高一数学组合应用问题

合集下载

高一排列组合知识点

高一排列组合知识点

高一排列组合知识点排列组合是高中数学中的重要内容之一,它是组合数学的基础概念,也是解决许多实际问题的数学工具。

在高一阶段,排列组合的学习主要集中在基本的知识点上。

本文将为大家介绍高一阶段排列组合的基础知识点及其应用。

一、排列与组合的概念排列和组合是组合数学中的两个基本概念。

排列是指从一组元素中有序地选出若干个元素进行排列,排列中的元素不能重复使用;而组合则是从一组元素中无序地选出若干个元素进行组合,组合中的元素可以重复使用。

排列和组合的计算方法也有所不同,下面分别介绍。

二、排列的计算方法排列的计算方法有两种情况:有放回和无放回的排列。

1. 有放回的排列有放回的排列是指从一组元素中有序地选出若干个元素进行排列,并且选过的元素可以重新放回原来的组合中。

假设有n个元素,要选出k个元素进行排列,则有放回的排列数为n^k。

2. 无放回的排列无放回的排列是指从一组元素中有序地选出若干个元素进行排列,并且选过的元素不能重新放回原来的组合中。

假设有n个元素,要选出k个元素进行排列,则无放回的排列数为n!/(n-k)!,其中“!”表示阶乘。

三、组合的计算方法组合的计算方法也有两种情况:有放回和无放回的组合。

1. 有放回的组合有放回的组合是指从一组元素中无序地选出若干个元素进行组合,并且选过的元素可以重新放回原来的组合中。

假设有n个元素,要选出k个元素进行组合,则有放回的组合数为C(n+k-1, k),其中C表示组合数。

2. 无放回的组合无放回的组合是指从一组元素中无序地选出若干个元素进行组合,并且选过的元素不能重新放回原来的组合中。

假设有n个元素,要选出k个元素进行组合,则无放回的组合数为C(n, k)。

四、排列组合的应用排列组合不仅是一种数学工具,也是许多实际问题的解决方法。

在高一数学中,排列组合的应用主要包括以下几个方面:1. 判断有关事件发生顺序的概率问题。

排列可以用于计算事件发生的不同顺序,从而求解事件发生的概率。

高一数学组合应用题

高一数学组合应用题

组合应用题
一.简单组合问题
二.带附加条件的组合问题
1.某些元素有特殊归类问题
例1.平面上有五个兰点和七个红点,其中有三个红点与两个兰点在同一条直线上,
除此以外,再无三点共线,问过两个不
同颜色的点,共可作多少条直线?
2.组合中的有重复问题:
例2.由数1、2、3、4可组成多少个不同的和?
3.“不相邻”的组合问题:
例3.现有十只灯,为节约用电,可以将其中的三只灯关掉,但不能关掉相邻的两只
或三只,也不能关掉两端的灯,关灯方
法有多少种?
4.其他问题
例4.有12个代表名额,分给7个学校,每校至少1个,有多少分法?
作业:
1.有划船运动员10人,其中3人会划右舷,2人会划左舷,其余5人都会划,现要从中选出6人,平均分配在船的两舷,有多少种选法?
2.以正方体的四个顶点为顶点可以确定多少个三棱锥?
3.某仪表显示屏上一排7个小孔,每个小孔可显示红与黄两种颜色信号,若每次有三
个小孔同时给出信号,但相邻的两孔不能同时给出信号,求此显示屏可显示多少种不同的信号?
4.在一块并排10垄的田地中,选择2垄分别种植A、B两种作物,每种作物种植一垄,为有利于作物生长,要求A、B两种作物的间隔不小于6垄,不同的选垄方法有多少种?(99高考)
5.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形有多少个?(96高考)
6.四面体的一个顶点为A,从其它顶点与各棱的中点中取3个点,使它们和点A在同一平面上,不同取法有多少种?(97高考)。

高一数学中的组合数学初步是什么

高一数学中的组合数学初步是什么

高一数学中的组合数学初步是什么在高一数学的学习中,我们会接触到一个新的领域——组合数学初步。

组合数学听起来似乎有些高深莫测,但实际上它与我们的日常生活和许多实际问题都有着紧密的联系。

组合数学简单来说,就是研究如何按照一定的规则安排和选取事物的数学分支。

它关注的是计数、排列和组合等问题。

先来说说计数。

假设我们要从班级里选出一名班长,有 50 名同学可供选择,那么有多少种不同的选法呢?这就是一个简单的计数问题。

再比如,从一副扑克牌中抽取 5 张牌,有多少种可能的组合?这也是组合数学要研究的内容。

排列则是考虑顺序的选取方式。

比如,从 10 个不同的数字中选取 3 个并按照一定的顺序排列,有多少种排列方式?如果我们要给书架上的 5 本书进行排序,又有多少种不同的排列顺序?组合则不考虑顺序。

从 10 个同学中选出 3 个参加比赛,不考虑他们的出场顺序,有多少种选法?组合数学会告诉我们答案。

组合数学在现实生活中有很多实际应用。

比如,在密码学中,为了保证密码的安全性,需要生成复杂的组合;在彩票游戏中,计算中奖的可能性就涉及到组合数学的知识;在计算机科学中,算法的优化、数据的存储和检索等也离不开组合数学。

在高一数学中,我们学习的组合数学初步知识主要包括基本的计数原理、排列组合的公式和应用。

基本的计数原理有两个,分别是分类加法计数原理和分步乘法计数原理。

分类加法计数原理是指,如果完成一件事有 n 类不同的方案,在第1 类方案中有 m1 种不同的方法,在第 2 类方案中有 m2 种不同的方法……在第 n 类方案中有 mn 种不同的方法,那么完成这件事共有 N = m1 + m2 +… + mn 种不同的方法。

比如说,从甲地到乙地,有 3 条陆路可走,2 条水路可走,那么从甲地到乙地共有 3 + 2 = 5 种不同的走法。

分步乘法计数原理是指,如果完成一件事需要 n 个步骤,做第 1 步有 m1 种不同的方法,做第 2 步有 m2 种不同的方法……做第 n 步有mn 种不同的方法,那么完成这件事共有 N =m1 × m2 × … × mn 种不同的方法。

高一数学应用题解析与讲解

高一数学应用题解析与讲解

高一数学应用题解析与讲解数学是一门重要的学科,不仅涉及到理论与公式的运用,还与我们日常生活的应用息息相关。

在高一数学学习中,我们将接触到许多数学应用题,这些题目旨在帮助我们将数学知识应用于实际场景中,培养我们的解决问题的能力。

本文将对高一数学应用题进行解析与讲解,帮助大家更好地理解与掌握数学应用题的解题方法。

1. 几何应用题几何应用题是高一数学学习中的重点之一,涉及到平面几何和立体几何等内容。

下面我们以一个平面几何的应用题为例进行解析。

例题1:某校操场的形状是一个半径为50米的圆形,现需要在操场四周修建一条宽3米的跑道,求跑道的面积。

解析:首先,我们需要明确题目的要求,即求跑道的面积。

根据题目中的描述,我们可以得知,跑道的形状是一个内半径为50米、外半径为53米的圆环。

因此,我们可以通过计算两个圆的面积之差来求得跑道的面积。

内圆的面积为πr^2,外圆的面积为πR^2,其中r为内半径,R为外半径。

跑道的面积即为外圆的面积减去内圆的面积。

所以,跑道的面积为πR^2 - πr^2 = π(R^2 - r^2) = π(53^2 - 50^2) = 9π ≈ 28.27平方米。

在这个例题中,我们运用了几何知识中圆环的面积公式,并通过计算求得了跑道的面积。

这个例题不仅考察了对几何知识的掌握,还培养了我们解决实际问题的能力。

2. 概率与统计应用题概率与统计是数学的一个重要分支,与我们日常生活中的数据、概率密切相关。

下面我们以一个概率与统计的应用题为例进行解析。

例题2:某班级有30个学生,其中20个学生会游泳。

现从班级中随机抽取2个学生,求这2个学生都会游泳的概率。

解析:首先,根据题目中给出的信息,班级总共有30个学生,其中20个学生会游泳。

我们需要计算的是从班级中随机抽取2个学生,这两个学生都会游泳的概率。

根据概率的定义,概率等于“有利结果的个数除以总结果的个数”。

在这个题目中,有利结果就是两个学生都会游泳,总结果就是从班级中随机抽取2个学生。

高中数学组合优秀教案

高中数学组合优秀教案

高中数学组合优秀教案
主题:组合数
主要内容:组合数的概念及性质,组合数的运算法则,组合数在实际问题中的应用
一、学习目标
1. 理解组合数的概念和性质。

2. 掌握组合数的运算法则。

3. 能够灵活运用组合数解决实际问题。

二、教学重点
1. 组合数的定义和性质。

2. 组合数的运算法则。

3. 实际问题中组合数的应用。

三、教学难点
1. 灵活运用组合数解决实际问题。

2. 深入理解组合数的概念和性质。

四、教学过程
1. 导入:通过一个有趣的问题引出组合数的概念,让学生产生兴趣。

2. 授课:讲解组合数的定义和性质,介绍组合数的运算法则。

3. 拓展:通过练习让学生掌握组合数的运算技巧。

4. 应用:通过实际问题让学生灵活运用组合数解决问题。

5. 总结:回顾本节课的内容,强调组合数在数学中的重要性。

五、教学反馈
1. 布置作业:留作业巩固学习成果。

2. 点评作业:对学生的学习情况进行评价,及时纠正错误。

3. 反馈教学:根据学生的反馈对教学方法进行调整,提高教学效果。

六、教学资源
1. 教材:《高中数学》
2. 辅助教材:《高中数学组合数专题讲义》
3. 多媒体教学设备:电脑、投影仪
七、教学评估
1. 学生态度:学生是否主动参与课堂活动。

2. 学生表现:学生是否能够熟练运用组合数解决问题。

3. 教学效果:学生是否能够掌握组合数的相关知识和技能。

高一数学重要知识总结代数运算中的常见公式及应用

高一数学重要知识总结代数运算中的常见公式及应用

高一数学重要知识总结代数运算中的常见公式及应用代数运算中常见的公式及应用代数运算是数学中重要的一部分,它涉及到数字和符号的组合与操作。

在高一数学学习中,我们不可避免地需要运用代数运算来解决各种问题。

本文将对高一数学代数运算中常见的公式及其应用进行总结,帮助同学们更好地理解和应用代数知识。

一、基本符号和运算在代数运算中,我们首先需要了解一些基本符号和运算。

例如,加法、减法、乘法、除法、指数和根号等。

这些基本运算符号是我们进行代数运算的基础,掌握了它们才能顺利进行更复杂的计算。

1. 加法和减法加法是指将两个数相加,用符号“+”表示。

例如,a + b 表示将 a 和b 两个数相加的结果。

减法是指将一个数减去另一个数,用符号“-”表示。

例如,a - b 表示将 b 从 a 中减去的结果。

加法和减法的应用非常广泛,例如在解方程、计算周长和面积等问题中都会用到。

2. 乘法和除法乘法是将两个数相乘,用符号“×”表示。

例如,a × b 表示将 a 和 b 两个数相乘的结果。

除法是将一个数除以另一个数,用符号“÷”表示。

例如,a ÷ b 表示将 a 除以 b 的结果。

乘法和除法在代数运算中也十分重要,例如在求解方程组、计算比例和百分数等问题中都会用到。

3. 指数和根号指数是指一个数被乘以自身若干次,用符号“^”表示。

例如,a^b 表示将 a 乘以自身 b 次。

根号是指一个数的一个或几个平方根,用符号“√”表示。

例如,√a 表示 a 的平方根。

指数和根号经常出现在方程求解、计算平均速度和成本折旧等问题中。

二、代数公式及应用除了基本的运算符号,代数运算中还有许多常见的公式。

这些公式是根据代数的性质和规律总结出来的,具有较广的适用性。

下面将介绍一些常见的代数公式及其应用。

1. 二次方公式二次方公式是一种关于二次方的方程,通常具有以下形式:ax^2 + bx + c = 0。

二次方公式的求解应用非常广泛,例如在抛物线的研究、物体的自由落体运动和工程中的求解等问题中都会用到。

排列组合综合应用问题

排列组合综合应用问题

10. 15 人按照下列要求分配,求不同的分法种数。
(1)分为三组,每组5人,共有__C_15_5C __15_0C__55_/_A_33__ 种不同的分法。
(2)分为甲、乙、丙三组,一组7人,另两组各4人,共有
_____C __17_5C __84_C__44_A_33__/_A_22 种不同的分法。
(3)分为甲、乙、丙三组,一组6人,一组5人,一组4人,
共有 ____C__16_5C__95_C__44_A_3_3____种不同的分法。
11. 8名同学选出4名站成一排照相,其中甲、乙两人都不 站中间两位的排法有__C __6 4A _4 4 _ __C _2 1 C _7 _3A _2 1 _A _3 3 _ _C _6 2 _A _2 2 _A _2 2 _种。
4.某城新建的一条道路上有12只路灯,为了节省用电而不 影响正常的照明,可以熄灭其中三盏灯,但两端的灯不能 熄灭,也不能熄灭相邻的两盏灯,可以熄灭的方法共有 ( A)
C C (A)C
3 8
种(B)A
3 8

(C)
3 种 (D) 3 种
9
11
5. 对某种产品的6件不同的正品和4件不同的次品,一一进行 测试,至区分出所有次品为止,若所有次品恰好在第5次测 试时全部发现,则这样的测试方法有种可能?
2.平均分配问题中,给出组名的分步求;若没给出组名的, 一定要在给出组名的基础上除以组数的全排列数。
3.部分平均分配问题中,先考虑不平均分配,剩下的就是 平均分配。这样分配问题就解决了。
结论:给出组名(非平均中未指明
各组个数)的要在未给出组名的种 数的基础上,乘以组数的阶乘。
二、搭 配 问 题 例2:某乒乓球队有8男7女共15名队员,现进行

高一数学中的排列与组合问题如何解决

高一数学中的排列与组合问题如何解决

高一数学中的排列与组合问题如何解决在高一数学的学习中,排列与组合是一个让许多同学感到头疼的部分。

但其实,只要我们掌握了正确的方法和思路,这些问题也能迎刃而解。

首先,我们要明确排列和组合的基本概念。

排列是指从给定的元素中,按照一定的顺序选取若干个元素进行排列;而组合则是指从给定的元素中,选取若干个元素组成一组,不考虑顺序。

简单来说,排列关注顺序,组合不关注顺序。

那如何判断一个问题是排列问题还是组合问题呢?这就需要我们仔细分析题目中的条件。

如果题目中明确提到了顺序的重要性,比如“排队”“排座位”“比赛的名次”等,那么通常就是排列问题;如果题目强调的是选取一组元素,而不关心其内部的顺序,比如“选几个人组成小组”“从一堆物品中选几个”等,那大概率就是组合问题。

在解决排列与组合问题时,我们有一些常用的方法和公式。

先来说说排列的公式。

如果从 n 个不同元素中取出 m 个元素进行排列,那么排列数记为 A(n, m) ,其计算公式为:A(n, m) = n! /(n m)!。

这里的“!”表示阶乘,例如 5! = 5 × 4 × 3 × 2 × 1 。

对于组合,从 n 个不同元素中取出 m 个元素的组合数记为 C(n, m) ,其计算公式为:C(n, m) = n! / m! ×(n m)!。

掌握了这些基本的公式后,我们通过一些具体的例子来看看如何应用。

比如,有 5 个不同的球,从中选取 3 个进行排列,有多少种不同的排法?这就是一个排列问题。

我们可以使用排列公式 A(5, 3) = 5! /(5 3)!= 5 × 4 × 3 = 60 种。

再比如,从 10 名学生中选出 3 名参加活动,有多少种选法?这是一个组合问题,使用组合公式 C(10, 3) = 10! / 3! ×(10 3)!= 120 种。

除了直接运用公式,我们还有一些特殊的解题方法。

排列组合问题的八种求法(免费)

排列组合问题的八种求法(免费)
- 35 9
126

( 1)分成三堆,一堆 2 本,一堆 3 本,一堆 1 本; ( 2)平均分成三堆; ( 3)平均分给三个同学; ( 4)分给三个同学,一人 1 本,一人 2 本,一人 3 本; ( 5)分给甲 1 本,乙 2 本,丙 3 本。 解: ( 1)不是平均分堆,故有:
C C C
1排列组合问题的八种求法云南昭通鲁甸一中李明健云南昭通站张中华推荐排列组合是高中数学的重点难点内容之一同时也是解决概率问题的重要工具下面举例说明排列组合问题的八种求法
排列组合问题的八种求法
云南昭通鲁甸一中 李明健 云南昭通站 张中华推荐 排列组合是高中数学的重点、难点内容之一,同时也是解决概 率问题的重要 “工具 ”,下面举例说明排列组合问题的八种求法: 一、特殊位置或特殊元素:优先法 例 1:由 0、 1、 2、 3、 4、 5 六个数字可组成多少个没有重复数 字且不能被 10 整除的六位数? 解法一:先安排首末两个特殊位置,从 1、2、3、4、5 中任取 两个排在首位和末位,然后把 0 和剩余的三个数字排在中间四个位 置上,符合条件的六位数共有 A A 个。
种分法
( 5)不属平均分堆,故有:
C C C
6 5 1 2 3 3
60
种不同的分法
求解完毕,仅以以上几例抛砖引玉,解题时注意积累经验,总 结规律,掌握技巧,定会柳暗花明。
- 4-
2 4 4 5
解法二:先把特殊元素 0 排在中间四个位置的任何一个,然后 把 0 以外的五个数字排在其他五个位置, 可得符合条件的总数共有:
A A 个。
1 5 5 4
二、对称(或机会均等)问题用:除法 例 2、 A、 B、 C、 D、 E 五人排成一排,如果 B 必须站在 A 的 右边,则不同的站法有多少种? 解:B 在 A 的右边与 B 在 A 的左边的排列情况是对称的(或 B 在 A 的右边与 B 在 A 的左边机会相等) ,故有:

高一数学排列组合中的分堆问题

高一数学排列组合中的分堆问题

A
3 3
少种不同的分法?
02.
按2∶2∶2∶4分给甲、乙、丙、
C 120 C 82 C 62 C 44 丁四个人有多少种不同的分法?
非均分组问题 (例3)
(1) C16C52C33
6本不同的书按 1∶2∶3分成三 堆有多少种不同 的分法?
(2) C16C52C33 P33
按1∶2∶3分给甲、乙、 丙三个人有多少种不同 的分法?
(4)一人两本,另两人各五本·
(1)
C
3 12
C
4 9
C
5 5
A
3 3
(2)
C
3 12
C
4 9
C
5 5
(3)
C
2 12
C
5 10
C
5 5
(4)
A
1 3
C
2 12
C
C
5 5
小结
平均分组问题
理论部分:平均分成的组,不管它们的顺序 如何,都是一种情况,所以分组后要除以 P(m,m),即m!,其中m表示组数。
cd
ab
有_____多少种分法?
C
2 4
C
2 2
A
2 2
3
这两个在分组时只能算一个
一:均分不安 排工作的问题
例1:12本不同的书 (1)按4∶4∶4平均分成三堆有多少种不同的分法? (2)按2∶2∶2∶6分成四堆有多少种不同的分法?
(1)
C
4 12
C
4 8
C
4 4
A
3 3
12! 4!·8!
8! 4!·4!
CLICK TO ADD TITLE
排列组合中的分堆问题

高一数学排列组合中分堆问题

高一数学排列组合中分堆问题

(3)甲两本,乙、丙各五本;
(4)一人两本,另两人各五本·
(1)
C
3 12
C
4 9
C
5 5
A
3 3
(2)
C
3 12
C
4 9
C
5 5
(3)
C
2 12
C
5 10
C
5 5
(4)
A
1 3
C
12 2 C
5 10
CБайду номын сангаас
5 5
小结
平均分组问题
理论部分:平均分成的组,不管它们 的顺序如何,都是一种情况,所以 分组后要除以P(m,m),即m!,其中m 表示组数。
(1)
C
2 6
C
2 4
C22
90
二:分堆安排工作的问题(续)
例2(2)12支笔按3:3:2:2:2分给A、B、C、 D、E五个人有多少种不同的分法?
方法:先分再排法。分成的组数看成元素的个数·
(2)均分的五组看成是五个元素在五个位置上作 排列
(2)
C
13 2 C
3 9
C62
C 42 C22
A
3 3
A
2 2
A
5 5
练习1
1:12本不同的书平均分成四组有多少 种不同分法?
C132
C
3 9
C36
C33
A
4 4
练习2
2:10本不同的书
(1)按2∶2∶2∶4分
成四堆有多少种不同 (1)
的分法?
(2)按2∶2∶2∶4分
给甲、乙、丙、丁四 (2)
个人有多少种不同的 分法?
C120

专题研究排列组合的综合应用习题和答案详解

专题研究排列组合的综合应用习题和答案详解

1.(2019·湖北宜昌一中月考)从1到10十个数中,任意选取4个数,其中,第二大的数是7的情况共有( )A .18种B .30种C .45种D .84种答案 C解析 分两步:先从8,9,10这三个数中选取一个数作最大的数有C 31种方法;再从1,2,3,4,5,6这六个数中选取两个比7小的数有C 62种方法,故共有C 31C 62=45种情况,应选择C.2.将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排方法的种数为( ) A .10 B .20 C .30 D .40 答案 B解析 将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么必然是一个宿舍2名,而另一个宿舍3名,共有C 53C 22×2=20(种),故选B.3.(2019·广东省实验中学月考)甲、乙、丙三个部门分别需要招聘工作人员2名,1名,1名,现从10名应聘人员中招聘4人到甲、乙、丙三个部门,那么不同的招聘方法共有( ) A .1 260种 B .2 025种 C .2 520种 D .5 040种 答案 C解析 先从10人中选2人去甲部门,再从剩下的8人中选2人去乙、丙两个部门,有C 102A 82=2 520种不同的招聘方法.4.将标号为1,2,3,4,5,6的6个小球放入3个不同的盒子中,若每个盒子放2个,其中标号为1,2的小球放入同一个盒子中,则不同的放法共有( ) A .12种 B .16种 C .18种 D .36种 答案 C解析 可先分组再排列,所以有12C 42A 33=18(种)放法.5.(2019·西安五校)某学校派出5名优秀教师去边远地区的三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法有( ) A .80种 B .90种 C .120种 D .150种 答案 D解析有二类情况:(1)其中一所学校3名教师,另两所学校各一名教师的分法有C53A33=60(种);(2)其中一所学校1名教师,另两所学校各两名教师的分法有C51×C422×A33=90(种).∴共有150种.故选D.6.(2019·山西大同一模)从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种子不能放入第1号瓶内,那么不同的放法种数为()A.C102A84B.C91A95C.C81A95D.C81A85答案 C解析先排第1号瓶,从除甲、乙以外的8种不同作物种子中选出1种有C81种方法,再排剩余的瓶子,有A95种方法,故不同的放法共有C81A95种,故选C项.7.(2019·安徽毛坦厂中学阶段测试)6名志愿者(其中4名男生,2名女生)义务参加宣传活动,他们自由分成两组完成不同的两项任务,但要求每组最多4人,女生不能单独成组,则不同的工作安排方式有()A.40种B.48种C.60种D.68种答案 B解析4,2分法:A22(C64-1)=14×2=28,3,3分法:C63C33=20,∴共有48种.8.某校高一有6个班,高二有5个班,高三有8个班,各年级分别举行班与班之间篮球单循环赛,则共需要进行比赛的场数为()A.C62C52C82B.C62+C52+C82C.A62A52A82D.C192答案 B解析依题意,高一比赛有C62场,高二比赛有C52场,高三比赛有C82场,由分类计数原理,得共需要进行比赛的场数为C62+C52+C82,选B.9.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为()A.18 B.24C.30 D.36答案 C解析排除法.先不考虑甲、乙同班的情况,将4人分成三组有C42=6种方法,再将三组同学分配到三个班级有A33=6种分配方法,再考虑甲、乙同班的分配方法有A33=6种,所以共有C42A33-A33=30种分法.故选C.10.某科室派出4名调研员到3个学校,调研该校高三复习备考近况,要求每个学校至少一名,则不同的分配方案种数为( ) A .144 B .72 C .36 D .48答案 C解析 分两步完成:第一步将4名调研员按2,1,1分成三组,其分法有C 42C 21C 11A 22种;第二步将分好的三组分配到3个学校,其分法有A 33种.所以满足条件的分配方案有C 42C 21C 11A 22×A 33=36(种).11.某学校4位同学参加数学知识竞赛,竞赛规则规定:每位同学必须从甲、乙两道题中任选一题作答,选甲题答对得30分,答错得-30分;选乙题答对得10分,答错得-10分.若4位同学的总分为0,则这4位同学不同得分情况的种数是( ) A .24 B .36 C .40 D .44答案 D解析 分以下四种情况讨论:(1)两位同学选甲题作答,一个答对一个答错,另外两个同学选乙题作答,一个答对一个答错,此时共有C 42×2×2=24(种);(2)四位同学都选择甲题或乙题作答,两人答对,另外两人答错,共有C 21C 42=12(种)情况;(3)一人选甲题作答并且答对,另外三人选乙题作答并且全部答错,此时有C 41=4(种)情况;(4)一人选甲题作答并且答错,另外三人选乙题作答并且全部答对,此时有C 41=4(种)情况.综上所述,共有24+12+4+4=44(种)不同的情况.故选D.12.(2019·河南郑州检测)从1,2,3,4,5这五个数字中任取3个组成无重复数字的三位数,当三个数字中有2和3时,2需排在3的前面(不一定相邻),这样的三位数有( ) A .51个 B .54个 C .12个 D .45个 答案 A解析 分三类:第一类,没有2,3,由其他3个数字组成三位数,有A 33=6(个); 第二类,只有2或3,需从1,4,5中选2个数字,可组成2C 32A 33=36(个);第三类,2,3均有,再从1,4,5中选1个,因为2需排在3的前面,所以可组成12C 31A 33=9(个).故这样的三位数共有51个,故选A.13.(2019·安徽马鞍山模拟)某学校有5位教师参加某师范大学组织的暑期骨干教师培训,现有5个培训项目,每位教师可任意选择其中一个项目进行培训,则恰有两个培训项目没有被这5位教师中的任何一位教师选择的情况数为( )A .5 400B .3 000C .150D .1 500答案 D解析 分两步:第一步:从5个培训项目中选取3个,共C 53种情况;第二步:5位教师分成两类:①选择选出的3个培训项目的教师人数分别为1人,1人,3人,共C 53种情况;②选择选出的3个培训项目的教师人数分别为1人,2人,2人,共C 52C 32A 22种情况.故选择情况数为C 53(C 53+C 52C 32A 22)A 33=1 500(种). 14.(2019·河北唐山一中模拟)中小学校车安全引起社会的关注,为了彻底消除校车安全隐患,某市购进了50台完全相同的校车,准备发放给10所学校,每所学校至少2台,则不同的发放方案的种数有( ) A .C 419 B .C 389 C .C 409 D .C 399答案 D解析 首先每个学校配备一台,这个没有顺序和情况之分,剩下40台;将剩下的40台像排队一样排列好,则这40台校车之间有39个空.对这39个空进行插空(隔板),比如说用9个隔板隔开,就可以隔成10部分了.所以是在39个空里选9个空插入隔板,所以是C 399.15.(2019·人大附中期末)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答). 答案 60解析 分情况:一种情况将有奖的奖券按2张,1张分给4个人中的2个人,种数为C 32C 11A 42=36;另一种将3张有奖的奖券分给4个人中的3个人,种数为A 43=24,则获奖情况总共有36+24=60种.16.某学校新来了五名学生,学校准备把他们分配到甲、乙、丙三个班级,每个班级至少分配一人,则其中学生A 不分配到甲班的分配方案种数是________. 答案 100解析 A 的分配方案有2种,若A 分配到的班级不再分配其他学生,则把其余四人分组后分配到另外两个班级,分配方法种数是(C 43+C 42C 22A 22)A 22=14;若A 分配到的班级再分配一名学生,则把剩余的三名学生分组后分配到另外两个班级,分配方法种数是C 41C 31A 22=24;若A 分配到的班级再分配两名学生,则剩余的两名学生就分配到另外的两个班级,分配方法种数是C 42A 22=12.故总数为2×(14+24+12)=100.17.(2019·北京海淀区二模)某运输公司有7个车队,每个车队的车辆均多于4辆.现从这个公司中抽调10辆车,并且每个车队至少抽调1辆,那么共有________种不同的抽调方法.答案84解析方法一:(分类法),在每个车队抽调1辆车的基础上,还需抽调3辆车.可分成三类:一类是从某1个车队抽调3辆,有C71种;一类是从2个车队中抽调,其中1个车队抽调1辆,另1个车队抽调2辆,有A72种;一类是从3个车队中各抽调1辆,有C73种.故共有C71+A72+C73=84(种)抽调方法.方法二:(隔板法),由于每个车队的车辆均多于4辆,只需将10个份额分成7份.可将10个小球排成一排,在相互之间的9个空当中插入6个隔板,即可将小球分成7份,故共有C96=84(种)抽调方法.。

插空法与捆绑法在高一数学排列组合中的应用

插空法与捆绑法在高一数学排列组合中的应用

数论:插空法 与捆绑法可以 用于求解数论
问题
在实际生活中的应用
插空法:在排 队、座位安排、 物品摆放等场 景中,可以运 用插空法进行 优化和调整。
捆绑法:在打 包、装箱、物 品分类等场景 中,可以运用 捆绑法进行优
化和调整。
插空法与捆绑 法的结合:在 实际生活中, 可以将插空法 和捆绑法结合 使用,提高效 率和准确性。
汇报人:WPS
在排列组合中的重要性
插空法:适用于 元素之间存在某 种限制条件的情 况,如元素之间 存在顺序关系或 元素之间存在排 斥关系等。
捆绑法:适用于 元素之间存在某 种关联关系的情 况,如元素之间 存在捆绑关系或 元素之间存在依 赖关系等。
比较与联系:插 空法和捆绑法是 解决排列组合问 题的两种重要方 法,它们各有优 缺点,需要根据 实际问题灵活选 择和应用。
插空法的实例解析
添加标题
问题描述:从n个不 同元素中取出r个元 素进行排列,要求每 个元素都不相邻
添加标题
插空法原理:将n个 元素分成r+1个空隙, 然后在空隙中插入r 个元素
添加标题
实例解析:例如,从 5个不同元素中取出3 个元素进行排列,要 求每个元素都不相邻
添加标题
插空法步骤:
添加标题
将5个元素分成4个空 隙,然后在空隙中插 入3个元素
添加标题
计算不同排列方式的 数量,得到答案为10 种
添加标题
结论:插空法是一种 有效的方法,可以解 决排列组合问题中的 特定问题
捆绑法的概念
捆绑法是一种解决排列组合问题的方法 捆绑法将某些元素视为一个整体,进行捆绑处理 捆绑法适用于解决元素之间存在某种关联或限制的问题 捆绑法可以提高解题效率,简化解题过程

排列组合例题总结

排列组合例题总结

解2:C210.C118.C116.C114 A44 3360
解:C110.C92C21C21 1140
3.选人问题
文档仅供参考,如有不当之处,请联系改正。
练习6:8名外交工作者,其中3人只会英语, 2人只会日语,3人既会英语又会日语,现从 则8人中选3个会英语,3个会日语旳人去完毕 一项任务,有多少种不同旳选法?
练习题4 10人身高各不相等,排成前后排,每排5人,要 求从左至右身高逐渐增长,共有多少种排法?
C C 5 5 10 5
五.多排问题直排策略 文档仅供参考,如有不当之处,请联系改正。 例5.8人排成前后两排,每排4人,其中甲乙在
前排,丁在后排,共有多少排法 解:8人排前后两排,相当于8人坐8把椅子,能够
解:(C22C31).C53 (C21C32 ).C43 C33.C33
4.涂色问题
文档仅供参考,如有不当之处,请联系改正。
措施
分步原理
做一件事,完毕它能够有n个环 节,做第i步中有mi种不同旳措 施,那么完毕这件事共有 N=m1·m2·m3·…·mn 种不同旳 措施.
相同点 做一件事或完毕一项工作旳措施数
不同点 直接(分类)完毕
间接(分环节)完毕
排列和组合旳区别和联络: 文档仅供参考,如有不当之处,请联系改正。
名称 定义
C62 15
八.正难则反间接法文档仅供参考,如有不当之处,请联系改正。 例8. 四面体旳顶点和各棱中点共10个点, 从中取4个不共面旳点,不同旳取法有 多少种?
取出旳4点不共面情形复杂,故采用间接 法。取出旳4点共面有三类:
(1)过四面体旳一种面有4C64 种;
(2)过四面体旳一条棱上旳三个点和对棱
11块 个隔空班共板隙级有,中,__插,_每_入全_一C_部n_种96个_分_插_元_板法种素措数分排施为法成相。一应Cn一m排11种旳分n-法

高一数学组合与组合数公式

高一数学组合与组合数公式

所有的排列为:
abc abd acb acd adb adc bac bad bca bcd bda bdc cab cad cba cbd cda cdb dab dac dba dbc dca dcb
演 稿


1 2 3 后

域名走势www.yunmi.ee 域名资讯 云米网 嶋幷夻
组合
排列
如:从 a , b , c三个不同的元素中取出两个元素的 所有组合分别是: ab , ac , bc (3个) 如:已知4个元素a , b , c , d ,写出每次取出两个 元素的所有组合.
a
b
c
b
c
d
c
d
d
6个
ab , ac , ad , bc , bd , cd
练习:
中国、美国、古巴、俄罗斯四国女排邀 请赛,通过单循环决出冠亚军. (1 )列出所有各场比赛的双方; (2 )列出所有冠亚军的可能情况。
m n m n m m
n! C m!(n m)!
m n
例1 计算:⑴
C
4 7

C
7 10
(3) 已知
例2求证:
C
m n
3 n

A
2 n
,求 n .
m 1 m1 C C n nm

个元素并成一组,叫做从n个不同元素中取出
m个元素的一个组合. 排列定义: 一般地说,从n个不同元素中,取出m (m≤n) 个元素,按照一定的顺序排成一列,叫做从 n 个不 同元素中取出 m 个元素的一个排列. 思考: 排列与组合的概念,它们有什么共同点、不同点? 共同点:都要“从 n个不同元素中任取 m个元素” 不同点:对于所取出的元素,排列要“按照一定的顺序 排成一列”,而组合却是“不管怎样的顺序并成一组”. 排列与元素的顺序有关,而 组合则与元素的顺序无关 想一想:ab与ba是相同的排列还是相同的组合?为什么? 两个相同的排列有什么特点 ?两个相同的组合呢?

排列与组合的综合应用题

排列与组合的综合应用题
【解析】两点确定一条直线,共 C26=15 条; 不在同一平面内的四个点确定一个三棱锥,由排除 法得 C46-3=12 个三棱锥;每个三棱锥可确定三对 异面直线,故有 12×3=36 对异面直线.
5.有五张卡片,它们的正、反面分别写 0 与 1,2 与 3,4 与 5,6 与 7,8 与 9,将其中任意三张并排放在一 起组成三位数,共可组成 432 个不同的三位数.
2.局局部步,整体分类以后,对每一类进行局局部 步,分步要做到步骤连续,以保证分步的不遗漏,同 时步骤要独立,以保证分步的不重复,计算结果时用 分步计数原理.
3.辩证地看待“元素〞与“位置〞.排列、组合问 题中的元素与位置,没有严格的界定标准,哪些 事物看成元素或位置,要视具体情况而定.有时“ 元素选位置〞,问题解决得简捷;有时“位置选元 素〞,效果会更好.
【点评】本小题考查排列组合、计数原理等根底知
识以及分类讨论的数学思想.
排列组合问题的常见解法主要有以下几种: (1)特殊元素优先安排的策略; (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难那么反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略;
【点评】有关由假设干个数字组成满足某条件的数的
问题通常应用“特殊元素先排法〞或“减去法〞,思考
这类问题时应注意数字“0〞是否参与、组成的数是多
少位数、数字使用时是否可以重复这三个根本方面.
四、几何型排列组合问题 例 4(1)将一个四棱锥的每个顶点染上 1 种颜 色,并使同一条棱上的两端点异色,现共有 5 种颜 色可供使用,问共有多少种不同染色方法?
【点评】几何型排列组合问题需充分利用题设情 境相应的几何性质,利用分类整合的方法求解.

高一数学排列组合综合应用试题

高一数学排列组合综合应用试题

高一数学排列组合综合应用试题1.完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1人完成这项工作,一共有多少种选法?()A.5B.4C.9D.20【答案】C【解析】完成一项用方法一有5种,用方法二有4种,因此共有4+5=9种.【考点】分类加法计数原理.2.从6名班委中选出2人分别担任正、副班长,一共有多少种选法?()A.11B.12C.30D.36【答案】C【解析】第一步从6人中选一人担任正班长,有6种情况;第二步从剩余5人中选一人担任副班长,有5种情况,有分步乘法计数原理得有【考点】步乘法计数原理.3.一个袋中有6个同样大小的黑球,编号为1、2、3、4、5、6,现从中随机取出3个球,以X表示取出球的最大号码. 则X所有可能取值的个数是()A.6B.5C.4D.3【答案】C【解析】随机变量的可能取值为取值个数为4.【考点】离散型随机变量的取值.4.(本题满分10分)从5名男医生、4名女医生中选出3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有多少种?【答案】70【解析】(1)排列与元素的顺序有关,而组合与顺序无关,如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同,才是不同的组合;(2)排列、组合的综合问题关键是看准是排列还是组合,复杂的问题往往是先选后排,有时是排中带选,选中带排;(3)对于排列组合的综合题,常采用先组合(选出元素),再排列(将选出的这些元素按要求进行排序)试题解析:第一类,男医生1人,女医生2人,有种,第二类,男医生2人,女医生1人,有种,因此共有30+40=70.【考点】排列组合的综合应用.5.如图所示,将若干个点摆成三角形图案,每条边(包括两个端点)有n(n>1,n∈N*)个点,相应的图案中总的点数记为an ,按上述规律,则a6=_________,an=_________.【答案】,.【解析】由于,因此构成的是公差为3的等差数列,因此..【考点】等差数列的概念和通项公式.6.用0,1,2,3,4这五个数字组成无重复数字的五位数,其中恰有一个偶数夹在两个奇数之间的五位数共有【答案】28【解析】0,1,2,3,4中有3个偶数,2个奇数,分3种情况讨论:①、0被奇数夹在中间,先考虑奇数1、3的顺序,有2种情况;再将1、0、3看成一个整体,与2、4全排列,有A33=6种情况;故0被奇数夹在中间时,有2×6=12种情况;②、2被奇数夹在中间,先考虑奇数1、3的顺序,有2种情况;再将1、0、3看成一个整体,与2、4全排列,有A33=6种情况,其中0在首位的有2种情况,则有6-2=4种排法;故2被奇数夹在中间时,有2×4=8种情况;③、4被奇数夹在中间时,同2被奇数夹在中间的情况,有8种情况,则这样的五位数共有12+8+8=28种;故答案为28.【考点】简单排列组合应用问题,计数原理。

1.2.2.2组合的综合应用

1.2.2.2组合的综合应用

林老师网络编辑整理
42
【解析】(1)方法一:可作出三角形 C36 C16 gC42 C62 gC14 =116(个). 方法二:可作三角形 C130 C34 =116(个),其中以C1为顶点 的三角形有C52 C15 gC14 C24 =36(个). (2)可作出四边形 C64 C36 gC16 C62 gC62 =360(个).
40
【习练·破】 如图,在以AB为直径的半圆周上,有异于A,B的六个点
C1,C2,…,C6,线段AB上有异于A,B的四个点D1,D2,D3,D4.
林老师网络编辑整理
41
(1)以这10个点中的3个点为顶点可作多少个三角形?其 中含C1点的有多少个? (2)以图中的12个点(包括A,B)中的4个点为顶点,可作 出多少个四边形?
列即可.
林老师网络编辑整理
48
【解析】(1)分三步:先选一本有 C16 种选法,再从余下的 5本中选两本有 C52 种选法,最后余下的三本全选有 C33种 选法.由分步乘法计数原理知,分配方式共有 C16 gC52 gC33 =60(种).
分成2,2,1时,有
C35 gC32
A
2 2
gA33
种分法,
由分类加法计数原理得,共
有C35
gA33

C35 gC32
A
2 2
gA33
=150种不
同的分法.
林老师网络编辑整理
7
2.(1)第一步:选3名男运动员,有 C36 种选法;第二步:选 2名女运动员,有 C24 种选法,故共有 C36 gC42 =120(种)选法.
【典例】1.空间中有10个点,其中有5个点在同一个平
面内,其余点无三点共线,四点共面,则以这些点为顶点,

高一数学中的排列组合问题怎么解决

高一数学中的排列组合问题怎么解决

高一数学中的排列组合问题怎么解决在高一数学的学习中,排列组合问题常常让同学们感到困惑和棘手。

但其实,只要掌握了正确的方法和思路,这些问题便能迎刃而解。

首先,我们要理解排列和组合的基本概念。

排列是指从给定的元素中,按照一定的顺序选取若干个元素进行排列;而组合则是指从给定的元素中,选取若干个元素组成一组,不考虑其顺序。

比如说,从 5 个不同的球中取出 2 个排成一列,这就是排列问题;而从 5 个不同的球中取出 2 个放在一个盒子里,这就是组合问题。

那么,如何解决这些问题呢?一、分类加法计数原理和分步乘法计数原理这两个原理是解决排列组合问题的基础。

分类加法计数原理:如果完成一件事有 n 类不同的方案,在第 1 类方案中有 m1 种不同的方法,在第 2 类方案中有 m2 种不同的方法……在第 n 类方案中有 mn 种不同的方法,那么完成这件事共有 N = m1 +m2 +… + mn 种不同的方法。

分步乘法计数原理:如果完成一件事需要 n 个步骤,做第 1 步有m1 种不同的方法,做第 2 步有 m2 种不同的方法……做第 n 步有 mn种不同的方法,那么完成这件事共有 N =m1×m2×…×mn 种不同的方法。

例如,从甲地到乙地,有 3 条公路直达,有 2 条铁路直达。

那么从甲地到乙地共有 3 + 2 = 5 种不同的走法,这就是分类加法计数原理的应用;而从甲地经过丙地到乙地,甲地到丙地有 2 条路可走,丙地到乙地有 3 条路可走,那么从甲地经过丙地到乙地共有 2×3 = 6 种不同的走法,这就是分步乘法计数原理的应用。

二、排列数和组合数的计算公式排列数公式:Anm = n(n 1)(n 2)…(n m + 1) (n, m∈N,且m≤n)特别地,当 m = n 时,Anm = n!(n 的阶乘,即 n! = n×(n 1)×(n 2)×…×2×1)组合数公式:Cnm = Anm / Amm = n! / m!(n m)!(n, m∈N,且m≤n)在计算排列数和组合数时,要注意准确运用公式,并且要注意计算的准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ห้องสมุดไป่ตู้odog足球分析
[名词解释]数据库 [单选]我国采用的资产负债表格式是()。A.多步式B.单步式C.报告式D.账户式 [单选,A1型题]下列关于核心信念的表述正确的是()A.位于认知表层显著位置B.与早年生活经历有关C.在意识层面被自己所认识D.在中间信念基础上形成E.明显的影响认知模式 [多选]支付结算的一般规定包括()。A.结算收付双方必须在银行开户,付款单位必须有足够的存款余额B.结算收付双方必须根据经济合同和有关制度办理支付结算C.达到结算金额起点D.正确填写票据和结算凭证 [问答题,简答题]计算题:已知某生产线全月共生产聚丙烯酰胺171盘,其中有1批(8盘)固含量不合格,3批(7盘8盘7盘)大粒超标,1批(9盘)不溶物不合格,试计算该线一级品的合格率? [单选]国务院常务会通过《突发公共卫生事件应急条例》的时间是()A.2002年11月16日B.2003年4月25日C.2003年5月7日D.2003年10月7日E.2004年5月10日 [单选]药物分析课程的内容主要是以()A.六类典型药物为例进行分析B.八类典型药物为例进行分析C.九类典型药物为例进行分析D.七类典型药物为例进行分析E.十类典型药物为例进行分析 [单选]当污染物集中于某处发生时,最有效地治理污染物对环境危害的通风方式是()。A.机械进风B.局部送风C.局部排风D.自然通风 [单选]如何切入动态锁定模式。()A、shift键↑+photo↓B、shift键↑+waypoint键↑C、waypoint键↑D、shift键↑+waypoint键↓ [名词解释]标本火化服务 [单选,A2型题,A1/A2型题]在下列类型的反应中,加入磁性微粒为同相载体包被抗原(抗体)的是()A.直接化学发光免疫B.间接化学发光免疫C.化学发光酶免疫D.电化学发光免疫E.A+C [单选,A1型题]认知疗法的治疗目标是()A.改变患者的不良行为B.帮助患者建立理性的认知模式C.消除不良嗜好D.帮助患者自我实现E.挖掘患者的最大潜力 [问答题,案例分析题]病例摘要:谢某,女,45岁,市民,已婚,于2011年11月10日上午8时就诊。患者近一年来,下痢时发时止,稍有饮食不当即泻下黏液便,时夹脓血。曾到多家医院就诊,结肠镜诊断:溃疡性结肠炎。间断服用柳氮磺胺吡啶治疗。因服后胃内不适,未能坚持服用。为求中医治 [单选]某项目的管道工程于2003年3月15日由建设单位组织有关各方对工程进行竣工验收,结论为合格。3月31日当地建筑工程质量监督机构为该工程办理了竣工验收备案手续。按照《建设工程质量管理条例》规定,该管道工程的最低保修期限截止日期是()。A.2005年3月15日B.2005年3月31日C.2 [单选]下列有关公务员职务任免与升降的说法哪一项是正确的?()A.公务员职务实行任期制B.选任制公务员在选举结果生效时即任当选职务C.经有关机关批准在机关外兼职的公务员可领取适当兼职报酬D.公务员晋升领导职务的,均应实行任职前公示制度 [多选]专利权的客体包括()。A.技术秘密B.计算机软件C.发明D.实用新型E.外观设计 [问答题,简答题]简述电力机车空气管路系统的组成和作用。 [单选]按照产品加工的顺序,计算并结转半成品成本,直到最后加工步骤才能计算产品成本的核算方法是A.逐步结转分步法B.分批法C.分批法D.平行结转分步法 [单选]从法学视角来说,()是指人们围绕社会物质财富的生产、交换、分配和消费过程所进行的各种社会关系的总和。A.社会B.生产力C.经济D.生产关系 [单选]风心病最常见的联合瓣膜病组合为A.二尖瓣狭窄合并关闭不全B.三尖瓣狭窄合并关闭不全C.主动脉瓣狭窄合并关闭不全D.二尖瓣狭窄合并主动脉瓣关闭不全E.二尖瓣狭窄合并主动脉瓣狭窄 [多选]世纪我国画坛“中西融合派”可分为写实派和现代派,其中()属于现代派。A.徐悲鸿B.林风眠C.刘海粟D.程十发E.齐白石 [多选]商品混凝土和易性是一项综合性能,它包括下列哪些方面的含义?()A、流动性B、粘聚性C、保水性D、耐久性 [单选]肺癌锁骨上野与纵隔野相邻时,下列哪项设计是正确的()A.锁骨上野与纵隔野共用一条分野线,不需间隔B.两野共用并拉开一定距离,使两照射野在50%等剂量深度相交C.两野可在相临处重叠0.5cmD.两野边界相接时,可用铅块挡掉一个照射野的扩散区,不需间隔E.两野可在相临处拉开2 [单选]心功能Ⅱ级产妇在产褥期的护理,正确的是()。A.产后最初3天,容易发生心力衰竭B.尽早下床活动,防止便秘C.视具体情况使用抗生素D.住院观察2周E.促进亲子关系,积极参与新生儿的护理 [单选]《传染病防治法》规定了传染病疫情通报制度,下列不属于通报规定的是()A.国务院卫生行政部门向国务院其他有关部门B.国务院卫生行政部门向国务院C.国务院卫生行政部门向省、自治区、直辖市人民政府卫生行政部门D.解放军卫生主管部门向国务院卫生行政部门E.地方人民政府卫生 [问答题,简答题]霍乱弧菌是如何污染熟食品的? [单选]“物流中心”的英文词汇是()A、logisticsCenterB、logisticsenterpriseC、logisticsmanagementD、logisticsinformation [填空题]加压后的液氨气化时体积会膨胀(),并大量(),使周围物质的温度()。 [填空题]在干气中,含有大量的()和小量的乙烷、丙烷等气体。 [多选]下列表述正确的是:()。A.货主或其代理人在办理进境动物、动物产品报检时,还需按检疫要求出具,输出国家或地区政府出具的检疫证书(正本);《中华人民共和国进境动植物检疫许可证》。B.输入活动物的报检时,还应提供隔离场审批证明。C.输入动物产品的报检时,应提供加工 [多选]施工现场临时用电工程必须经过验收方可使用,需由()等部门共同验收。A.编制部门B.审核部门C.合约部门D.批准部门E.分包单位 [单选]在感光丝网制版法中,耐印力最高的方法是()。A.直接法B.间接法C.直间法 [多选]下面哪几项是酒店运管七定式“对你人生受用4W”?()A、第一问:我要什么?B、第二问:我有什么?C、第三问:我缺什么?D、第四问:我要做什么? [单选]()是完成调查取证任务的关键。A、成立调查组B、明确调查取证内容C、正确的方法与步骤D、严格的调查取证纪律 [单选]增值税一般纳税人生产销售特定的货物或提供应税服务,向税务机关申请采用简易办法计算缴纳增值税时,对于符合条件的,当场予以办理,办税服务厅签收纳税人的《增值税一般纳税人简易征收备案表》后,()。A、转认定部门审批。B、根据纳税人报送的资料,制作《一般纳税人简易 [单选]安全审计是保障计算机系统安全的重要手段之一,其作用不包括()A.检测对系统的入侵B.发现计算机的滥用情况C.发现系统入侵行为和潜在的漏洞D.保证可信网络内部信息不外泄 [单选]以下股利分配政策中,最有利于股价稳定的是()。A.剩余股利政策B.固定股利政策C.固定股利支付率政策D.低正常股利加额外股利政策 [单选,A2型题,A1/A2型题]中性粒细胞碱性磷酸酶积分减低常见于下列哪种疾病()。A.慢性粒细胞白血病B.真性红细胞增多症C.骨髓纤维化D.再生障碍性贫血E.化脓性球菌感染 [单选]行政不当是指行政主体所为的同行政违法相并列的一种有()的行为。A.瑕疵B.错误C.不当D.责任 [单选]在溶解或熔融状态下不能导电的物质叫做()。A.电解质B.非电解质C.电介质D.非电介质
相关文档
最新文档