 在(1.+∞)上恒成立.求实数a 的取值范围. (1)证明:当x ∈(0.+∞)时.f (x )=a -1x.设0<x 1<x 2.则x 1x 2>0.x 2-x 1>0.f (x 1)-f (x 2)=(a -1x 1)-(a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2<0.∴f (x 1)<f (x 2).即f (x )在(0.+∞)上是增函数. (2)解:由题意a -1x<2x 在(1.+∞)上恒成立.设h (x )=2x +1x.则a <h (x )在(1.+∞)上恒成立.∵h ′(x )=2-1x 2.x ∈(1.+∞).∴2-1x2>0.∴h (x )在(1.+∞)上单调递增.故a ≤h (1).即a ≤3. ∴a 的取值范围为(-∞.3].10.已知f (x )=x 2+ax +3-a .若x ∈[-2,2]时.f (x )≥0恒成立.求a 的取值范围. 解:设f (x )的最小值为g (a ).则只需g (a )≥0. 由题意知.f (x )的对称轴为-a2.(1)当-a 2<-2.即a >4时.g (a )=f (-2)=7-3a ≥0.得a ≤73.又a >4.故此时的a 不存在.(2)当-a 2∈[-2,2].即-4≤a ≤4时.g (a )=f (-a 2)=3-a -a 24≥0得-6≤a ≤2. 又-4≤a ≤4.故-4≤a ≤2.(3)当-a2>2.即a <-4时.g (a )=f (2)=7+a ≥0得a ≥-7. 又a <-4.故-7≤a <-4.综上得所求a 的取值范围是-7≤a ≤2.11.已知f (x )是定义在[-1,1]上的奇函数.且f (1)=1.若a .b ∈[-1,1].a +b ≠0时. 有()()0f a f b a b+>+成立.(1)判断f (x )在[-1,1]上的单调性.并证明它; (2)解不等式:f (x +12)<f (1x -1);(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立.求实数m 的取值范围. 解:(1)任取x 1.x 2∈[-1,1].且x 1<x 2. 则-x 2∈[-1,1].∵f (x )为奇函数. ∴()()()()()()()()1212121212f x f x f x f x f x f x x x x x +--=+-=-+-由已知得()()()12120f x f x x x +->+-.x 1-x 2<0.∴f (x 1)-f (x 2)<0.即f (x 1)<f (x 2). ∴f (x )在[-1,1]上单调递增. (2)∵f (x )在[-1,1]上单调递增.∴112111121111xxxx⎧+<⎪-⎪⎪-≤+≤⎨⎪⎪-≤<⎪-⎩∴-32≤x<-1.(3)∵f(1)=1.f(x)在[-1,1]上单调递增.∴在[-1,1]上.f(x)≤1.问题转化为m2-2am+1≥1.即m2-2am≥0.对a∈[-1,1]成立.下面来求m的取值范围.设g(a)=-2m·a+m2≥0.①若m=0.则g(a)=0≥0.自然对a∈[-1,1]恒成立.②若m≠0.则g(a)为a的一次函数.若g(a)≥0.对a∈[-1,1]恒成立.必须g(-1)≥0. 且g(1)≥0.∴m≤-2.或m≥2.∴m的取值范围是m=0或|m|≥2.。
函数的基本性质——单调性
3.4 函数的基本性质——单调性【知识解读】1、函数单调性的概念对于给定区间I 上的函数)(x f y =,如果对于任意I x x ∈21,,当21x x <时,都成立 )()(21x f x f <,那么就称)(x f 在区间I 上是单调增函数,区间I 称为函数)(x f 的单调 增区间。
对于给定区间I 上的函数)(x f y =,如果对于任意I x x ∈21,,当21x x <时,都成立 ,那么就称)(x f 在区间I 上是单调减函数,区间I 称为函数)(x f 的 。
2、函数单调性的运算:设)(x f 与)(x g 分别为1I 与2I 上的单调增函数,则)()(x g x f +在21I I I 上单调增 设)(x f 与)(x g 分别为1I 与2I 上的单调减函数,则)()(x g x f +在21I I I 上3、单调性与奇偶性:若奇函数)(x f 在区间],[b a 上单调递增,则它在区间],[a b --上 若偶函数)(x f 在区间],[b a 上单调递增,则它在区间],[a b --上 *4、复合函数单调性:同增异减。
【例题讲解】例1、证明函数()23+=x x f 在区间()+∞∞-,上是增函数。
例2、判别函数24xy =在区间),0(+∞上的单调性,并证明。
例3:判定函数()[]2,4,2-∈=x x x f 的单调性,并求出它的单调区间(不需证明)。
例4、已知函数x x x f +=3)((1)判断并证明)(x f 在R 上的单调性 (2)方程1000)(=x f 有正整数解吗?为什么?例5、写出下列函数的单调区间(不需证明)(1)12)(+=x x f (2)2)1()(-=x x f(3)23)(2+-=x x x f (4)231)(-=x x f例6、已知函数a x a x x f 2)1()(2++-=在区间]1,2[-上单调递减,求实数a 的取值范围。
高中数学必修一-函数的单调性
函数的单调性知识集结知识元利用定义判断函数单调性知识讲解1.定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数;当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.2.单调区间若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用符号“∪”联结,也不能用“或”联结,只能用“和”或“,”连结.3.定义变式设任意x1,x2∈[a,b]且x1≠x2,那么①⇔f(x)在[a,b]上是增函数;⇔f(x)在[a,b]上是减函数.②(x1﹣x2)[f(x1)﹣f(x2)]>0⇔f(x)在[a,b]上是增函数;(x1﹣x2)[f(x1)﹣f(x2)]<0⇔f(x)在[a,b]上是减函数.例题精讲利用定义判断函数单调性例1.如果函数f(x)=(12﹣a)x在实数集R上是减函数,那么实数a的取值范围是()A.(0,12)B.(12,+∞)C.(﹣∞,12)D.(﹣12,12)例2.函数f(x)=(k+1)x+b在实数集上是增函数,则有()A.k>1B.k>﹣1C.b>0D.b<0例3.函数①y=|x|;②y=;③y=;④y=x+在(﹣∞,0)上为增函数的有(填序号).例4.下列四个命题:(1)f(x)=1是偶函数;(2)g(x)=x3,x∈(﹣1,1]是奇函数;(3)若f(x)是奇函数,g(x)是偶函数,则H(x)=f(x)•g(x)一定是奇函数;(4)函数y=f(|x|)的图象关于y轴对称,其中正确的命题个数是()A.1B.2C.3D.4例5.已知y=f(x)(x∈R)为奇函数,则在f(x)上的点是()A.(a,f(﹣a))B.(﹣a,f(a))C.(﹣a,﹣f(a))D.(a,﹣f(a)例6.如果f(x)是定义在R上的奇函数,那么下列函数中,一定为偶函数的是()A.y=x+f(x)B.y=xf(x)C.y=x2+f(x)D.y=x2f(x)通过图象平移得到新函数图象得到单调区间知识讲解1.图象的平移:左加右减(x的变化),上加下减(函数值y的变化)2.图象的对称性:奇偶性3.图象的翻折:含有绝对值的函数图象的画法例题精讲通过图象平移得到新函数图象得到单调区间例1.函数f(x)=x2﹣|x|的单调递减区间是.例2.函数y=|x|的单调递增区间为.例3.函数y=|x|﹣1的减区间为()A.(﹣∞,0)B.(﹣∞,﹣1)C.(0,+∞)D.(﹣1,+∞)例4.函数y=|x﹣1|的递增区间是.备选题库知识讲解本题库作为知识点“函数单调性的定义”的题目补充.例题精讲备选题库例1.下列函数中,既是奇函数,又在(0,+∞)上是增函数的是()A.f(x)=sin x B.f(x)=e x+e-xC.f(x)=x3+x D.f(x)=xlnx例2.函数y=(2m-1)x+b在R上是减函数.则()A.m>B.m<C.m>-D.m<-例3.函数f(x)=-x2+x-1的单调递增区间为()A.B.C.D.例4.已知函数f(x)=-3x+2sin x,若a=f(3),b=-f(-2),c=f(log27),则a,b,c的大小关系为()A.a<b<c B.a<c<bC.c<a<b D.b<c<a例5.定义在R的函数f(x)=-x3+m与函数g(x)=f(x)+x3+x2-kx在[-1,1]上具有相同的单调性,则k的取值范围是()A.(-∞,-2]B.[2,+∞)C.[-2,2]D.(-∞,-2]∪[2,+∞)例6.下列函数中,在区间(0,+∞)上为增函数的是()A.y=B.y=lnxC.y=sin x D.y=2-x例7.下列函数中,值域为R且在区间(0,+∞)上单调递增的是()A.y=x2+2x B.y=2x+1C.y=x3+1D.y=(x-1)|x|例8.函数f(x)=x|x-2|的递减区间为()A.(-∞,1)B.(0,1)C.(1,2)D.(0,2)利用定义法证明单调性知识讲解1.利用定义证明单调性的步骤(1)取值:设,是所研究的区间内的任意两个值,且(2)作差:(3)变形:将通过因式分解、配方、通分、有理化等方法变形为有利于判断它的符号的形式.(4)判断符号(5)结论2函数单调性的常见结论(1)函数y=-f(x)与函数y=f(x)的单调性相反;(2)函数f(x)与函数f(x)+c(c为常数)具有相同的单调性;(3)当c>0时,函数y=cf(x)与函数y=f(x)的单调性相同;当c<0时,函数y=cf(x)与函数y=f(x)的单调性相反;(4)若f(x)≠0,则函数f(x)与具有相反的单调性;(5)若,函数与具有相同的单调性;(6)若,具有相同的单调性,则与,具有相同的单调性;(7)若,具有相反的单调性,则与具有相同(与具有相反)的单调性。
2函数的基本性质(单调性、奇偶性、周期性)(含答案)
函数的基本性质一、知识点1.对函数单调性的理解(1)函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域; (2)一些单调性的判断规则:①若)(x f 与)(x g 在定义域内都是增函数(减函数),那么)()(x g x f +在其公共定义域内是增函数(减函数)即“同加异减”减时和第一个单调性相同。
②复合函数的单调性规则是“同增异减”。
2.函数的奇偶性的定义:(1)对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f -=-,则称)(x f 为 . 奇函数的图象关于 对称。
(2)对于函数)(x f 的定义域内任意一个x ,都有)()(x f x f =-,则称)(x f 为 . 偶函数的图象关于 对称。
(3)通常采用图像或定义判断函数的奇偶性. 具有奇偶性的函数,其定义域原点关于对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。
3.奇偶函数图象的对称性(1)若)(x a f y +=是偶函数,则⇔=-⇔-=+)()2()()(x f x a f x a f x a f )(x f 的图象关于直线a x =对称;(2)若)(x b f y +=是偶函数,则⇔-=-⇔+-=-)()2()()(x f x b f x b f x b f )(x f 的图象关于点)0,(b 中心对称;4.若函数满足()()x f a x f =+,则函数的周期为T=a 。
二、例题讲解1.下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数是( ) A .||2x y = B .3y x = C .12+-=x y D .y =cosx 【答案】C 【解析】试题分析:偶函数需满足()()f x f x -=,由此验证可知A,C,D 都是偶函数,但要满足在区间(0,+∞)上单调递减,验证可知只有C 符合. 考点:偶函数的判断,函数的单调性.2.2()24f x x x =-+的单调减区间是 .【答案】(,1)-∞ 【解析】试题分析:将函数进行配方得22()24(1)3f x x x x =-+=-+,又称轴为1x =,函数图象开口向上,所以函数的单调减区间为(,1)-∞. 考点:二次函数的单调性.3.函数22log (23)y x x =+-的单调递减区间为( )A .(-∞,-3)B .(-∞,-1)C .(1,+∞)D .(-3,-1) 【答案】A 【解析】试题分析:由2230x x +->,得3x <-或1x >,∴()f x 的定义域为(,3)(1,)-∞-+∞.22log (23)y x x =+-可看作由2log y u =和223u x x =+-复合而成的,223u x x =+-=2(1)4x +-在(,3)-∞-上递减,在(1,)+∞上递增,又2log y u =在定义域内单调递增,∴22log (23)y x x =+-在(,3)-∞-上递减,在(1,)+∞上递增,所以22log (23)y x x =+-的单调递减区间是(,3)-∞-,故选A .考点:复合函数的单调性.4.已知5)2(22+-+=x a x y 在区间(4,)+∞上是增函数,则a 的范围是( )A.2a ≤-B.2a ≥-C.6-≥aD.6-≤a 【答案】B 【解析】试题分析:函数5)2(22+-+=x a x y 的图像是开口向上以2x a =-为对称轴的抛物线,因为函数在区间(4,)+∞上是增函数,所以24a -≤,解得2a ≥-,故A 正确。
函数单调性的性质与判断-高中数学知识点讲解
函数单调性的性质与判断1.函数单调性的性质与判断【知识点的认识】一般地,设函数f(x)的定义域为I,如果对于定义域I 内某个区间D 上的任意两个自变量x1,x2,当x1<x2 时,都有f(x1)<f(x2),那么就说函数f(x)在区间D 上是增函数;当x1>x2 时,都有f(x1)<f (x2),那么就说函数f(x)在区间D 上是减函数.若函数f(x)在区间D 上是增函数或减函数,则称函数f(x)在这一区间具有(严格的)单调性,区间D 叫做y=f(x)的单调区间.【解题方法点拨】证明函数的单调性用定义法的步骤:①取值;②作差;③变形;④确定符号;⑤下结论.利用函数的导数证明函数单调性的步骤:第一步:求函数的定义域.若题设中有对数函数一定先求定义域,若题设中有三次函数、指数函数可不考虑定义域.第二步:求函数f(x)的导数f′(x),并令f′(x)=0,求其根.第三步:利用f′(x)=0 的根和不可导点的x 的值从小到大顺次将定义域分成若干个小开区间,并列表.第四步:由f′(x)在小开区间内的正、负值判断f(x)在小开区间内的单调性;求极值、最值.第五步:将不等式恒成立问题转化为f(x)max≤a 或f(x)min≥a,解不等式求参数的取值范围.第六步:明确规范地表述结论【命题方向】从近三年的高考试题来看,函数单调性的判断和应用以及函数的最值问题是高考的热点,题型既有选择题、填空题,又有解答题,难度中等偏高;客观题主要考查函数的单调性、最值的灵活确定与简单应用,主观题在考查基本概念、重要方法的基础上,又注重考查函数方程、等价转化、数形结合、分类讨论的思想方法.预测明年高考仍将以利用导数求函数的单调区间,研究单调性及利用单调性求最值或求参数的取值范围为主要考点,重点考查转化与化归思想及逻辑推理能力.1/ 1。
函数的单调性讲义
第2节 单调性问题5/32基础知识诊断 回顾教材 务实基础【知识梳理】考点1 单调性基础问题 1.函数的单调性函数单调性的判定方法:设函数()y f x =在某个区间内可导,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数. 2.已知函数的单调性问题①若()f x 在某个区间上单调递增,则在该区间上有()0f x '≥恒成立(但不恒等于0);反之,要满足()0f x '>,才能得出()f x 在某个区间上单调递增;②若()f x 在某个区间上单调递减,则在该区间上有()0f x '≤恒成立(但不恒等于0);反之,要满足()0f x '<,才能得出()f x 在某个区间上单调递减.考点2 讨论单调区间问题 类型一 不含参数单调性讨论第一步:求导化简定义域(化简应先通分,尽可能因式分解;定义域需要注意是否是连续的区间); 第二步:变号保留定号去(变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);第三步:求根做图得结论(如能直接求出导函数等于0的根,并能做出导函数与x 轴位置关系图,则导函数正负区间段已知,可直接得出结论);第四步:未得结论断正负(若不能通过第三步直接得出结论,则先观察导函数整体的正负); 第五步:正负未知看零点(若导函数正负难判断,则观察导函数零点);第六步:一阶复杂求二阶(找到零点后仍难确定正负区间段,或一阶导函数无法观察出零点,则求二阶导); 求二阶导往往需要构造新函数,令一阶导函数或一阶导函数中变号部分为新函数,对新函数再求导. 第七步:借助二阶定区间(通过二阶导正负判断一阶导函数的单调性,进而判断一阶导函数正负区间段); 第八步:综上所述得圆满.类型二 含参数单调性讨论第一步:求导化简定义域 (化简应先通分,然后能因式分解要进行因式分解,定义域需要注意是否是一个连续的区间);第二步:变号保留定号去 (变号部分:导函数中未知正负,需要单独讨论的部分.定号部分:已知恒正或恒负,无需单独讨论的部分);第三步:恒正恒负先讨论 (变号部分因为参数的取值恒正恒负); 第四步:然后再求有效根;第五步: 根的分布来定参(此处需要从两方面考虑:根是否在定义域内和多根之间的大小关系); 第六步:导数图像定区间(作图原理同穿针引线法解高次不等式); 第七步:综上所述得圆满.基础知识诊断 回顾教材 务实基础 考点一 单调性基础问题1.求单调区间【例1】(2020•南岗期末)函数21()9ln 2f x x x =-的单调递减区间是( ) A .(03),B .(3)-∞,C .(3)+∞,D .(33)-,2.根据单调区间求参数范围【例2】(2021•宁德期末)已知函数12)(++=x ax x f ,若函数)(x f 在区间)0[∞+,上单调递增,则实数a 的取值范围是( ) A .0≥a B .2≥a C .2<a D .2≤a【例3】(2021•呼和浩特月考)若函数123)(23++-=x x a x x f 区间]321[,上不单调,则实数a 的取值范围 是( ) A .)252(,B .)252[,C .)3102(,D .)3102[,【解题总结】以上是单调问题常见题型三剑客,即求单调、已知单调求参范围、已知不单调求参范围,这里要注意一个细节,即是否取等.【训练1】(2021•太原期末)函数()xxf x e =的单调递增区间是( ) A .(1]-∞-, B .(1]-∞,C .[1)-+∞,D .[1,)+∞【训练2】(2020•全国Ⅰ理)已知函数2()x f x e ax x =+-. (1)当1a =时,讨论()f x 的单调性;【训练3】(2020•兴庆期末)若函数()ln mf x x x=-在[1,3]上为增函数,则m 的取值范围为( ) A .(-∞,1]-B .[3-,)+∞C .[1-,)+∞D .(-∞,3]-【训练4】(2020•梅州期末)若函数()21af x x x =++在区间[0,)+∞上单调递增,实数a 的取值范围是( )A .0a ≥B .2a ≥C .2a <D .2a ≤考点二 讨论单调区间问题1.不含参数单调性讨论【例4】(2020•新课标Ⅰ)已知函数)2()(+-=x a e x f x . (1)当1=a 时,讨论)(x f 的单调性;【例5】(2020•新课标Ⅰ)已知函数x ax e x f x -+=2)( (1)当1=a 时,讨论)(x f 的单调性;【拓展提升】(2020•新课标Ⅰ)已知函数1ln 2)(+=x x f .(1)设0>a ,讨论函数ax a f x f x g --=)()()(的单调性.【解题总结】1.关于含参函数单调性的讨论问题,要根据导函数的情况来作出选择,通过对新函数零点个数的讨论,从而得到原函数对应导数的正负,最终判断原函数的增减.(注意定义域的间断情况).2.需要求二阶导的题目,往往通过二阶导的正负来判断一阶导函数的单调性,结合一阶导函数端点处的函数值或零点可判断一阶导函数正负区间段. 3.利用草稿图像辅助说明.【训练1】(2020•新课标Ⅰ) 已知函数x x x f 2sin sin )(2=.(1)讨论)(x f 在区间)0(π,的单调性;【训练2】(2019•新课标Ⅰ)已知函数11ln )(-+-=x x x x f (1)讨论)(x f 的单调性;【训练3】(2014•新课标Ⅰ)已知函数x e e x f x x 2)(--=-. (1)讨论)(x f 的单调性;2.含参数单调性讨论情形一 变号函数为一次函数【例7】(2019•重庆模考)已知函数)(1ln )(R a x ax x f ∈++=. (1)讨论函数)(x f 的单调性;情形二 变号函数为准一次函数【例8】(2019•广东二模)已知函数()21x f x ae x =+-.(其中常数 71828.2=e ,是自然对数的底数.) (1)讨论函数)(x f 的单调性;【训练4】(2020•广西联考)已知函数x a x x f ln 1)(--=, (1)求函数)(x f 的极值.【训练5】(2020•重庆二模)已知函数x b x a x f +=ln )((其中2≤a 且0≠a ),且)(x f 的一个极值点为ex 1=. (1)求函数)(x f 的单调区间;情形三 变号函数为二次函数型知识点讲解:变号函数为二次函数时,变号函数为0的方程一般有两个不同实数根1x ,2x (无根情况下二次函数恒正或恒负,只有一根时情况类似,故不作为讨论重点),理论上要分12x x >,12x x <进行讨论; 若函数()f x 有定义域限制,则方程往往会涉及根的分布问题,需要结合定义域对根的分布进行分类讨论. 可因式分解【例9】(2017•新课标Ⅰ)已知函数x a ax x x f )12(ln )(2+++=. (1)讨论函数)(x f 的单调性;不可因式分解型【例10】(2014•山东) 设函数11ln )(+-+=x x x a x f ,其中a 为常数. (1)若0=a ,求曲线)(x f y =在点))1(1(f ,处的切线方程; (2)讨论)(x f 的单调区间.【训练6】(2019•新课标Ⅰ)已知函数b ax x x f +-=232)(. (1)讨论)(x f 的单调性;【训练7】(2020•新课标Ⅰ) 已知函数23)(k kx x x f +-=.(1)讨论)(x f 的单调性;【训练8】(2020•马鞍山二模) 已知函数x e ae x f x x +-=-)()0(>a (1)讨论)(x f 的单调性;情形四 变号函数为准二次函数型【例11】(2017•新课标Ⅰ) 已知函数x a a e e x f x x 2)()(--=. (1)讨论)(x f 的单调性.【解题总结】1.二次型结构2ax bx c ++,当且仅当0a =时,变号函数为一次函数.此种情况是最特殊的,故应最先讨论,遵循先特殊后一般的原则,避免写到最后忘记特殊情况,导致丢解漏解.2.对于不可以因式分解的二次型结构2ax bx c ++,我们优先考虑参数取值能不能引起恒正恒负. 3.注意定义域以及根的大小关系.考点三 零点比大小破解双参范围(拓展提升)1.()kx b f x 恒成立,求bk的最值和取值范围; 2.()kx bf x 恒成立,求bk的最值和取值范围. 如图3-3-1所示,通常的方法是构造函数()()g x f x kx ,则min()g x b 时,从而达到解决此类型的目的,这种解答方法适合解答题,但此类型题目出现在选填压轴题的几率更大,常规思路由于计算量大,对一道客观题来说没必要,故需要采纳一些高观点低运算的方法,此类型可以利用数形结合的思想,如图3-3-2所示,通常()yf x 是一个凹函数(()0)f x ,如()kx bf x 意味着()yf x 与ykx b 相切时即恒成立,(0)bk,是直线和x 轴的交点,记为2(0)x ,,将()y f x 的唯一零点1x 求出,满足12bx x k即可.图3-3-1 图3-3-2 图3-3-3 图3-3-4 同理,在比较()kx bf x 时,也是一类型转化,此时()yf x 为凸函数(()0)f x ,也将图3-3-3的方案转化为图3-3-4,构造12bx x k;四个图中的虚线直线是不可能满足题目要求的,此方法叫零点比大小. 【例12】(2021•成都期末)设k b R ,,不等式1ln kx b x 在(0),上恒成立,则bk的最小值是( ) A .2e B .1eC .21eD .e【例13】(2021•镇海月考)不等式42(4)x e x ax b a b R a 、,对任意实数x 恒成立,则44b a 的最大值为( ) A .ln2 B .1ln2C .2ln2D .22ln2【跟踪训练13】(2021•浙江月考)已知a b R ,,若1x e ax b 对任意实数x 恒成立恒成立,则1b a a的取值范围为_______.【跟踪训练14】(2020•武汉二模)函数()ln f x x ,()()2g x a e x b .不等式()()f x g x 在(0)x ,恒成立,则ba的最小值是()A.12eB.1eC.e D.e。
函数的单调性与值域 - 解析版
函数单调性与值域【教学目标】一、函数单调性【知识点】 函数的单调性(1)函数单调性的定义:一般地,设函数()f x 的定义域为x ,如果对于定义域()f x −内的某个区间y 内的任意两个自变量()f x ,当y 时,都有()f x −(()f x ),那么就说()f x −−在区间x 上是增函数(减函数)。
如果一个函数在某个区间M 上是增函数或者是减函数,就说这个函数在这个区间M 上具有单调性. 其中,区间M 称为单调区间.增(减)函数定义中的y ,x 的三个特征:一是任意性;二是有大小,即()1xf x x =−−;三是同属于一个单调区间,三者缺一不可。
(一)定义法证明函数单调性【知识点】用定义证明函数的单调性的步骤: 1.取数:任取1212x x D x x ∈<,,且; 2.作差: 12()()f x f x -;3.变形:通常是通分、因式分解和配方;4.定号:判断差12()()f x f x -的正负;5.结论:指出函数()f x 在给定的区间D 上的单调性.【例题讲解】★☆☆例题1.根据定义证明函数1y x x=+在区间1,)+∞(上单调递增。
证明:1212,(1,),,x x x x ∀∈+∞<且有12121212,(1,),1, 1.1,10x x x x x x x x ∈+∞>>>−>由得所以★☆☆练习1.已知函数[]()0,21f x x =−∈+(,x ,用定义证明()f x 在区间[]0,2上是增函数.由1202x x ≤≤< ,得()()21120110x x x x ->,++> ,所以()()120f x f x -< ,即()()12f x f x < , 故()f x 在区间[]0,2 上是增函数. 知识点要点总结:定义法证明函数单调性的步骤是比较固定的,需要注意的就是第3步变形过程中注意,变形的目的是化成一个能够判断正负的形式,结合12x x <能够判断正负。
高考数学讲义函数的单调性
一、函数的三要素是什么?二、求函数的定义域有哪些方法?三、求函数的值域有哪些方法?四、函数()y f x =的图象如何通过函数()y f x =的图象变换得到?五、函数()y f x =的图象如何通过函数()y f x =的图象变换得到?一、函数单调性的定义:①如果函数()f x 对区间D 内的任意12,x x ,当12x x <时都有()()12f x f x <,则称()f x 在D 内是增函数;当12x x <时都有()()12f x f x >,则()f x 在D 内时减函数.②设函数()y f x =在某区间D 内可导,若()0f x '>,则()y f x =为x D ∈的增函数;若()0f x '<,则()y f x =为x D ∈的减函数. 1. 单调性的定义①的等价形式: 设[]12,,x x a b ∈,那么()()()12120f x f x f x x x ->⇔-在[],a b 是增函数;()()()12120f x f x f x x x -<⇔-在[],a b 是减函数;()()()12120x x f x f x --<⎡⎤⎣⎦()f x ⇔在[],a b 是减函数.2. 函数单调性的应用即若()f x 在区间D 上递增(递减)且()()f x f x x x <⇔<(x ,x D ∈);函数的单调性知识讲解知识回顾若()f x 在区间D 上递递减且1212()()f x f x x x <⇔>.(1x 2,x D ∈). ①比较函数值的大小. ②可用来解不等式. ③求函数的值域或最值等二、主要方法1.讨论函数单调性必须在其定义域内进行,因此要研究函数单调性必须先求函数的定义域,函数的单调区间是定义域的子集; 2.判断函数的单调性的方法有: (1)定义法;用定义法证明函数单调性的一般步骤:①取值:即设1x ,2x 是该区间内的任意两个值,且12x x <②作差变形:通过因式分解、配方,有理化等方法,向有利于判断差的符号的方向变形. ③定号:确定差12()()f x f x -(或21()()f x f x -)的符号,若符号不确定,可以进行分类讨论. ④下结论:即根据定义得出结论,注意下结论时不要忘记说明区间.(2)如果()f x 在区间D 上是增(减)函数,那么()f x 在D 的任一非空子区间上也是增(减)函数; (3)图象法;(4)复合函数的单调性结论:“同增异减” ; (5)在公共定义域内增函数()f x +增函数()g x 是增函数;减函数()f x +减函数()g x 是减函数; 增函数()f x -减函数()g x 是增函数; 减函数()f x -增函数()g x 是减函数.(6)函数(0,0)by ax a b x =+>>在,,b b a a ⎛⎫-∞-+∞ ⎪ ⎪⎝⎭或上单调递增;在,00b b a a ⎡⎫⎛-⎪ ⎢⎪ ⎣⎭⎝或,上是单调递减.题型一、利用定义证明函数的单调性 【例1】 判断函数()21f x x =+,()1x ∈-+∞,的单调性,并证明.【练一练】试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性.题型二、利用定义证明函数的单调性 【例2】 求下列函数的单调区间:(1)|1|y x =-;(2)1y x x=+(0x >).【例3】 画出下列函数图象并写出函数的单调区间(1)22||1y x x =-++ (2)2|23|y x x =-++题型三、复合函数的单调性 【例4】 求函数212y x x =++的单调区间.题型四、利用函数单调性比较大小【例6】 如果函数()2f x x bx c =++对任意的x R ∈都有()()22f x f x -=-,试比较()()()1,2,4f f f 的大小.【例7】 已知()f x 在区间(,)-∞+∞上是减函数,,a b ∈R 且0a b +≤,则下列表达正确的是( )A .()()[()()]f a f b f a f b +≤-+B .()()()()f a f b f a f b +≤-+-C .()()[()()]f a f b f a f b +≥-+D .()()()()f a f b f a f b +≥-+-题型五、利用函数的单调性求函数的值域及最值 【例8】 求函数1()f x x x=+,0x >的最小值.题型六、利用单调性求参数的取值范围【例10】设函数()(21)f x a x b =-+是R 上的减函数,则a 的范围为( )A .12a ≥B .12a ≤C .12a >-D .12a <【例11】若()f x 是R 上的减函数,且()f x 的图象经过点(03)A ,和点(31)B -,,则不等式|(1)1|2f x +-<的解集为( ). A .(3)-∞,B .(2)-∞,C .(03),D .(12)-,题型七、抽象函数的单调性【例12】已知函数()f x 对任意,x y ∈R ,总有()()()f x f y f x y +=+,且当0x >时,()0f x <,()213f =-.(1)求证:()()f x f x -=-; (2)求证:()f x 在R 上是减函数; (3)求()f x 在[]3,3-上的最大值和最小值;【练1】 函数21x y x =-(x ∈R ,1x ≠)的递增区间是( )A .2x ≥B .0x ≤或2x ≥C .0x ≤D .12x ≤或2x 【练2】 函数()12ax f x x +=+在()2-+∞,上为增函数,则a 的取值范围是 . 【练3】 设函数()1f x x x=-.对任意[)1,x ∈+∞,()()0f mx mf x +<恒成立,则实数m 的取值范围是 .【练4】 设函数()x af x x b+=+(0a b >>),求()f x 的单调区间,并证明()f x 在其单调区间上的单调性.【练5】 证明函数3y x =在定义域上是增函数.【练6】 证明函数()31f x x =-+在(),-∞+∞上是减函数.【练7】 已知2()82,f x x x =+-若2()(2)g x f x =-试确定()g x 的单调区间和单调性.随堂练习【练8】 已知函数的定义域为R ,对任意实数都有()()()f m n f m f n +=⋅,且当时,.(1)证明:(0)1,f =且0x <时,()1f x >; (2)证明:在R 上单调递减;(3){}{}22(,)|()()(1),(,)|(2)1,,A x y f x f y f B x y f ax y a R =⋅>=-+=∈若,A B =∅I 试确定的取值范围.【练9】 已知()f x 是定义在R 上的增函数,对R x ∈有()0f x >,且()51f =,设()()()1F x f x f x =+,讨论()F x 的单调性,并证明你的结论.【练10】 已知给定函数()f x 对于任意正数x ,y 都有()f xy =()f x ·()f y ,且()0f x ≠,当1x >时,()1f x <.试判断()f x 在(0,)+∞上的单调性,并说明理由.()f x ,m n 0x >0()1f x <<()f x a【题1】 作出函数2||y x x =-的图象,并结合图象写出它的单调区间.【题2】 讨论函数2()1xf x x =-(11)x -<<的单调性.【题3】 设()f x 是定义在R 上的函数,对m 、n ∈R 恒有()()()f m n f m f n +=⋅,且当0x >时,0()1f x <<.(1)求证:(0)1f =; (2)证明:x ∈R 时恒有()0f x >; (3)求证:()f x 在R 上是减函数; (4)若()(2)1f x f x ⋅+>,求x 的范围. 课后作业【题4】 已知()f x 是定义在+R 上的增函数,且()()()x f f x f y y=-.(1)求证:(1)0f =,()()()f xy f x f y =+; (2)若(2)1f =,解不等式1()()23f x f x -≤-.。
【人教版】必修一数学:08-函数的单调性:知识讲解和巩固练习-函数的单调性-基础(基础版,含答案)
函数的单调性【学习目标】1.理解函数的单调性定义;2.会判断函数的单调区间、证明函数在给定区间上的单调性; 3.学会运用单调性的定义求函数的最大(小)值。
【要点梳理】要点一、函数的单调性1.增函数、减函数的概念一般地,设函数f(x)的定义域为A ,区间D A ⊆:如果对于D 内的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数.如果对于D 内的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)>f(x 2),那么就说f(x)在区间D 上是减函数.要点诠释:(1)属于定义域A 内某个区间上;(2)任意两个自变量12,x x 且12x x <; (3)都有1212()()(()())f x f x f x f x <>或;(4)图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的. 2.单调性与单调区间 (1)单调区间的定义如果函数f(x)在区间D 上是增函数或减函数,那么就说函数f(x)在区间D 上具有单调性,D 称为函数f(x)的单调区间.函数的单调性是函数在某个区间上的性质. 要点诠释:①单调区间与定义域的关系----单调区间可以是整个定义域,也可以是定义域的真子集; ②单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的; ③不能随意合并两个单调区间; ④有的函数不具有单调性.(2)已知解析式,如何判断一个函数在所给区间上的单调性? 3.证明函数单调性的步骤(1)取值.设12x x ,是()f x 定义域内一个区间上的任意两个量,且12x x <;(2)变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形; (3)定号.判断差的正负或商与1的大小关系; (4)得出结论.4.函数单调性的判断方法(1)定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断。
高考数学一轮复习考点知识专题讲解15---导数与函数的单调性
高考数学一轮复习考点知识专题讲解导数与函数的单调性考点要求1.结合实例,借助几何直观了解函数的单调性与导数的关系.2.能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).知识梳理1.函数的单调性与导数的关系条件恒有结论函数y=f(x)在区间(a,b)上可导f′(x)>0f(x)在区间(a,b)上单调递增f′(x)<0f(x)在区间(a,b)上单调递减f′(x)=f(x)在区间(a,b)上是常数函数2.利用导数判断函数单调性的步骤第1步,确定函数的定义域;第2步,求出导数f′(x)的零点;第3步,用f′(x)的零点将f(x)的定义域划分为若干个区间,列表给出f′(x)在各区间上的正负,由此得出函数y=f(x)在定义域内的单调性.常用结论1.若函数f(x)在(a,b)上单调递增,则x∈(a,b)时,f′(x)≥0恒成立;若函数f(x)在(a,b)上单调递减,则x∈(a,b)时,f′(x)≤0恒成立.2.若函数f(x)在(a,b)上存在单调递增区间,则x∈(a,b)时,f′(x)>0有解;若函数f(x)在(a,b)上存在单调递减区间,则x∈(a,b)时,f′(x)<0有解.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.(√)(2)在(a,b)内f′(x)≤0且f′(x)=0的根有有限个,则f(x)在(a,b)内单调递减.(√)(3)若函数f(x)在定义域上都有f′(x)>0,则f(x)在定义域上一定单调递增.(×)(4)函数f(x)=x-sin x在R上是增函数.(√)教材改编题1.f′(x)是f(x)的导函数,若f′(x)的图象如图所示,则f(x)的图象可能是()答案C解析由f′(x)的图象知,当x∈(-∞,0)时,f′(x)>0,∴f(x)单调递增;当x ∈(0,x 1)时,f ′(x )<0,∴f (x )单调递减; 当x ∈(x 1,+∞)时,f ′(x )>0, ∴f (x )单调递增.2.函数f (x )=(x -2)e x 的单调递增区间为________. 答案(1,+∞)解析f (x )的定义域为R ,f ′(x )=(x -1)e x , 令f ′(x )=0,得x =1, 当x ∈(1,+∞)时,f ′(x )>0; 当x ∈(-∞,1)时,f ′(x )<0, ∴f (x )的单调递增区间为(1,+∞).3.若函数f (x )=13x 3-32x 2+ax +4的单调递减区间为[-1,4],则实数a 的值为________.答案-4解析f ′(x )=x 2-3x +a ,且f (x )的单调递减区间为[-1,4],∴f ′(x )=x 2-3x +a ≤0的解集为[-1,4],∴-1,4是方程f ′(x )=0的两根, 则a =(-1)×4=-4.题型一 不含参数的函数的单调性 例1(1)函数y =4x 2+1x的单调递增区间为()A .(0,+∞) B.⎝ ⎛⎭⎪⎫12,+∞C .(-∞,-1) D.⎝ ⎛⎭⎪⎫-∞,-12答案B解析由y =4x 2+1x,得y ′=8x -1x2(x ≠0),令y ′>0,即8x -1x 2>0,解得x >12,∴函数y =4x 2+1x 的单调递增区间为⎝⎛⎭⎪⎫12,+∞. (2)已知定义在区间(0,π)上的函数f (x )=x +2cos x ,则f (x )的单调递增区间为__________________. 答案⎝ ⎛⎭⎪⎫0,π6,⎝⎛⎭⎪⎫5π6,π 解析f ′(x )=1-2sin x ,x ∈(0,π). 令f ′(x )=0,得x =π6或x =5π6, 当0<x <π6时,f ′(x )>0, 当π6<x <5π6时,f ′(x )<0, 当5π6<x <π时,f ′(x )>0, ∴f (x )在⎝ ⎛⎭⎪⎫0,π6和⎝⎛⎭⎪⎫5π6,π上单调递增,在⎝ ⎛⎭⎪⎫π6,5π6上单调递减.教师备选 若函数f (x )=ln x +1e x,则函数f (x )的单调递减区间为________. 答案(1,+∞)解析f (x )的定义域为(0,+∞),f ′(x )=1x-ln x -1e x,令φ(x )=1x-ln x -1(x >0),φ′(x )=-1x 2-1x<0,φ(x )在(0,+∞)上单调递减,且φ(1)=0, ∴当x ∈(0,1)时,φ(x )>0, 当x ∈(1,+∞)时,φ(x )<0,∴f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.思维升华确定不含参的函数的单调性,按照判断函数单调性的步骤即可,但应注意一是不能漏掉求函数的定义域,二是函数的单调区间不能用并集,要用“逗号”或“和”隔开.跟踪训练1(1)函数f (x )=x 2-2ln x 的单调递减区间是() A .(0,1) B .(1,+∞) C .(-∞,1) D .(-1,1) 答案A解析∵f ′(x )=2x -2x=2(x +1)(x -1)x(x >0),令f ′(x )=0,得x =1,∴当x ∈(0,1)时,f ′(x )<0,f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.(2)函数f (x )=(x -1)e x -x 2的单调递增区间为________,单调递减区间为________. 答案(-∞,0),(ln2,+∞)(0,ln2) 解析f (x )的定义域为R ,f ′(x )=x e x -2x =x (e x -2), 令f ′(x )=0,得x =0或x =ln2,当x 变化时,f ′(x ),f (x )的变化情况如下表,∴f (x )的单调递增区间为(-∞,0),(ln2,+∞),单调递减区间为(0,ln2). 题型二 含参数的函数的单调性例2已知函数f (x )=12ax 2-(a +1)x +ln x ,a >0,试讨论函数y =f (x )的单调性.解函数的定义域为(0,+∞),f ′(x )=ax -(a +1)+1x =ax 2-(a +1)x +1x=(ax -1)(x -1)x.令f ′(x )=0,得x =1a或x =1.①当0<a <1时,1a>1,∴x ∈(0,1)和⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )>0;x ∈⎝⎛⎭⎪⎫1,1a 时,f ′(x )<0, ∴函数f (x )在(0,1)和⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1,1a 上单调递减;②当a =1时,1a=1,∴f ′(x )≥0在(0,+∞)上恒成立, ∴函数f (x )在(0,+∞)上单调递增; ③当a >1时,0<1a<1,∴x ∈⎝ ⎛⎭⎪⎫0,1a 和(1,+∞)时,f ′(x )>0;x ∈⎝ ⎛⎭⎪⎫1a ,1时,f ′(x )<0, ∴函数f (x )在⎝ ⎛⎭⎪⎫0,1a 和(1,+∞)上单调递增,在⎝ ⎛⎭⎪⎫1a ,1上单调递减. 综上,当0<a <1时,函数f (x )在(0,1)和⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1,1a 上单调递减;当a =1时,函数f (x )在(0,+∞)上单调递增;当a >1时,函数f (x )在⎝ ⎛⎭⎪⎫0,1a 和(1,+∞)上单调递增,在⎝ ⎛⎭⎪⎫1a ,1上单调递减.延伸探究若将本例中参数a 的范围改为a ∈R ,其他条件不变,试讨论f (x )的单调性? 解当a >0时,讨论同上; 当a ≤0时,ax -1<0, ∴x ∈(0,1)时,f ′(x )>0;x ∈(1,+∞)时,f ′(x )<0,∴函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减.综上,当a ≤0时,函数f (x )在(0,1)上单调递增,在(1,+∞)上单调递减; 当0<a <1时,函数f (x )在(0,1)和⎝ ⎛⎭⎪⎫1a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1,1a 上单调递减;当a =1时,函数f (x )在(0,+∞)上单调递增;当a >1时,函数f (x )在⎝⎛⎭⎪⎫0,1a 和(1,+∞)上单调递增,在⎝ ⎛⎭⎪⎫1a ,1上单调递减.教师备选已知函数f (x )=x -2x+a (2-ln x ),a >0.讨论f (x )的单调性.解由题知,f (x )的定义域是(0,+∞),f ′(x )=1+2x 2-a x =x 2-ax +2x 2,设g (x )=x 2-ax +2,g (x )=0的判别式Δ=a 2-8.①当Δ<0,即0<a <22时,对一切x >0都有f ′(x )>0.此时f (x )在(0,+∞)上单调递增.②当Δ=0,即a =22时,仅对x =2, 有f ′(x )=0,对其余的x >0都有f ′(x )>0. 此时f (x )在(0,+∞)上单调递增.③当Δ>0,即a >22时,方程g (x )=0有两个不同的实根,x 1=a -a 2-82,x 2=a +a 2-82,0<x 1<x 2.当x 变化时,f ′(x ),f (x )的变化情况如下表:此时f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-82上单调递增, 在⎝ ⎛⎭⎪⎫a -a 2-82,a +a 2-82上单调递减, 在⎝ ⎛⎭⎪⎫a +a 2-82,+∞上单调递增.思维升华 (1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点.跟踪训练2讨论下列函数的单调性.(1)f(x)=x-a ln x;(2)g(x)=13x3+ax2-3a2x.解(1)f(x)的定义域为(0,+∞),f′(x)=1-ax=x-ax,令f′(x)=0,得x=a,①当a≤0时,f′(x)>0在(0,+∞)上恒成立,∴f(x)在(0,+∞)上单调递增.②当a>0时,x∈(0,a)时,f′(x)<0,x∈(a,+∞)时,f′(x)>0,∴f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.综上,当a≤0时,f(x)在(0,+∞)上单调递增,当a>0时,f(x)在(0,a)上单调递减,在(a,+∞)上单调递增.(2)g(x)的定义域为R,g′(x)=x2+2ax-3a2=(x+3a)(x-a),当a=0时,g′(x)≥0,∴g(x)在R上单调递增.当a>0时,x∈(-∞,-3a)∪(a,+∞)时,g′(x)>0,g(x)单调递增,x∈(-3a,a)时,g′(x)<0,g(x)单调递减.当a<0时,x∈(-∞,a)∪(-3a,+∞)时,g′(x)>0,g(x)单调递增,x ∈(a ,-3a )时,g ′(x )<0,g (x )单调递减, 综上有a =0时,g (x )在R 上单调递增;a <0时,g (x )在(-∞,a ),(-3a ,+∞)上单调递增,在(a ,-3a )上单调递减; a >0时,g (x )在(-∞,-3a ),(a ,+∞)上单调递增,在(-3a ,a )上单调递减. 题型三 函数单调性的应用 命题点1比较大小或解不等式例3(1)已知函数f (x )=x sin x ,x ∈R ,则f ⎝ ⎛⎭⎪⎫π5,f (1),f ⎝ ⎛⎭⎪⎫-π3的大小关系为() A .f ⎝ ⎛⎭⎪⎫-π3>f (1)>f ⎝ ⎛⎭⎪⎫π5B .f (1)>f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π5C .f ⎝ ⎛⎭⎪⎫π5>f (1)>f ⎝ ⎛⎭⎪⎫-π3D .f ⎝ ⎛⎭⎪⎫-π3>f ⎝ ⎛⎭⎪⎫π5>f (1)答案A解析因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ),所以函数f (x )是偶函数,所以f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3.又当x ∈⎝ ⎛⎭⎪⎫0,π2时,f ′(x )=sin x +x cos x >0,所以函数f (x )在⎝ ⎛⎭⎪⎫0,π2上单调递增,所以 f ⎝ ⎛⎭⎪⎫π5<f (1)<f ⎝ ⎛⎭⎪⎫π3,即f ⎝ ⎛⎭⎪⎫-π3>f (1)>f ⎝ ⎛⎭⎪⎫π5.(2)已知函数f (x )=e x -1ex -2x +1,则不等式f (2x -3)>1的解集为________.答案⎝ ⎛⎭⎪⎫32,+∞解析f (x )=e x -1ex -2x +1,定义域为R ,f ′(x )=e x +1e x -2≥2e x ·1ex -2=0,当且仅当x =0时取“=”, ∴f (x )在R 上单调递增, 又f (0)=1,∴原不等式可化为f (2x -3)>f (0), 即2x -3>0,解得x >32,∴原不等式的解集为⎝ ⎛⎭⎪⎫32,+∞.命题点2根据函数的单调性求参数的范围例4已知函数f (x )=12x 2+2ax -ln x ,若f (x )在区间⎣⎢⎡⎦⎥⎤13,2上单调递增,则实数a 的取值范围为________. 答案⎣⎢⎡⎭⎪⎫43,+∞解析由题意知f ′(x )=x +2a -1x ≥0在⎣⎢⎡⎦⎥⎤13,2上恒成立,即2a ≥-x +1x 在⎣⎢⎡⎦⎥⎤13,2上恒成立,∵⎝⎛⎭⎪⎫-x +1x max =83,∴2a ≥83,即a ≥43.延伸探究在本例中,把“f (x )在区间⎣⎢⎡⎦⎥⎤13,2上单调递增”改为“f (x )在区间⎣⎢⎡⎦⎥⎤13,2上存在单调递增区间”,求a 的取值范围. 解f ′(x )=x +2a -1x,若f (x )在⎣⎢⎡⎦⎥⎤13,2上存在单调递增区间,则当x ∈⎣⎢⎡⎦⎥⎤13,2时,f ′(x )>0有解,即2a >-x +1x有解,∵x ∈⎣⎢⎡⎦⎥⎤13,2,∴⎝ ⎛⎭⎪⎫-x +1x min =-2+12=-32,∴2a >-32,即a >-34,故a 的取值范围是⎝ ⎛⎭⎪⎫-34,+∞.教师备选1.若函数f (x )=e x (sin x +a )在区间⎝ ⎛⎭⎪⎫-π2,π2上单调递增,则实数a 的取值范围是()A .(1,+∞) B.[2,+∞) C .[1,+∞) D.(-2,+∞) 答案C 解析由题意得f ′(x )=e x (sin x +a )+e x cos x=e x ⎣⎢⎡⎦⎥⎤2sin ⎝ ⎛⎭⎪⎫x +π4+a ,∵f (x )在⎝ ⎛⎭⎪⎫-π2,π2上单调递增,∴f ′(x )≥0在⎝ ⎛⎭⎪⎫-π2,π2上恒成立,又e x >0,∴2sin ⎝ ⎛⎭⎪⎫x +π4+a ≥0在⎝ ⎛⎭⎪⎫-π2,π2上恒成立,当x ∈⎝ ⎛⎭⎪⎫-π2,π2时,x +π4∈⎝ ⎛⎭⎪⎫-π4,3π4,∴sin ⎝ ⎛⎭⎪⎫x +π4∈⎝ ⎛⎦⎥⎤-22,1,∴2sin ⎝⎛⎭⎪⎫x +π4+a ∈(-1+a ,2+a ], ∴-1+a ≥0,解得a ≥1,即a ∈[1,+∞).2.(2022·江西鹰潭一中月考)若函数f (x )=ax 3+x 恰有3个单调区间,则a 的取值范围为________. 答案(-∞,0)解析由f (x )=ax 3+x ,得f ′(x )=3ax 2+1.若a ≥0,则f ′(x )>0恒成立,此时f (x )在(-∞,+∞)上为增函数,不满足题意; 若a <0,由f ′(x )>0得 --13a<x <-13a, 由f ′(x )<0,得x <--13a或x >-13a,即当a <0时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫--13a,-13a , 单调递减区间为⎝⎛⎭⎪⎫-∞,--13a ,⎝⎛⎭⎪⎫-13a ,+∞,满足题意. 思维升华 根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )为增(减)函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0(f ′(x )≤0),且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则会漏解.(3)函数在某个区间上存在单调区间可转化为不等式有解问题.跟踪训练3(1)已知定义域为R 的连续函数f (x )的导函数为f ′(x ),且满足f ′(x )m (x -3)<0,当m <0时,下列关系中一定成立的是() A .f (1)+f (3)=2f (2) B .f (0)·f (3)=0 C .f (4)+f (3)<2f (2) D .f (2)+f (4)>2f (3) 答案D 解析由f ′(x )m (x -3)<0,得m (x -3)f ′(x )<0,又m <0,则(x -3)f ′(x )>0,当x >3时,f ′(x )>0,f (x )单调递增; 当x <3时,f ′(x )<0,f (x )单调递减;所以f (2)>f (3),f (4)>f (3), 所以f (2)+f (4)>2f (3).(2)(2022·安徽省泗县第一中学质检)函数f (x )=ln xx在(a ,a +1)上单调递增,则实数a的取值范围为________. 答案[0,e -1] 解析由函数f (x )=ln x x,得f ′(x )=1-ln xx 2(x >0),由f ′(x )>0得0<x <e ,由f ′(x )<0得x >e.所以f (x )在(0,e)上单调递增,在(e ,+∞)上单调递减, 又函数f (x )=ln xx在(a ,a +1)上单调递增,则(a ,a +1)⊆(0,e),则⎩⎨⎧a ≥0,a +1≤e,解得0≤a ≤e-1.课时精练1.函数f (x )=x ln x +1的单调递减区间是() A.⎝ ⎛⎭⎪⎫-∞,1e B.⎝ ⎛⎭⎪⎫1e ,+∞C.⎝⎛⎭⎪⎫0,1e D .(e ,+∞)答案C解析f (x )的定义域为(0,+∞),f ′(x )=1+ln x , 令f ′(x )<0,得0<x <1e,所以f (x )的单调递减区间为⎝⎛⎭⎪⎫0,1e .2.下列函数中,在(0,+∞)上单调递增的是() A .f (x )=2sin x cos x B .g (x )=x 3-x C .h (x )=x e xD .m (x )=-x +ln x 答案C解析h (x )=x e x ,定义域为R ,∴h ′(x )=(x +1)e x ,当x >0时,h ′(x )>0, ∴h (x )在(0,+∞)上单调递增.3.(2022·渭南调研)已知函数y =xf ′(x )的图象如图所示(其中f ′(x )是函数f (x )的导函数).下面四个图象中y =f (x )的图象大致是()答案C解析列表如下:x (-∞,-1) (-1,0)(0,1)(1,+∞)xf′(x)-+-+f′(x)+--+f(x)单调递增单调递减单调递减单调递增故函数f(x)的单调递增区间为(-∞,-1),(1,+∞),单调递减区间为(-1,1).故函数f(x)的图象是C选项中的图象.4.(2022·遵义质检)若函数f(x)=-x2+4x+b ln x在区间(0,+∞)上是减函数,则实数b的取值范围是()A.[-1,+∞) B.(-∞,-1]C.(-∞,-2] D.[-2,+∞)答案C解析∵f(x)=-x2+4x+b ln x在(0,+∞)上是减函数,∴f′(x)≤0在(0,+∞)上恒成立,即f′(x)=-2x+4+bx≤0,即b ≤2x 2-4x ,∵2x 2-4x =2(x -1)2-2≥-2,∴b ≤-2.5.已知函数f (x )=sin x +cos x -2x ,a =f (-π),b =f (2e ),c =f (ln2),则a ,b ,c 的大小关系是() A .a >c >b B .a >b >c C .b >a >c D .c >b >a 答案A解析f (x )的定义域为R ,f ′(x )=cos x -sin x -2 =2cos⎝ ⎛⎭⎪⎫x +π4-2<0, ∴f (x )在R 上单调递减,又2e >1,0<ln2<1,∴-π<ln2<2e , 故f (-π)>f (ln2)>f (2e ), 即a >c >b .6.如果函数f (x )对定义域内的任意两实数x 1,x 2(x 1≠x 2)都有x 1f (x 1)-x 2f (x 2)x 1-x 2>0,则称函数y =f (x )为“F 函数”.下列函数是“F 函数”的是() A .f (x )=e x B .f (x )=x 2 C .f (x )=ln x D .f (x )=sin x 答案B解析依题意,函数g (x )=xf (x )为定义域上的增函数. 对于A ,g (x )=x e x ,g ′(x )=(x +1)e x ,当x ∈(-∞,-1)时,g ′(x )<0,∴g (x )在(-∞,-1)上单调递减,故A 中函数不是“F 函数”; 对于B ,g (x )=x 3在R 上单调递增,故B 中函数为“F 函数”; 对于C ,g (x )=x ln x ,g ′(x )=1+ln x , 当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0,故C 中函数不是“F 函数”;对于D ,g (x )=x sin x ,g ′(x )=sin x +x cos x , 当x ∈⎝ ⎛⎭⎪⎫-π2,0时,g ′(x )<0,故D 中函数不是“F 函数”.7.(2022·长沙市长郡中学月考)已知函数f (x )=13x 3+mx 2+nx +1的单调递减区间是(-3,1),则m +n 的值为________. 答案-2解析由题设,f ′(x )=x 2+2mx +n , 由f (x )的单调递减区间是(-3,1), 得f ′(x )<0的解集为(-3,1), 则-3,1是f ′(x )=0的解,∴-2m =-3+1=-2,n =1×(-3)=-3, 可得m =1,n =-3,故m +n =-2.8.(2021·新高考全国Ⅱ)写出一个同时具有下列性质①②③的函数f (x ):________. ①f (x 1x 2)=f (x 1)f (x 2);②当x ∈(0,+∞)时,f ′(x )>0;③f ′(x )是奇函数.答案f (x )=x 4(答案不唯一,f (x )=x 2n (n ∈N *)均满足)解析取f (x )=x 4,则f (x 1x 2)=(x 1x 2)4=x 41x 42=f (x 1)f (x 2),满足①,f ′(x )=4x 3,x >0时有f ′(x )>0,满足②,f ′(x )=4x 3的定义域为R ,又f ′(-x )=-4x 3=-f ′(x ),故f ′(x )是奇函数,满足③.9.已知函数f (x )=12x 2-2a ln x +(a -2)x . (1)当a =-1时,求函数f (x )的单调区间;(2)若函数g (x )=f (x )-ax 在(0,+∞)上单调递增,求实数a 的取值范围. 解(1)当a =-1时,f (x )=12x 2+2ln x -3x ,则f ′(x )=x +2x -3=x 2-3x +2x =(x -1)(x -2)x(x >0). 当0<x <1或x >2时,f ′(x )>0,f (x )单调递增;当1<x <2时,f ′(x )<0,f (x )单调递减.所以f (x )的单调递增区间为(0,1)和(2,+∞),单调递减区间为(1,2).(2)g (x )=f (x )-ax 在(0,+∞)上单调递增,则g ′(x )=f ′(x )-a =x -2a x-2≥0在x ∈(0,+∞)上恒成立.即x 2-2x -2a x≥0在x ∈(0,+∞)上恒成立. 所以x 2-2x -2a ≥0在x ∈(0,+∞)上恒成立,所以a ≤12(x 2-2x )=12(x -1)2-12恒成立. 令φ(x )=12(x -1)2-12,x ∈(0,+∞), 则其最小值为-12,故a ≤-12. 所以实数a 的取值范围是⎝⎛⎦⎥⎤-∞,-12. 10.(2022·宜春质检)已知函数f (x )=x 3-6ax .(1)当a =-1时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)求函数y =f (x )的单调区间.解(1)当a =-1时,f (x )=x 3+6x ,则f ′(x )=3x 2+6,所以f (1)=7,f ′(1)=9,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -7=9(x -1),即9x -y -2=0.(2)函数f (x )=x 3-6ax 的定义域为R , f ′(x )=3x 2-6a =3(x 2-2a ).当a ≤0时,对任意的x ∈R ,f ′(x )≥0且不恒为零,此时函数f (x )的单调递增区间为(-∞,+∞),无单调递减区间;当a >0时,由f ′(x )<0, 可得-2a <x <2a ,由f ′(x )>0,可得x <-2a 或x >2a ,此时函数f (x )的单调递增区间为(-∞,-2a ),(2a ,+∞),单调递减区间为(-2a ,2a ).综上所述,当a ≤0时,函数f (x )的单调递增区间为(-∞,+∞),无单调递减区间; 当a >0时,函数f (x )的单调递增区间为(-∞,-2a ),(2a ,+∞),单调递减区间为(-2a ,2a ).11.若函数h (x )=ln x -12ax 2-2x 在[1,4]上存在单调递减区间,则实数a 的取值范围为() A.⎣⎢⎡⎭⎪⎫-716,+∞B .(-1,+∞) C .[-1,+∞) D.⎝ ⎛⎭⎪⎫-716,+∞ 答案B解析因为h (x )在[1,4]上存在单调递减区间,所以h ′(x )=1x-ax -2<0在[1,4]上有解, 所以当x ∈[1,4]时,a >1x 2-2x有解, 而当x ∈[1,4]时,1x 2-2x =⎝ ⎛⎭⎪⎫1x -12-1, ⎝ ⎛⎭⎪⎫1x 2-2x min =-1(此时x =1), 所以a >-1,所以a 的取值范围是(-1,+∞).12.设函数f (x )=x sin x +cos x +x 2,若a =f (-2),b =f (ln2),c =f (e),则a ,b ,c的大小关系为()A.b<a<c B.c<a<bC.b<c<a D.a<b<c答案C解析f(-x)=(-x)sin(-x)+cos(-x)+(-x)2=x sin x+cos x+x2=f(x),∴f(x)为偶函数,∴a=f(-2)=f(2),又f′(x)=x cos x+2x=x(cos x+2),当x>0时,f′(x)>0,∴f(x)在(0,+∞)上单调递增,又2>e>ln2,∴f(2)>f(e)>f(ln2),即b<c<a.13.(2022·韩城质检)设a>0,若函数f(x)=1+ln xx在区间⎝⎛⎭⎪⎫a,a+23上不单调,则a的取值范围是________.答案13<a<1解析函数f(x)=1+ln xx,f′(x)=-ln xx2,当x∈(0,1)时,f′(x)>0,f(x)单调递增,当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,因为函数f(x)=1+ln xx在区间⎝⎛⎭⎪⎫a,a+23上不单调,则a <1<a +23,解得13<a <1. 14.已知函数f (x )=x 5+10x +sin x ,若f (t )+f (1-3t )<0,则实数t 的取值范围是________.答案⎝ ⎛⎭⎪⎫12,+∞ 解析因为函数f (x )的定义域为R ,f (-x )=(-x )5+10(-x )+sin(-x )=-(x 5+10x +sin x )=-f (x ),所以f (x )为奇函数;又因为f ′(x )=5x 4+10+cos x >0,所以函数f (x )在R 上单调递增;又因为f (t )+f (1-3t )<0,所以f (t )<-f (1-3t )=f (3t -1),所以3t -1>t ,即t >12.15.(2022·河北衡水中学月考)下列不等式成立的是________.(填序号)①2ln 32<32ln2; ②2ln 3<3ln 2;③5ln4<4ln5;④π>elnπ.答案①④解析设f (x )=ln x x (x >0),则f ′(x )=1-ln xx 2,所以当0<x <e 时,f ′(x )>0,函数f (x )单调递增;当x >e 时,f ′(x )<0,函数f (x )单调递减.因为32<2<e , 所以f ⎝ ⎛⎭⎪⎫32<f (2), 即2ln 32<32ln2,故①正确; 因为2<3<e ,所以f (2)<f (3), 即2ln 3>3ln 2,故②不正确;因为e<4<5,所以f (4)>f (5),即5ln4>4ln5,故③不正确;因为e<π,所以f (e)>f (π),即π>elnπ,故④正确.16.(2022·宁夏银川一中质检)已知函数f (x )=a e x x. (1)若a >0,求f (x )的单调区间;(2)若对∀x 1,x 2∈(1,3),x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2<2恒成立,求实数a 的取值范围. 解(1)f (x )的定义域为{x |x ≠0},f′(x)=a e x(x-1)x2,∵a>0,∴当x∈(-∞,0)∪(0,1)时,f′(x)<0,当x∈(1,+∞)时,f′(x)>0,∴f(x)的单调递减区间为(-∞,0),(0,1),单调递增区间为(1,+∞).(2)不妨令x1>x2,∴f(x1)-f(x2)x1-x2<2,可化为f(x1)-f(x2)<2(x1-x2),即f(x1)-2x1<f(x2)-2x2,即函数g(x)=f(x)-2x在区间(1,3)上单调递减,又∵g′(x)=f′(x)-2=a e x(x-1)x2-2,∴a e x(x-1)x2-2≤0在(1,3)上恒成立,当x∈(1,3)时,不等式a e x(x-1)x2-2≤0可化为a≤2x2(x-1)e x,令h(x)=2x2(x-1)e x,则h′(x)=4x(x-1)e x-2x3e x (x-1)2e2x=-2x3+4x2-4x (x-1)2e x=-2x(x2-2x+2) (x-1)2e x=-2x [(x -1)2+1](x -1)2e x<0在区间x ∈(1,3)上恒成立, ∴函数h (x )=2x 2(x -1)e x 在区间x ∈(1,3)上单调递减, ∴h (x )min =h (3)=2×32(3-1)e 3=9e 3,∴a ≤9e 3,即实数a 的取值范围是⎝ ⎛⎦⎥⎤-∞,9e 3.。
高考数学复习考点知识与题型专题讲解5---函数的单调性与最值
高考数学复习考点知识与题型专题讲解函数的单调性与最值考试要求1.借助函数图象,会用数学符号语言表达函数的单调性、最值,理解实际意义.2.掌握函数单调性的简单应用.知识梳理1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,区间D⊆I,如果∀x1,x2∈D当x1<x2时,都有f(x1)<f(x2),那么就称函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就称函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 2.函数的最值前提设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件(1)∀x ∈I ,都有f (x )≤M ; (2)∃x 0∈I ,使得f (x 0)=M (1)∀x ∈I ,都有f (x )≥M ;(2)∃x 0∈I ,使得f (x 0)=M结论M 为最大值M 为最小值常用结论1.∀x 1,x 2∈D 且x 1≠x 2,有f (x 1)-f (x 2)x 1-x 2>0(<0)或(x 1-x 2)[f (x 1)-f (x 2)]>0(<0)⇔f (x )在区间D上单调递增(减).2.在公共定义域内,增函数+增函数=增函数,减函数+减函数=减函数. 3.函数y =f (x )(f (x )>0或f (x )<0)在公共定义域内与y =-f (x ),y =1f (x )的单调性相反. 4.复合函数的单调性:函数y =f (u ),u =φ(x )在函数y =f (φ(x ))的定义域上,如果y =f (u )与u =φ(x )的单调性相同,那么y =f (φ(x ))单调递增;如果y =f (u )与u =φ(x )的单调性相反,那么y =f (φ(x ))单调递减. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若f (x )的定义域为R ,且f (-3)<f (2),则f (x )为R 上的增函数.(×) (2)函数f (x )在(-2,3)上单调递增,则函数的单调递增区间为(-2,3).(×) (3)因为y =x 与y =e x 都是增函数,所以y =x e x 在定义域内为增函数.(×)(4)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).(×) 教材改编题1.下列函数中,在区间(0,1)上是增函数的是() A .y =|x +1|B .y =2-x C .y =1x D .y =x 2-x +1 答案A2.函数y =xx -1在区间[2,3]上的最大值是________.答案2解析函数y =x x -1=1+1x -1在[2,3]上单调递减,当x =2时,y =x x -1取得最大值22-1=2.3.函数y =ax -1在(-∞,1)上为增函数,则实数a 的取值范围是________. 答案(-∞,0)题型一 确定函数的单调性 命题点1求具体函数的单调区间例1下列函数在(0,+∞)上单调递增的是________.(填序号) ①y =e x -e -x ;②y =|x 2-2x |;③y =x +cos x ;④y =x 2+x -2. 答案①③解析∵y =e x 与y =-e -x 为R 上的增函数,∴y =e x -e -x 为R 上的增函数,故①正确; 由y =|x 2-2x |的图象知,故②不正确; 对于③,y ′=1-sin x ≥0,∴y =x +cos x 在R 上为增函数,故③正确;y =x 2+x -2的定义域为(-∞,-2]∪[1,+∞),故④不正确.命题点2判断或证明函数的单调性 例2试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 解方法一设-1<x 1<x 2<1, f (x )=a ⎝ ⎛⎭⎪⎪⎫x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1, f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1 =a (x 2-x 1)(x 1-1)(x 2-1),由于-1<x 1<x 2<1,所以x 2-x 1>0,x 1-1<0,x 2-1<0,故当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),函数f (x )在(-1,1)上单调递减; 当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),函数f (x )在(-1,1)上单调递增.方法二f ′(x )=(ax )′(x -1)-ax (x -1)′(x -1)2=a (x -1)-ax (x -1)2=-a(x -1)2. 当a >0时,f ′(x )<0,函数f (x )在(-1,1)上单调递减; 当a <0时,f ′(x )>0,函数f (x )在(-1,1)上单调递增. 教师备选1.设函数f (x )=⎩⎨⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的单调递减区间是__________. 答案[0,1)解析由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1,该函数的图象如图所示,其单调递减区间是[0,1).2.已知a >0,函数f (x )=x +ax (x >0),证明:函数f (x )在(0,a ]上单调递减,在[a ,+∞)上单调递增.证明方法一(定义法)设x 1>x 2>0, f (x 1)-f (x 2)=x 1+a x 1-x 2-ax 2=(x 1-x 2)+a (x 2-x 1)x 1x 2=(x 1-x 2)(x 1x 2-a )x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, 当x 1,x 2∈(0,a ]时,0<x 1x 2<a , ∴x 1x 2-a <0,∴f (x 1)-f (x 2)<0,f (x 1)<f (x 2), ∴f (x )在(0,a ]上单调递减, 当x 1,x 2∈[a ,+∞)时,x 1x 2>a , ∴x 1x 2-a >0,∴f (x 1)-f (x 2)>0, ∴f (x 1)>f (x 2),∴f (x )在[a ,+∞)上单调递增. 方法二(导数法)f ′(x )=1-a x 2=x 2-ax2(x >0),令f ′(x )>0⇒x 2-a >0⇒x >a , 令f ′(x )<0⇒x 2-a <0⇒0<x <a ,∴f (x )在(0,a ]上单调递减,在[a ,+∞)上单调递增.思维升华 确定函数单调性的四种方法 (1)定义法:利用定义判断.(2)导数法:适用于初等函数可以求导的函数.(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接.(4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.跟踪训练1(1)函数f (x )=ln(4+3x -x 2)的单调递减区间是() A.⎝ ⎛⎦⎥⎤-∞,32B.⎣⎢⎡⎭⎪⎫32,+∞ C.⎝ ⎛⎦⎥⎤-1,32D.⎣⎢⎡⎭⎪⎫32,4 答案D解析f (x )=ln(4+3x -x 2)的定义域为4+3x -x 2>0, 解得x ∈(-1,4).令t =4+3x -x 2,对称轴为x =32,故单调递增区间为⎝ ⎛⎭⎪⎫-1,32,单调递减区间为⎣⎢⎡⎭⎪⎫32,4,因为y =ln t 为增函数,所以f (x )=ln(4+3x -x 2)的单调递减区间为⎣⎢⎡⎭⎪⎫32,4.(2)函数f (x )=|x -2|x 的单调递减区间是________. 答案[1,2]解析f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.画出f (x )的大致图象(如图所示),由图知f (x )的单调递减区间是[1,2]. 题型二 函数单调性的应用 命题点1比较函数值的大小例3(2022·成都模拟)已知函数f (x )为R 上的偶函数,对任意x 1,x 2∈(-∞,0),均有(x 1-x 2)[f (x 1)-f (x 2)]<0成立,若a =f (ln 2),b =f (133),c =f (13e ),则a ,b ,c 的大小关系是()A .c <b <aB .a <c <bC .a <b <cD .c <a <b 答案B解析∵对任意x 1,x 2∈(-∞,0), 均有(x 1-x 2)[f (x 1)-f (x 2)]<0成立,∴此时函数在区间(-∞,0)上单调递减,∵f(x)是偶函数,∴当x∈(0,+∞)时,f(x)单调递增,又f(x)=13x在x∈(0,+∞)上单调递增,∴1<13e<133,又0<ln2<1,∴ln2<13e<133,∴13(3)f>13(e)f>f(ln2),即a<c<b.命题点2求函数的最值例4(2022·深圳模拟)函数y=x2+5x2+4的最小值为________.答案5 2解析令x2+4=t,则t≥2,∴x2=t2-4,∴y=t2+1t=t+1t,函数y=t+1t在[2,+∞)上单调递增,∴当t =2时,y min =52. 命题点3解不等式例5已知函数f (x )=ln x +2x ,若f (x -1)<2,则实数x 的取值范围是________. 答案(1,2)解析f (x )在定义域(0,+∞)上是增函数, 且f (1)=2,∴原不等式可化为f (x -1)<f (1), ∴⎩⎪⎨⎪⎧x -1<1,x -1>0,解得1<x <2. 命题点4求参数的取值范围 例6函数f (x )=⎩⎪⎨⎪⎧a x ,x ≥1,⎝ ⎛⎭⎪⎫4-a 2x +2,x <1,且满足对任意的实数x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2>0成立,则实数a 的取值范围是() A .[4,8) B .(4,8) C .(1,8] D .(1,8) 答案A解析函数f (x )=⎩⎨⎧a x ,x ≥1,⎝ ⎛⎭⎪⎫4-a 2x +2,x <1满足对任意的实数x 1≠x 2都有f (x 1)-f (x 2)x 1-x 2>0,所以函数f (x )=⎩⎨⎧ a x ,x ≥1,⎝ ⎛⎭⎪⎫4-a 2x +2,x <1是R 上的增函数,则由指数函数与一次函数的单调性可知应满足⎩⎪⎨⎪⎧ a >1,4-a 2>0,a ≥4-a 2+2,解得4≤a <8,所以实数a 的取值范围为[4,8).教师备选 1.(2022·嘉峪关模拟)函数f (x )=ln(x 2-ax -3)在(1,+∞)上单调递增,则a 的取值范围是()A .(-∞,-2]B .(-∞,-2)C .(-∞,2]D .(-∞,2)答案A 解析函数f (x )=ln(x 2-ax -3)为复合函数,令u (x )=x 2-ax -3,y =ln u 为增函数,故只要u (x )=x 2-ax -3在(1,+∞)上单调递增即可,只要⎩⎨⎧ a 2≤1,u (1)≥0,解得a ≤-2.2.对于任意实数a ,b ,定义min{a ,b }=⎩⎨⎧a ,a ≤b ,b ,a >b .设函数f (x )=-x +3,g (x )=log 2x ,则函数h (x )=min{f (x ),g (x )}的最大值是______.答案1解析方法一在同一坐标系中,作函数f (x ),g (x )的图象,依题意,h (x )的图象为如图所示的实线部分.易知点A (2,1)为图象的最高点,因此h (x )的最大值为h (2)=1.方法二依题意,h (x )=⎩⎪⎨⎪⎧log 2x ,0<x ≤2,-x +3,x >2.当0<x ≤2时,h (x )=log 2x 单调递增,当x >2时,h (x )=3-x 单调递减,因此h (x )在x =2时取得最大值h (2)=1.思维升华 (1)比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(2)求解函数不等式,其实质是函数单调性的逆用,由条件脱去“f ”,转化为自变量间的大小关系,应注意函数的定义域.(3)利用单调性求参数的取值(范围).根据其单调性直接构建参数满足的方程(组)(不等式(组))或先得到其图象的升降,再结合图象求解.对于分段函数,要注意衔接点的取值.跟踪训练2(1)已知函数f (x )=e |x |,记a =f (log 23),b =f (-2),c =f (e),则a ,b ,c 的大小关系为()A .a <b <cB .c <b <aC .b <a <cD .b <c <a答案A解析函数f (x )=e |x |,其定义域为R ,且f (-x )=e |-x |=e |x |=f (x ),∴f (x )为偶函数,当x >0时,f (x )=e x 为增函数,又b =f (-2)=f (2),且e>2>log 23,∴f (e)>f (2)>f (log 23),即a <b <c .(2)设函数f (x )=⎩⎨⎧ -x 2+4x ,x ≤4,log 2x ,x >4,若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是()A .(-∞,1]B .[1,4]C .[4,+∞)D .(-∞,1]∪[4,+∞)答案D解析画出函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4的图象,如图,由图可知函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4的单调递增区间为(-∞,2),(4,+∞), ∵函数在(a ,a +1)上单调递增,∴a +1≤2或a ≥4,∴a ≤1或a ≥4.(3)已知f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递减,则不等式f (2x -1)>f (x +1)的解集为________.答案(0,2)解析依题意f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递减,所以 f (2x -1)>f (x +1)⇔(2x -1)2<(x +1)2,即4x 2-4x +1<x 2+2x +1,即x 2-2x =x (x -2)<0⇒x ∈(0,2).课时精练1.下列函数中,在区间(0,+∞)内单调递减的是()A .y =1x -xB .y =x 2-xC .y =ln x -xD .y =e x答案A解析当x∈(0,+∞)时,y=1x与y=-x单调递减,∴y=1x-x在(0,+∞)上单调递减.2.函数f(x)=x1-x在()A.(-∞,1)∪(1,+∞)上是增函数B.(-∞,1)∪(1,+∞)上是减函数C.(-∞,1)和(1,+∞)上是增函数D.(-∞,1)和(1,+∞)上是减函数答案C解析函数f(x)的定义域为{x|x≠1}.f(x)=x1-x=11-x-1,根据函数y=-1x的单调性及有关性质,可知f(x)在(-∞,1)和(1,+∞)上是增函数.3.(2022·安徽六安一中月考)若函数f(x)=2x2+31+x2,则f(x)的值域为()A.(-∞,3] B.(2,3) C.(2,3] D.[3,+∞) 答案C解析f(x)=2x2+31+x2=2+1x2+1,∵x 2≥0,∴x 2+1≥1,∴0<1x 2+1≤1, ∴f (x )∈(2,3].4.(2022·贵阳模拟)已知函数f (x )在(-∞,+∞)上单调递减,且为奇函数,若f (1)=-2,则满足-2≤f (x -2)≤2的x 的取值范围是()A .[-2,2]B .[-1,1]C .[1,3]D .[0,4]答案C解析因为f (x )为奇函数,若f (1)=-2,则f (-1)=2,所以不等式-2≤f (x -2)≤2可化为f (1)≤f (x -2)≤f (-1),又f (x )在(-∞,+∞)上单调递减,所以-1≤x -2≤1,解得1≤x ≤3.5.(2022·南通模拟)已知函数f (x )=⎩⎨⎧e x -e -x ,x >0,-x 2,x ≤0,若a =50.01,b =log 32,c =log 20.9,则有()A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (a )>f (c )>f (b )D .f (c )>f (a )>f (b )答案A解析y =e x 是增函数,y =e -x 是减函数,因此在(0,+∞)上y =e x -e -x 单调递增,且此时f (x )>0.f (x )=-x 2在x ≤0时单调递增,所以f (x )在R 上单调递增.c =log 20.9<0,b =log 32,所以0<b <1,a =50.01>1,即a >b >c ,所以f (a )>f (b )>f (c ).6.已知函数f (x )=⎩⎪⎨⎪⎧ ln x +2x ,x >0,21-x,x ≤0,则下列结论正确的个数是()①f (x )在R 上为增函数;②f (e)>f (2);③若f (x )在(a ,a +1)上单调递增,则a ≤-1或a ≥0;④当x ∈[-1,1]时,f (x )的值域为[1,2].A .1B .2C .3D .4答案B解析易知f (x )在(-∞,0],(0,+∞)上单调递增,①错误,②正确;若f (x )在(a ,a +1)上单调递增,则a ≥0或a +1≤0,即a ≤-1或a ≥0,故③正确;当x ∈[-1,0]时,f (x )∈[1,2],当x ∈(0,1]时,f (x )∈(-∞,2],故x ∈[-1,1]时,f (x )∈(-∞,2],故④不正确.7.函数y =-x 2+2|x |+1的单调递增区间为__________,单调递减区间为________. 答案(-∞,-1]和[0,1](-1,0)和(1,+∞)解析由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0, 即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0. 画出函数的图象如图所示,单调递增区间为(-∞,-1]和[0,1],单调递减区间为(-1,0)和(1,+∞).8.(2022·山东师大附中质检)已知函数f (x )=e |x -a |(a 为常数),若f (x )在区间[1,+∞)上单调递增,则实数a 的取值范围是________. 答案(-∞,1]解析f (x )=⎩⎪⎨⎪⎧e x -a ,x ≥a ,e a -x ,x <a , 当x ≥a 时,f (x )单调递增,当x <a 时,f (x )单调递减, 又f (x )在[1,+∞)上单调递增,所以a ≤1.9.已知函数f (x )=ax -1ax +2a (a >0),且f (x )在(0,1]上的最大值为g (a ),求g (a )的最小值. 解f (x )=ax -1ax +2a (a >0),∴f (x )在(0,1]上单调递增,∴f (x )max =f (1)=a +1a, ∴g (a )=a +1a ≥2,当且仅当a =1a 即a =1时取等号,∴g (a )的最小值为2.10.已知函数f (x )=a -22x +1. (1)求f (0);(2)探究f (x )的单调性,并证明你的结论;(3)若f (x )为奇函数,求满足f (ax )<f (2)的x 的取值范围. 解(1)f (0)=a -220+1=a -1.(2)f (x )在R 上单调递增.证明如下: ∵f (x )的定义域为R ,∴任取x 1,x 2∈R 且x 1<x 2, 则f (x 1)-f (x 2)=a -1221x +-a +2221x + =12122(22)(12)(12)x x x x ⋅-++, ∵y =2x 在R 上单调递增且x 1<x 2, ∴0<12x <22x ,∴12x -22x <0,12x +1>0,22x +1>0. ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2). ∴f (x )在R 上单调递增.(3)∵f (x )是奇函数,∴f (-x )=-f (x ),即a -22-x +1=-a +22x +1,解得a =1. ∴f (ax )<f (2)即为f (x )<f (2),又∵f (x )在R 上单调递增,∴x <2. ∴x 的取值范围是(-∞,2).11.定义max{a ,b ,c }为a ,b ,c 中的最大值,设M =max{2x ,2x -3,6-x },则M 的最小值是()A .2B .3C .4D .6答案C解析画出函数M =max{2x ,2x -3,6-x }的图象(如图),由图可知,函数M 在A (2,4)处取得最小值22=6-2=4,故M 的最小值为4.12.已知函数f (x )=⎩⎪⎨⎪⎧ ⎝ ⎛⎭⎪⎫12x -1,x ≤0,-x 3,x >0,当x ∈[m ,m +1]时,不等式f (2m -x )<f (x +m )恒成立,则实数m 的取值范围是()A .(-∞,-4)B .(-∞,-2)C .(-2,2)D .(-∞,0)答案B解析易知函数f (x )=⎩⎨⎧ ⎝ ⎛⎭⎪⎫12x -1,x ≤0,-x 3,x >0在x ∈R 上单调递减,又f (2m -x )<f (x +m )在x ∈[m ,m +1]上恒成立,所以2m-x>x+m,即2x<m在x∈[m,m+1]上恒成立,所以2(m+1)<m,解得m<-2.13.如果几个函数的定义域相同,值域也相同,但解析式不同,称这几个函数为“同域函数”,则函数y=x+x+1的值域为________,与y是“同域函数”的一个解析式为________.答案[-1,+∞)y=x,x∈[-1,+∞)(答案不唯一)解析y=x+x+1的定义域为[-1,+∞),且在[-1,+∞)上单调递增,∴当x=-1时,y min=-1,∴值域为[-1,+∞),∴与y是“同域函数”的解析式可为y=x,x∈[-1,+∞).14.设函数f(x)=ax+1x+2a在区间(-2,+∞)上单调递增,那么a的取值范围是________.答案[1,+∞)解析f(x)=ax+2a2-2a2+1x+2a=a-2a2-1x+2a,定义域为{x|x≠-2a},所以⎩⎪⎨⎪⎧ 2a 2-1>0,-2a ≤-2,所以⎩⎪⎨⎪⎧2a 2-1>0,a ≥1,所以a ≥1.15.(2022·沧州模拟)设函数f (x )=x 3-sin x +x ,则满足f (x )+f (1-2x )<0的x 的取值范围是________.答案(1,+∞)解析f (x )=x 3-sin x +x ,∵f (-x )=(-x )3-sin(-x )+(-x )=-(x 3-sin x +x )=-f (x ),∴f (x )为奇函数,又f ′(x )=3x 2-cos x +1≥0,∴f (x )为R 上的增函数,∴f (x )+f (1-2x )<0可化为f (x )<-f (1-2x )=f (2x -1),∴x <2x -1,即x >1,∴满足f (x )+f (1-2x )<0的x 的取值范围是(1,+∞).16.已知定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y )+1,且当x >0时,f (x )>-1.(1)求f (0)的值,并证明f (x )在R 上是增函数;(2)若f(1)=1,解关于x的不等式f(x2+2x)+f(1-x)>4. 解(1)令x=y=0,得f(0)=-1.在R上任取x1>x2,则x1-x2>0,所以f(x1-x2)>-1.又f(x1)=f[(x1-x2)+x2]=f(x1-x2)+f(x2)+1>f(x2),∴函数f(x)在R上是增函数.(2)由f(1)=1,得f(2)=3,f(3)=5.由f(x2+2x)+f(1-x)>4得f(x2+x+1)>f(3),因为函数f(x)在R上是增函数,所以x2+x+1>3,解得x<-2或x>1,故原不等式的解集为{x|x<-2或x>1}.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的单调性【学习目标】1.理解函数的单调性定义;2.会判断函数的单调区间、证明函数在给定区间上的单调性;3.学会运用单调性的定义求函数的最大(小)值。
【要点梳理】要点一、函数的单调性1.增函数、减函数的概念一般地,设函数f(x)的定义域为A ,区间D A ⊆:如果对于D 内的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数.如果对于D 内的任意两个自变量的值x 1、x 2,当x 1<x 2时,都有f(x 1)>f(x 2),那么就说f(x)在区间D 上是减函数.要点诠释:(1)属于定义域A 内某个区间上;(2)任意两个自变量12,x x 且12x x <; (3)都有1212()()(()())f x f x f x f x <>或;(4)图象特征:在单调区间上增函数的图象从左向右是上升的,减函数的图象从左向右是下降的.2.单调性与单调区间(1)单调区间的定义如果函数f(x)在区间D 上是增函数或减函数,那么就说函数f(x)在区间D 上具有单调性,D 称为函数f(x)的单调区间.函数的单调性是函数在某个区间上的性质.要点诠释:①单调区间与定义域的关系----单调区间可以是整个定义域,也可以是定义域的真子集;②单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的;③不能随意合并两个单调区间;④有的函数不具有单调性.(2)已知解析式,如何判断一个函数在所给区间上的单调性?3.证明函数单调性的步骤(1)取值.设12x x ,是()f x 定义域内一个区间上的任意两个量,且12x x ; (2)变形.作差变形(变形方法:因式分解、配方、有理化等)或作商变形;(3)定号.判断差的正负或商与1的大小关系;(4)得出结论.4.函数单调性的判断方法(1)定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断。
(2)图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性。
(3)直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间。
(4)记住几条常用的结论①若()f x 是增函数,则()f x -为减函数;若()f x 是减函数,则()f x -为增函数;②若()f x 和()g x 均为增(或减)函数,则在()f x 和()g x 的公共定义域上()()f x g x +为增(或减)函数;③若()0f x >且()f x 1()f x 为减函数; 若()0f x >且()f x 为1()f x 为增函数. 5.复合函数单调性的判断讨论复合函数[]()y f g x =的单调性时要注意:既要把握复合过程,又要掌握基本函数的单调性。
一般需要先求定义域,再把复杂的函数正确地分解为两个简单的初等函数的复合,然后分别判断它们的单调性,再用复合法则,复合法则如下:(1)若(),()u g x y f u ==在所讨论的区间上都是增函数或都是减函数,则[]()y f g x =为增函数; (2)若(),()u g x y f u ==在所讨论的区间上一个是增函数,另一个是减函数,则[]()y f g x =为减函数。
列表如下:复合函数单调性可简记为“同增异减”,即内外函数的单调性相同时递增;单调性相异时递减。
因此判断复合函数的单调性可按下列步骤操作:(1)将复合函数分解成基本初等函数:()y f u =,()u g x =;(2)分别确定各个函数的定义域;(3)分别确定分解成的两个基本初等函数的单调区间。
若两个基本初等函数在对应的区间上的单调性是同增或同减,则[]()y f g x =为增函数;若为一增一减或一减一增,则[]()y f g x =为减函数。
要点诠释:(1)单调区间必须在定义域内;(2)要确定内层函数()u g x =的值域,否则就无法确定()f u 的单调性。
(3)若()0f x >,且在定义域上()f x ()(0),()(1)n kf x k f x n n N +>>∈且都是增函数。
6.利用函数单调性求函数最值时应先判断函数的单调性,再求最值。
常用到下面的结论:(1)如果函数()y f x =在区间(],a b 上是增函数,在区间[),b c 上是减函数,则函数()(,)y f x x a c =∈ 在x b =处有最大值()f b 。
(2)如果函数()y f x =在区间(],a b 上是减函数,在区间[),b c 上是增函数,则函数()(,)y f x x a c =∈ 在x b =处有最小值()f b 。
若函数()y f x =在[],a b 上是严格单调函数,则函数()y f x =在[],a b 上一定有最大、最小值。
(3)若函数()y f x =在区间[],a b 上是单调递增函数,则()y f x =的最大值是()f b ,最小值是()f a 。
(4)若函数()y f x =在区间[],a b 上是单调递减函数,则()y f x =的最大值是()f a ,最小值是()f b 。
7.利用函数单调性求参数的范围若已知函数的单调性,求参数a 的取值范围问题,可利用函数单调性,先列出关于参数a 的不等式,利用下面的结论求解。
(1)()a f x >在[],m n 上恒成立⇔()a f x >在[],m n 上的最大值。
(2)()a f x <在[],m n 上恒成立⇔()a f x <在[],m n 上的最小值。
实际上将含参数问题转化成为恒成立问题,进而转化为求函数在其定义域上的最大值和最小值问题。
要点二、基本初等函数的单调性1.正比例函数(0)y kx k =≠当k>0时,函数y kx =在定义域R 是增函数;当k<0时,函数y kx =在定义域R 是减函数.2.一次函数(0)y kx b k =+≠当k>0时,函数y kx b =+在定义域R 是增函数;当k<0时,函数y kx b =+在定义域R 是减函数.3.反比例函数(0)ky k x=≠ 当0k >时,函数ky x=的单调递减区间是()(),0,0,-∞+∞,不存在单调增区间; 当0k <时,函数ky x=的单调递增区间是()(),0,0,-∞+∞,不存在单调减区间. 4.二次函数2(0)y ax bx c a =++≠ 若a>0,在区间(]2b a -∞-,,函数是减函数;在区间[)2ba -∞,+,函数是增函数; 若a<0,在区间(]2b a -∞-,,函数是增函数;在区间[)2ba-∞,+,函数是减函数. 【典型例题】类型一、函数的单调性的证明【高清课堂:函数的单调性 356705 例1】例1.已知:函数1()f x x x=+(1)讨论()f x 的单调性.(2)试作出()f x 的图象.【思路点拨】本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径.【解析】(1)设x 1,x 2是实数集R 上的任意实数,且x 1<x 2,则12121211f (x )f (x )x (x )x x -=+-+121211(x x )()x x =-+- 211212x x (x x )x x -=-+12121212121(x x )(1)x x x x 1(x x )()x x =---=-①当121x x <<-时,x 1-x 2<0,1<x 1x 21212x x 10x x -∴>,故121212x x (x x )()0x x -1-⋅<,即f(x 1)-f(x 2)<0∴x 1<x 2时有f(x 1)<f(x 2)()1f (x)x x∴=+∞在区间-,-1上是增函数.②当-1<x 1<x 2<0 ∴x 1-x 2<0,0<x 1x 2<1∵0<x 1x 2<1 1212x x 10x x -∴<故121212x x (x x )()0x x -1-⋅>,即f(x 1)-f(x 2)>0 ∴x 1<x 2时有f(x 1)>f(x 2)()1f (x)x x∴=+在区间-1,0上是减函数.同理:函数()1f (x)x x =+在区间0,1是减函数, 函数()1f (x)x x=+∞在区间1,+是增函数. (2)函数1()f x x x=+的图象如下【总结升华】(1)证明函数单调性要求使用定义;(2)如何比较两个量的大小?(作差)(3)如何判断一个式子的符号?(对差适当变形)举一反三:【变式1】 证明函数221()f x x x =+在[)1,+∞上是增函数. 【解析】本题考查对单调性定义的理解,在现阶段,定义是证明单调性的唯一途径. 证明:设x 1,x 2是区间[)1,+∞上的任意实数,且x 1<x 2,则221212221211f (x )f (x )x x x x -=+-- 2212221211(x x )()x x =-+- 222221122212x x (x x )x x -=-+ 221222121(x x )(1)x x =--=222212122212x x 1(x x )x x --⋅=()()()()12121212221211x x x x x x x x x x +-+-⋅∵[)12121,,x x x x ∈+∞<、 ∴121212120,0,10,10x x x x x x x x +>-<+>->.12()()0f x f x ∴-<,即12()()f x f x <221()f x x x ∴=+在[)1,+∞上是增函数. 类型二、求函数的单调区间例2. 判断下列函数的单调区间;(1)y=x 2-3|x|+2; (2)2|1|(-2)y x x =-+【思路点拨】 对x 进行讨论,把绝对值和根号去掉,画出函数图象。
【答案】(1)f(x)在3--2⎛⎤∞ ⎥⎝⎦,上递减,在33[-,0][0,]22上递增,在上递减,在3+2⎡⎫∞⎪⎢⎣⎭,上递增. (2)f(x)在(][)-12+∞∞,上递减,在,上递增. 【解析】(1)由图象对称性,画出草图∴f(x)在3--2⎛⎤∞ ⎥⎝⎦,上递减,在33[-,0][0,]22上递增,在上递减,在3+2⎡⎫∞⎪⎢⎣⎭,上递增. (2)-2 3 (1)|1||-2| 1 (12)2-3 (2)x x y x x x x x +<⎧⎪=-+=≤≤⎨⎪>⎩∴图象为∴f(x)在(][)-12+∞∞,上递减,在,上递增. 举一反三:【变式1】求下列函数的单调区间:(1)y=|x+1|; (2)121y x =-; (3)21y x= ;(4)y=|x 2-2x-3|. 【答案】(1)函数的减区间为(]1,-∞-,函数的增区间为(-1,+∞);(2)11,,,22⎛⎫⎛⎫-∞+∞ ⎪⎪⎝⎭⎝⎭在上为减函数;(3)2x1y =单调增区间为:(-∞,0),单调减区间为(0,+∞);单调减区间是(-∞,-1),(1,3);单调增区间是(-1,1),(3,+∞).【解析】(1)⎩⎨⎧-<---≥+=)1x (1x )1x (1x y 画出函数图象,∴函数的减区间为(]1,-∞-,函数的增区间为(-1,+∞);(2)定义域为u1y ,1x 2u ,2121,=-=⎪⎭⎫ ⎝⎛+∞⋃⎪⎭⎫ ⎝⎛∞-,设,其中u=2x-1为增函数,u 1y =在(-∞,0)与(0,+∞)为减函数,则⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛∞--=,21,21,1x 21y 在上为减函数; (3)定义域为(-∞,0)∪(0,+∞),2x 1y =单调增区间为:(-∞,0),单调减区间为(0,+∞); 【高清课堂:函数的单调性 356705 例3】(4)先画出y=x 2-2x-3,然后把x 轴下方的部分关于x 轴对称上去,就得到了所求函数的图象,如下图所以y=|x 2-2x-3|的单调减区间是(-∞,-1),(1,3);单调增区间是(-1,1),(3,+∞).■【总结升华】(1)数形结合利用图象判断函数单调区间;(2)关于二次函数单调区间问题,单调性变化的点与对称轴相关.(3)复合函数的单调性分析:先求函数的定义域;再将复合函数分解为内、外层函数;利用已知函数的单调性解决.关注:内外层函数同向变化⇒复合函数为增函数;内外层函数反向变化⇒复合函数为减函数.类型三、单调性的应用(比较函数值的大小,求函数值域,求函数的最大值或最小值)例3. 已知函数()f x 是定义域为R 的单调增函数.(1)比较2(2)f a +与(2)f a 的大小;(2)若2()(6)f a f a >+,求实数a 的取值范围.【思路点拨】抽象函数求字母取值范围的题目,最终一定要变形成()()f x f y >的形式,再依据函数()f x 的单调性把f 符号脱掉得到关于字母的不等式再求解。